
Citation: Balyan, A.K.; Ahuja, S.;

Lilhore, U.K.; Sharma, S.K.;

Manoharan, P.; Algarni, A.D.;

Elmannai, H.; Raahemifar, K. A

Hybrid Intrusion Detection Model

Using EGA-PSO and Improved

Random Forest Method. Sensors 2022,

22, 5986. https://doi.org/

10.3390/s22165986

Received: 1 July 2022

Accepted: 31 July 2022

Published: 10 August 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Hybrid Intrusion Detection Model Using EGA-PSO and
Improved Random Forest Method
Amit Kumar Balyan 1, Sachin Ahuja 1 , Umesh Kumar Lilhore 2 , Sanjeev Kumar Sharma 1,
Poongodi Manoharan 3,* , Abeer D. Algarni 4, Hela Elmannai 4 and Kaamran Raahemifar 5,6,7

1 Chitkara University Institute of Engineering and Technology, Chitkara University, Punjab, India
2 KIET Group of Institutions, Delhi-NCR, Ghaziabad 201206, India
3 Division of Information and Computing Technology, College of Science and Engineering, Hamad Bin Khalifa

University, Doha 500001, Qatar
4 Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint

Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
5 College of Information Sciences and Technology, Data Science and Artificial Intelligence Program, Penn State

University, State College, PA 16801, USA
6 School of Optometry and Vision Science, Faculty of Science, University of Waterloo, 200 University Ave W,

Waterloo, ON N2L3G1, Canada
7 Faculty of Engineering, University of Waterloo, 200 University Ave W, Waterloo, ON N2L3G1, Canada
* Correspondence: dr.m.poongodi@gmail.com

Abstract: Due to the rapid growth in IT technology, digital data have increased availability, creating
novel security threats that need immediate attention. An intrusion detection system (IDS) is the
most promising solution for preventing malicious intrusions and tracing suspicious network behav-
ioral patterns. Machine learning (ML) methods are widely used in IDS. Due to a limited training
dataset, an ML-based IDS generates a higher false detection ratio and encounters data imbalance
issues. To deal with the data-imbalance issue, this research develops an efficient hybrid network-
based IDS model (HNIDS), which is utilized using the enhanced genetic algorithm and particle
swarm optimization(EGA-PSO) and improved random forest (IRF) methods. In the initial phase, the
proposed HNIDS utilizes hybrid EGA-PSO methods to enhance the minor data samples and thus
produce a balanced data set to learn the sample attributes of small samples more accurately. In the
proposed HNIDS, a PSO method improves the vector. GA is enhanced by adding a multi-objective
function, which selects the best features and achieves improved fitness outcomes to explore the
essential features and helps minimize dimensions, enhance the true positive rate (TPR), and lower
the false positive rate (FPR). In the next phase, an IRF eliminates the less significant attributes, incor-
porates a list of decision trees across each iterative process, supervises the classifier’s performance,
and prevents overfitting issues. The performance of the proposed method and existing ML methods
are tested using the benchmark datasets NSL-KDD. The experimental findings demonstrated that
the proposed HNIDS method achieves an accuracy of 98.979% on BCC and 88.149% on MCC for
the NSL-KDD dataset, which is far better than the other ML methods i.e., SVM, RF, LR, NB, LDA,
and CART.

Keywords: Hybrid IDS; genetic algorithm; particle swarm optimization; random forest; machine
learning; intrusion detection; security

1. Introduction

For decades, ID has been studied in computer security research. The latest devel-
opment of ML has enhanced the efficiency of IDS greatly. Additionally, the innovative
machine learning methods rely on a large amount of labelled data that require considerable
time and resources. Furthermore, checking that all Data is tracked before constructing the
device may be essential. The exponential increase in statistical data advancement makes
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the traditional data processing scheme incredibly complex, imbibing much more effort and
time. A big data technology is not perfect for unstructured data and imbalanced datasets.
So more robust intelligent solutions are always in demand [1]. The challenge of classifying
anomalies depending on network traffic patterns is critical for monitoring and recognizing
advanced threat activities. Recently, PSO has gained extensive attention for its incredible
outcomes in the composition of IDS [2].

Moreover, the assessment of variables has become an optimization challenge mainly
in the practical implementation of PSO. IDS often interact with large volumes of data,
potentially causing slow training and validation operation and poor detection levels. So,
feature selection has become one of the essential themes in IDS research. An ML-based NIDS
is a helpful solution for defending network services and infrastructure from unexpected and
hidden threats. The IDS is the software or hardware configuration that primarily monitors,
identifies, recognizes, and acknowledges specific intrusion and malicious behavior in a
computer network. One of these kinds of alert data helps a manager to acknowledge and
resolve the current system’s underlying issue [3].

NIDS is a software and hardware device that recognizes suspicious attacks inside
the network. Intrusion is categorized as anomaly-based or signature-based, depending
on the recognition system. IDS development teams utilize a variety of techniques for
intrusion detection and prevention. A few of these strategies are focused on machine
learning methods. ML algorithms can forecast and identify attacks well before they turn
into significant cyber threats. Binary categorization involves classifying objects into two
groups [4]. Figure 1 shows the working of a NIDS. In IDS, a firewall and router occur
between networks and devices.
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On the other hand, multi-class categorization involves grouping occurrences into
several categories. An ID is software or hardware-based application that monitors sus-
picious attacks or regulation violations upon a computer network or devices. As per the
research [5], intrusion detection can be defined as follows: “The context of computer secu-
rity, this same objective of which is to track the performance of the management system for
both the occurrence of illegal purposes, i.e., behavior designed aimed to violate this same
security plan regulating the confidentiality, integrity, and availability of service providers.”
An intrusion detection system depends on various factors and characteristics. It can be
divided into host-based intrusion detection systems (HIDS) and NIDS based on system
type. A HIDS instance is a method for monitoring essential software files. Each HIDS
helps detect an established intrusion by collecting and analyzing data (system log files
and record-keeping of both the software) from a computer that hosts a platform, such as a
user’s computer [6].

