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Abstract: Alternative fuel vehicles (AFVs) offer opportunities to lower fuel costs as well as to reduce
greenhouse gas emissions, and, therefore, they are a feasible option for customers in the market. Due
to technological advancements, decisions about suitable alternative fuel vehicles are a challenging
problem for fleet operators. This paper aims to introduce a multi-attribute decision-analysis frame-
work to rank and select the “alternative fuel vehicles (AFVs)” for a private home healthcare service
provider in Chandigarh, India. The selection of AFVs can be treated as a decision-making problem,
because of the presence of various qualitative and quantitative attributes. Thus, the current work
introduces an integrated decision-making framework based on intuitionistic fuzzy-“method based on
the removal effects of criteria (MEREC)”, “ranking sum (RS)”, and the “double normalization-based
multi-aggregation (DNMA)” framework for assessing the AFVs. The combination of MEREC and
RS is applied to assess the objective and subjective weighting values of various parameters for AFV
assessment. The DNMA approach is utilized to prioritize the different AFVs over various significant
parameters. According to the outcomes, the most significant parameters for AFV assessment are
social benefits, fueling/charging infrastructure, and financial incentives, respectively. In this context,
globally existing AFVs for the sustainable transportation sector are identified, and then prioritized
against fifteen different criteria relevant to the environmental, economic, technological, social, and
political aspects of sustainability. It is distinguished that electric vehicles (G2), hybrid electric vehicles
(G1), and hydrogen vehicles (G3) achieve higher overall performance compared to the other technolo-
gies available in India. The assessment outcomes prove that electric vehicles can serve as a valuable
alternative for decreasing carbon emissions and negative effects on the environment. This technology
contributes to transportation sector development and job creation in less developed areas of the
country. Moreover, a comparison with existing studies and a sensitivity investigation are conferred to
reveal the robustness and stability of the developed framework.

Keywords: sustainable road transportation; alternative fuel vehicles; intuitionistic fuzzy sets; MEREC;
RS; DNMA; multi-attribute decision-analysis
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1. Introduction

The global demand for energy is ever-increasing in order to meet the needs of an
emergent human population, with fossil fuels being the most prominent source. The use of
fossil fuels leads to environmental emissions of “greenhouse gases (GHGs)” and pollutants,
which contribute to global warming [1,2]. Over the last few decades, many international
organizations and governments have collectively pledged to slow global warming [3]. In
the recent past, the fast development of the urban areas has led to a rising demand for
public transportation. The transportation industry produces a major fraction of all energy-
related emissions, which accounts for approximately one-fifth of global CO2 emissions.
This transportation fuel is mainly based on the combustion of fossil fuels, making it one of
the key sources of air pollution in both the urban and regional areas [4,5].

Sustainable transportation is an essential solution to have a substantial reduction
in fuel economy, the amount of air pollutants, and GHG footprints, which could create
sustainable development in the transport sector. Hybrid “electric vehicles (EVs)”, hydrogen
vehicles, plug-in hybrid EVs, battery EVs, electrically-chargeable vehicles, biofuels, and
natural gas vehicles are technologies that could offer solutions to decrease our reliance on
fossil fuel-based energy and reduce GHG emissions [2]. The emergence of cleaner vehicles
is a real opportunity to embrace healthier and safer transport networks. Because of energy
and transport policies aiming to incorporate more options and “renewable energy sources
(RESs)”, the latest technologies are increasingly incorporated into the vehicle fleet [6].

As the world shifts towards low-carbon emission sources, the “alternative fuel vehi-
cles (AFVs)” have received more consideration as a way to decrease GHG emissions in
sustainable transportation [7]. They provide a prospect to lower fuel costs, as well as to
decrease our ecological footprint.

The importance of sustainable transport for countries is also widely recognized by the
international community, such as in the Agenda 2030 for Sustainable Development. This is
an action program for the population, the planet, and prosperity signed in September 2015
by the governments of the 193 UN countries. Agenda 2030 concerns 17 sustainable develop-
ment goals, or SDGs, included in a large action for a total of 169 ‘targets’. The UN Member
States recognize that ending poverty must be accompanied with strategies that build eco-
nomic growth and address a range of social needs including education, health, equality, and
job opportunities, while tackling climate change and working to preserve the ecosystem.
Transport is fueled by energy and is, therefore, directly linked to SDG 7, which focuses on
affordable and clean energy. However, sustainable transport is also mainstreamed across
several SDGs and targets, especially those related to economic growth, climate change,
infrastructure, and sustainable cities and communities. The transport sector will play a
crucial role in the achievement of the Paris Agreement, considering that near a quarter of
energy-related global greenhouse gas emissions come from transport. Due to increasing
demands for mobility, the energy intensity and environmental impact of transport may,
unfortunately, grow substantially. Thus, to increase the share of sustainable transport may
be crucial. The possible use of alternative fuels has become an urgent issue, and a large
number of researchers are studying the development of alternative fuel vehicles (AFVs).
The evaluation of AFVs should consider not only their effect on air pollution, but also on
the sustainability pillars [8]. Some studies highlighted the strong relationship between
sustainability and AFVs. In particular, Ghosh [9] offered a review about using electric
vehicles to reduce the carbon footprint in the transport industry. Kene et al. [10] analyzed
the current state of research and development of electric vehicles. Offer et al. [11] compares
battery electric vehicles (BEVs) to hydrogen fuel cell electric vehicles (FCEVs) and hydrogen
fuel cell plug-in hybrid vehicles (FCHEVs) for sustainable transport. Faria et al. [12] pro-
posed a study of the life-cycle assessment (LCA) for both conventional and electric vehicles,
focusing mainly on their greenhouse gas (GHG) emissions. Krishnan et al. [13] proposed
a model to evaluate hydrogen as a sustainable alternative fuel for vehicles. Wu et al. [14]
suggested some models of light-duty plug-in electric vehicle (PEV) fleets for conducting
national-level planning studies of the energy and transportation sectors. Liu et al. [15]
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compared alternative fuel vehicles and conventional gasoline vehicles (and hybrid vehicles)
using sensor data from global positioning system devices. Mesut and Ismail [16] intro-
duced a vehicle routing problem, considering alternative fuel vehicle (AFV) adoption into
a service fleet. Mizik [17] provided an overview of alternative fuels by describing their
advantages and disadvantages with respect to fossil fuels. Onat [18] provided an integrated
sustainability framework to analyze environmental, social, and economic impacts, and
to rank alternative fuel vehicles. Loo et al. [19] analyzed the characteristics of different
biodiesel blends that can be used in vehicle’s engines. Peksen [20] reviewed the potential
of new energy vehicles and hydrogen technology. Betancourt-Torcat et al. [21] proposed
a system of integrated electric vehicle network planning. Sinha-Brophy [22] applied the
life-cycle assessment to renewable hydrogen for fuel cell passenger vehicles. Furthermore,
Antonini et al. [23] investigated the environmental footprint of technologies for hydrogen
production as a transport fuel.

At today’s industrial and market development level, the assessment and selection of
the most suitable AFV is a challenging problem for fleet operators. Due to the involvement
of the human mind and several aspects of sustainability factors, the AFV evaluation
procedure can be treated as an uncertain “multi-attribute decision analysis (MADA)”
problem [5,24]. In this regard, MADA approaches can be used to investigate this concern
in a systematic way.

Uncertainty is an inherent feature of information. In several scientific and industrial
applications, we make decisions in an environment with diverse kinds of uncertainty.
The “fuzzy set theory (FST)” invented by Zadeh [25] has successfully been employed in
varied areas and has demonstrated its powerful ability to deal with vague and uncertain
information. In the literature, several doctrines and principles have been studied on
FST [26–28]. Furthermore, Atanassov [29] extended the FST to an “intuitionistic fuzzy
set (IFS)”, which deals with uncertain and ambiguous information more accurately. In
IFSs, each object is defined with a “membership function (MF)”, a “non-membership
function (NF, and an “indeterminacy function (IF)”. Research works on IFS theory and its
applications in different settings are developing speedily, and several significant outcomes
have been obtained [30–32].

The theory of IFS is one of the most powerful and suitable tools to cope with the
vagueness presented in numerous realistic decision-making applications. Taking the
flexibility and efficacy of IFSs, the aim of the paper is to develop a hybrid method for
assessing the MADA problem in IFSs. Due to their flexibility and efficacy, this study
considers the context of IFSs. In this line, the weight-determining methods are separated
into the following two categories: objective weights, and subjective weights. In the literature,
several objective and subjective weight methods have been introduced [33–35]. Recently,
Keshavarz-Ghorabaee et al. [36] provided an innovative objective-weighting tool for assess-
ing the criteria weights, called “method based on the removal effects of criteria (MEREC)”.
It utilizes each attribute’s removal effect on the assessment of an alternative to obtain the
attribute’s weights. Assuming the deviations, the assessment of an option with the removal
of an attribute is a latest idea for estimating the attribute weights [37]. For a subjective
weighting model, a procedure of the “ranking sum (RS)” weighting method was given by
Stillwell et al. [38] to assist the “decision experts (DEs)” to give their preference ratings for
considered criteria. Until now, no one has developed an integrated MEREC-RS weight-
ing method, or used “double normalization-based multiple aggregation (DNMA)”-based
method under IFSs setting for the assessment of AFVs.

For the first time, we introduce a hybridized MADA methodology by combining
the MEREC [20], RS method [38], and the DNMA approach [39] with IFSs, named as
the “intuitionistic fuzzy-MEREC-RS-DNMA (IF-MEREC-RS-DNMA)” approach. In this
method, new “intuitionistic fuzzy generalized Dombi weighted averaging (IFGDWA)” and
“intuitionistic fuzzy generalized Dombi weighted geometric (IFGDWG)” operators are
utilized to aggregate the individual’s decision opinions. The MEREC process is used to
compute the objective weights of the attributes. The RS tool is utilized to obtain the subjec-
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tive weights of the attributes. The DNMA approach on IFSs is developed for multi-criteria
assessment, which takes the benefits of different normalization methods and aggregation
functions and combines them in an appropriate way. The final assessment value of the
DNMA model widely reflects the subordinate utility degrees and the ranks of options, and,
thus, the overall priority outcome has a high dependability. Furthermore, we implement
the proposed IF-MEREC-RS-DNMA framework for the evaluation and selection of AFVs
for sustainable road transportation.

The primary outcomes of the present work are listed as:

• We identify the parameters for selecting AFVs for sustainable road transportation,
using a survey approach based on the literature and interviews with the experts.

• We present a comprehensive procedure to evaluate and analyze the related param-
eters of AFV selection for sustainable road transportation with a hybrid decision
support method.

• We propose a weighting procedure called the intuitionistic fuzzy subjective objective
integrated approach, using the IF-MEREC and RS method to obtain the parameters
weights of selecting AFVs for sustainable road transportation.

• The IF-DNMA method on IFSs is discussed using the IF-generalized Dombi oper-
ator and the IF-MEREC-RS method, with the aim of ranking AFVs for sustainable
road transportation.

• We present sensitivity and comparison analyses to validate the integrated IF-MEREC-
RS-DNMA approach.

The remaining sections are prepared in the following way. In Section 2, we present a
comprehensive literature review about the study. In Section 3, the basic concepts and
proposed “aggregation operators (AOs)” are presented. In Section 4, the developed
IF-MEREC-RS-DNMA method is discussed. In Section 5, a case study of AFV assess-
ment is presented to validate the efficiency and usefulness of the introduced approach. In
addition, comparison and sensitivity analysis are shown to certify the outcomes. Finally,
Section 6 discusses the conclusions and recommendations for future work.

2. Preliminaries

In the current part of the study, we present the literature about the several concepts in
this study.

