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Abstract

We study a hybrid intuitionistic modal logic suitable for reasoning about distribution of resources. The modali-
ties of the logic allow validation of properties irparticular place in someplace and irall places. We provide

a sound and complete Kripke semantics. We also define a sound and complete birelational semantics, and show
that it enjoys the finite model property: if a judgement is not valid in the logic, then there is a finite birelational
counter-model. Hence, we prove that the logic is decidable.

Keywords: spatial distribution of resources, spatial modalities, hybrid IS5, Kripke and birelational semantics,
soundness and completeness, finite-model property.

1 Introduction

In current computing paradigm, distributed resources spread over and shared amongst different
nodes of a computer system are very common. For example, printers may be shared in local area
networks, or distributed data may store documents in parts at different locations. The traditional rea-
soning methodologies are not easily scalable to these systems as they may lack implicitly trust-able
objects such as a central control.

This has resulted in the innovation of several reasoning techniques. A popular approach in the
literature has been the use of algebraic systems such as process algebra [10, 22, 17]. These algebras
have rich theories in terms of semantics [22], logics [9, 8, 16, 26], and types [17]. Another approach
is logic-oriented [18, 19, 23, 24, 25, 34]: intuitionistic modal logics are used as foundations of type
systems by exploiting theropositions-as-types, proofs-as-prograpsgadigm [14]. An instance of
this was introduced in [18, 19], and the logic introduced there is the focus of our study.

The formulae in the logic use the standard intuitionistic conjunctive connectivaexl T, and
the intuitionistic implication—. They also include names, callpthces Assertions in the logic are
associated with places, and are validated in places. In addition to considdritigera formula is
true, we are also interestedivherea formula is true. In order to achieve this, the logic has three
modalities. The modalities allow us to infer whether a property is validated in a specific place of
the system@p), or in an unspecified place of the systef)),(or in any part of the systentil). The
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modality @p internalises the model in the logic, and hence the logic can be classified as a hybrid
logic [1, 2, 4,5, 6, 7, 31, 32].

A natural deduction for the logic is given in [18, 19], and the judgements in the logic mention
the places under consideration. The rulesfand(] resemble those for existential and universal
quantification of first-order intuitionistic logic. We extend the logic with disjunctive connectives,
and extend the natural deduction system to account for these. The deduction system is essentially a
conservative extension of propositional intuitionistic logic; and it is in this sense that we will use the
adjective “intuitionistic” for the extended logic throughout the paper.

As noted in [18, 19], the logic can also be used to reason about distribution of resources in
addition to serving as the foundation of a type system. The papers [18, 19], however, lack a model
to match the usage of the logic as a tool to reason about distributed resources. In this paper, we
bridge the gap by presenting a Kripke-style semantics [21] for the logic extended with disjunctive
connectives. In Kripke-style semantics, formulae are considered valid if they remain valid when the
atoms mentioned in the formulae change their value from false to true. This is achieved by using a
partially ordered set giossible statednformally, more atoms are true in larger states.

We extend the Kripke semantics of the intuitionistic logic [21], enriching each possible state with
a set of places. The set of places in Kripke states is not fixed, and different possible Kripke states may
havedifferentsets of places. However, the set of places vary in a conservative way: larger Kripke
states contain larger set of places. In each possible state, different places satisfy different formulae.
In the model, we interpret atomic formulae as resources of a distributed system, and placement of
atoms in a possible state corresponds to the distribution of resources.

The enrichment of the model with places reveals the true meaning of the modalities in the logic.
The modality@p expresses a property in a named place. The modaldgrresponds to a weak form
of spatial universal quantification and expresses a property common to all places, and the modality
¢ corresponds to a weak form of spatial existential quantification and expresses a property valid
somewhere in the system. For the intuitionistic connectives, the satisfaction of formulae at a place
in a possible state follows the standard definition [21].

To give semantics to a logical judgement, we allow models with more places than those men-
tioned in the judgement. This admits the possibility that a user may be aware of only a certain
subset of names in a distributed system. This is crucial in the proof of soundness and complete-
ness as it allows us to create witnesses for the existedfjar{d the universal{) modalities. The
Kripke semantics reveals that the extended logic can be seen as the hybridisation of the well-known
intuitionistic modal systenS5[12, 27, 30, 33, 13, 38].

Following [12, 30, 13, 38] we also introduce a sound and complete birelational semantics for
the logic. The reason for introducing birelational semantics is that it allows us to prove decidabil-
ity. Birelational semantics typically enjoy tHimite model property28, 38]: if a judgement is not
provable, then there is a finite counter-model. On the other hand, Kripke semantics do not satisfy
the finite model property [28, 38]. As in Kripke models, birelational models have a partially ordered
set. The elements of this set are caledrlds In addition to the partial order, birelational models
also have an equivalence relation amongst worlds, calleddbessibility or reachability, relation.

Unlike the Kripke semantics, we do not enrich each world with a set of places. Instead, we have
a partial function, theevaluation functionwhich attaches a name to a world in its domain. As we
shall see, the partiality of the function is crucial to the proof of decidability.

The partial evaluation function must satisfy two important properties. @igrencestates that
if the function associates a name to a world then it also associates the same name to all larger states.
The otheruniquenessstates that two different worlds accessible from one another do not evaluate to
the same name. Coherence is essential for ensuring monotonicity of the logical confgctrel



unigueness is essential for ensuring the soundness of introduction of conjunction and implication.

Following [38], we also introduce an encoding of the Kripke models into birelational models.
The encoding maps a place in a Kripke state into a world of the corresponding birelational model.
The encoding ensures that if a formula is validated at a place in a state of the Kripke model, then it is
also validated at the corresponding world. The encoding allows us to conclude soundness of Kripke
semantics from soundness of birelational semantics. It also allows us to conclude completeness
of the birelational models from completeness of Kripke semantics. We emphasise here that any
birelational model resulting from the encoding is restricted in the sense that any two worlds reachable
from each other are not related in the partial order. Therefore, the finite model property may fail for
Kripke semantics even if it holds for birelational models. Birelational semantics gives us more
models, and the fact that worlds reachable from each other can also be ordered is essential to achieve
finite model property for birelational semantics (§8e2,55.3 and [28, 38]).

Surprisingly, the soundness of the birelational models was not straightforward. The problematic
cases are the inference rules for introductiofidodnd the elimination of). In Kripke semantics,
soundness is usually proved by duplicating places in a conservative way [7, 38]. The partiality of
the evaluation function, along with the coherence and unigqueness conditions however impeded in
obtaining such a result. It has been noted in [38] that the soundness is also non-trivial in the case of
birelational models for intuitionistic modal logic. However, the problems with soundness here arise
purely because of the hybrid nature of the logic. Soundness is obtained by using a mathematical
construction that creates a new birelational model from a given one. In the new model, the set of
worlds consists of the reachability relation of the old model, and we add new worlds to witness the
existential and universal properties.

The proof of completeness follows standard techniques from intuitionistic logics, and given a
judgement that is not provable in the logic we construcaaonical Kripke modethat invalidates
the judgement. However, following [38], the construction of this model is done in a careful way so
that it assists in the proof of decidability. The encoding of Kripke models into birelational models
gives us acanonical birelational model The worlds of canonical birelational models consists of
triples: a finite set of place®, a finite set of sentence&, and a special place which is the
evaluation of the world.