ML is a category of artificial intelligence (AI) that enables programs to improve overall
accuracy at predicting events, despite being explicitly taught to do so. An intrusion
detection system can utilize various methods to detect suspicious behavior in the dataset.
Algorithms are implemented to recognize unknown threats. This scheme uses machine
learning to generate a framework simulating activity and match changes in behavior with
the solid framework. A computer algorithm has been assigned to perform specific tasks
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under machine learning. It has been concluded that the system has been improving since it
started learning from its own experience. An ID system is a software that detects network
intrusions by employing numerous machine learning methodologies [7].

The existing machine learning methods encounter several challenges, i.e., over-fitting
and probing [8]. These methods are mainly trained on a single colossal dataset and require
more time in data collection. Many existing ML methods do not support an automatic
online learning process, requiring new training and consuming more computation power
in the overall process [9]. This research develops an efficient hybrid network-based IDS
model (HNIDS), which uses EGA-PSO and the improved random forest method. RF is a
robust machine learning approach utilized in ML-based IDS. In the RF-based IDS detection,
the model’s performance depends on two key parameters, minimal frequency occurrences
and forest tree density. In practice, selecting these parameters is significantly challenging.
We introduce an HNIDS that utilizes an EGA with PSO and IRF methods to overcome
these challenges.

This essential contribution of this research is as follows:

1. This research develops an efficient model named “HNIDS,” which mainly deals with
data imbalance and overfitting issues in the IDS dataset.

2. In the proposed HNIDS, we utilize EGA-PSO methods to improve the feature selection
and detection accuracy.

3. To deal with the overfitting issues, this research utilizes the IRF method, which eliminates
the less significant attributes, incorporates a list of decision trees across each iterative
process, supervises the classifier’s performance, and prevents overfitting issues.

4. To evaluate the proposed HNIDS and existing ML methods, this research utilizes two
benchmark IDS datasets, i.e., NSL-KDD and UNSW-NB15.

5. We have also calculated various key indicator parameters, i.e., precision, recall, F-
measure, and accuracy for proposed HNIDS and existing ML methods.

6. In this research, we acquired 11 sub-attack variants over the DoS/DDoS threat class, 6
over the probe attacking class, and 7 with the users to root (U2R) threat class, including
15 sub-attack varieties including the remote to local (R2L) threat class.

The complete research article is organized as follows: Section 2 covers the literature
review of the various existing IDS research based on ML methods. Section 3 covers the
existing methods widely used in IDS. Section 4 covers the problem statement and proposed
solution; Section 5 covers the dataset description, Section 6 covers simulation results and
discussion, and the last section covers the conclusion and future direction of the research.

2. Literature Review

This section mainly reviews the various existing research in intrusion detection.

2.1. Review Based on ML and Deep Learning Methods

In the research [1], ML uses a statistical modeling strategy to learn previous data se-
quences and afterward anticipates one of the most likely outcomes utilizing novel statistics.
Signature-based, anomaly-based, and hybrid-based detection are the three approaches that
the IDS uses to detect intrusion. Signature-based detection identifies attack patterns by
analyzing their signature [2]. In the research [3], to deal with this problem, anomaly-based
identification, which relates consumer operations to predetermined statuses, is utilized to
detect suspicious actions that could be incursions. Even without auto-updates, anomaly-
based monitoring is helpful for unidentified or minimal assaults. However, this method
usually has significant false-positive scores. In the research [4], a hybrid-based IDS employs
several detection techniques to improve the performance of a specific methodology while
gaining the benefits of multiple methods. Several studies have developed an automated
approach for IDS to lower false-positive rates and provide efficient IDS. The research [5]
proposed IDS predicated on deep AE and ML methodology. Essentially, the encoder por-
tion of AE is used to enable the work in a non-symmetric manner, making it practical and
efficient in computation time and cost. Two different non-symmetric deep AEs, only with
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hidden layers for each, were organized in a layered direction. A random forest algorithm
was utilized for categorization. The KDD Cup’99 and NSL-KDD collections were utilized
to investigate the classification contexts. The presented scheme proved its efficiency in
terms of better accuracy rate and reduced time complexity over the existing DBN method.

The research [6] also developed a similar concept of self-taught teaching methods pred-
icated on sparse AE and a classifier. They completed experimental work on the developed
framework, evaluating the NSL-KDD source data to authenticate their performance. The
analysis indicates improvement in overall results compared to many DL and ML models.
However, the proposed framework’s effectiveness in the R2L and the U2R category are
not addressed. The research [7] considered various IDS predictions based on multiple
nodes, sequence-to-sequence, structures, and filter spectrum AE, respectively. Such con-
cepts were investigated for distinct benchmark datasets NSL-KDD, Kyoto, Honey pot,
UNSW-NB15, IDS2017, and MAWILab vestiges. In research [8], the analysis indicates that
the Seq2Seq model was formed utilizing multiple RNNs compared to other methods for
overall classification accuracies and feature sets. The research [9] adopted the fundamentals
of AE to introduce a multiphase model, incorporating the ID convolution operation and
stacked layers. Within the preliminary unmonitored phase, two different AEs were trained
and evaluated utilizing normal and attack streams to recreate the test results. Within the
supervised phase, all new recreated specimens were utilized to construct a new enlarged
dataset as feedback to a 1-dimensional CNN method. Table 1 reviews the various existing
methods suggested by different researchers in intrusion detection.

Table 1. Review of existing work in the field of intrusion detection.

Reference Methods/Techniques Key Features Challenges/Improvement

[10] A hybrid method based on
GA and ANN Better precision and recall.

No real-time data set. Accuracy can be improved
by adding two-way training. Analysis of

variance (ANOVA) is missing.

[11] Ensemble model based on
meta-classification

Better precision and accuracy
compared to other methods.

The training and testing process time is lengthy.
The new IDS challenges were not covered.

[12] Risk analysis of RPL and OFS Capable of dealing with
high-dimensional data. Training requires a significant amount of time.