2.1. AFVs Assessment and Selection

Broad deployment of AFVs can help in addressing a range of issues, such as air qual-
ity, climate change, and energy security. In the literature, numerous studies have been
presented regarding AFV assessment through different MADA approaches. In a study, an
integrated MADA based on the alliance of the “analytical network process (ANP)” and
the “decision making trial and evaluation laboratory (DEMATEL)” has been designed by
Chang et al. [40]. They assessed several candidate AFVs and chosen the best AFV with
respect to many sustainability indicators. Domingues et al. [41] studied a MADA method
to categorize AFVs in accordance with their environmental impacts. Yavuz et al. [42] firstly
identified and classified the evaluation criteria for AFV assessment. Furthermore, they pro-
posed a hesitant fuzzy MADA model to evaluate and find the most suitable AFV candidate.
Oztaysi et al. [43] presented a hybrid interval-valued intuitionistic fuzzy MADA tool for
managing the AFV assessment problem for a utility company. Furthermore, an integrated
fuzzy decision support system has been suggested by Liang et al. [44] to prioritize AFVs for
a sustainable transport industry. They introduced a method based on linear goal program-
ming and “analytic hierarchy process (AHP)” with FST. Shao and Dessouky [45] studied an
innovative hybridized heuristic model for the vehicle routing problem of AFVs. Rani and
Mishra [46] suggested a MADA model for solving the AFV technology selection problem
under “q-rung orthopair fuzzy sets (q-ROFSs)”. Recently, Pamucar et al. [5] provided a
MADA model to evaluate and rank the candidate AFVs for sustainable transportation.
They studied their method by combining “fuzzy full consistency method (FUCOM-F)” and
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“measurement alternatives and ranking according to the compromise solution (MARCOS)”
techniques with neutrosophic fuzzy sets.

2.2. Intuitionistic Fuzzy Set (IFS)

Uncertainty is a vital concept for decision-making problems. In real-life situations,
it is not easy to make precise decisions, due to factors including vagueness, uncertainty,
and imprecision. An IFS theory [29] is a generalized version of FST, which provides more
choice to DEs in articulating their thoughts regarding the vagueness and uncertainty of a
MADA problem. The theory of IFS has emerged as a valuable tool for depicting the uncer-
tainty of the MADA problems. For instance, Mishra and Rani [47] discussed the Shapley
weighted discrimination measures-based “vlsekriterijumskaoptimizcija I kompromisnore-
senje (VIKOR)” model to select a cloud service provider under IFSs. Abdullah et al. [48]
proposed a cause–effect algorithm of subcontractor selection by means of a hybridized
intuitionistic fuzzy-DEMATEL method. Fei and Feng [49] introduced innovative AOs
based on Dempster’s rule on IFSs, and presented its advantages from several aspects. In
addition, they proposed a decision-making method from the viewpoint of “Dempster–
Shafer theory (DST)”. In a study, Jana et al. [50] studied a MADA method with the
intuitionistic fuzzy Dombi AOs, and presented their applications in enterprise financial
performance evaluation.

2.3. DNMA Method

With the ever-increasing intricacy and wide-ranging challenges of today’s environ-
ment, numerous MADA approaches have been introduced by many different authors.
The MADA methods can be categorized into the following two groups: (i) Outranking
models, namely “elimination et choixtraduisant la realité (ELECTRE)” [51] and “preference
ranking organization method for enrichment of evaluation (PROMETHEE)” [52], and (ii)
utility degree-based approaches, namely “technique for order performance by similarity to
ideal solution (TOPSIS)” [53], VIKOR [54], and “multiplicative multi-objective optimization
by ratio analysis (MULTIMOORA)” [55]. The utility-based approaches only employed a
single normalization technique to non-dimensionalize assessment values under diverse
attributes. In this way, utilizing the normalization technique may bias the outcomes when
the normalization procedure is not appropriate. To conquer this issue, Liao and Wu [39]
intended a new utility value-based approach, called the DNMA framework, which takes
the benefits of different normalization methods, as well as AOs, and combines them in an
appropriate way. Nie et al. [56] proposed a multi-expert MADA by combining DNMA with
a “cardinal consensus reaching process (CCRP)” under “hesitant fuzzy linguistic term sets
(HFLTSs)” settings. Lai et al. [57] gave a Z-number-based DNMA methodology to deal
with the beneficial, non-beneficial, and target types for sustainable cloud service provider
development. Lai and Liao [58] studied an integrated MADA methodology by combining
DNMA and “criteria importance through inter-criteria correlation (CRITIC)” tools with
linguistic D-numbers for blockchain platform assessment. Wang and Rani [59] extended
the DNMA model on IFSs setting to recognize, prioritize, and assess the sustainable risk
factors in “supply chain management (SCM)”.

3. Proposed IF-Generalized Dombi Weighted AOs

Here, firstly, the basic idea of IFSs is presented. Subsequently, generalized Dombi weighted
averaging AOs are introduced to combine with the “intuitionistic fuzzy information (IFI)”.

3.1. Basic Concepts

In FST, the involvement of objects in a set is characterized by MF, and NF, which
belongs to [0, 1], while non-membership is basically its complement. In order to extend
the FST, Atanassov [13] invented the theory of IFS, which can be defined in terms of MF
and NF.
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Definition 1 [29]. An IFS S on Z = {z1, z2, . . . , zn} is defined as

S = {〈zi, µS(zi), νS(zi)〉 : zi ∈ Z},

where µS : Z → [0, 1] and νS : Z → [0, 1] present the MF and NF of an object the MF and
NF zi to S in Z, respectively, satisfying

0 ≤ µS(zi) ≤ 1, 0 ≤ νS(zi) ≤ 1 and 0 ≤ µS(zi) + νS(zi) ≤ 1, ∀zi ∈ Z.

The IF of an element zi ∈ Z to S is presented by πS(zi) = 1− µS(zi) − νS(zi) and
0 ≤ πS(zi) ≤ 1, ∀zi ∈ Z.

For the sake of ease, Xu [44] defined the “intuitionistic fuzzy number (IFN)”
ω = (µω, νω) which satisfies µω, νω ∈ [0, 1] and 0 ≤ µω + νω ≤ 1.

Definition 2 [60]. Consider ω = (µ, ν) be an IFN. Then

S(ω) = (µ− ν) and }(ω) = (µ + ν), where S(ω) ∈ [−1, 1] and }(ω) ∈ [0, 1], (1)

are the score and accuracy functions of ω, respectively.

As S(ω) ∈ [−1, 1], then Xu et al. [45] presented a normalized score and accuracy
functions, shown as

Definition 3 [61]. For an IFN ω = (µ, ν), a normalized score and the accuracy functions of
ω are given as

S∗(ω) =
1
2
(S(ω) + 1) and }◦(ω) =

1
2
(µ + ν), (2)

where S∗(ω) ∈ [0, 1] and }◦(ω) ∈ [0, 1].

Definition 4 [60]. Consider that ωk = (µk, νk); k = 1(1)r are the IFNs. Thus, “intuitionistic
fuzzy weighted averaging (IFWA)” and “intuitionistic fuzzy weighted geometric (IFWG)”
operators are defined by

IFWAϕ(ω1, ω2, . . . , ωr) =
r
⊕

k=1
ϕkωk =

[
1−

r

∏
k=1

(1− µk)
ϕk ,

r

∏
k=1

νk
ϕk

]
, (3)

IFWGϕ(ω1, ω2, . . . , ωr) =
r
⊗

k=1
ϕkωk =

[
r

∏
k=1

µk
ϕk , 1−

r

∏
k=1

(1− νk)
ϕk

]
, (4)

wherein ϕk = (ϕ1, ϕ2, . . . , ϕr)
T is a weight vector of ωk, k = 1(1)r, with

r
∑

k=1
ϕk = 1

and ϕk ∈ [0, 1].

Definition 5 [62]. The generalized Dombi operator GDomq
p, is presented as

GDomq
p(c1, c2) =

1 +

(
1
p

(
2

∏
k=1

Ωq
p
(ck)− 1

))− 1
q
−1

, (5)

or GDomq
p(c1, c2) =

1 +

(
1
p

(
2

∏
k=1

Ωq
p(ck)− 1

)) 1
q
−1

, (6)
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where Ωq
p(ck) = 1 + p

(
ck

1−ck

)q
, Ωq

p
(cj) = 1 + p

(
1−ck

ck

)q
, ck ∈ (0, 1), k = 1, 2 with p > 0

and q ≥ 1.

Generalized Dombi operations [46] have decent superiority of variation over the
parameters ‘p’ and ‘q’, which brand them as advantageous compared to algebraic, Einstein,
and Hamacher operators.

3.2. Generalized-Dombi Operations on IFNs

In the current sub-section, we firstly study several operations on IFNs with Generalized-
Dombi (GD) operations, and then discuss their elegant properties.

Definition 6. Let ωk = (µk, νk), k = 1(1)2 be two IFNs. Then, we define the GD operations
on IFNs with p > 0 and q ≥ 1 given below:

ω1⊕̃ω2 =


1 +

(
1
p

(
2

∏
k=1

Ωq
p(µk)− 1

))− 1
q
−1

,

1 +

(
1
p

(
2

∏
k=1

Ωq
p
(νk)− 1

)) 1
q
−1; (7)

ω1⊗̃ω2 =


1 +

(
1
p

(
2

∏
k=1

Ωq
p
(µk)− 1

)) 1
q
−1

,

1 +

(
1
p

(
2

∏
k=1

Ωq
p(νk)− 1

))− 1
q
−1; (8)

ζωk =

(1 +
(

1
p

(
(Ωq

p(µk))
ζ − 1

))− 1
q
)−1

,

(
1 +

(
1
p

(
( Ωq

p
(νk))

ζ − 1
)) 1

q
)−1(ζ > 0); (9)

ω
ζ
k =

(1 +
(

1
p

(
( Ωq

p
(µk))

ζ − 1
)) 1

q
)−1

,

(
1 +

(
1
p

(
(Ωq

p(νk))
ζ − 1

))− 1
q
)−1(ζ > 0). (10)

Theorem 1. Let ωk = (µk, νk), k = 1(1)2 be two IFNs and ζ, ζ1, ζ2 > 0. Then we have

(i) ω1⊕̃ω2 = ω2⊕̃ω1;
(ii) ω1⊗̃ω2 = ω2⊗̃ω1;
(iii) ζ(ω1⊕̃ω2) = (ζω1)⊕̃(ζω2);

(iv) (ω1⊗̃ω2)
ζ
= (ωζ

1)⊗̃(ω
ζ
2);

(v) (ζ1 + ζ2)ω1 = (ζ1ω1)⊕̃(ζ2ω1);

(vi) (ω1)
ζ1+ζ2 = (ωζ1

1 )⊗̃(ωζ2
1 ).

Proof. (i) and (ii) are straightforward. �

(iii) By definition of generalized operations on IFNs, we have
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ζ(ω1⊕̃ω2)= ζ


1 +

(
1
p

(
2

∏
k=1

Ωq
p(µk)− 1

))− 1
q

−1

,

1 +
(

1
p

(
2

∏
k=1

Ωq
p
(νk)− 1

)) 1
q

−1


=



1 +

 1
p


1 + p


1+

(
1
p

(
2
∏

k=1
Ωq

p(µk)−1
))− 1

q
−1

1−

1+
(

1
p

(
2
∏

k=1
Ωq

p(µk)−1
))− 1

q
−1


q

ζ

− 1




− 1

q


−1

,


1 +


1
p



1 + p


1−

1+

(
1
p

(
2
∏

k=1

Ωq
p
(νk)−1

)) 1
q

−1

1+

(
1
p

(
2
∏

k=1

Ωq
p
(νk)−1

)) 1
q

−1



q

ζ

− 1





1
q



−1
,

=


1 +

(
1
p

(
2

∏
k=1

(Ωq
p(µk))

ζ − 1
))− 1

q

−1

,

1 +
(

1
p

(
2

∏
k=1

( Ωq
p
(νk))

ζ − 1
)) 1

q

−1
.