The set of worlds in the canonical birelational models may be infinite. We show that by identi-
fying the worlds in the birelational model up-to renaming of places, we can construct an equivalent
finite model, called thguotient model This allows us to deduce the finite model property for the
birelational semantics, and hence decidability of the logic. The proof is adapted from the case of
intuitionistic modal logic [38]. The partiality of the evaluation function is crucial in the proof.

The rest of the paper is organised as follows. §h we introduce the logic and the Kripke
semantics. Irg3, we introduce the birelational semantics, and prove the soundness of the logic
with respect to birelational models. The encoding of Kripke models into birelational models is also
given and it allows us to conclude soundness of Kripke semantics. The construction of canonical
models and completeness is discussegiinin §5, we construct the quotient model and prove the
finite model property for birelational models. Related work is discussé@,imnd our results are
summarised ir§7. For the sake of a smooth exposition, we have omitted some standard proofs,
which are detailed in a companion technical report [11].



2 Logic

We now introduce, through examples, the logic presented in [18, 19] extended with disjunctive
connectives, thus giving us the full set of intuitionistic connectives. The logic can be used to reason
about heterogeneous distributed systems. To gain some intuition, condidé&itauted peer to peer
databasewvhere the information is partitioned over multiple communicating nodes (peers).

Informally, the database has a set of nodegjlaces and a set of resources (data) distributed
amongst these places. The nodes are chosen from the elements of a fixed set, denated by . .
Resources are represented by atomic formudlaB, . .. € Atoms Intuitively, an atomA is valid in
a placep if that place can access the resource identifiediby

Were we reasoning about a particular place, the logical connectives of the intuitionistic frame-
work would be sufficient. For example, assume that a particular docutwenis partitioned in two
parts,doc; anddoc,, and in order to gain access to the document a place has to access both of its
parts. This can be formally expressed as the logical forn{dke; A docy) — doc, whereA and—
are the logical conjunction and implication. dbc; anddoc, are stored in a particular place, then
the usual intuitionistic rules allow one to infer that the place can access the entire document.

The intuitionistic framework is extended in [19] to reason about different places. An assertion in
such a logic takes the fornyp“at p”, meaning that formulg is valid at placep. The construct ‘at”
is a meta-linguistic symbol and points to the place where the reasoning is located. For example,
doc; atp anddoc; at p formalise the notion that the padsc; anddoc, are located at the noge
If, in addition, the assertiof{doc; A docy) — doc) at p is valid, we can conclude that the document
doc is available ap.

The logic is a conservative extension of intuitionistic logic in the sense that if we restrict our
attention to formulae without modalities then the ‘local’ proof system in a single plagenics the
standard intuitionistic one. For instance, the deduction described above is formally

‘A FPt docyatp ;A FPHdoc,atp Al
: A P} docy A doc, atp : A H{P} (docy A docy) — doc atp 5 (1)
A HP} docatp -

whereA (docy A docy) — doc atp,docy atp,doc;, atp. It is easy to see that this derivation

becomes a standard intuitionistic one if rewritten without the ‘place consteaigt’

In the assertiorp at p,  will not contain any occurrences of the construadt. Insteady will
use modalitie®p, one for each place in the system, to cast the meta-linguigtiat the language
level. A modality@p internalises resources at the locatigmnd the modal formul@@p means that
the propertyp is valid atp, and not necessarily anywhere else. Indeed baihp andey@p will have
the same semantics, and it is possible to define an equivalent logic in which the comstisctot
needed. However, we will prefer to keep the distinction in the logic as this was the case in [18, 19].
The introduction and elimination rules for the modalityare also more elegant if we maintain this
distinction. We need to keep track of where the reasoning is happening, and therefore if we confuse
at with @ then we will always need sentences of the fasmp. In that case @-elimination could
be applied only when the formula has two or more occurrences of @, namely only when it is of the
form p@Qp@Qgq.

An assertion of the formp@p at p’ means that we are located at the plaGeand we are reason-
ing about the property that is validated at plage For example, suppose that the plades the first
half of the document, i.edoc; at p, andp’ has the second one, i.eqgc; atp’. In the logic we can
formalise the fact that’ can send the padibc, to p by using the assertiofoc, — (doc,@p)) atp’.



The rules of the logic will concluddoc; atp and sodoc at p. The formal derivation, (if we look
ahead at the rules in Fig. 1), is
A PP} docy atp! s A HPPY (docy — (doc,@p)) atp!
A PP} (doc,@p) atp!
;A HP2'} doc, atp

—

QF

Where A % doc, atp/, (doc; — (doc,@p)) atp’. The assertiorloc atp can then be derived
by enrichingA with the assumptiondoc; at p, (doc; A docy) — doc atp, and by mimicking the
derivation (1).

The logic also has two other modalities to accommodate reasoning about properties valid at
different locations, which we discuss briefly. Knowing exactly where a property holds is a strong
ability, and we may only know that the property holds somewhere without knowing the specific
location where it holds. To deal with this, the logic has the modglityhe formula® o means that
 holds in some place of the system. In the example above, the locatéazofs not important as
long as we know that this document is located in some place from where it can begefvtmally,
this can be expressed by the logical formQl@oc, A (doc, — (doc,@p))) atp’. By assuming this
formula, we can infedoc, at p, and hence the documaeiic is available ap. We will illustrate this
inference in the deduction system at the end of the section (see Example 1).

Even if we deal with resources distributed in heterogeneous places, certain properties are valid
everywhere. For this purpose, the logic has the modalitghe formulaldy means thap is valid
everywhere. In the example aboyecan access the documefic if there is a place that has the
partdoc, and can send it everywhere. This can be expressed by the fofdda, A (doc, —
Odoc,)) atp’. The rules of the logic would allow us to conclude tHat; is available ap. Therefore
the documendoc is also available gi. We will illustrate this inference at the end of the section (see
Example 2).

We now define the logic formally. As mentioned above, it is essentially the logic introduced in
[19] enriched with the disjunctive connectivesand L. This allows us to express properties such
as: the documentoc; is located either at itself or atq (in which casep has to fetch it). This can
be expressed by the formuldoc; V ((doc,@g) — (doc,@q))) at p.

For the rest of the paper, we shall assume a fixed countable set of atomic forkbohag and
we vary the set of places. Given a countable set of pl&¢giet Frm( Pl) be the set of formulae built
from the following grammar:

pu=A|T|LlpAp|leVe|lp—p|eQp|Op| Op.

Here the syntactic categogystands for elements frorR/, and the syntactic category stands for
elements fromAtoms The elements ifrrm(Pl) are said to beure formulag and are denoted by
small Greek letters, ¢, 1. .. An assertion of the fornp at p is called asentence We denote by
capital Greek letter§,I'y, ... (possibly empty) finite sets of pure formulae, and by capital Greek
lettersA, Ay, ... (possibly empty) finite sets of sentences.

Each judgement in this logic is of the form

AR patp
where

e The global contextl” is a (possibly empty) finite set of pure formulae, and represents the
properties assumed to hold at every place of the system.