[13] Deep learning in IDS
DNNs perform outstandingly

in terms of better precision
and recall.

Only limited datasets were used.

[14] Deep-learning approach
in NIDS

Reduce false alarms and
training times.

ANOVA is not implemented.
Only a few datasets were used.

2.2. Review Based on the Current State of the Art in IDS Research

The current developments and challenges concerning IDS in systems are examined
about intrusion identification and control. The software and hardware modules that
integrate multiple occurrences in systems for intrusion clues are “intrusion detection
systems” [15]. Table 2 summarizes the current research in the field of IDS.

2.3. Review Based on Symmetric Elements in IDS Research Using Machine Learning

The symmetry-adapted machine learning framework is a new AI system that involves
information retrieval to reveal hidden correlations. It can retrieve and analyze information
from ID schemes over the web, which also detects the presence of invisible and novel net-
work threats to handle network security challenges and threats. Different machine learning
algorithms, such as cluster analysis, association methods, and classification algorithms,
may help extrapolate and find intrusion attempts for technology and information security
concerns, such as malicious software, data leaks, malware, APTs, and data fusion.
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Table 2. The present state of the art in the field of intrusion detection research.

Key Method References Form of Benchmark Data The Categories/Type of
Intrusion in the IDS Dataset Performance Measuring Criteria

Single technique-based
recurrent neural network

[16] Standard IDS data set Probe, DoS, U2R and R2L Precision, positive detection rate,
false-positive rate.

[17] Standard IDS data set

SMTP, HTTP web, IAMP, TCP,
ICMP, secure web,

misapplication, IRC,
Flow-Gen, ICMP, and DNS

Recall, F1-score, precision, AUC
error rate, accuracy.

Machine learning methods
[18] Standard IDS data set Probe, DoS, U2R and R2L True positive rate, accuracy, F1-score,

precision, and recall.

[19] A real-time IDS data set Probe, DoS, U2R and R2L Accuracy, TPR, FP, TN, precision,
TNR, recall.

[20] Standard IDS data set Threats, malware,
cyber threats Accuracy and precision.

Evolutionary Machine
Learning methods

[21] Standard IDS data set DoS, R2L, U2R and probe
Precision, recall true positive: false

negative, false positive,
true negative.

[22] Standard IDS data set DoS, R2L, U2R and probe,
SYN, threats, and DDoS Precision, TPR, F1-score, accuracy.

2.3.1. Dimensionality Reduction Challenges in IDS

The high-dimensional characteristics in computational problems contribute to lengthy
classification procedures. On the other hand, low-dimensional characteristics can slow
down these procedures [23]. Furthermore, the classification of internet traffic information
with imbalanced class variances has presented significant limitations about the results
that are attainable by most well-known classification models, which assume fairly bal-
anced class distributions and equivalent miss-classification costs. The frequent occurrence
and difficulties related to imbalanced classification models require additional scientific
research. Earlier intrusion detection and prevention research does not address the issues
related to NIDS classification due to imbalanced class patterns [24]. Table 3 represents the
comparisons of the existing research based on dimensionality reduction in IDS.

Table 3. Comparison of existing research based on dimensionality reduction in IDS.

Reference Method Used Major Contribution Challenges/Limitations

[23] Principal component analysis Able to manage large datasets,
more efficient.

Not able to handle
nonlinear problems.

[24] Auto-encoders It does not require any prior
assumptions for the reduction. Slower in speed.

[25] Missing value ratio Mainly finds out the missing values
and NULL values.

Works on the specific
data framework.

[26] Low variance filter It eliminates the low variance filter in
specific dimensions. Can work on limited data.

[27] Factor analysis It can analyze various data factors. Slower.

[28] Forward feature selection It works in the forward direction. Works on the specific
data framework.

[29] Uniform manifold approximation
and projection (UMAP)

UMAP is crafted from a theoretical
foundation predicated on

Riemannian manifolds and
algebraic configuration.

Can work on limited data.

[30] Random forest It constructs a dimension reduction
tree based on the decision. Can work on limited data.

2.3.2. Concept Drift and Model Decay

Model drift and decay are principles that explain the workflow, all through which
the efficiency of a model utilized for processing degrades on a genuinely innovative, new
dataset, and the underlying principles show more about the difference in the value. Models
should be retrained on novel inputs frequently [31]. Table 4 compares the current research
for handling concept drift and model decay.
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Table 4. Comparisons of current research for handling the concept of drift and model decay in IDS.

Reference Research Scope Major Contribution Challenges/Limitations

[32] Single classifier It involves a single
classification method. Poor accuracy results.

[33] Ensemble classifier for active state It involves multiple classification
active state methods. More accurate and efficient.

[34] Ensemble classifier for passive state It involves multiple classification
methods for passive state data. More accurate.

[35] Chunk-based data level

It involves actual attribute selection,
employing continuously adaptive

statistics analyses of input and
probabilities of class labels.

It can work on specific data types.

[36] Online learning based It involves the online
learning method. Work on limited data.

3. Existing ML Methods

ML methods play a vital role in IDS research. This section covers the essential ML
methods used in this research.

3.1. Logistic Regression (LR) Technique

LR is a procedure that involves designing the likelihood of precise results that are
granted an input factor. A traditional LR model is built on binary class details, i.e., such
as “yes/no, true/false.” Multiple linear regressions can model situations with more than
two different outputs. LR is an effective analytical procedure for classification techniques,
such as determining whether fresh samples belong in a specified group. LR is a valuable
analytical method for areas of cyber security research that include classification problems,
such as attack detection, IDS, etc. The LR technique is commonly used to analyze a sequence
of object classes [35]. LR employs an operational function known as the “sigmoid function,”
which is centered upon just a cost feature function. This function mainly helps in the
mapping of specific probabilities with prediction values. A logistic regression equation for
an input value y and weight values (β) predicts an output value x and input value y, as
presented in Equation (1).

x =
e(aβ0+ aβ1∗y)(

1 + e(aβ0+ aβ1∗y)
) (1)

3.2. Random Forest (RF) Technique

The RF classification is an ensemble technique that continuously uses bootstrapping,
averaging, and bagging to train many decision trees. By employing distinct subsets of
accessible characteristics, numerous independent decision trees can be constructed simulta-
neously on different segments of the training samples. Bootstrapping guarantees that any
decision tree inside the random forest is distinct, lowering the RF variance. RF classification
combines numerous tree decisions for the final judgment; as a result, the RF classifier has a
strong generalization. The RF classifier aims to consistently outperform almost all other
classifier techniques in terms of precision without difficulties of imbalanced datasets and
overfitting [36]. A mean square error (MSE) for an RF can be defined as Equation (2).