(11)

On the other hand, by Definition 6, we have

(ζω1)⊕̃(ζω2)

=

(1 +
(

1
p

(
(Ωq

p(µ1))
ζ − 1

))− 1
q

)−1

,

(
1 +

(
1
p

(
( Ωq

p
(ν1))

ζ − 1
)) 1

q
)−1

⊕̃

(1 +
(

1
p

(
(Ωq

p(µ2))
ζ − 1

))− 1
q

)−1

,

(
1 +

(
1
p

(
( Ωq

p
(ν2))

ζ − 1
)) 1

q
)−1

=




1 +


1
p


2

∏
k=1

1 + p


(

1 +
(

1
p

(
(Ωq

p(µk))
ζ − 1

))− 1
q

)−1

1−
(

1 +
(

1
p

(
(Ωq

p(µk)))ζ − 1
))− 1

q
)−1


q− 1





− 1
q



−1

,


1 +


1
p


2

∏
k=1

1 + p


1−

(
1 +

(
1
p

(
( Ωq

p
(νk))

ζ − 1
)) 1

q
)−1

(
1 +

(
1
p

(
( Ωq

p
(νk))

ζ − 1
)) 1

q
)−1



q− 1





1
q


−1
,

=


1 +

(
1
p

(
2

∏
k=1

(Ωq
p(µk))

ζ − 1

))− 1
q
−1

,

1 +

(
1
p

(
2

∏
k=1

( Ωq
p
(νk))

ζ − 1

)) 1
q
−1. (12)

From Equations (11) and (12), we obtain ζ(ω1⊕̃ω2) = (ζω1)⊕̃(ζω2).
(iv)–(vi) are similar to (iii), and so are omitted here.

3.3. IF-Generalized-Dombi Weighted Averaging (IFGDWA) Operator

Corresponding to the GD operation axioms for IFNs, we propose an IFGDWA operator
and discuss their properties.
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Definition 7. Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs. Then, the IFGDWA
operator is given by

IFGDWA(ω1, ω2, . . . , ωr) = (ϕ1ω1)⊕̃(φ2ω2)⊕̃(ϕ3ω3)⊕̃ . . . ⊕̃(ϕrωr), (13)

where ϕk(k = 1(1)r) denotes the weight of ωk(k = 1(1)r) with
r
∑

k=1
ϕk = 1.

Theorem 2. The aggregated value IFGDWA(ω1, ω2, . . . , ωr) is also an IFN. Moreover, we have

IFGDWA(ω1, ω2, . . . , ωr)

=


1 +

(
1
p

(
l

∏
k=1

(Ωq
p(µk))

ϕk − 1

))− 1
q
−1

,

1 +

(
1
p

(
l

∏
k=1

( Ωq
p
(νk))

ϕk − 1

)) 1
q
−1. (14)

Proof. Follows from Definition 6 and Theorem 1. �

Some particular cases of the IFGDWA operator are discussed as

(i) For p = 1, q = 1, the IFGDWA diminishes to the IFWA operator.
(ii) For p = 1, q = 2, the IFGDWA concerts to the “intuitionistic fuzzy Einstein weighted

averaging (IFEWA)” operator; and
(iii) For q = 1, the IFGDWA operator reduces to the “intuitionistic fuzzy Hamacher

weighted averaging (IFHWA)” operator.

Now, we subsequently discuss some interesting characteristics of the IFGDWA operator.
Theorem 3 (Shift invariance). Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs. Then for

an IFN ω0 = (µ0, ν0), ( 6= ωk), we have

IFGDWA(ω0⊕̃ω1, ω0⊕̃ω2, . . . , ω0⊕̃ωr) = ω0⊕̃IFGDWA(ω1, ω2, . . . , ωr).

Theorem 4. Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs such that
ωk = ω0(where ω0 = (µ0, ν0)), k = 1(1)r, then IFGDWA(ω1, ω2, . . . , ωr) = ω0.

Theorem 5 (Boundedness). Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs. Then
ω− ≺ IFGDWA(ω1, ω2, . . . , ωr) ≺ ω+, where ω− = (min

k
µk, max

k
νk) and

ω+ = (max
k

µk, min
k

νk).

Theorem 6 (Monotonicity). Let ωk = (µk, νk) and ωk
′ = (µk

′, νk
′), (k = 1(1)r) be two collec-

tion of IFNs such that µk ≤ µk
′, νk ≥ νk

′; k = 1(1)r. Then
IFGDWA(ω1, ω2, . . . , ωr) ≺ IFGDWA(ω1

′, ω2
′, . . . , ωr

′).

3.4. IF-Generalized-Dombi Weighted Geometric (IFGDWG) Operator

Corresponding to the Generalized Dombi operation axioms for IFNs, we propose an
IFGDWG operator and study their properties.

Definition 8. Let ωk = (µk, νk), k = 1(1)r be the collection of IFNs. Then, the IFGDWG
operator on IFNs is defined by

IFGDWG(ω1, ω2, . . . , ωr) = (ω1
ϕ1)⊗̃(ω2

ϕ2)⊗̃(ω3
ϕ3)⊗̃ . . . ⊗̃(ωr

ϕr ), (15)

where ϕk(k = 1(1)r) denotes the weight of ωk with
r
∑

k=1
ϕk = 1.
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Theorem 7. The aggregated value IFGDWG(ω1, ω2, . . . , ωr) is also an IFN. Moreover, we have

IFGDWG(ω1, ω2, . . . , ωr)

=


1 +

(
1
p

(
l

∏
k=1

( Ωq
p
(µk))

ϕk − 1

)) 1
q
−1

,

1 +

(
1
p

(
l

∏
k=1

(Ωq
p(νk))

ϕk − 1

))− 1
q
−1. (16)

Proof. Follows from Definition 6 and Theorem 1. �

Based on Theorem 7, we deduce the following cases:

(i) For p = 1, q = 1, the IFGDWG operator moderates to the IFWG operator.
(ii) For p = 1, q = 2, the IFGDWG operator reduces to the “intuitionistic fuzzy Einstein

weighted averaging (IFEWG)” operator; and
(iii) For q = 1, the IFGDWG operator reduces to the “intuitionistic fuzzy Hamacher

weighted averaging (IFHWG)” operator.

Now, we subsequently discuss some interesting characteristics of the IFGDWG operator.

Theorem 8 (Shift invariance). Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs. Then for
an IFN ω0 = (µ0, ν0), ( 6= ωk), we have

IFGDWG(ω0⊕̃ω1, ω0⊕̃ω2, . . . , ω0⊕̃ωr) = ω0⊕̃IFGDWG(ω1, ω2, . . . , ωr).

Theorem 9. Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs such that ωk = ω0(= ω0 = (µ0,
ν0)), k = 1(1)r. Then, IFGDWG(ω1, ω2, . . . , ωr) = ω0.

Theorem 10 (Boundedness). Let ωk = (µk, νk), k = 1(1)r be a collection of IFNs. Then, ω− ≺
IFGDWG(ω1, ω2, . . . , ωl) ≺ ω+, where ω− = (min

k
µk, max

k
νk)andω+ = (max

k
µk, min

k
νk).

Theorem 11 (Monotonicity). Let ωk = (µk, νk) and ωk
′ = (µk

′, νk
′), (k = 1(1)r) are two col-

lections of IFNs satisfying µk ≤ µk
′, νk ≥ νk

′,fork = 1(1)r. Then, IFGDWG(ω1, ω2, . . . , ωr) ≺
IFGDWG(ω1

′, ω2
′, . . . , ωr

′).

4. Proposed IF-MEREC-RS-DNMA Method

This section introduces a hybrid IF-MEREC-RS-DNMA method. The DNMA frame-
work takes the benefits of different normalization methods and aggregation functions
and combines them in an appropriate way. The procedure of the IF-MEREC-RS-DNMA
methodology is displayed in the following steps (Figure 1):



Sustainability 2022, 14, 5463 11 of 32

Sustainability 2022, 14, x FOR PEER REVIEW 12 of 35 
 

( )
( ) 1

1

2
, 1(1) ; 0, 1.

2

k k k
k k kl

k
k k k

k

k l
μ μ ν

λ λ λ
μ μ ν =

=

− −
= = ≥ =

− −  






 (17) 

 
Figure 1. Flowchart of the proposed methodology. 

Step 3: Determine the “aggregated IF-DM (AIF-DM)”. 
In this step, all individual decision matrices are required to be combined into an AIF-

DM. For this perspective, an IFGDWA (or IFGDWG) operator is employed, and then the 
AIF-DM is ( ) ( ), ,ij ij ijm n

Z z μ ν
×

= =  where: 

( ) ( ) ( ) ( )( ) ( ) ( ) ( )( )1 2 1 2, , , ..., or , , ..., .
k k

l l
ij ij ij ij ij ij ij ij ijz IFGDWA IFGDWGλ λμ ν ξ ξ ξ ξ ξ ξ= =  (18)

Step 4: Proposed IF-MEREC-RS to the computation of attribute weight. 
All the attributes are not assumed to be of the same importance. Consider 

( )1 2, , ..., T
nψ ψ ψ ψ=  to be the attribute weight with 

1
1

n

j
j
ψ

=

=  and [ ]0, 1 .jψ ∈  Here, the 

criteria weight is computed by the combination of objective and subjective weights. 
Case I: Determination of objective weights by the method of IF-MEREC. 
Now, to obtain the objective weights, the classic MEREC [20] is expanded within the 

IFSs setting. The computational procedure of MEREC is given as follows: 
Step 4.1: Normalize the AIF-DM. 

Figure 1. Flowchart of the proposed methodology.

Step 1: Form an “intuitionistic fuzzy-decision matrix (IF-DM)”.
In a MADA procedure, the purpose is to decide an ideal candidate from a set of

m options G = {G1, G2, . . . , Gm} over the attribute set C = {C1, C2, . . . , Cn}. Form a
committee of experts D = {D1, D2, . . . , Dl} to elect the best option(s). Let us assume that
T =

(
ξ
(k)
ij

)
m×n

is the “linguistic decision-matrix (LDM)” articulated by DEs, in which ξ
(k)
ij

implies the linguistic performance rating of an option Gi over attribute Cj given by kth
expert, and further, converted into IF-DM.