L G
;A patp P patp o AP patp

R LA Latp
AR Tatp DA R atp
;A RP @) at A RP @y at
- p1atp VI - w2 dlp VI,
;AR o Vg atp AR o1 Vg atp

DA o Vpgatp T3A g atpHl gatp T3 A gy atp P patp VE

AR ¢ atp
;AR g atp i=1,2 T:AFP o A g at
Set i ALl S Al LRI B (i=1,2)
AR o1 Ao atp AR ¢ atp
;A patp P o atp ARP o —patp T;AR patp
— 1 - F

;AR o —atp ;AR o atp

;A FP pat ;AP p@p atp’

| PPEP ap

AR p@Qpatp AR patp

ARP patp 7 AR Qpatp TiA patqg P2 atp” O

A RP Qpaty ;AP o atp”

A FPta patg ;AR Opatp T, AP o atp! O

AR Opatp ;AP o aty

Figure 1: Natural deduction.

e Thelocal contextA is a (possibly empty) finite set of sentences; since a sentence is a pure
formula associated to a placA.represents what we assume to be valid in specific places.

e The sentence at p says thatp is derived to be valid in the plageby assuming™; A.

e The set of place® represents the part of the system we are focusing on.

In the judgement, it is assumed that the places mentionédand A are drawn from the sep.
More formally, if PL(X') denotes the set of places that appear in a syntactic oljethien it must
be the case th&L(I") U PL(A) U PL(¢ atp) C P. Any judgement not satisfying this condition is
assumed to be undefined.

A natural deduction system without disjunctive connectives is given in [18, 19]. The natural
deduction system with disjunctive connectives is given in Fig. 1. The most interesting rulgg are



the elimination ok}, andI, the introduction of . In these rulesP + p denotes the disjoint union

P U {p} and witnesses the fact that the placeccurs in neitheF’, nor A, norp, nory. If p € P,

thenP + p is undefined, and any judgement containing such notation is assumed to be undefined in
order to avoid a side condition explicitly stating this requirement.

The ruleQE explains how we can use formulae valid at some unspecified location: we intro-
duce a new place and extend the local context by assuming that the formula is valid there. If any
assertion that does not mention the new place is validated thus, then it is also validated using the old
local context. The rul&ll says that if a formula is validated in some new place without any local
assumption on that new place, then that formula must be valid everywhere.

The rules¢I andJFE are reminiscent of the introduction of the existential quantification, and
the elimination of universal quantification in first-order intuitionistic logic. This analogy, however,
has to be taken carefully. For examplelifA —* (4 at p, then we can show using the rules of the
logic thatT'; A P O« at p. In other words, if a formula) is true at some unspecified place then
every place can deduce that there is some (unspecified) place wiseteie.

Also note that, as stated, the rule” has a ‘local’ flavour: fromlL at p, we can infer any other
property in the same placg, However, the rule has a ‘global’ consequence. If we haw p, then
we can inferl. Qq at p. Using@F, we can then inferl at ¢. Hence, if a set of assumptions makes
a place inconsistent, then it will make all places inconsistent.

As we shall see if§2.1, the Kripke semantics of this logic would be similar to the one given for
intuitionistic systemS5[27, 33, 38]. Hence this logic can be seen as an instanklylofid 1S5[7].

Before we proceed to define the Kripke semantics, we illustrate our derivation system by a couple
of examples. First example will demonstrate the use of ¢ute while the second example will
demonstrate the use ofF.

def

Example 1 Letp,p’ € P, ¢ be the formulgdoc, A (doc, — doc,@p)). Let A = Qv atp’. Pick

g ¢ P and letA’ def O, 1) at q. We can derive

A+ doc, atp
as follows:

D
e L .
AP Oy aty! : A" P+ doc, atp
‘A FP doc, atp

OF

wherer is the derivation:

L L
AP docy /\ (docy — doca@p) atq 5 AT T doca A (docp — docy@p) atg
A
. A’ P+ doc, at g J AT F7 docy — docy@patg
: A" P14 doc,@p at g -

Example 2 Let p,p’ € P and be the formuladoc, A (doc, — Odocy)). Let A def O atp.
Pickg ¢ P and letA’ def O, 9 atq. Just as in Example 1, we can derive
:AF? docy atp

as follows:



™
L .
s AP O(docy A (doc, — Odocy)) atp’ ; A FP*4 doc, atp OF
‘A FP doc, atp

wherer; is the derivation

o
: G
AP+ Odocy atg  docy; A’ P14 doc, at p O
A" FPt4 doc, at p

wherer, is similar to the proofr in Example 1.

2.1 Kripke Semantics

There are a number of semantics for intuitionistic logic and intuitionistic modal logics that allow for

a completeness theorem [7, 12, 13, 20, 27, 30, 38]. In this section, we concentrate on the semantics
introduced by Kripke [21, 39], as it is convenient for applications and fairly simple. This would
provide a formalisation of the intuitive concepts introduced above.

In Kripke semantics for intuitionistic propositional logic, logical assertions are interpreted over
Kripke models. The validity of an assertion depends on its behaviour as the truth values of its atoms
change from false to true according to a Kripke model. A Kripke model consistspaftally
orderedset ofKripke statesand arinterpretation I, that maps atoms into states. The interpretation
tells which atoms are true in a state. Itis required that if an atom is true in a state, then it must remain
true in all larger states. Hence, in a larger state more atoms may become true. Consider a logical
assertion built from the atom4,, ..., A,,. The assertion is said to be valid in a state if it continues
to remain valid in all larger states.

In order to express the full power of the logic introduced above, we need to enrich the model by
introducing places. We achieve this by associating a set of placés each Kripke staté. The
formulae of the logic are validated in these places. The interpretation is indexed by the Kripke states,
and the interpretatiofi, maps atoms into the sé¥,. Since we consider atoms to be resources, the
map; tells how resources are distributed in the Kripke state

In the case of intuitionistic propositional logic, an atom validated in a Kripke state is validated
in all larger states. In order to achieve the corresponding thing, we shall require that all places
appearing in a Kripke state appear in every larger state. Furthermore, we requird thatips an
atom into a place, thefy should map the atom in the same place for all statasger thank. In
terms of resources, it means that places in larger states have possibly more resources.

The Kripke models that we shall define now are similar to those defined for the intuitionistic
modal systemiS5([7, 12, 13, 27, 30, 38]. In the definitiork is the set of Kripke states, and its
elements are denoted by, . .. The relation< is the partial order on the set of states.

Definition 3 (Kripke Model) A quadrupleXC = (K, <, {Px}rex, {Ix}rek) is aKripke modeif
e K is a (non empty) set;
e <isa partial order ori;

e P is anon-emptyset of places for alt € K



e P, CPifk <
e [ : Atoms— Pow(P) is such thatl;,(A) C I;(A) forall k <.
Let Pls = |J,cx Pr- We shall say thaPls is the set of places d€.

The definition tells only how resources, i.e. atoms, are distributed in the system. To give seman-
tics to the whole set of formulaérm(Pls), we need to extend,. The interpretation of a formula
depends on its composite parts, and if it is valid in a place in a given state then it remains valid at the
same place in all larger states. For example, the formulay is valid in a state: at placep € Py
if both ¢ andy are true at place in all stated > k.

The introduction of places in the model allows the interpretation of the spatial modalities of the
logic. Formulap@p is satisfied at a place in a stdtegif it is true atp in all stated > k; O andOp
are satisfied at a place in statéf o is true respectively at some or at every place in all states:.