MSE =
1
N

n

∑
k=0

(
n
k

)
(Fi− Yi) b2 (2)

For Equation (2), N represents the number of distinct data points; Fi shows the outcome
returned by model Yi and the precise value for point value is i.
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3.3. Classification and Regression Tree Model (CART)

It is a forecasting framework for understanding how well the values of an outcome
measure can be anticipated using information from other parameters. The CART total
output is a predictive model in which each branch represents a divide in a response variable,
so each ending node represents a result variable projection. In a CART model, a binary
tree represents the items. To construct a CART structure, in the first step, we select input
parameters and breakpoints on these parameters until an appropriate tree is no longer
formed [37]. Equation (3) G (I) is the Gini index, ci is the class, and cpi is the class probability.

G (I) = 1−
n

∑
i=1

(ci + cpi) (3)

3.4. Linear Discriminant Analysis Technique (LDA)

LR is a prominent logistic classifier and uses well-used classification algorithms but
struggles with multidimensional classification problems with very healthy categories. LDA,
on the other side, manages these reasonably well. LDA, as with PCA, is used in text
processing for dimension reduction and reduces the computational cost. Facial recognition
methods utilize LDA well. LDA is still used in Fisher’s faces to retrieve specific information
from numerous faces. LDA generates better results for binary images and also lowers
the dimensionality issues. It represents variations, such as segregating data into various
classes [38].

3.5. Support Vector Machine (SVM) Technique

The SVM is a supervised type of machine learning that solves classification perfor-
mance issues with different classifiers. SVM features can classify novel content after giving
training samples for each segment. The SVM classifier’s main objective is to discover
a hyperplane inside an N-dimension internal space, where N represents the number of
characteristics distinguished between the extracted features. The SVM method performs
by linking statistics to a highly high vector space, enabling data points to be classified
even when they are not quite linearly distinguishable usually. After performing a divider
operation, the dataset is enhanced and can be easily partitioned and drawn as a feature
space [39]. A square hinge loss value can be obtained by using (4), where y represents the
actual value and y̌ represents predicted value. A hinge loss is mainly used to determine
any incorrect prediction in anomaly detection.

L(y, y̌) =
n

∑
i=0

(max(0, 1− (y, y̌)2)) (4)

3.6. Naïve Bayes Technique (NB)

It is named Naïve since it automatically assumes that the particular characteristic’s
existence is distinct from the event of specific other characteristics. If one supposes that
the product’s color, structure, and flavor are used to identify things, in that case, a red,
spherical, and juicy fruit is labeled as just an apple. As a result, each aspect helps to identify
that it is an apple without relying on the others. An NB method focuses primarily on
probability distribution and the hypothesis of further feature-complete independence. With
every data set, the Naïve Bayes algorithm computes the likelihood function for distinct
class and class sets [40]. It is termed Bayes because it is based on the Bayes’ Theory concept.
Bayes’ theorem, often known as Bayes’ principle, is a mathematical formula for calculating
the probabilities of a hypothesis with previous information. It is condition likelihood that
determines this [41]. Bayes theorem can be defined as Equation (5). Here, P (A|B) shows
the probability of “hypothesis A on the observed event B.”

P(A|B) = P(A)P (B|A)

P(B)
(5)
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4. Problem Statement and Proposed HNIDS Model

This section covers the problem statement identified based on the existing ML-based
IDS research. It also covers the working of the proposed HNIDS model, algorithm, and the
key strategy to resolve the identified issues.

4.1. Problem Statement

Based on the literature review in ML-based IDS, the following key issues are identified:

• Data imbalance: due to a limited training dataset in NSL-KDD, an ML-based IDS
generates a higher false detection ratio and encounters data imbalance issues.

• Feature Selection: Another issue is related to the feature selection process.
• Performance: existing IDS are ineffective in dealing with new attack categories in

networks due to their poor recognition rate and detection accuracy.
• Overfitting issues: overfitting is also a significant issue in IDS research.
• Issues related to the traditional random forest: in the RF-based IDS detection, the

model’s performance depends on two key parameters, the minimal frequency occur-
rences and forest tree density, but in practice, selecting these parameters is signifi-
cantly challenging.

• High computational overhead: The existing ML-based IDS encounters a higher com-
putational time. In the existing ML-based IDS systems, it is essential to determine
digital values for all the non-numerical fields in the NSL-KDD dataset, which helps in
the normalization process [42].

4.2. Proposed HNIDS System

This research proposed an HNIDS that utilizes an EGA with PSO for feature extraction
and IRF methods. We aim to determine the perfect features to improve the IDS performance,
which includes significantly better precision and accuracy. The proposed HNIDS model
will classify the attack category more precisely and efficiently.

4.3. Proposed HNIDS Working Steps

A PSO method improves the vector in the proposed HNIDS. At the same time, the
EGA is utilized to reconfigure the decision vectors that employ evolutionary operators.
The proposed HNIDS is divided into the following stages: (1) data pre-processing, (2) By
applying EGA-PSO, (3) By applying IRF, and (4) measures of the performance evaluation
parameters. Figure 2 shows the architecture of the proposed system.