Step 2: Evaluate the DEs’ weights.
In order to estimate the weights of DEs, initially the significance degrees of the DEs

are supposed as “linguistic variables (LVs)” and then articulated by IFNs. Let us suppose
Dk = (µk, νk) be an IFN, then the procedure for evaluating kth DE weight is as follows:

λk =
µk(2− µk − νk)

l
∑

k=1
[µk(2− µk − νk)]

, k = 1(1)l; λk ≥ 0,
`

∑
k=1

λk = 1 (17)

Step 3: Determine the “aggregated IF-DM (AIF-DM)”.
In this step, all individual decision matrices are required to be combined into an

AIF-DM. For this perspective, an IFGDWA (or IFGDWG) operator is employed, and then
the AIF-DM is Z =

(
zij
)

m×n =
(
µij, νij

)
, where:

zij =
(
µij, νij

)
= IFGDWAλk

(
ξ
(1)
ij , ξ

(2)
ij , . . . , ξ

(l)
ij

)
or IFGDWGλk

(
ξ
(1)
ij , ξ

(2)
ij , . . . , ξ

(l)
ij

)
. (18)
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Step 4: Proposed IF-MEREC-RS to the computation of attribute weight.
All the attributes are not assumed to be of the same importance. Consider

ψ = (ψ1, ψ2, . . . , ψn)
T to be the attribute weight with

n
∑

j=1
ψj = 1 and ψj ∈ [0, 1]. Here,

the criteria weight is computed by the combination of objective and subjective weights.
Case I: Determination of objective weights by the method of IF-MEREC.
Now, to obtain the objective weights, the classic MEREC [20] is expanded within the

IFSs setting. The computational procedure of MEREC is given as follows:
Step 4.1: Normalize the AIF-DM.
To create the normalized AIF-DM N =

(
ςij
)

m×n, we utilize the linear normalization
process, which is

ςij =
(

µij, νij

)
=

{
ξij =

(
µij, νij

)
, j ∈ Cb,(

ξij
)c

=
(
νij, µij

)
, j ∈ Cn,

(19)

where Cb and Cn represent the benefit and cost-type attributes, respectively.
Step 4.2: Obtain the score-matrix.
By means of Formula (20), the score matrix Ω =

(
ηij
)

m×n of each IFN ςij is estimated

ηij =
1
2

((
µij

)
∑
(
νij
)
+ 1
)

. (20)

Step 4.3: Compute the overall performance of alternatives.
In this step, a logarithmic mapping with equivalent weights is used to determine

the options’ overall performances [36]. Along with the normalized values attained in the
last step, we can confirm that the lesser values of ηij yield the better ratings of the perfor-
mances. In the following, we present the formula for computing the overall performance
of the options:

Si = ln

(
1 +

(
1
n∑

j

∣∣ln(ηij
)∣∣)). (21)

Step 4.4: Estimate the performance of alternatives by removing each attribute.
In this following step, the options’ performances are computed by means of removing

each attribute separately:

S′ij = ln

(
1 +

(
1
n ∑

k,k 6=j
|ln(ηik)|

))
. (22)

Consequently, n sets of performances are obtained with respect to n criteria.
Step 4.5: Compute the summation of absolute deviations.
In this step, we calculate the removal effect of the jth criterion based on the values

obtained from Steps 4.3 and 4.4. Let Vj represents the effect of removing the jth attribute.
We estimate the values of Vj with the expression as follows:

Vj = ∑
i

∣∣∣S′ij − Si

∣∣∣. (23)

Step 4.6: Obtain the final weights of attribute.
The final weight wo

j of the jth attribute is determined by

wo
j =

Vj
n
∑

j=1
Vj

. (24)

Case II: Determine the subjective weights by the IF-ranking sum (RS) weighting method.
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The subjective weight-determining method permits us to reveal in the opinions and
intrinsic ratings of the DEs. In this study, the RS method [38,63] is utilized to derive the
subjective weights of attributes under IFS context. The procedural step is given by:

ws
j =

n− rj + 1
n
∑

j=1

(
n− rj + 1

) , j = 1(1)n, (25)

where ws
j determines the subjective weight of jth attribute and n signifies the number of

attributes, and rj symbolizes the rank of each attribute, where j = 1(1)n.
Case III: Integrated weights using the IF-MEREC-RS method.
To obtain the combined weight, the DEs want to employ the subjective and objective

weights in order to derive the more accurate attributes’ weights. An integrated weight-
determining formula is as follows:

wj = γwo
j + (1− γ)ws

j , (26)

where γ ∈ [0, 1] is a precision objective factor of the decision strategy. In this expression,
wo

j and ws
j represent the objective and subjective weights of the jth attribute, respectively.

Step 5: Assessment of the normalized AIF-DM.
Here, we discuss both the linear and vector normalization formulae. The linear

normalization removes the dimensions of attributes using the principle with the interval
maximum-minimum. It is utilized in the VIKOR [54] and TOPSIS [53] models. A linear
normalization procedure is defined by

N(1) =
(

η
(1)
ij

)
m×n

, where η
(1)
ij =

(
µ
(1)
ij , ν

(1)
ij

)
=


ξij

maxiS∗(ξij)
, j ∈ Cb

1− ξij

maxiS∗(ξij)
, j ∈ Cn.

(27)

Here S∗(.) is an improved score function of IFNs.
The vector normalization has been used in the MULTIMOORA [55] and conventional

TOPSIS [64]. We utilize it to normalize the AIF-DM Z =
(
zij
)

m×n with zij =
(
µij, νij

)
into

N(2) =
(

η
(2)
ij

)
m×n

, where η
(2)
ij =

(
µ
(2)
ij , ν

(2)
ij

)
such that

η
(2)
ij =


(

µ
(2)
ij , ν

(2)
ij

)
, j ∈ Cb,(

ν
(2)
ij , µ

(2)
ij

)
, j ∈ Cc,

(28)

µ
(2)
ij =

µij(
m
∑

i=1

{(
µij
)2
})1/2 , ν

(2)
ij =

νij(
m
∑

i=1

{(
νij
)2
})1/2 , i = 1(1)m, j = 1(1)n. (29)

Due to the fact that both the target-based vector and linear normalization hold some
benefits and restrictions simultaneously [39], they are combined in this method using
various AOs in a way to achieve various utility degrees of alternatives.

Step 6: Using the subordinate aggregation models.
Here, different types of aggregation models are developed using the following nor-

malization procedures.
Step 6.1: The “complete compensatory method (CCM)”.
The CCM can be defined based on IFGDWA operator as follows:

C1(Gi) =
(

µ̂
(1)
ij , ν̂

(1)
ij

)
= IFGDWAwj

(
η
(1)
i1 , η

(1)
i2 , . . . , η

(1)
in

)
, (30)
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where wj represents the attribute weight and η
(1)
ij shows the target-based linear normaliza-

tion value. The alternatives can be ordered by arranging C1(Gi) : i = 1(1)m in a decreasing
manner, and we obtain the ranking outcomes ρ1(Gi) : i = 1(1)m.

Step 6.2: The “un-compensatory method (UCM)”.
For the avoidance of a situation in which the chosen solution has a very improper

performance in the case of a certain criterion, the weighted maximum operator is used for
the purpose of composing the second aggregation function, as shown below:

C2(Gi) =
(

µ̂
(2)
ij , ν̂

(2)
ij

)
= max

j
wj

(
η
(1)
ij

)c
. (31)

The options can be prioritized by arranging C2(Gi) : i = 1(1)m in a decreasing way,
and we obtain the ranking outcomes ρ2(Gi) : i = 1(1)m.

Step 6.3: The “incomplete compensatory method (ICM)”.
We utilize the vector normalization of the third aggregation procedure by the

IFGDWG operator:

C3(Gi) =
(

µ̂
(3)
ij , ν̂

(3)
ij

)
= IFGDWGwj

(
η
(2)
i1 , η

(2)
i2 , . . . , η

(2)
in

)
(32)

where wj signifies the attribute weight and η
(2)
ij denotes the target-based vector normalized

value. The alternatives can be arranged by listing C3(Gi) : i = 1(1)m in a descending
manner, and we obtain the ranking outcomes ρ3(Gi) : i = 1(1)m.

Step 7: Combination of subordinate “utility degrees (UDs)” and priority orders.
The last phase necessitates the achievement of all-inclusive ranking by combining the

outcomes of the given three models. These are considered as the following three parameters
or attributes: CCM (Q1), UCM (Q2) and ICM (Q3). Each option Gi has two kinds of degrees,
the “utility degree (UD)” Cτ(Gi) : i = 1(1)m, and the preference order ρτ(Gi) : i = 1(1)m
over each attribute Qτ : τ = 1, 2, 3. Evidently, we generate two “decision matrices (DMs)”,
which are the UD-DM l(C) = [Cτ(Gi)]m×3 and the ranking-DM l(ρ) = [ρτ(Gi)]m×3.

To preserve the inventive assessment of the subordinate UDs Cτ(Gi) : τ = 1, 2, 3, the
normalized versions are given by

C(N)
τ (Gi) =

(
µ̂
(N)
ij , ν̂

(N)
ij

)
; τ = 1, 2, 3,

where µ̂
(N)
ij =

µ̂
(τ)
ij(

m
∑

i=1

{(
µ̂
(τ)
ij

)2
})1/2 ,ν̂(N)

ij =
ν̂
(τ)
ij(

m
∑

i=1

{(
ν̂
(τ)
ij

)2
})1/2 ,

τ = 1, 2, 3, i = 1(1)m, j = 1(1)n.

(33)

Step 8: Compute the “overall utility degree (OUD)” of each option.
A parameter ϑ ∈ [0, 1] is taken to show the subordinate UDs and the subordinate

preferences of options. Here, we take ϑ = 0.5.
The OUD of each option is presented by

Ri =

[
1
2

(
w1 ∗

√
ϑ
(
C(N)

1 (Gi)/maxiC
(N)
1 (Gi)

)2
+ (1− ϑ)

(
m−ρ1(Gi)+1

m

)2

−w2 ∗
√

ϑ
(
C(N)

2 (Gi)/maxiC
(N)
2 (Gi)

)2
+ (1− ϑ)

(
ρ2(Gi)

m

)2

+w3 ∗
√

ϑ
(
C(N)

3 (Gi)/maxiC
(N)
3 (Gi)

)2
+ (1− ϑ)

(
m−ρ3(Gi)+1

m

)2
)
+ 1

]
,

(34)

where w1, w2 and w3 are the weight of the CCM, UCM, and ICM, respectively, such that w1 +
w2 +w3 = 1. Here, the weights w1, w2 and w3 are obtained using the developed IF-RS method,
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or provide equal weights. The ultimate preference set ρ = {ρ(G1), ρ(G2), ρ(G3), . . . , ρ(Gm)}
is obtained in decreasing order of Ri : i = 1(1)m.

Step 9: End.

5. Case Study: Assessment of Alternative Fuel Vehicles (AFVs)

Due to rising oil import bills and a diminishing stock of fossil-based fuels, the search
for cleaner and safer alternative fuels is now the leading challenge being faced by scientists
and decision makers in India. Recent years have seen a noticeable shift towards the use
of renewable and alternative fuels, moving away from conventional fossil-based fuels. In
recent times, the progress of AFVs has become gradually more important worldwide. One
of the most significant causes for this increase is that AFVs are seen as a valuable way of
dealing with climate change, shifting energy consumption to produce less carbon and less
pollution, and because they offer more energy diversity.

To display the effectiveness and applicability of the proposed approach, a case study
related to the AFV selection problem for a private home healthcare service provider (XYZ),
situated in Chandigarh, India, is presented. In this region, the selected healthcare service
provider serves the patients within a 45 miles radius of Chandigarh. The healthcare service
provider requires a passenger car to carry the patients from their home. In the current
section, we have concentrated on the development and implementation of a new model
that will help the service provider to assess and choose a suitable AFV option.

In real-life situations, it is very difficult to evaluate the exact criteria for AFV evaluation
problems, due to lack of precise knowledge/information, increasing complexity, and
time-limitations. To evaluate the criteria and alternatives, we created a panel of four
DEs, who are experts in sustainable development, internal combustion engines and, the
automotive industry in India. Two of them are from the automotive industry, one expert is
from the internal combustion engine sector, and the other is from the field of sustainable
development. The qualifications of three experts are Ph.D. and the other is a master’s
degree holder working at Autonomous Intelligence Motors Private Limited, India. The
DEs collaborated with the authors during the entire study.

Furthermore, the panel of decision experts participated in an online questionnaire
in order to determine the importance of criteria in the selection of AFV alternatives. The
significant goal of this questionnaire is to discuss the potential factors/criteria influencing
the AFV selection. The criteria that may affect the AFV selection were collected by reviewing
the literature. Based on the literature review, online questionnaire and open interviews, a
set of sustainability perspectives, and indicators were collected to choose the best AFVs.
After that, five main dimensions of criteria were considered, namely the environmental,
technical, economic, social, and political dimensions [5,46].

In the meantime, based on the accessibility of vehicle models suitable for this fleet
operation and the availability of fuel, a panel of experts considered five AFVs, namely
hybrid electric vehicles (G1), electric vehicles (G2), hydrogen vehicles (G3), natural gas
vehicles (G4), and biofuel vehicles (G5). In addition, open interviews and literature reviews
facilitated us to recognize global AFVs. On account of the initial analysis, extant literature,
and discussion with experts, 15 attributes have been recognized, as shown in Table 1.
Afterward, DEs are invited to give their opinions and experiences, both to weigh the
evaluation criteria and to score the candidate AFVs by means of each criterion. As per their
domain knowledge, DEs express their preferences in the form of LVs.
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Table 1. Description of considered criteria for the AFVs.