We extend now the interpretation of atoms to interpretation of formulae by using induction on
the structure of the formulae. The interpretation of formulae is similar to that used for modal intu-
itionistic logic [7, 12, 13, 27, 30, 38].

Definition 4 (Semantics) Let K = (K, <,{Pi}rek, {Irrex) be a Kripke model with set of
placesPis. Givenk € K, p € Py, and a pure formule with PL(y) C Pls, we defingk, p) = ¢
inductively as:

(k,p) E A iff  pel(A)

(k,p) E T iff pe Py

(k,p) E L never;

(k.p) E eny it (k) eand(k,p) E

(k,p) E vy it (kp)Eeor(kp)

(k,p) B o—v iff (I>kand(l,p) = ¢)implies(l,p) = v;
(k,p) E Q¢ iff g¢e Pyand(k,q) = ¢

(k,p) E D¢ iff (I >kandge P)implies(l,q) E ¢;
(k,p) E Q¢ iff  there existsy € Py, such thatk, q) = .

We pronouncegk,p) = ¢ as'(k,p) forcesy’, or ‘(k,p) satisfiesp’. We writek = ¢ atp if
(k,p) E ¢

It is clear from the definition that it = ¢ atp, thenPL(y atp) C P;. Please note that except
for logical implication and the modalityl, we have not considered larger states in order to interpret
a modality or a connective. It turns out that the satisfaction of a formula in a state implies the
satisfaction in all larger states, namelylif> k then(k, p) = ¢ implies(l, p) = ¢ (this is the usual
Kripke monotonicity).

Consider the distributed database described when we introduced the logic. We can express the
same properties inferred there by using a Kripke model. Fix a Kripke &tat€he assumption
that the two partsdoc;, doc,, can be combined ip in a statek to give the documendoc can be
expressed a&k,p) = (docy A docy) — doc. If the resourcesloc; anddoc, are assigned to the
placep, i.e., (k,p) = doc; and(k,p) = docy, then, sincgk,p) = docy A docy, it follows that
(k,p) = doc.

Let us consider a slightly more complex situation. Suppose khat ((docy A (doca —
Odoc,) ) atp’. According to the semantics df, there is some place such thatk,r) = docy A
(doc; — Odocy). The semantics of tells us thatk, r) = doc, and(k,r) = (doca; — Odocy).



We can conclude from the semantics-efthat (k, r) = Odoc,, and the semantics af then gives
us that(k, p) = doc,. Therefore, ifdoc; is placed ap in the statek, then the whole documerdbc
would become available at plagen statek.
To give semantics to the judgements of the logic, we need to extend the definition of forcing
relation to judgements. We begin by extending the definition to contexts.

Definition 5 (Forcing on Contexts) Let K = (K, <, { Py }rex, {Ix }rex ) be a Kripke model. Giv-
en astaté in K, a finite set of pure formula, and a finite set of sentencéssuch thaPL(I'; A) C
Py; we say that: forces the contextt; A (and we writek = T'; A) if

1. foreveryp € I"and evenyp € Py: (k,p) = Oyp;
2. foreveryy atq € A: (k,q) = .

Finally, we extend the definition of forcing to judgements.

Definition 6 (Judgment Satisfaction) Let £ = (K, <,{ P }rex, {Ix }rex) be a Kripke model.
The judgement; A - 4 at p is said to be valid infC if

e PL(T) UPL(A)UPL(p) U {p} C P;
e foreveryk € K suchthatP C Py, if & = T'; A then(k, p) = p.

Moreover, we say that; A -7 y at p is valid (and we writel'; A = p atp) if it is valid in every
Kripke model.

Although, it is possible to obtain soundness and completeness of Kripke semantics directly, we
shall not do so in this paper. Instead, they will be derived as corollaries. Soundness will follow from
the soundness of birelational semantics and encoding of Kripke models into birelational models.
Completeness will emerge as a corollary of the proof of construction of finite counter-model.

3 Birelational Models

One other semantics given for modal intuitionistic logics in literature is birelational semantics [12,
13, 30, 38]. As in the case of intuitionistic modal logics [28, 38], birelational semantics for our logic
enjoys the finite model property, while Kripke semantics does not.

Birelational models, like Kripke models, have a set of partially ordered states. The partially
ordered states will be calladorlds, and we use:, v, w, . .. to range over them. Formulae will be
validated in worlds, and if a formula is validated in a world, then it will be validated in all larger
worlds. To validate atoms we have the interpretatipwhich maps atoms into a subset of worlds.

If I maps an atom into a world, then it will map the atom in all larger worlds.

In addition to the partial order, however, there is also a second binary relation on the set of states
which is calledreachabilityor accessibilityelation. Intuitively,u Rw means thatv will be reachable
from u. As our logic is a hybridisation foliS5 the relation® will be an equivalence relation. The
relation R will also satisfy a technical requirement, treachability condition that is necessary to
ensure monotonicity and soundness of the logic.

Unlike the Kripke semantics, the states will not have a set of places associated to them. Instead,
there is gpartial function, Eval, which maps a world to aingleplace. In a sense which we will
make precise i$3.2, a world in a birelational model corresponds to a place in a specific Kripke
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state. As we shall see later, the partiality of the functiam! is crucial in the proof of the finite
model property. In the casBval(w) is defined and ip, we shall say thaiw evaluatego p.

In addition to partiality,Eval will also satisfy two other propertiesoherenceanduniqueness
Coherence says that if a world evaluateg,tthen all larger worlds evaluate to Together with the
reachability condition, coherence will ensure the monotonicity of the modalityniqueness will
say that no two worlds reachable from each other can evaluate to the same place. Uniqueness will be
essential for the soundness of introduction of conjunctiof) @nd implication & 7). The formal
definition of the models is below.

Definition 7 (Birelational Model) Given a set of placeBis, abirelational model onPis is a quin-
tupleWp; = (W, <, R, I, Eval), where

1. Wis a (non empty) set, ranged overby’, w,w’, . . ..
2. <is apartial order oniV.

3. R C W x W is anequivalence relatiomnd satisfies theeachability condition

if w’ > w R v then there exists’ such thatw’ Rv" > v;

4. I : Atoms— Pow(W) is such that ifw € I(A) thenw’ € I(A) for all w’ > w.

5. Eval : W — Pls is apartial function. We writev if Eval(v) is not definedy | if Eval(v) is
defined, and | p if Fval(v) is defined and equal ta
Moreover, the following properties hold:

(a) coherencefor anyv € W, if v] p thenw]| p for everyw > v;
(b) uniquenessfor everyv € W such tha | p, if v Rv’ andv’| p, thenv = v'.

In addition to the reachability condition, usually there is another similar condition in birelational
models for intuitionistic modal logics [12, 13, 30, 38]:

if w Rv < v’ then there exists’such thatw < w’ Rv'.

In this case, a® is an equivalence relation, the property is an immediate consequence of the reach-
ability condition.

As in the case of Kripke models, the interpretation of atoms extends to formulae. A formula
©@p is true in a worldw, if there is a reachable world which evaluategptand wherep is valid.
A formula O is valid in a worldw, if there is a reachable world (not necessarily in the domain of
Ewval) whereyp is valid. A formulale is valid in a worldw if ¢ is valid in all worlds reachable from
worldsw’ larger thanw.