4.3.1. Data Pre-Processing

An NSL-KDD database includes 38 numeric and three non-numeric values, including
protocol type, service, and flag. Before initiating the feature selection process, the statistics
must be normalized [43]. To accomplish this, we normalize the sample data attributes. This
procedure has gained significance since all attributes may have varying data types. It mainly
prevents significant numerical problems due to the variable parameters throughout the
computation procedure [44]. We used min-max-based normalization within the proposed
HNIDS method, which transforms a data value dv to dv’ in the limit (min_new_value to
max_new_value), as described in (6).

dv =
dv− dv_min

dv_max− dv_min
(max_new_value−min_new_value) (6)

In Equation (6), the range of the completely transformed attributes is denoted by
min_new_value to max_new_value. In this research we used max_new_value 1 and-
max_new_value to 0 andmin_new_value to 1. These transformed features are then utilized
as input data for the feature selection technique.
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4.3.2. Apply EGA-PSO

Feature selection is one of the most crucial phases in IDS. The proposed model in-
troduces a linear discriminant mutation approach based on statistical data analysis in
EGA’s optimized mutation operator before applying a feature selection procedure. Then,
the feature intervals are standardized using the min–max-based normalization process.
The proposed HNIDS uses EGA to hunt for a new set of optimized features throughout
the feature selection procedure by optimizing the EGA hyper-parameters and the revised
selection operator [44].

Feature selection, a technique for obtaining a minimal group of adequate features,
improves classification performance by evaluating the optimal sequence of elements
from the basic feature set. It removes irrelevant features, reducing memory and com-
putational overheads. It includes identifying a subcategory of features (SF) from the
overall features (F) depending on a particular approximation algorithm. GA associated
with PSO was utilized as a feature selection method to discover the best solution.
John Holland was the first to use GA in 1975. However, they can be utilized to solve
both search and optimization challenges. Particularly, GA comes under the umbrella
of evolutionary algorithms (EAs). Across several complex real-world optimization
project activities, EAs have conclusively proved to be the most extraordinary practical
approach [45].

In 1995, Eberhart and Kennedy incorporated PSO for the first time. It is just a
population-based optimal methodology focused on fish schooling and bird flocking
behavior. The PSO method is the family member of swarm intelligence methodologies.
Among the many PSO’s key benefits is that it becomes computationally efficient, owing
to its fewer implementation requirements and cost. GA utilizes the legislation of genetic
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variation as its conceptual framework for integrating problem-solving across a popu-
lation (P) of participants. Genes are a set of factors that characterize each participant.
Genes are stringed together to form a chromosome. As a result, each real solution has a
chromosome [46].

Existing is enhanced by adding a multi-objective function, which selects the best
features and achieves improved fitness outcomes to explore the essential features and
helps minimize dimensions, enhancing the true positive rate (TPR) and lowering the
number of false positives (FPR). The proposed hybrid model also reveals a few symmetrical
components, i.e., reduction, class imbalance, concept drift and model decay, and cross-
validation to develop an effective IDS using ML [44].

The excluded participants from the selection process are forwarded to the PSO method
for reformation. These excluded participants will link to upgrade their positions and
velocities to ensure the optimal feasible outcome for the non-fit participants. Optimal PSO
participants will be transmitted further into the current GA’s massive population. A fitness
function across EGA and PSO is optimized, utilizing an optimized RF method to enhance
the prediction performance.

The chromosomes Ch_i are encoded in a binary vector binary_i of length L in the
HIDS, where i = (1,2,...,n). It utilized a binary encoding method to determine which feature
was selected and not for the input data. The cluster of all chromosomes is mainly known as
the “population.” The participant must have included critical attributes within the original
population data (Ch_n, Slope, Ch_a, Thal).

Then, an EGA performs its assignment using critical operations of traditional GA,
which are as follows: enhanced selection criteria, crossover process, enhanced mutation
process, and higher fitness estimation. We believe that all the non-fit participants can have
strong genes that can guide the selection module’s breakpoint to spaces in the solution
space, where the most considerable enhancement can be discovered. As a result, the
excluded chromosomes (non-fit participants) are forwarded to PSO for revolution, as GA
tries to find healthy chromosomes rather than perfect genes. Based on the fitness value,
all the healthiest participants are chosen depending on the validity of an optimization
algorithm. It can be estimated across both PSO and EGA using the RF method with high
precision to sustain the subsequent transmission [47,48].

Furthermore, RF prevents over-fitting, which is one of the primary issues in the IDS
prediction process. As a result, the RF machine learning model is combined with EGA
within the proposed HNIDS method to determine the best factors.

Enhanced Selection Process

In a GA process, the preliminary population is initialized at 50, and the highest
counter value is 30 iterations. Afterward, we initiate the selection procedure, which
is crucial for identifying the appropriate participants being acknowledged for one’s
best fitness, from the current creation for re-production or even to be persisted in the
subsequent stage [49]. The rejected participants are transferred to the PSO method for re-
transformation. The above-rejected participants will form the PSO minority population,
who can communicate to upgrade their positions and velocities to achieve the optimal
outcome for the non-fit participants. The most acceptable PSO participants will be
transmitted to the current GA population [50]. GA has used a modified fitness function
by adding the features of the RF classification model. It helps to examine the scoring
rate of each final solution.

A sequence must be decrypted into a binary sequence to determine the objective
functions. An enhanced selection method is utilized with an initial size of 0.264. Even
though the enhanced selection process is similar to the rank selection method regarding
the sampling pressure, it is even more efficient in data processing and more adequate
for parallel practical implementation. Individual fitness is determined through the
following phases: (a) effectively transform all the data, feature set, and attributes in
feature space, and (b) k-fold cross-validation process or instance validation with a high
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precision rating from the RF model. The sampling probability of each participant is
determined by Equation (7), where the selection probability is ProbS , fitness value is
FitV, and n represents the nth chromosome value.

ProbS(n) =
FitV (n)

∑n
k=0 FitV (n)

∗ FitV (n) (7)

Enhanced Crossover Process

In this procedure, two different parent chromosomes are often utilized to create a new
chromosome, mostly on-premise crossover operation probability, which is close to one in
the experimental analysis. A string of formed chromosomes is preferable to its parent’s
chromosome value. The stages of a complete crossover process are as follows:

• A pairing of two independent strings is selected with the guidance of its selection
(re-production) operator.