Dimension Criteria Meaning References

Economic (L1)
Purchase cost (C1)

The marketing cost of a
specific vehicle

(containing taxes)
[2,65–69]

Energy cost (C2) Energy generation and
supply cost [42,65–67,70,71]

Maintenance cost (C3)
The cost needed for

systematic maintenance
of the vehicle

[1,2,43,71]

Social (L2)

Sense of comfort (C4)

The consumer’s
consideration to the

comfort and accessories
of the vehicle

[5,72]

Job creation (C5) The formation of new
workplaces [1,5,71,73]

Social benefits (C6)
The increase in the level

of welfare and lifestyle of
the society

[42,71,74]

Social acceptability (C7)
The choice of a client for
purchasing a particular

vehicle
[1,65,74–76]

Environmental (L3)
Noise pollution (C8) Noise when the vehicle is

operating [73,75,77]

Environmental-friendly
technology (C9)

The degree of option fuel
usability while driving

the vehicle
[65,78,79]

Technological (L4)

Fueling/charging
Infrastructure (C10) AFV fuel station sites [42,66,72–74]

Driving range (C11)
Range that can be

reached from a single
charge

[2,42,68,69,72]

Energy efficiency (C12) Efficiency of fuel energy [70,73,80]

Political (L5)
Energy security (C13) Dependence on

non-fossil methods [5,71,74]

Policy support (C14)
Flexible policy

procedures and
guidelines

[65,71]

Financial incentives (C15) Government aids [1,5,42]

Steps 1–3: Tables 2 and 3 adopted from Kumari and Mishra [81], to present the
importance of the DEs and criteria to estimate the significance ratings of the DEs and
the assessment criteria for AFVs, which were then articulated in terms of IFNs. Using
Table 2 and Equation (17), the DEs’ weights are calculated and portrayed in Table 4. Table 5
represents the LDM by DEs for each option AFV Gi over the different attributes. From
Equation (18) and Table 5, the AIF-DM is computed (taking p = 1 and q = 1) and shown
in Table 6.

Table 2. Rating of DEs in form of LVs for AFVs.

LVs IFNs

Extremely Significance (0.90, 0.10)
Very Significance (0.80, 0.15)

Significance (0.70, 0.25)
Moderate (0.50, 0.45)

Insignificance (0.40, 0.55)
Very Insignificance (0.20, 0.75)

Extremely Insignificance (0.10, 0.90)



Sustainability 2022, 14, 5463 17 of 32

Table 3. LVs for rating of alternatives over criteria for AFVs.

LVs IFNs

Extremely good/high (EH) (0.95, 0.05)
Very very good//high (VVH) (0.85, 0.10)

Very good/high (VH) (0.80, 0.15)
Good/high (H) (0.70, 0.20)

Slightly good/high (MH) (0.60, 0.30)
Average (A) (0.50, 0.40)

Slightly low (ML) (0.40, 0.50)
Low (L) (0.30, 0.60)

Very very low (VL) (0.20, 0.70)
Very low (VVL) (0.10, 0.80)

Extremely low (EL) (0.05, 0.95)

Table 4. The weights of DEs for AFVs.

DEs D1 D2 D3 D4

LVs VS
(0.80, 0.15)

S
(0.70, 0.25)

M
(0.50, 0.45)

ES
(0.90, 0.10)

Weight 0.2800 0.2450 0.1750 0.3000

Table 5. LDM for AFVs by DEs.

Criteria G1 G2 G3 G4 G5

C1 (L, VL, VL, ML) (L, ML, VL, L) (A, ML, A, L) (ML, ML, A, L) (A, A, ML, ML)
C2 (ML, L, A, L) (VL, L, VL, ML) (MH, A, ML, A) (VL, L, ML, L) (VVL, L, ML, ML)
C3 (L, L, L, VL) (VL, ML, VL, A) (A, L, A, ML) (ML, L, A, A) (A, A, ML, L)
C4 (A, MH, MH, H) (H, H, H, MH) (MH, MH, A, H) (H, ML, VH, VH) (MH, A, MH, ML)
C5 (MH, H, A, MH) (VH, H, VH, A) (ML, MH, A, MH) (VH, ML, A, MH) (MH, MH, H, VH)
C6 (A, ML, VH, A) (L, ML, A, H) (H, VH, A, MH) (A, MH, A, H) (MH, A, ML, A)
C7 (MH, L, A, VVH) (A, L, ML, MH) (MH, A, VH, H) (VVH, H, A, MH) (VVH, A, H, VH)
C8 (VL, L, A, ML) (A, VL, L, ML) (A, MH, VL, L) (VL, ML, VL, ML) (A, ML, ML, L)
C9 (A, H, MH, H) (VVH, H, H, A) (MH, H, A, H) (MH, H, A, MH) (ML, A, MH, VH)
C10 (VVH, H, A, MH) (MH, H, VH, H) (ML, MH, A, VH) (H, ML, A, H) (MH, H, VH, VH)
C11 (ML, A, VL, ML) (A, ML, MH, H) (H, A, H, VVH) (MH, ML, A, VH) (A, A, MH, H)
C12 (H, ML, A, MH) (VH, MH, A, MH) (VH, A, MH, ML) (ML, MH, VH, H) (VH, VH, H, MH)
C13 (VH, H, VH, A) (H, VH, VH, MH) (MH, ML, A, MH) (MH, VH, MH, H) (A, ML, MH, VH)
C14 (A, H, MH, H) (H, H, VVH, A) (VH, MH, A, H) (VHH, A, ML, ML) (ML, A, MH, MH)
C15 (H, MH, A, VH) (VH, H, MH, MH) (ML, H, A, A) (VH, H, A, H) (MH, ML, H, A)

Step 4: To compute the objective weights of criteria by MEREC, firstly the nor-
malized AIF-DM is computed with the use of Equation (19). Next, the overall perfor-
mances of the options based on Equation (20) are determined and presented as S1 = 0.370,
S2 = 0.353, S3 = 0.404, S4 = 0.358 and S5 = 0.389. By means of Equation (21), the overall
performance of each option by removing each attribute is computed and shown in Table 7.
Next, we derive the removal effect of each attribute on the overall performance of the
options using Equation (22). Furthermore, we calculate the final attributes’ weights for
AFV selection by utilizing Equations (23) and (24), and given in last column of Table 7. The
resultant values are in depicted in Figure 2.
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Table 6. AIF-DM for AFVs.

Criteria G1 G2 G3 G4 G5

C1 (0.342, 0.578, 0.080) (0.340, 0.575, 0.086) (0.444, 0.473, 0.083) (0.411, 0.504, 0.086) (0.460, 0.445, 0.094)
C2 (0.398, 0.523, 0.078) (0.341, 0.580, 0.079) (0.517, 0.386, 0.096) (0.327, 0.588, 0.084) (0.362, 0.555, 0.083)
C3 (0.286, 0.618, 0.096) (0.417, 0.514, 0.069) (0.446, 0.469, 0.085) (0.448, 0.467, 0.085) (0.451, 0.466, 0.083)
C4 (0.606, 0.292, 0.102) (0.672, 0.227, 0.101) (0.616, 0.282, 0.102) (0.699, 0.228, 0.074) (0.527, 0.379, 0.094)
C5 (0.610, 0.288, 0.101) (0.700, 0.222, 0.077) (0.538, 0.368, 0.095) (0.613, 0.306, 0.081) (0.685, 0.230, 0.084)
C6 (0.549, 0.366, 0.085) (0.524, 0.394, 0.082) (0.669, 0.299, 0.031) (0.590, 0.308, 0.102) (0.517, 0.386, 0.096)
C7 (0.637, 0.286, 0.076) (0.495, 0.422, 0.083) (0.650, 0.258, 0.092) (0.695, 0.217, 0.088) (0.742, 0.186, 0.072)
C8 (0.397, 0.530, 0.073) (0.418, 0.507, 0.075) (0.477, 0.453, 0.070) (0.366, 0.553, 0.081) (0.424, 0.492, 0.084)
C9 (0.632, 0.265, 0.103) (0.701, 0.211, 0.088) (0.641, 0.256, 0.102) (0.610, 0.288, 0.101) (0.606, 0.315, 0.079)
C10 (0.695, 0.217, 0.088) (0.694, 0.215, 0.091) (0.612, 0.308, 0.080) (0.608, 0.292, 0.100) (0.727, 0.198, 0.075)
C11 (0.424, 0.491, 0.085) (0.568, 0.335, 0.098) (0.714, 0.199, 0.087) (0.618, 0.302, 0.080) (0.584, 0.315, 0.102)
C12 (0.576, 0.327, 0.098) (0.649, 0.265, 0.085) (0.598, 0.322, 0.080) (0.630, 0.282, 0.088) (0.731, 0.197, 0.073)
C13 (0.700, 0.222, 0.077) (0.720, 0.202, 0.078) (0.543, 0.361, 0.095) (0.686, 0.227, 0.088) (0.608, 0.312, 0.080)
C14 (0.632, 0.265, 0.103) (0.681, 0.225, 0.094) (0.679, 0.235, 0.086) (0.595, 0.325, 0.080) (0.530, 0.375, 0.095)
C15 (0.681, 0.234, 0.085) (0.688, 0.227, 0.086) (0.536, 0.368, 0.096) (0.702, 0.212, 0.086) (0.551, 0.352, 0.097)

Table 7. Results by MEREC for attributes’ weights computation.

Criteria
(S
′

ij)Values
Vj wj

G1 G2 G3 G4 G5

C1 0.347 0.330 0.375 0.329 0.357 0.136 0.0863
C2 0.343 0.330 0.367 0.336 0.366 0.133 0.0840
C3 0.351 0.324 0.374 0.326 0.358 0.141 0.0891
C4 0.350 0.337 0.386 0.343 0.364 0.093 0.0588
C5 0.350 0.339 0.380 0.338 0.375 0.092 0.0583
C6 0.345 0.326 0.388 0.337 0.363 0.116 0.0732
C7 0.351 0.323 0.388 0.343 0.378 0.090 0.0568
C8 0.343 0.324 0.372 0.333 0.361 0.141 0.0894
C9 0.352 0.339 0.388 0.338 0.370 0.088 0.0554
C10 0.356 0.339 0.385 0.338 0.377 0.079 0.0502
C11 0.334 0.330 0.392 0.338 0.369 0.112 0.0706
C12 0.348 0.335 0.384 0.339 0.377 0.090 0.0570
C13 0.356 0.340 0.381 0.343 0.370 0.085 0.0540
C14 0.352 0.338 0.390 0.336 0.364 0.094 0.0593
C15 0.355 0.338 0.380 0.344 0.366 0.091 0.0577

From Equation (25), we have calculated the subjective weights using the IF-RS weight-
ing method of each criterion for AFVs selection. The required results are shown in Table 8,
and depicted in Figure 2.

To derive the combined weights of attributes, we have combined the results obtained
by the IF-MEREC for objective weighting and the IF-RS method for subjective weight-
ing by means of Equation (26). The final weight for τ = 0.5 is shown in Figure 2 and
given as follows:

wj = (0.0473, 0.0670, 0.0570, 0.0669, 0.0500, 0.0949, 0.0576, 0.0530, 0.0610, 0.0876, 0.0520,
0.0702, 0.0770, 0.0755, 0.0830).