Definition 8 (Bi-forcing Semantics) Let Wp,, = (W, <, R, I, Eval) be a birelational model on
Pls. Givenw € W, and a pure formulg € Frm(Pls), we define the forcing relatiom = ¢
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inductively as follows:

wkEA iff  wel(A);
wgET forallw e W;
wgk 1l never;

wEpAY iff wEeandw = ¢;

wkEeVy iff wkEeorwkE=y;

wkEp—v iff (v>wandv ) impliesv = ¢;

w | ¢Qq iff  there existsv such thatw Rv, v| ¢ andv = ¢;
wEOp iff (v>wandvRv')impliesv’ = ;

wE Qp iff  there existsv € W such thatwv Rv andv |= ¢.

We pronouncev |= ¢ as'w forcesy,’ or ‘w satisfiesp!
As in the case for Kripke models, this relation is monotone: ¥ w thenw = ¢ impliesv = .

Example 9 Consider the birelational mod&V...,, with two worlds, sayw; andw,. Letw; and
wo be reachable from each other anduet< w,. The worldw, evaluates t@, while the evaluation
of wy is undefined. Letd be an atom. We definE A) to be the singletofw, }. For any formulap,
we abbreviatep — | as—.

Consider the pure formulaA. Now, by definition,w, = A and thereforav, [~ —A. Also,
asw; < we, We getw; = —A. This means that, = ——A, andw; E —-—A. Hence, we get
w1, W2 ): O-—A.

On the other hand, consider the formtalJA. We have by definition thaty, [~ A. Asw; is
reachable from bothy; andw-, we deduce that, ws = OJA. Using the semantics of, we get
thatwl,wg b& —-—0A.

We now extend the semantics to the judgements of the logic. We begin by extending the seman-
tics to contexts.

Definition 10 (Bi-forcing on Contexts) Let Wp;, = (W, <, R, I, Eval) be a birelational model
on Pls. Given a finite set of pure formuldé and a finite set of sentencés such thaPL(I'; A) C
Pls; we say thatv € W forces the context; A (and we writew = T'; A) if

1. foreveryp € T': w = Oy, and
2. foreveryy atq € A: w = ¢Qq.

In order to extend the semantics to judgements, we need one more definition. We say that a place
p is reachable from a world if there is a world which evaluates foand is reachable from. The
set of all places reachable from a wortlavill be denoted byReach(v). More formally,

Reach(v) def {p : w|pforsomew € W,v Rw}

It can be easily shown by using the reachability condition and coherence that ifv, then
every place reachable fromis also reachable fronw, namelyReach(v) C Reach(w). Moreover,
if v Rw, thenReach(v) = Reach(w). We now extend the definition of satisfaction to judgements.

Definition 11 (Bi-satisfaction for Judgments) The sequent’; A F* ¢ atp is said to be valid in
the birelational modeWp;, = (W, <, R, I, Eval) if:
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e PL(I)UPL(A)U{p} C P;
e foranyw € W such thatP C Reach(w): w = I'; A impliesw = ¢@p.

Moreover, we say thdt; A - y at pis bi-valid (and we writel'; A =7 1 at p) if it is valid in every
birelational model.

Example 12 Consider the birelational mod&V.,.,, on two worldsw; andw, discussed in Exam-
ple 9. We hadv;, wy = O0-—A andw;, wy f ——OA. Therefore, the judgemenit{P} O-—A atp
is bi-valid in the modeW ..., while the judgementC]-—A at p H{*} ——[0A at p is not bi-valid
in Wexam-
In fact, we will later on show that the judgememf-—A at p -1} ==[A at p is valid in every
finite Kripke model. Therefore this example, adapted from [28, 38], will demonstrate that the finite
model property does not hold in the case of Kripke semantics.

3.1 Soundness

The proof of soundness has several subtleties, that arise as a consequence of the inference rules for
the introduction ofZ] (OJ 1) and elimination of( (¢ E). Let us illustrate this for the case bfI.
Recall the inference rule @i/ from Fig. 1:

IAFPHa patg
AR Opatp

To show the soundness of this rule, we must show that the judgdment- Oy at p is bi-
valid whenever the judgement A F7+4 ¢ at ¢ is bi-valid. In order to show that the judgement
I'; A HP Oy atp is bi-valid, we must consider an arbitrary world, sayin an arbitrary birelational
model, sayVp;s, such that? C Reach(w) andw = IT'; A. We need to prove that = Op@p also.
For this, we need to show that for any wotldn Wp;, such thatw < w’ R v for somew’, it is the
case thav = ¢. Pick one suchy and fix it.

Please note that without loss of generality, we can assuméthdbes not contain (otherwise,
we can always renamgin the model). To use the hypothesis that\ -7+4 ¢ at ¢ is bi-valid, we
must consider a modification & p;;. One strategy, that is adopted in the case of Kripke semantics
[7], is to add new worldsy;, one for each world’ > v. The new worldsy; duplicatev’ in all
respects except that they evaluate tdf the resulting construction yields a birelational model, then
Reach(vy) would containP as well as;.

The next step would be to show that any formulahat does not refer to the plageis satisfied
by v if and only if it is satisfied by’. Using this, we get that; forces the context; A in the new
model also. Then, we can use the hypothesis to obtainfhsdtisfiesp@Qq. Sincev, evaluates to
q, we will get thatv; forcesy. As ¢ does not refer tg, we will get thatv’ forcesp. We can then
conclude the proof by observing that> v, and choosing’ to bew.

In fact, if the worldv was in the domain oFwval, then the above outline would have worked.
However, this breaks down in casé. To illustrate this, suppose that there is a warlduch that
v < ¢/, v'T andv Rv'. In the construction of the extension, we would thus have two warjds
andv; reachable from each other that evaluate to the same pla@éis violates the uniqueness
condition.

This breakdown is fatal for the proof and cannot be fixed. Coherence demands|thétv, | .

So, we cannot fiddle with the evaluation. We cannot even relax uniqueness as this will be needed
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for soundness of introduction of conjunction [) and implication  1). Furthermore, we cannot
require that the evaluation is a total function: it is the partiality of this function that gives us the finite
model property. Indeed, if the function was total, the class of birelational models would be equivalent
to the class of Kripke models, and we would have not gained anything by using birelational models.
Our strategy to prove soundness is to construct a birelational modeMpm calledqg-exten-
sion, whose worlds are the union of two sets. The first one of these sets is the reachability relation
R of Wpys. The second one will be the Cartesian produgt x W, wherelV is the set of worlds of
Whpis. Hence, the worlds of thg-extension are ordered pairs. A woild’, w) will evaluate to the
same place ag’, and(q, w) will evaluate tog. Two worlds will be reachable from each other only
if they agree in the second entry.
The construction would guarantee (see Lemma 14) that giverFrm(Pls), the world(w’, w)
satisfiesy if and only if w’ does, and the worldy, w) satisfiesy if and only if w does. The proof
of soundness dfl] would work as follows. Leb be the fixed world as above. Consider the world
(¢,v) in the g-extension. We will show that satisfiesI'; A, and hencégq, v) satisfiesI'; A. The
set of reachable places frofp, v) containsP as well asg , and we can thus conclude that v)
satisfiesp@q. Since(q, v) evaluates t@, we conclude thafq, v) satisfiesp. As mentioned above,
this is equivalent to saying thatsatisfiesp.
We are ready to carry out this proof formally. We begin by constructing;tbgtension, and
showing that this is a birelational model.