• A cross-site is selected randomly and together with the width of the sequence.
• Apply to swap the string ranks and obtain the new sequence and positions.

Enhanced Mutation Operator Process

The strings initiate the mutation process after the crossover process is finished, which
also seems to be a random transformation in a gene’s current value. A mutation involves
changing one bit from zero to one or conversely. A mutation method improves an existing
solution by significantly changing it. Mutation restricts the GA from becoming locked in
a local solution. A mutation method is enhanced by incorporating a linear discriminant
(LDM) method that relies on statistical data analysis. The hybrid HNIDS method that
employs an EGA and PSO is addressed in Algorithm 1.

4.3.3. Apply IRF

In the proposed HNIDS method, IRF eliminates the less significant attributes, in-
corporates a list of decision trees across each iterative process, and supervises the per-
formance of the classifier of the RF. The RF method is utilized for binary categorization
in the proposed HNIDS method. RF creates a class with a mean predictive model after
building numerous decision trees well in the training phase. A grid search method is
used to groove all the hyper attributes of the RF method. We configure the numerous
parameters for the RF method to implement the proposed HNIDS. In addition, the other
parameters include 2 (min leaf size; 4 (min size for the split). The parameter value in the
experiments includes max random trees: 1000, max depth: 10, Confidence: 0.5, belief:0.5
in the voting method, Gini impurity, pruning, and pre-pruning [51]. In addition, the
other parameters include min leaf size: 2; min size for the split: 4. In the IRF method, a
Gini impurity is determined by Equation (8), where n represents the number of classes
used in the process, and RP represents the probability of selecting an element from class
i data.

GiniImpurity =
n

∑
k=0

RP
(
ipc

)(
1− RP

(
ipc

))
(8)

Different decision trees operate together in an RF method as an ensemble form. An
RF method means less computational cost and can build numerous minimal decision
trees with limited features. We can integrate small decision tree structures into a sin-
gle, robust candidate solution (large tree structure) by taking the average or possibly
obtaining a significant percentage vote. The RF method is currently the most efficient
training and learning method [52]. Algorithm 2 shows the function of the IRF method.
In the proposed HNIDS method, the working of each of the methods is described in the
following sub-sections.
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Algorithm 1. Proposed HNIDS method (EGA-with PSO)

Input: attributes set, Random population (RP), the maximum number of generations (Max_g),
Binary vector
Output: Optimized individual generation RP(n)
Step1: Apply RF method to determine the best fitness value for each participant

1.1 for each participant i to RP
1.2 do
1.3 determine the best fitness (i)

1.3.1 call random_forest ();
Step 2: Apply the enhanced selection process of GA
2.1 while (iteration_count< n)
2.2 call selection (i);
2.2.1 set New_selected_value = selection (i);
Step 3: Select best bit individuals using enhanced mutation and crossover (EGA)
3.1 Choose the best fit
3.1.1 if (New_selected_value == Best_fit), than
3.2 if (Crossover_generation) than
3.2.1 Choose two parents randomly (i_pa, i_pb)
3.2.2 Generates offspring parent (i_pc) = Crossover_generation (i_pa, i_pb);
3.3 else
3.4 Call enhanced mutation process
3.4.1 randomly select an independent value (i) from the parent set
3.4.2 Generates offspring parent (i_pc) = Crossover_generation (i_pa, i_pb);
3.5 else
Step 4: Calculate the best fit (fitness value) for each participant
4.1 if (New_selected_value == Best_fit)
4.1.1 Process Best_fit
4.2 else
4.2.1 Interchange the least fit participants with offspring parent (i_pc)
4.3 else
Step 5: Apply the PSO method to check the outcome best fir
5.1 New_Output_PSO = PSO_Rejected (offspring parent (i_pc))
5.2 End
Step 6: apply enhanced selection to generate a new population
6.1 if (New_Output_PSO == Best_fit) then
6.2 New_Output_PSO = New_Output_PSO + Current_PSO_Output
6.3 else
6.4 Call Enhanced_selection ();
6.5 End

4.3.4. Measures of the Performance Evaluation Parameters

This researcher utilizes the following key parameters to measure the performance of
the proposed HNIDS and existing ML methods [53].

• Accuracy: This evaluates the performance by the percent of the overall correctly classi-
fied instances. The percentage of correct forecasts is quickly measured by deducting
them from the set of overall forecasts [54]. Equation (9) shows the formula for accuracy.

Accuracy =

[
(TP + TN)

(TP + TN + FP + FN)

]
∗ 100 (9)

• Precision: The precision calculates the proportion of accurate test scores penalized by
the number of incorrect test scores [55]. Equation (10) shows the formula for precision.

Precision =

[
TP

(TP + FP)

]
∗ 100 (10)
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• Recall: The processing evaluates the actual number of classifiers penalized mainly
through the number of records lost [56]. Equation (11) shows the formula for recall.

Recall =

[
TP

(TP + FN)

]
∗ 100 (11)

• False alarm: The false alarm attempts to measure a false negative percentage of benign
incidents as suspicious [57]. Equation (12) shows the formula for the false alarm.

False Alarm =

[
FP

(FP + TN)

]
∗ 100 (12)

• F-score: It is measured to limit the recall and precision correlation coefficient, providing
an efficiency evaluation [58]. Equation (13) shows the formula for the F-score.

F− score =

[
2 ∗

{
(Precision • Recall)
(Precision + Recall)

}]
∗ 100 (13)

where TP, TN, FP, and FN can be defined as follows:

◦ TP: It is known as “true positive”; the threat was predicted as just a significant attack.
◦ FP: It is known as “false positive”; actual data have been misclassified as just a

significant attack.
◦ TN: It is known as “true negative”; metrics are classified correctly as a regular record.
◦ FN: It is known as “false negative“; standard metrics are correctly predicted as

regular entries.