Here, Figure 2 displays the significance value or weights of different criteria of AFV
selection for sustainable road transportation with respect to the goal. The parameter social
benefits (C6), with a weight value of 0.0949, have been determined to be the most important
parameter in AFV selection. Fueling/charging infrastructure (C11), with a weight value
of 0.0876, is the second most important parameter in AFV selection. Financial incentives
(C15), with a significance value of 0.0830, is the third most significant parameter in AFV
selection, and others are considered as crucial parameters in AFV selection for sustainable
road transportation.
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Step 5: According to the Equations (27)–(29) and Table 6, the linear and vector normal-
ization values for AFV selection are estimated and given in Tables 9 and 10.
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Table 8. Weights of criteria for AFVs selection using the RS method.

Criteria D1 D2 D3 D4 Aggregated IFNs Crisp Values S*(
~
ξkj)

Rank of
Challenges Weight ws

j

C1 MH A ML MH (0.548, 0.355, 0.097) 0.403 15 0.0083
C2 A A ML L (0.451, 0.466, 0.083) 0.508 10 0.0500
C3 A MH L A (0.509, 0.401, 0.090) 0.446 13 0.0250
C4 MH L ML A (0.493, 0.424, 0.083) 0.534 7 0.0750
C5 L MH L ML (0.453, 0.476, 0.071) 0.488 11 0.0417
C6 A H MH A (0.572, 0.326, 0.101) 0.623 2 0.1167
C7 ML A H L (0.490, 0.472, 0.038) 0.509 9 0.0583
C8 MH A L MH (0.544, 0.366, 0.090) 0.411 14 0.0167
C9 A ML MH ML (0.477, 0.432, 0.091) 0.522 8 0.0667
C10 H ML A MH (0.576, 0.327, 0.098) 0.624 1 0.1250
C11 L VL MH ML (0.431, 0.504, 0.064) 0.464 12 0.0333
C12 ML MH MH A (0.525, 0.381, 0.095) 0.572 6 0.0833
C13 H ML L MH (0.560, 0.352, 0.088) 0.604 4 0.1000
C14 H L ML MH (0.558, 0.356, 0.086) 0.601 5 0.0917
C15 MH H L A (0.567, 0.341, 0.092) 0.613 3 0.1083
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Table 9. Linear normalization matrix for AFVs selection.

Criteria G1 G2 G3 G4 G5

C1 (0.228, 0.713, 0.059) (0.226, 0.710, 0.064) (0.304, 0.630, 0.066) (0.279, 0.654, 0.067) (0.317, 0.606, 0.077)
C2 (0.274, 0.665, 0.061) (0.231, 0.709, 0.059) (0.368, 0.549, 0.083) (0.221, 0.716, 0.063) (0.247, 0.690, 0.063)
C3 (0.201, 0.726, 0.074) (0.302, 0.642, 0.056) (0.325, 0.604, 0.071) (0.326, 0.602, 0.071) (0.329, 0.601, 0.070)
C4 (0.496, 0.404, 0.099) (0.559, 0.336, 0.105) (0.505, 0.395, 0.100) (0.586, 0.337, 0.077) (0.423, 0.490, 0.087)
C5 (0.502, 0.399, 0.099) (0.590, 0.329, 0.081) (0.434, 0.478, 0.088) (0.504, 0.417, 0.079) (0.575, 0.338, 0.088)
C6 (0.420, 0.503, 0.077) (0.399, 0.528, 0.073) (0.531, 0.438, 0.031) (0.457, 0.446, 0.096) (0.393, 0.521, 0.086)
C7 (0.546, 0.378, 0.076) (0.412, 0.511, 0.077) (0.558, 0.348, 0.094) (0.603, 0.305, 0.092) (0.652, 0.270, 0.078)
C8 (0.259, 0.686, 0.055) (0.274, 0.669, 0.057) (0.319, 0.625, 0.056) (0.237, 0.703, 0.060) (0.279, 0.656, 0.064)
C9 (0.525, 0.372, 0.103) (0.593, 0.313, 0.093) (0.534, 0.363, 0.103) (0.504, 0.396, 0.100) (0.500, 0.422, 0.077)
C10 (0.596, 0.311, 0.092) (0.596, 0.308, 0.096) (0.516, 0.406, 0.078) (0.512, 0.390, 0.098) (0.630, 0.289, 0.081)
C11 (0.342, 0.583, 0.075) (0.470, 0.437, 0.093) (0.612, 0.295, 0.093) (0.517, 0.404, 0.079) (0.485, 0.416, 0.098)
C12 (0.482, 0.424, 0.094) (0.553, 0.361, 0.086) (0.503, 0.419, 0.078) (0.534, 0.378, 0.088) (0.635, 0.287, 0.078)
C13 (0.599, 0.320, 0.081) (0.619, 0.298, 0.083) (0.448, 0.462, 0.090) (0.584, 0.324, 0.091) (0.509, 0.413, 0.078)
C14 (0.517, 0.381, 0.102) (0.565, 0.338, 0.097) (0.563, 0.348, 0.089) (0.482, 0.441, 0.077) (0.423, 0.490, 0.087)
C15 (0.573, 0.339, 0.088) (0.580, 0.331, 0.089) (0.436, 0.475, 0.090) (0.594, 0.315, 0.091) (0.450, 0.459, 0.091)

Table 10. Vector normalization matrix for AFV selection.

Criteria G1 G2 G3 G4 G5

C1
(0.3800, 0.4995,

0.1205)
(0.3774, 0.4965,

0.1261)
(0.4931, 0.4087,

0.0983)
(0.4565, 0.4349,

0.1087)
(0.5116, 0.3845,

0.1039)

C2
(0.4508, 0.4402,

0.1089)
(0.3861, 0.4877,

0.1262)
(0.5855, 0.3248,

0.0898)
(0.3704, 0.4949,

0.1347)
(0.4095, 0.4669,

0.1236)

C3
(0.3088, 0.5415,

0.1497)
(0.4505, 0.4504,

0.0991)
(0.4810, 0.4114,

0.1075)
(0.4832, 0.4096,

0.1072)
(0.4866, 0.4085,

0.1049)

C4
(0.4327, 0.4547,

0.1126)
(0.4792, 0.3538,

0.1669)
(0.4395, 0.4400,

0.1205)
(0.4986, 0.3549,

0.1466)
(0.3759, 0.5904,

0.0337)

C5
(0.4318, 0.4481,

0.1201)
(0.4955, 0.3454,

0.1590)
(0.3803, 0.5714,

0.0482)
(0.4337, 0.4749,

0.0913)
(0.4850, 0.3574,

0.1576)

C6
(0.4284, 0.4641,

0.1075)
(0.4094, 0.4993,

0.0914)
(0.5227, 0.3793,

0.0980)
(0.4609, 0.3901,

0.1489)
(0.4040, 0.4892,

0.1068)

C7
(0.4390, 0.4478,

0.1131)
(0.3409, 0.6508,

0.0083)
(0.4478, 0.4035,

0.1488)
(0.4786, 0.3401,

0.1813)
(0.5114, 0.2904,

0.1981)

C8
(0.4251, 0.4663,

0.1086)
(0.4469, 0.4467,

0.1065)
(0.5101, 0.3989,

0.0909)
(0.3916, 0.4863,

0.1221)
(0.4539, 0.4329,

0.1132)

C9
(0.4424, 0.4405,

0.1171)
(0.4906, 0.3499,

0.1595)
(0.4488, 0.4258,

0.1254)
(0.4270, 0.4790,

0.0940)
(0.4240, 0.5223,

0.0536)

C10
(0.4644, 0.3887,

0.1469)
(0.4639, 0.3840,

0.1520)
(0.4093, 0.5508,

0.0399)
(0.4065, 0.5226,

0.0708)
(0.4861, 0.3535,

0.1604)

C11
(0.3220, 0.6429,

0.0351)
(0.4311, 0.4385,

0.1304)
(0.5422, 0.2611,

0.1967)
(0.4690, 0.3956,

0.1354)
(0.4433, 0.4120,

0.1447)

C12
(0.4027, 0.5177,

0.0796)
(0.4545, 0.4199,

0.1256)
(0.4185, 0.5099,

0.0716)
(0.4410, 0.4458,

0.1132)
(0.5115, 0.3114,

0.1772)

C13
(0.4783, 0.3658,

0.1559)
(0.4915, 0.3331,

0.1755)
(0.3712, 0.5942,

0.0346)
(0.4683, 0.3731,

0.1586)
(0.4154, 0.5129,

0.0718)

C14
(0.4516, 0.4082,

0.1402)
(0.4866, 0.3465,

0.1669)
(0.4850, 0.3614,

0.1537)
(0.4249, 0.4996,

0.0754)
(0.3789, 0.5771,

0.0440)

C15
(0.4792, 0.3649,

0.1560)
(0.4838, 0.3538,

0.1623)
(0.3771, 0.5743,

0.0487)
(0.4937, 0.3311,

0.1753)
(0.3879, 0.5498,

0.0623)

Step 6: The subordinate utility degrees of the CCM, UCM and ICM are estimated by
Equations (30)–(32), and portrayed in Table 11.



Sustainability 2022, 14, 5463 21 of 32

Table 11. The CCM, UCM and ICM degrees for each option.

Options
CCM (Q1) UCM (Q2) ICM(Q3)

C1(Gi) S*(C1(Gi)) C2(Gi) S*(C2(Gi)) C3(Gi) S*(C3(Gi))

G1
(0.566, 0.350,

0.084) 0.608 (0.071, 0.913,
0.016) 0.079 (0.450, 0.426,

0.124) 0.512

G2
(0.581, 0.337,

0.082) 0.622 (0.079, 0.907,
0.014) 0.086 (0.462, 0.401,

0.137) 0.530

G3
(0.534, 0.386,

0.080) 0.574 (0.052, 0.933,
0.015) 0.059 (0.430, 0.468,

0.102) 0.481

G4
(0.571, 0.346,

0.083) 0.613 (0.081, 0.904,
0.015) 0.088 (0.456, 0.415,

0.129) 0.521

G5
(0.551, 0.368,

0.081) 0.591 (0.075, 0.910,
0.014) 0.082 (0.435, 0.449,

0.116) 0.493

Step 7: Corresponding to Equation (33), the normalized degrees of the subordinate
UDs of CCM, UCM, and ICM are estimated, and their preferences are also obtained and are
shown in Table 12. Next, the normalized subordinate UDs and the weights of subordinate
UDs are calculated and mentioned in Table 10.

Table 12. Normalized CCM, UCM and ICM degrees and OUDs for AFVs selection.

Options
CCM (Q1) UCM (Q2) ICM (Q3)

Ri(ξ=0.5) Final
RankingC(N)

1 (Gi) ρ1(Gi) C(N)
2 (Gi) ρ2(Gi) C(N)

3 (Gi) ρ3(Gi)

G1 0.452 3 0.444 2 0.451 3 0.654 2
G2 0.462 1 0.484 4 0.467 1 0.685 1
G3 0.427 5 0.332 1 0.423 5 0.638 3
G4 0.455 2 0.495 5 0.459 2 0.632 4
G5 0.439 4 0.462 3 0.434 4 0.610 5

Weight of aggregation
model w1 = 1/3 w2 = 1/3 w3 = 1/3

Step 8: From Equation (34), the subordinate normalized UDs and ranks, the OUDs
and the final preference orders of options are obtained and depicted in Table 12. Regardless
of assuming w1 = w2 = w3 = 1/3, the weights can be chosen as per the preferences of
DEs on the basis of the comprehensive accomplishment by the alternatives or of their poor
performances. CCM is preferred if the attention of the alternatives’ comprehensive abilities
can be drawn from DEs. If the DEs are not interested in taking risks, then a large weight
can be attached to the UCM. It is pertinent to mention that ICM can be endowed by a large
weight in cases when the DEs focus solely upon comprehensive performance as well as
decision risks. Hence, the preference order of options is G2 � G1 � G3 � G4 � G5, and the
option G2 is with a highest UD of appropriateness of options.