Lemma 13 (g-Extension) Let Wp;, = (W, <, R, I, Eval) be a birelational model oRls. Given a
new placey ¢ Pls, we define the-extension/V(q) p;, to be the quintupléW’, <’ R'. I’  Eval’),
where

1. Pis' % Pisu {¢}.

2. WY RU{q} x W).

3. <'C W' x W'is defined as:
- (w',w) < (v, v) ifand only if w’ < o' andw < v,
- (¢, w) <’ (¢g,v) ifand only if w < v;

4. R’ C W’ x W'is defined as:

- (wla w) R /(Ulv UJ),

- (wlv w) R /(q’ w)’

(¢, w) R'(w',w), and

- (¢, w) R'(q, w).

5. I' : Atoms— Pow(W’) is defined as:

- (A E (W w) | w € I(A), w' Rw}U{ (gw) |we I(A)};
6. Fval' : W' — Pls’ is defined as

- Eval' (w',w)) f Eval(w') for every(w',w) € R,

1In the equality, the left hand side is defined only if the right hand side is.
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- Eval'((q,w)) Lof g foreveryw e W.
The ¢g-extension is a birelational model.

Proof We need to show the five properties of Definition 7. As an example, we proveihiepae-

ness propertytwo different worlds reachable from each other cannot evaluate to the same place. As
(¢,v) always evaluates t@, two worlds(w,v) and(g, w) cannot evaluate to the same place. There
are two other possible cases.

Case a.Supposév’,v) R’ (w',w), (w',w)] p and(v’,v)| p. We have by definition’ R v, w’ Rw,

v =w, w' | pandv’] p. Since R is an equivalence and = w, we getv’ R w’. By unigueness on
Wpis, We getv’ = w’. Therefore(v’,v) = (w', w).

Case b. Suppose thatq, v) R'(q,w), (¢, w)| g and(q,v)] ¢. We have by definitionn = w, and
hence(q, v) = (¢, w). [ |

We will now show that if a pure formula, say, does not mention then(w’, w) satisfies) only
if w’ does. Furthermoréq, w) satisfies) only if w does.

Lemma 14 W(u, q) pis’ IS conservative) Let Wp;; = (W, <, R, I, Eval) be a birelational model,
and letW(q)pisy = (W', <', R’ I, Eval’) be itsg-extension. Let= and =’ extend the inter-
pretation of atoms iMWp;; andW(q) p;s» respectively. For every € Frm(Pls) andw € W, the
following hold:

1. foreveryw’ Rw, (w',w) E ¢ if and only ifw’ = ¢; and
2. (¢q,w) Hyifand only if w = .

Proof Prove both the points simultaneously by induction on the structure of formukaeniPls).
The base case of induction is verified on atoms,;TQrand on_L by definition. For the inductive
step, here we show how to prove the pairih thed case, and for the other cases we refer to the
companion technical report [11].

Consider the formul&ly, and assume thaty’, w) E'Op. This means thap is forced by every
world reachable from some world larger tjat’, w). In particular, we have that

for every(v/,v) > (w',w), if (v",v) R'(v',v) then(v”,v) E . @)

We need to show that’ |= . Pickv’,v” such that/ > w’, andv” Rv’, and fix them. It suffices
to show that” = .

Sincev’ > w’ andw’ Rw, the reachability condition foi? says that there exists€ W such
thatv’ R v > w. By transitivity, we have’’ R v also. Hencév’,v) >’ (w’,w)and(v”,v) R’ (v, v).
Property(2) says thafv”,v) E' ¢, and sav” |= ¢ by induction hypothesis.

For the other direction, assumé = Oy. Then

for everyv’ > w/', if v Ro’ thenv” = . 3)

We need to show that’, w) = Oep.

Consider a worldv’,v) >" (w',w), and fix it. We havey’ Rv, v" > w’ andv > w. Now,
consider any world reachable frofn’, v). We need to show that this world satisfies There are
two possible cases. If the world is of the foifw’, v), we have that”” Rv. Sincev’ Rv, we get
v Rv'. Sincev’ > w', we getv” = ¢ by (3). Hence,(v”,v) =’ ¢, by induction hypothesis. In
the other case, the world is of the forfp, v). Sincev Rv’ andv’ > w’, we havev = ¢ by (3).
Therefore g, v) =’ ¢ by induction hypothesis. |
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We are ready to prove soundness, which depends on Lemmas 13 and 14. This theorem provides
not only soundness for birelational models, but also for Kripke models, thanks to the encoding
presented ir§3.2. One last remark, easy to check, is that if a warldatisfies a context then any

world reachable from and/or greater than it also satisfies the context. Formally

if w =T A thenv = T'; A for everyv such that Rw orv > w. (4)

Theorem 15 (Bi-soundness)f the judgement’; A -7 y atp is derivable in the logic, then it is
bi-valid.

Proof The proof proceeds by induction anthe number of inference rules applied in the derivation
of the judgement'; A -7 1 atp. The inference rules are given in Fig. 1. The base case, where only
one inference rule is used to derive the judgement, follows easily from the definition. We discuss the
induction step.

Induction hypothesi$n > 1). We assume that the theorem holds for any judgement that is
deducible by applying less thaninstances of inference rules, and consider a judgemigft -

1 at p derivable in the logic by using exactlyinstances.

We fix a modeWp; = (W, <, R,V, Eval) on Pls, and letl= be the forcing relation in this
model. Letw € W be such thatP C Reach(w) andw | T;A. Fix w for the rest of the
proof. We have to show = p@p. We proceed by cases by considering the last rule applied to
obtainT; A -7 p atp. For the sake of clarity, we consider only the cases in which the last rule
is introduction of implication{> I') and introduction ofJ (I I). The treatment of the other rules is
similar.

e Case— [. If the last inference rule used was I theny is of the formy — 4, and
PL(I'; A) U PL(¢) U PL(¢) U {p} C P. Furthermore['; A,p atp - ¢ atp by using
less tham instances of the inference rules. By induction hypothdsig, o atp ¥ ¢ atp
is bi-valid. We have to prove that there exist® w such thaw | p andv E ¢ — .

SinceP C Reach(w), there exist® R w such thawv | p. We will prove that = ¢ — 1. Pick
v’ > v and fix it. We need to show thatif = ¢, thendv’ |= ¢ also.

We havev’| p by coherence property, and = T'; A. Also, as R is reflexive, we have
v Rv'. If we assume that’ |= ¢, then we get by definition that = ¢@p. Hence, we get
v' = T; A, ¢ atp. By induction hypothesi§; A, ¢ atp - ¢ at p is bi-valid, and therefore
v’ = yQ@p.

Therefore, there is a world reachable frefrwhich evaluates tp and which forces). Since

v'| p andv’ Rv', uniqueness says that this world mustdietself. Thereforev’ | ¢, as

required.

e CaseldI. Theny is of the formOy. Moreover,PL(I'; A) U PL(¢) U {p} € P, and
;A FP+e patq for someq ¢ P by using less thab instances of the rules. By induc-
tion hypothesisI'; A FF'+4 ¢ at ¢ is bi-valid. Without loss of generality, we can assume that
q ¢ Pls (otherwise, we can renamen Pls).