Algorithm 2. Proposed HNIDS method (IRF working)

Input: NSL dataset ds for training, v variable, n1 represents the total the nodes in a tree

Output: Random Forest ensemble tree RFTree(
k
1
)

Step1: Construct an initial tree
1.1 for each j to k repeat
1.2 construct a sample set by using an initial IDS dataset (original) of size n
1.3 start feeding the new bootstrapped dataset to a decision tree DFTree
Step2: Choose the best fit
2.1 for each n1 to min node size, repeat
2.2 start feeding the new bootstrapped dataset to a Random forest tree RFTree
2.3 Select randomly variables v’, towards a variable set v
2.4 Choose the fittest variable divided among all these variables v’
2.5 divide a parent tree node into the new child nodes

2.6 return ensemble tree RFTree(
k
1
)

2.7 End

Step 3: Verify a constructed Random Forest ensemble tree RFTree(
k
1
)

3.1 if (ensemble tree RFTree(
k
1
) == Best_fit_tree BFTree(

k
1
))

3.2 Proceed with the best fir ensemble tree
Step 4: Determine the best class

4.1 apply classification to find the best fit from BFTree(
k
1
)

4.2 Calculate the number of votes
4.3 if the number of votes is maximum

4.4 return BFTree(
k
1
)

4.5 End
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5. Data Set Description

We have chosen the NSL-KDD dataset [43] for this research because it is a benchmark
dataset for network-based IDS and an improved form of the KDD-cup 99 dataset. Previous
researchers have widely used the NSL-KDD data set [1,3–5], which motivates us to utilize
the latest dataset.

There are 41 attributes and 1 class feature in the NSL-KDD data set. A total of
41 attributes play no role in attack detection, while others play a minor role. The NSL
KDD dataset has the following advantages. No duplicate data/files exist in the NSL-KDD
training dataset. So, a classification algorithm cannot generate any biased outcome. The
classification algorithm can produce better reduction rates with no redundant log in the
testing dataset. Combining multiple data from each complicated system element affects the
percentage of the initial KDD data set records.

The training data comprise twenty-one attacks out of the same thirty-seven in the
testing dataset. The existing dataset contains some extra attack fields. The following four
attacks have been identified: probe U2R, R2L, and DoS. Table 5 shows the attack categories
in the testing dataset [58,59].

Table 5. Description of the NSL-KDD dataset.

Attack Classes in NSL KDD Dataset Types of Attacks

Probe class IP-sweep, Satan, Port-sweep, N-map, Saint, and M-scan

DoS class Land, Back, Tear-drop, Pod, Neptune, Smurf, Worm, Mail-bomb, Process-table,
Apache-2, and Upstorm.

R2L class Ftp_write, Guess_password, Phf, Imap, Warez-master, Multi-hop, Xlock,
Snmpguess, Xsnoop, HTTP-tunnel, Snmpget-attack, Named, and Send-mail.

U2R class Buffer_overflow, Xterm, Rootkit, Loadmodule, Sqlattack, Perl, and Ps

An NSL-KDD dataset mainly contains KDD-Train+, KDD-Test+, and KDD-Test−21

datasets for training and testing. The dataset mainly includes two class categories based on
classification type, i.e., binary and multi-class, as described in Tables 6 and 7.

Table 6. Binary class classification (NSL-KDD) dataset.

Data Set Type Normal Record Abnormal Record Total Records

KDD-Test−21 dataset 2125 9698 11,850
KDD-Train+ dataset 67,343 58,630 1,25,973
KDD-Test+ dataset 22,544 9711 12,833

Table 7. Multi-class classification (NSL-KDD) dataset.

Data Set Type Normal-Class DoS-Class Probe-Class R2-L Class U2-R Class Total Records

KDD-Test−21 dataset 2125 4344 2421 2885 67 11,850
KDD-Train+ dataset 67,343 45,927 11,656 9,95 52 1,25,973
KDD-Test+ dataset 9711 7460 2421 2885 67 22,544

6. Simulation Results and Discussion

This section covers the experimental details, evaluation, and performance analysis of
the proposed HNIDS and existing ML methods, i.e., SVM, RF, NB, LDA, and CART.

6.1. Simulation Setup and Details

Existing ML and proposed HNIDS methods are implemented using Python version 3.0
(https://www.python.org/download/releases/3.0/, accessed on 20 January 2022) in the
Anaconda environment, on Windows 10 OS, with 8 GB RAM [60–62]. Various performance
measuring parameters are calculated on the well-known IDS data sets NSL-KDD.

https://www.python.org/download/releases/3.0/


Sensors 2022, 22, 5986 15 of 20

6.2. Results, Comparisons, and Validation

The proposed HNIDS model is compared to some well-known ML methods, including
SVM, RF, LR, NB, LDA, and CART, using the NSL-KDD dataset. Some key measuring
parameters (as discussed in Section 4) were calculated, i.e., TPR, TNR, FPR, FNR, accuracy,
precision, F-score, false alarm, and recall rate.

In this research, an experimental analysis is performed in two stages. The first stage
utilizes a BCC process. The BCC phase divides the network traffic into ‘normal-class’ and
‘abnormal-class.’

The second phase is based on an MCC. It utilizes a multi-class feature of network
threats. An MCC is divided into the class categories of ‘normal,’ ‘DOS,’ ‘R2L’, ‘U2R’,
and ‘probe.’

6.2.1. Experiment 1: (Binary Class Classification)

An experimental first is performed to determine the BCC results for the NSL-KDD
datasets (KDD-Train+, KDD-Test−21). Table 8 represents BCC’s outcomes for the proposed
HNIDS and existing methods.

Table 8. Experimental result of BCC on KDD-Train+ dataset.