5.1. Comparative Study

In the current part of the study, a comparison is made between the outcomes ob-
tained from the IF-MEREC-RS-DNMA method and those from other MCDM models. To
demonstrate the efficiency and show the unique advantages of the IF-MEREC-RS-DNMA
framework, we compare the present approach with the previously developed approaches,
which are the “intuitionistic fuzzy complex proportional assessment (IF-COPRAS)” [82]
and the “intuitionistic fuzzy weighted aggregated sum product assessment (IF-WASPAS)”
method [83].

5.1.1. IF-COPRAS Method

To show the comparison, we choose the IF-COPRAS model given by Gitinavard and
Shirazi [82] with the analysis of decision-making problem given in above section.

Steps 1–4: Same as earlier method.
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Step 5: Add the values of attributes for benefit and cost.
In this step, to calculate the values of αi and βi for benefit and cost-type criteria, we

implement the following procedure:

αi =
l
⊕

j=1
wjzij, i = 1(1)m (35)

βi =
n
⊕

j=l+1
wjzij, i = 1(1)m. (36)

In these formulae, l is number of benefit-type attributes, while n is the whole criteria.
Step 6: Calculate the “relative degree (RD)” of each option.
The RD γi of the ith option is computed by

γi = S∗(αi) +

min
i
S∗(βi)

m
∑

i=1
S∗(βi)

S∗(βi)
m
∑

i=1

min
i
S∗(βi)

S∗(βi)

, i = 1(1)m. (37)

Here, S∗(αi) and S∗(βi) denote the score degrees of αi and βi, respectively.
Step 7: Compute the “utility degree (UD)” of each option.
The formula for the computation of the utility degree δi of each option is

δi =
γi

γmax
× 100%, i = 1(1)m. (38)

Step 8: End.
Now, the whole outcomes of IF-COPRAS [82] model are shown in Table 13. From

Table 6 and Equations (35)–(38), the priority order of options and the UDs of options
are evaluated. According to utility degrees (see Table 13), G2 is obtained to be the most
appropriate AFV, as it has the highest relative weight value (0.2933).

Table 13. Overall results of the IF-COPRAS approach for AFV evaluation.

Options αi S*(αi) βi S*(βi) γi δi Ranking

G1 (0.433, 0.482,
0.085)

0.475 (0.061, 0.922,
0.018) 0.069 0.2835 96.66% 3

G2
(0.457, 0.457,

0.086) 0.500 (0.065, 0.918,
0.017) 0.074 0.2933 100.00% 1

G3
(0.428, 0.494,

0.078) 0.467 (0.087, 0.891,
0.023) 0.098 0.2660 90.69% 5

G4
(0.448, 0.468,

0.084) 0.490 (0.067, 0.914,
0.019) 0.076 0.2868 97.78% 2

G5
(0.433, 0.487,

0.080) 0.473 (0.074, 0.905,
0.021) 0.085 0.2744 93.56% 4

5.1.2. IF-WASPAS Method

The IF-WASPAS method [83] consists of the following steps:
Steps 1–5: These steps are similar to those of the previous method.
Step 6: Calculate the degrees of the weighted sum model (WSM) ℘(1)

i and weighted

product model (WPM) ℘(2)
i of each option by means of the following formulae:

℘
(1)
i =

n
⊕

j=1
wjη

(1)
ij . (39)



Sustainability 2022, 14, 5463 23 of 32

℘
(2)
i =

n
⊗

j=1
wjη

(1)
ij . (40)

Step 7: Define the aggregated degree or the total significance, i.e., the WASPAS measure
of each option, which is presented as the following formula:

Qi = ň℘
(1)
i + (1− ň)℘

(2)
i , (41)

where ň ∈ [0, 1] signifies the aggregating coefficient of the accuracy of the decision (when
ň = 0 and ň = 1, the WASPAS is changed to the WPM and WSM methods). The aggregating
methods have been proved to be more accurate compared with single ones.

Step 8: Rank the current option(s) by minimizing the crisp score values of Qi.
Next, the entire computational results of the IF-WASPAS approach are presented

in Table 14.

Table 14. Computational results of the IF-WASPAS approach.

Options ℘
(1)
i ℘

(2)
i S*(℘(1)

i ) S*(℘(2)
i ) Qi(ň) Ranking

Order

G1 (0.566, 0.350, 0.084) (0.545, 0.370, 0.085) 0.608 0.588 0.5977 3
G2 (0.581, 0.337, 0.082) (0.564, 0.353, 0.083) 0.622 0.605 0.6137 1
G3 (0.534, 0.386, 0.080) (0.527, 0.393, 0.080) 0.574 0.567 0.5706 5
G4 (0.571, 0.346, 0.083) (0.559, 0.356, 0.085) 0.613 0.601 0.6069 2
G5 (0.551, 0.368, 0.081) (0.531, 0.387, 0.083) 0.591 0.572 0.5816 4

Therefore, the ranking of treatment choice is G2 � G4 � G1 � G4 � G3 and the option
G2 is with higher degree of appropriateness of the selection AFVs.

In comparison with existing methods, the benefits of the presented method are dis-
cussed as follows (see Figure 3):

1. The presented methodology estimates the attribute weights with the use of a com-
bined IF-MEREC-RS process, which achieves more accurate attributes’ weights, while
in IF-WASPAS, only the objective weight of criteria is estimated with the use of a
similarity measure, and in IF-COPRAS, the weight of criteria is assumed by experts.

2. According to the computation procedures of the three methods, we can find the
subordinate utility degrees and rank the options by using the IF-DNMA method,
which can not only ensure that the selected alternative performs excellently in to-
tal, but also avoids the bad performance under each criterion. To this point, the
IF-MEREC-RS-DNMA can provide experts with a more robust reference compared
with the IF-WASPAS method and IF-COPRAS.

3. Aggregation functions used in the IF-MEREC-RS-DNMA model have both the linear
and vector normalizations, while the IF-COPRAS model uses vector normalization,
and the IF-WASPAS model utilizes the linear normalization. So, the IF-MEREC-RS-
DNMA method is more reliable and flexible than extant methods.

4. The proposed methodology is applied in the IF-DNMA method to increase the robust-
ness of the fuzzy-DNMA model. Compared to the extant utility based ranking method
(namely MULTIMOORA [84], VIKOR [85], TOPSIS [86], ELECTRE [87], COPRAS [81],
WASPAS [83], CoCoSo [88], and others), the key benefit of the DNMA approach is
that it is considered by two normalization procedures (namely target-based linear and
vector normalization). Moreover, DNMA approach gives the DEs to adjust the weight
of subordinate models (namely CCM, UCM, and ICM) to reveal their preferences
on the “group utility” values and the “individual regret” values of options. Thus,
the proposed hybrid DNMA approach is fulfilling the existing gap in the study of
AFV assessment.
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5.2. Sensitivity Investigation

In this section, we have been changing and investigating the importance of objective
and subjective weights for chosen attributes in the presented weighting tool and changing
the parameter ϑ of the DNMA method to show the performance of subordinate UDs to the
preferences of AFVs. The analyses are carried out by making two cases.

Case I: When utilizing the DNMA method. This subsection shows sensitivity investiga-
tion associated with the parameter ϑ. The variation of ϑ is a useful issue helping to evaluate
the sensitivity level of the approach, changing from subordinate UDs to the subordinate
preferences. In addition, changing the values of ϑ is applied for the sensitivity investigation
of the proposed method to the eminence of criteria weights. Table 15 and Figure 4 represent
the sensitivity analysis of the AFVs for diverse values of the utility parameter ϑ. Based on
the assessments, we obtain the similar preferences G2 � G1 � G4 � G3 � G5 for ϑ = 0.0
to ϑ = 0.8, G3 � G2 � G1 � G4 � G5 for ϑ = 0.9 and G3 � G1 � G2 � G4 � G5 for ϑ = 1.0,
which implies G2 is at the top of the ranking, while the G5 has the last rank for ϑ = 0.0 to
ϑ = 0.8 and the G3 is at the top of the ranking and G5 has the last rank for ϑ = 0.9 to ϑ = 1.0.
Therefore, it is observable that the developed method possesses adequate stability with
numerous parameter values. As shown clearly in Table 15, the developed IF-MEREC-
RS-DNMA methodology is capable of generating stable and, at the same time, flexible
preference results in a variety of utility parameter. This property is of high importance for
MCDM procedures and decision-making reality.
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Table 15. Ranking results of the IF-MEREC-RS-DNMA method with different values of ϑ.

Θ G1 G2 G3 G4 G5 Ranking Order

ϑ = 0.0 0.633 0.700 0.533 0.600 0.533 G2 � G1 � G4 � G3 � G5
ϑ = 0.1 0.637 0.697 0.568 0.607 0.554 G2 � G1 � G4 � G3 � G5
ϑ = 0.2 0.641 0.694 0.591 0.613 0.571 G2 � G1 � G4 � G3 � G5
ϑ = 0.3 0.645 0.691 0.609 0.620 0.585 G2 � G1 � G4 � G3 � G5
ϑ = 0.4 0.649 0.688 0.624 0.626 0.598 G2 � G1 � G4 � G3 � G5
ϑ = 0.5 0.654 0.685 0.638 0.632 0.610 G2 � G1 � G3 � G4 � G5
ϑ = 0.6 0.658 0.682 0.651 0.638 0.621 G2 � G1 � G3 � G4 � G5
ϑ = 0.7 0.662 0.679 0.662 0.644 0.631 G2 � G1 ≈ G3 � G4 � G5
ϑ = 0.8 0.666 0.676 0.673 0.650 0.641 G2 � G3 � G1 � G4 � G5
ϑ = 0.9 0.670 0.673 0.683 0.656 0.650 G3 � G2 � G1 � G4 � G5
ϑ = 1.0 0.675 0.671 0.693 0.661 0.658 G3 � G1 � G2 � G4 � G5
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Case II: When introducing a weight-determining approach, the presented weighting
tool is registered to offer appropriate weights for considered attributes. Initially, the criteria
weights are computed with objective weights using MEREC in the place of combined
weights. Thus, the prioritization has been obtained by the objective weighting in place of
IF-MEREC-RS weight and presented in Table 16 and Figure 5. Using IF-MEREC, the OUD
of AFVs: G1 = 0.604, G2 = 0.704, G3 = 0.631, G4 = 0.655, and G5 = 0.631, and the prioritization
of the following AFVs:G2 � G4 � G3 ≈ G5 � G1. Applying the RS method, the OUD of
the AFVs is as follows: G1 = 0.618, G2 = 0.675, G3 = 0.638, G4 = 0.690 and G5 = 0.582 and
the prioritization of AFVs as follows:G4 � G2 � G3 � G1 � G5. In the aforementioned
discussion, we observe that the diverse parameter values will recover the steadiness of the
IF-MEREC-RS-DNMA method.
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Table 16. Subordinate UD of AFVs over different weighting procedures.

Weighting
Procedure

Subordinate UDs of AFVs Options
Ranking Order

G1 G2 G3 G4 G5

MEREC
method 0.604 0.704 0.631 0.655 0.631 G2 � G4 �

G3 ≈ G5 � G1

RS method 0.618 0.675 0.638 0.690 0.582 G4 � G2 �
G3 � G1 � G5

Integrated
method 0.654 0.685 0.638 0.632 0.610 G2 � G1 �

G3 � G4 � G5

Sustainability 2022, 14, x FOR PEER REVIEW 28 of 35 
 

Case II: When introducing a weight-determining approach, the presented weighting 
tool is registered to offer appropriate weights for considered attributes. Initially, the crite-
ria weights are computed with objective weights using MEREC in the place of combined 
weights. Thus, the prioritization has been obtained by the objective weighting in place of 
IF-MEREC-RS weight and presented in Table 16 and Figure 5. Using IF-MEREC, the OUD 
of AFVs: G1 = 0.604, G2 = 0.704, G3 = 0.631, G4 = 0.655, and G5 = 0.631, and the prioritization 
of the following AFVs: 2 4 3 5 1.G G G G G≈   Applying the RS method, the OUD of the 
AFVs is as follows: G1 = 0.618, G2 = 0.675, G3 = 0.638, G4 = 0.690 and G5 = 0.582 and the 
prioritization of AFVs as follows: 4 2 3 1 5.G G G G G    In the aforementioned discus-
sion, we observe that the diverse parameter values will recover the steadiness of the IF-
MEREC-RS-DNMA method. 