We have thatv = I'; A, and we need to show that = Op@p. Note thatp € P, and
P C Reach(w). Therefore there isa’ € Reach(w) such thatv'| p. Pick such av’, and fix
it. We havew’ = T'; A. We shall show that’ = O, and we will be done.

In order to show thatv’ = Oy, we have to show that’ = ¢ for everyv, v’ such that
v Rv > w. Pick suchv, v’ and fix them. We have’ = I'; A. SinceP C Reach(w) and
v Rv > w, we getP C Reach(v") by reachability and coherence.
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Let Pls" = Pls U {q}, and letW(q) p;s» be theg-extension of the birelational model. Let
be the forcing relation oMV (u, ¢). From the hypothesis’ = T'; A and Lemma 14, we get
(v',v") E'T; A

From definition ofg-extension, it is clear thaReach((v',v")) = Reach(v') U {¢q}. Hence
P+q C Reach((v',v")). We can now apply the induction hypothesis on the wowldy’) and
obtain(v’,v") ' ¢Qq. By the definition of thej-extension, this is equivalent {g, v’) = .
Lemma 14 then implies that = ¢, as required. |

3.2 Relating Kripke and Birelational Models

In this section, we shall present an encoding of Kripke models in birelational models that preserves
the forcing relation. This will allow us to prove the soundness of the logic for Kripke models.

In particular, given a Kripke model with a set of statEs we construct a birelational model
whose worlds are pairg:, p) wherek € K andp is a place in the Kripke state Two worlds will
be related if they come from the same Kripke state. The w@rld) will be greater thatk, ¢) only
if | > k andp = ¢. The world(k, p) will evaluate top, and an atom will be interpreted in the world
(k,p) only if it is placed inp in the Kripke staté:. The construction will guarantee that the Kripke
statek forces an assertion@p if and only if the corresponding worlgk, p) forces the formulay .

Proposition 16 (Encoding) Given a Kripke modellC = (K, <,{ P }rex, {Ix }rex) With set of
placesPls, we define itskC-birelational modelV5,  to be the quintupléW’, <’, R’ I', Eval’),
where

def
LW = Uperi(k,p):p€ Py}
2. <I'C W' x W'is defined as(k, p) <’ (I,q) ifand only if k < landp = ¢;
3. R :C W' x Wisdefined as(k,p) R'(l,q) ifand only if k = [;

4. I' : Atoms— Pow(W') is defined as7(A4) %< { (k,p) | p € Ix(A) };

5. Eval' : W' — Pls' is defined asEval(k, p) %< p.
WX, is a birelational model. Let=x and =y, extend the interpretation of atoms fhand W5,
respectively. The encoding preserves the forcing relation, namely for kver(, p € P, andp €
Frm(Pls).:
(k,p) [ ¢ifand only if (k, p) =w ¢

Proof It is easy to check that the construction satisfies the properties of a birelational model. To
prove that the encoding preserves the forcing relation we proceed by induction on the formula
Frm(Pls). The statement of the proposition is easily verifiedlanL and on atoms.

Induction hypothesisWe consider a formula € Frm(Pls), and assume that the proposition
holds for each of its sub-formulae. For sake of clarity, we just illustrate the cases of modafities
and.

Casep = ¢1Qq. Then(k, p) Ex ¢ means thay € P, and(k, q) Ex ¢1. By induction hypoth-
esis and definition, this is equivalent to saying that there existg) R'(k,p) such that(k, q)| g,
and(k, q) Ew 1. This is equivalent to saying thék, p) =y ¢1Qq.

Caseyp = Op;. Then(k,p) E=x ¢ means that for every > k and everyg € P, we have
(1,9) Ex ¢1. By induction hypothesis and definition, this is equivalent to: for eyeny) >’ (k, p)
and(l,q) R'(l,p), itis the case thatl, q) =w 1. This is equivalent ték, p) =y Der. [ |
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One thing worth pointing out is that in the resulting birelational model, the evaluatiwrtails
It is easy to see the converse: every birelational model with a total evaluation can be encoded as a
Kripke model such that the forcing relation is preserved. In the reverse encoding, the set of Kripke
states is the set of equivalence classes under reachability, and the set of places associated to a class
is the set of all the evaluations of its elements. Therefore, the class of Kripke models corresponds
semantically to the class of birelational models in which the evaluation is total.

The encoding cannot be preserved if we consider birelational worlds with partial evaluation.
Please note that this is not just a consequence of having undefined worlds in birelational models.
If this was the case, we could have added “undefined” places in each Kripke state. The real issue
is that when the evaluation is partial, two “undefined” worlds reachable from each other can be
ordered: a situation that will be ruled out if the evaluation was total as a consequence of coherence
and unigueness. In Kripke models, “reachability” and order are essentially orthogonal. Hence, the
reverse encoding will fail to preserve the forcing relation.

This is no accident, and as we have pointed out before, partiality of the evaluation in birelational
models is essential for the proof of the finite model property. This was illustrated by the “finite
model’ Wezam in Example 9. InW,,om, it is the case thab; < ws, w1 Rws, w1 andws | p. As
discussed there, this model allows us to refute the judgement:.A atp -} =—JA atp. As we
will see later, the judgement will be valid in every finite Kripke model.

The encoding and soundness of logic with respect to birelational models proves soundness of
Kripke semantics, as detailed in the companion technical report [11].

Corollary 17 (Soundness)If T; A I g atp is derivable in the logic, then it is valid in every
Kripke model.

4 Bounded contexts and Completeness

In this section, we shall prove completeness of the logic with respect to both Kripke and birelational
semantics. The proof will follow a modification of standard proofs of completeness of intuitionistic
logics [7, 21, 38, 39], and we will construct a particular Kripke model: ¢heonical bounded
Kripke model The reason for the term “bounded” shall become clear later on. We will prove that a
judgement is valid in the canonical bounded model if and only if it is derivable in the logic. Then we
will use the encoding of the Kripke models into birelational models {8e2), and this will allow
us to conclude completeness of birelational models. The resulting model will be used to prove the
finite model property ir35.3. The construction of the model is adapted from [38].

We also point out that we shall prove the completeness results in the casefvisdigite. This
is not a serious restriction for completeness, and the result can be extended to judgemeni3 where
is infinite. The real advantage of using a finite set of places is that it will assist in the proof of finite
model property as we will see lb (see Lemma 29).

We begin by defining sub-formulae of a pure formula.séb-formulaof a pure formulay is
inductively generated as:

e ¢ is a sub-formula of itself;
e ifany of v A o, 1 V s, andy; — s is a sub-formula of, then so are; andyp,; and

e ifany of dpy, Op1, andp;@p is a sub-formula of, then so isp; .
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Given any set of pure formulae, thesub-formula closur®*, is the set of sub-formulae of each of
its members. Formally:

or & {¢ : ¢ is a subformula of» € 6}.

We use sub-formulae closure to defldeunded contexts

Definition 18 (Bounded Contexts) Given a finite set of placeB and a finite set of pure formulae
© € Frm(P), a pair(Q, A) is a(P, ©)—bounded context

e () is afinite set of places that contaifisi.e., P C @Q; and
e A is a finite set of sentences of the fograt ¢ wherep € ©* andq € Q.

The bounded contexts will be used as Kripke states in the canonical model. However, we will
need particular kinds of bounded contexts.