Classification
Method Accuracy % TPR % TNR % Precision % FPR % FNR % Recall % False

Alarm % F1-Score %

SVM 87.798 96.748 95.656 97.847 3.147 2.968 91.414 91.242 96.665
LDA 91.568 93.447 91.774 96.778 2.987 3.145 90.565 78.127 96.321
RF 97.498 97.658 95.998 97.847 2.747 3.541 94.665 91.334 97.478

Naïve Bayes 94.657 96.114 92.045 95.624 2.147 2.747 93.554 79.542 95.078
CART 94.592 92.474 94.141 96.547 4.145 2.878 92.778 81.632 95.621

LR 92.314 90.852 90.784 91.263 3.564 2.145 90.112 80.471 91.256
Proposed
HNIDS 98.979 99.658 98.996 99.847 0.974 0.774 96.124 70.021 99.414

Observations and Discussion

Table 8 represents the experimental results of BCC on the KDD-Train+ dataset. The pro-
posed HNIDS method archives accuracy of 98.979%, TPR99.658%, TNR 98.996%, precision
99.847%, FPR0.974%, FNR0.774%, recall 96.124%, false-alarm70.021%; F1-score 99.414%,
which is higher than the existing ML methods. The random forest method recorded 97.498%,
the second highest compared to other methods. Similarly, RF performs better in terms of
TNR, precision, FPR, FNR, recall, false alarm, and F1-score than SVM, LR, NB, LDA, and
CART ML methods.

Figure 3a shows the confusion matrix for the proposed HNIDS method for binary
class classification, which shows TP as 7409, FP 23, FN 364, and TN 10239. Figure 3b shows
that the normalized confusion matrix for the proposed HNIDS achieves TP of 0.95, FP 0.0,
FN 0.05, and TN 1.0.
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Figure 4 shows the accuracy graph for the proposed HNIDS and existing ML methods for
BCC, which indicates the strength of the proposed method in terms of higher accuracy %.
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6.2.2. Experiment 2: (Multi-Class Classification)

Experiment 2 is performed to determine the MCC results for the NSL-KDD datasets
(KDD-Train+, KDD-Test−21). Table 9 represents the outcomes of MCC for the proposed
HNIDS and existing methods.

Table 9. Experimental results of MCC on KDD-Train+ dataset.

Classification
Method Accuracy % TPR % TNR % Precision % FPR % FNR % Recall % False

Alarm % F1-Score %

SVM 84.171 87.148 85.656 78.417 17.477 12.878 83.659 81.442 86.005
LDA 82.814 85.701 81.774 74.814 18.657 13.557 82.447 79.477 86.201
RF 82.898 82.601 85.998 77.457 16.047 11.121 88.936 71.445 83.008

Naïve Bayes 86.771 84.457 82.045 75.478 17.107 14.877 85.223 77.502 85.968
CART 83.252 85.441 84.141 78.719 18.547 13.978 86.445 76.694 83.771

LR 80.124 83.278 80.117 75.961 15.623 11.451 80.978 71.457 80.584
ProposedHNIDS 88.149 88.661 87.996 82.867 11.714 10.414 90.447 70.101 83.478

6.2.3. Observations and Discussion

Table 9 represents the experimental results of MCC on the KDD-Train+ dataset. The
proposed HNIDS method archives accuracy of 88.149%, TPR88.661%, TNR 87.996%, pre-
cision 82.867%, FPR 11.714%, FNR 10.414%, recall 90.447%, false-alarm 70.101%; F1-score
80.478%, which is higher than the existing ML methods. The Naive Bayes method recorded
86.771%, the second highest compared to other methods. In addition, SVM recorded
87.148% TPR, 85.998% TNR by random forest, 78.719% precision by CART, 15.623% FPR by
LR, 11.121% FNR by RF, 88.936% recall by RF, 71.457% false alarm rate, 80.584% F1-score,
which are the best outcomes after the proposed HNIDS.

Figure 5a shows the confusion matrix for the proposed HNIDS method for multi-class
classification, which shows TP as 7403, FP 42, FN 373, TN 10217, and Figure 5b shows the
normalized confusion matrix of the proposed HNIDS. Proposed HNIDS achieves TP of
0.96, FP 0.0, FN 0.04, and TN 1.0.

Figure 6 shows the accuracy graph for the proposed HNIDS and existing ML methods
for MCC, which indicates the strength of the proposed method in terms of higher accuracy
% over the existing ML methods.
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7. Conclusions and Future Works

Developing an efficient ID using the ML method has earned enough attention for cyber
security in previous research. The security database often contains multiple features, which are
redundant or even meaningless. Developing a new feature selection method is now necessary, de-
creasing the computational overhead and expenses and enhancing the classification performance.
This research mainly deals with data imbalance issues in IDS research. This research developed
an HNIDS based on EGA-PSO and IRF methods. Based on the literature review, we found that an
NSL-KDD dataset is widely used for network-based IDS, so we decided to utilize the same dataset
in this research. An experimental analysis was performed, and various performance measuring
parameters were calculated, i.e., accuracy, TPR, TNR, precision, FPR, FNR, recall, false alarm, and
F1-score. The proposed HNIDS achieved better results than the other ML methods, i.e., SVM, RF,
LR, NB, LDA, and CART.

In current IDS research, accuracy, TPR, precision, and FPR are the four most widely
used performance measurement parameters. In future research, we will explore more com-
parison parameters, i.e., CPU utilization, latency, and detection, to evaluate the performance
of the proposed HNIDS on a real-time IDS dataset. We will also use parallel processing to
analyze large IDS data sets, reduce detection time, and increase operational efficiency.
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Abbreviations
This result utilizes the following abbreviations:

Acronyms Definitions
ANN Artificial neural network
ANOVA Analysis of variance
CART Classification and regression tree model
DoS Denial of services
DDoS Distributed denial of services
EGA Enhanced genetic algorithm
FPR False positive rate
HIDS Host-based intrusion detection system
HNIDS Hybrid network-based intrusion detection system
IDS Intrusion detection system
IRF Improved random forest
LDM Linear discriminant method
LDA Linear discriminant analysis technique
LR Logistic regression
NSL-KDD Network security laboratory-knowledge discovery in databases
ML Machine learning
NB Naïve Bayes
PSO Particle swarm optimization
R2L Remote to local
SVM Support vector machines
TPR True positive rate
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