 
Figure 5. Sensitivity analysis of AFVs with different weighting procedures. 

Table 16. Subordinate UD of AFVs over different weighting procedures. 

Weighting Proce-
dure 

Subordinate UDs of AFVs Options 
Ranking Order 

G1 G2 G3 G4 G5 
MEREC method 0.604 0.704 0.631 0.655 0.631 2 4 3 5 1G G G G G≈    

RS method 0.618 0.675 0.638 0.690 0.582 4 2 3 1 5G G G G G     
Integrated method 0.654 0.685 0.638 0.632 0.610 2 1 3 4 5G G G G G     

6. Conclusions 
The aim of the study is to propose an innovative MADA methodology with a combi-

nation of IF-MEREC-RS and IF-DNMA models for the assessment of candidate AFVs for 
private fleets. The developed MADA framework offers a better assessment approach to 
make an effective decision in selecting the most suitable AFV for sustainable transporta-
tion. The developed model has been implemented on an illustrative study of an AFV se-
lection problem for a private home healthcare service provider in Chandigarh, India, 
which confirms its applicability, as well as the effectiveness of the IF-MEREC-RS-DNMA 
approach. From the sustainable viewpoints, a comprehensive evaluation index system has 
been made for this case study, which consists of the following five main attributes: eco-
nomic, social, environmental, technological, and political. In this context, globally existing 
AFVs for sustainable transportation sector are identified and then prioritized against fif-
teen different criteria relevant to environmental, economic, technological, social, and po-
litical aspects of sustainability. This study contributes to the promotion of sustainable 
transport and the development of green transport. The proposed model is used to evalu-

Figure 5. Sensitivity analysis of AFVs with different weighting procedures.

6. Conclusions

The aim of the study is to propose an innovative MADA methodology with a combi-
nation of IF-MEREC-RS and IF-DNMA models for the assessment of candidate AFVs for
private fleets. The developed MADA framework offers a better assessment approach to
make an effective decision in selecting the most suitable AFV for sustainable transportation.
The developed model has been implemented on an illustrative study of an AFV selection
problem for a private home healthcare service provider in Chandigarh, India, which con-
firms its applicability, as well as the effectiveness of the IF-MEREC-RS-DNMA approach.
From the sustainable viewpoints, a comprehensive evaluation index system has been made
for this case study, which consists of the following five main attributes: economic, social,
environmental, technological, and political. In this context, globally existing AFVs for
sustainable transportation sector are identified and then prioritized against fifteen different
criteria relevant to environmental, economic, technological, social, and political aspects of
sustainability. This study contributes to the promotion of sustainable transport and the
development of green transport. The proposed model is used to evaluate five alternative
fuel vehicles in Chandigarh, India. It is distinguished that electric vehicles (G2), with an
overall utility degree of 0.685, hybrid electric vehicles (G1), with an overall utility degree of
0.654, and hydrogen vehicles (G3), with an overall utility degree of 0.638 achieve higher
overall performance compared to the other technologies in India. The assessment outcomes
prove that electric vehicles can serve as a valuable alternative for decreasing carbon emis-
sions and negative effects on the environment for India. This technology contributes to
transportation sector development in less developed areas of the country. The EVs make
an important impact on environmental issues since they generate less carbon dioxide than
traditional vehicles (gasoline/diesel). The EVs reduce CO, NOx, and SOx gas emissions by
98–100%, 88–100%, and 100%, respectively [5,89]. In another study, Moro and Lonza [90]
highlighted that EVs demonstrate average GHG savings of around 50%.
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Here, we observe the three main contributions of this study: (1) the development of
new intuitionistic fuzzy generalized Dombi aggregation operators that provide the com-
bined information on IFSs; (2) the proposal of a new combination of weighting procedures
that enables objective weights using the MEREC and subjective weights using the RS
method, and (3) the proposal of a framework which provides a flexible MADA approach
for choosing the most sustainable AFV candidate.

It is important to be aware of certain limitations in the developed framework. A
practical difficulty is that DEs must be trained with the preference style to properly utilize
the flexibility and potential of IFNs. In the following, we present the limitations of the intro-
duced MCDM methodology: (1) In this study, the evaluation index system should include
more sustainability criteria, for instance, specific energy consumption, refueling/recharging
time, emissions using usage, combustion duration, safety, resale value etc., (2) In realistic
circumstances, there is requirement to consider the large number of DEs for assessment of
AFV selection, however, we have taken only a set of four DEs, and (3) This work has limita-
tions in dealing with more uncertain decision-making problems because of the constraint
condition of the intuitionistic fuzzy set.

Future research studies will try to handle the limitations of this work. Further devel-
opment of this study is suggested to incorporate other MADM methods such as MARCOS,
“operational competitiveness rating (OCRA)” and “multi-attribute ideal real comparative
analysis (MAIRCA)” with Archimedean Copula and Aczel–Alsina aggregation operators.
Apart from that, other weight-determining methods such as “Level Based Weight Assess-
ment (LBWA)” and FUCOM may be incorporated with DNMA method to improve the
MADA process. Moreover, the model presented in this study may be applied to other
MADM problems, namely sustainable plastic recycling processes, site selection for electric
vehicle charging stations, facility location selection for automotive lithium-ion batteries,
and others under different uncertain contexts.
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Abbreviations

AIF-DM Aggregated intuitionistic fuzzy-decision matrix
AFVs Alternative fuel vehicles
AHP Analytic hierarchy process
ANP Analytical network process
AOs Aggregation operators
CCM Complete compensatory method
CCRP Cardinal consensus reaching process
CRITIC Criteria importance through inter-criteria correlation
DEs Decision experts
DEMATEL Decision making trial and evaluation laboratory
DMs Decision matrices
DNMA Double normalization-based multi-aggregation
DST Dempster–Shafer theory
EVs Electric vehicles (EVs)
ELECTRE Elimination et choix traduisant la realité
FST Fuzzy set theory
FUCOM-F Fuzzy full consistency method
GD Generalized-Dombi
GHGs Greenhouse gases
HFLTSs Hesitant fuzzy linguistic term sets
ICM Incomplete compensatory method
IFGDWA Intuitionistic fuzzy generalized Dombi weighted averaging
IFGDWG Intuitionistic fuzzy generalized Dombi weighted geometric
IF Indeterminacy function
IF-COPRAS Intuitionistic fuzzy complex proportional assessment
IF-DM Intuitionistic fuzzy-decision matrix
IFEWA Intuitionistic fuzzy Einstein weighted averaging
IFEWG Intuitionistic fuzzy Einstein weighted averaging
IFHWA Intuitionistic fuzzy Hamacher weighted averaging
IFHWG Intuitionistic fuzzy Hamacher weighted averaging
IFI Intuitionistic fuzzy information
IF-MEREC-RS-DNMA Intuitionistic fuzzy-MEREC-RS-DNMA
IFN Intuitionistic fuzzy number
IFS intuitionistic fuzzy set
IFWA Intuitionistic fuzzy weighted averaging
IF-WASPAS Intuitionistic fuzzy weighted aggregated sum product assessment
IFWG Intuitionistic fuzzy weighted geometric
LDM Linguistic decision-matrix
LVs Linguistic variables
MADA Multi-attribute decision-analysis
MARCOS Measurement alternatives and ranking according to the compromise solution
MEREC Method based on the removal effects of criteria
MF Membership function
NF Non-membership function
OUD Overall utility degree
PROMETHEE Preference ranking organization method for enrichment of evaluation
q-ROFSs q-rung orthopair fuzzy sets
RD Relative degree
RESs Renewable energy sources
RS ranking sum
SCM supply chain management
TOPSIS Technique for order performance by similarity to ideal solution
UCM Un-compensatory method
UDs Utility degrees
VIKOR Vlsekriterijumska optimizcija I kompromisno resenje



Sustainability 2022, 14, 5463 29 of 32

References
1. Onat, N.C.; Noori, M.; Kucukvar, M.; Zhao, Y.; Tatari, O.; Chester, M. Exploring the suitability of electric vehicles in the United

States. Energy 2017, 121, 631–642. [CrossRef]
2. Ecer, F. A consolidated MCDM framework for performance assessment of battery electric vehicles based on ranking strategies.

Renew. Sustain. Energy Rev. 2021, 143, 110916. [CrossRef]
3. Demeulenaere, X. The use of automotive fleets to support the diffusion of alternative fuel vehicles: A rapid evidence assessment

of barriers and decision mechanisms. Res. Transp. Econ. 2019, 76, 100738. [CrossRef]
4. Bartolozzi, I.; Rizzi, F.; Frey, M. Comparison between hydrogen and electric vehicles by life cycle assessment: A case study in

Tuscany, Italy. Appl. Energy 2013, 101, 103–111. [CrossRef]
5. Pamucar, D.; Ecer, F.; Deveci, M. Assessment of alternative fuel vehicles for sustainable road transportation of United States

using integrated fuzzy FUCOM and neutrosophic fuzzy MARCOS methodology. Sci. Total Environ. 2021, 788, 147763. [CrossRef]
[PubMed]

6. Van Mierlo, J.; Messagie, M.; Rangaraju, S. Comparative environmental assessment of alternative fueled vehicles using a life cycle
assessment. Transp. Res. Procedia 2017, 25, 3435–3445. [CrossRef]

7. Bicer, Y.; Dincer, I. Life cycle environmental impact assessments and comparisons of alternative fuels for clean vehicles. Resour.
Conserv. Recycl. 2018, 132, 141–157. [CrossRef]

8. Chang, D.-S.; Chen, S.-H.; Hsu, C.-W.; Hu, A.H.; Tzeng, G.-H. Evaluation Framework for Alternative Fuel Vehicles: Sustainable
Development Perspective. Sustainability 2015, 7, 11570–11594. [CrossRef]

9. Ghosh, A. Possibilities and Challenges for the Inclusion of the Electric Vehicle (EV) to Reduce the Carbon Footprint in the
Transport Sector: A Review. Energies 2020, 13, 2602. [CrossRef]

10. Kene, R.; Olwal, T.; van Wyk, B.J. Sustainable Electric Vehicle Transportation. Sustainability 2021, 13, 12379. [CrossRef]
11. Offer, G.J.; Howey, D.; Contestabile, M.; Clague, R.; Brandon, N.P. Comparative analysis of battery electric, hydrogen fuel cell and

hybrid vehicles in a future sustainable road transport system. Energy Policy 2010, 38, 24–29. [CrossRef]
12. Faria, R.; Marques, P.; Moura, P.; Freire, F.; Delgado, J.; de Almeida, A.T. Impact of the electricity mix and use profile in the

life-cycle assessment of electric vehicles. Renew. Sustain. Energy Rev. 2013, 24, 271–287. [CrossRef]
13. Krishnan, V.; Gonzalez-Marciaga, L.; McCalley, J. A planning model to assess hydrogen as an alternative fuel for national

light-duty vehicle portfolio. Energy 2014, 73, 943–957. [CrossRef]
14. Wu, D.; Aliprantis, D.C. Modeling light-duty plug-in electric vehicles for national energy and transportation planning. Energy

Policy 2013, 63, 419–432. [CrossRef]
15. Liu, J.; Khattak, A.; Wang, X. The role of alternative fuel vehicles: Using behavioral and sensor data to model hierarchies in travel.

Transp. Res. Part C Emerg. Technol. 2015, 55, 379–392. [CrossRef]
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