Definition 19 (Prime Bounded Contexts)Let P be a finite set of places, ar®, " C Frm(P) be
two finite sets of pure formulae. AP, ©)—bounded context, A) is said to b&"—primeif

e I;ARQ patqforp € ©* andg € Q implies thaty atq € A (©-deductive closure);
e I; A ¥Q 1 atqforeveryq € Q (Consistency);

e IARQ pvpatgforp vy € ©F andg € Q implies that eithepp atq € A or+p atg € A
(©-disjunction property); and

o ;AR Oy atqfor Oy € ©* andq € Q implies that there existg € @ such thatp atq’ €
A (©-diamond property).

As an example, letl be an atom. LeP = {p}, © = {AQp} andQ = {p,q}. Consider the
following sets of sentences:

e Ay ={Aatp, Aatq, AQp atp};
e Ay ={Aatp, Aatq, AQpatp, AQp atq};and
o As={Aatp, Aatq, AQpatp, AQpatq, OAatq}.

Clearly, we have thaP C Q. If ¢ atr is a sentence irh; or Ao, theny is a sub-formula 0B and
r € Q. Therefore(Q, A,) and(Q, Az) are(P, ©)— bounded contexts. On the other hafi@, As)
is not a(P, ©)—bounded context a3A is not a sub-formula oA @p.

If we let T to be the list{ A}, then it follows easily thaf'; A; F¢ A atp. Using the inference
rule of introduction of@, we getl’; A; ¢ A@p atq. However, we have thal@p atq ¢ A;.
Therefore (@, A1) is notI'—prime. On the other hand@, A,) is T'—prime.

The canonical model will be built by choosing the Kripke states to be prime bounded contexts.
We will first show that bounded contexts can be extended to prime bounded contexts. Before we
proceed, we state a proposition that says that the cut-rule is admissible in the logic. In [18], this has
been proved for the logic without the disjunctive connectives. The proof can be extended for the
logic with disjunctive connectives:

Proposition 20 If T; A P patp; and T'; A, patp, 7 ¢ atp thenT; A P o at p.
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Lemma 21 (Prime Bounded Extension)Let (Q, A) be a(P, ©)—bounded context and be a pure
formula inFrm(P). Given a finite subsdf C Frm(P) andq € Q such thaf"; A ¥< ¢ at q, there
exists a( P, ©)—bounded context@)’, A’) such that

1. (Q',A)isT—prime,
2. (Q', A7) extendd @, A),i.e, Q C Q',andA C A’, and
3. ;A K9 ¢ atg.

Proof Please note that by definitidn,© and©* are finite sets. Pick new places,, one for each
formulady € ©*. Let @, be the set of all such places. As the 8¥étis finite, ), is also a finite
set. Finally, let® be the set of sentencesat ¢ such thatp € ©* andq € Q U Q. As©*,Q and
Qo are finite setsy is also finite.

The setA’ required in the lemma would be a subsefbfnd the set)’ would be a subset of
Q U Q. These sets would be obtained by a series of extengions),, which will satisfy certain
properties:

Property 1 For everyn > 0
1. Q. CQUQyandA, C 3
2. Qn € Qn+1, Ay C Ajpig;
3. (Qn,Ay) is (P, 0)-bounded context; and
4. T;%, ¥9 ¢ atq.

The series is constructed inductively. In the induction at an odd step, we will create a witness for
a formula of the typ& . At an even step, we deal with disjunction property. We shall also construct
two sets:

. treatedﬁ, that will be the set of the formula@y € ©* for which we have already created a
witness.

e treated, that will be the set of the formulag, V 1, atq € ¥ which satisfy the disjunction

ni

property.

We pick an enumeration @*, and fix it. We start off by defining’;reatedf)> =0, treatedy = 0,
Qo = Q, andAq = A. Itis clear from the hypothesis of the lemma tliat and P, satisfy the four
points of Propertyl.

Then we proceed inductively, and assume thatA,, (n > 0) have been constructed satisfying
Property 1. In step. + 1, we consider two cases:

1. If n+ 1is odd, then pick the first formul@; v ¢» € ©* in the enumeration ab* , such that

o T:A, F@n 1)y V1) atr, for somer € Q,,;
o Y Vi atr ¢ treated, .

If no such formula exists, then 1€}, .1 = Q,, andA,, 1 = A,,. Inthis cas&),, ;1 andA,, 11
satisfy the four points of Property 1 by induction.
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Otherwise, if bothl'; A,,, ¢, atr F9» ¢ atq andT'; A, v, atr F» ¢ atq then we can
deducd; A,, F@~ ¢ atq. However, we have thak,,, ,, satisfy Property 1. Hence, it must
be the case that eith&t A,,, ¢, atr K9~ ¢ atqorl; A, 1, atr ¥@ 1) atq.

We defined,, 11 = A, U{y; atr}if [; A, ¢ atr ¥9 ¢ atp, andA,, . = A, U{y, atr}
otherwise. We defin€), ;1 = @Q,,. We have by constructio,, C Q,+1, Qn+1 € QU Qo
andA,, C A,y

We haver € ,. By definition, the seB* is closed under sub-formulae. Therefore as
1 Vb € ©F, we have both); andvy, are in©*. This implies that), atr andy; atr are in
%, and(Qn+1,4,) is (P, ©)—bounded context.

Also by construction™; A, J%?LH ¢ atq. Therefore,@,+1,A,+1 Satisfies Property 1.
Finally, we lettreated,, | = treated, U {11 V o atr} and zfreated?hLl = treated?.

2. If n + 1is even, pick the first formulgy in the enumeration d®* such that

o I: A, F@ Oy atr, for somer € Q,,;
e Op ¢ treatedg.
Let Qn+1 = Qn + G0 Ant1 = A, U {patqee}, treated,+1 = treated,, U {Op} and

treated,, ., = treated,,. We have by construction thét,1 andA,,; satisfy the first three
points of Property 1. We claim th&t A, ; #@~+1 1) at ¢ also.

Suppose thalf; A, F@+1 ¢ atq, i.e, T; A, ¢ at 4oy FQ+490¢ ) atq. We also have that
I'; A, @ Oy atr. In fact, by the inference rule E:
I: A, F@» Qpatr 1A, patgy, F@taoe P atq
[;A, F9 ¢ atq

OF

This contradicts the hypothesis @),, A,,. Hencel'; A,, 1 ¥9»+1 ¢ atq. ThereforeQ,, .1
andA,,; satisfy Property 1.

Therefore, we get by construction thaf,, A,, satisfy Property 1. We defin@’ = (J,,~, @n.
andA” = J,~oAn. Now, using Property 1’ C Q U Q, andA” C X. This implies that)’
andA” are finite sets. (Note that this means that the sétigs A,,) is eventually constant). Using
Property 1, we can easily show tH&', A"”) is a(P, ©)— bounded context and; A” ¥Q' ¢ atq.

Finally, we defineA’ to be the set of all sentencesat s € ¥ such thaf’; A” @' pats. As a
consequence of cut rule, we get that

;A FQ patr ifand only if D; A 9 patr (5)

Clearly, A’ extendsA” and hence\. Furthermore, by constructiqd)’, A’) is (P, ©)—bounded.
Also we getl’; A’ ¥9' 1 at ¢, thanks to the equivalends). Finally, (Q’, A’) can be easily shown
to beI-prime by construction. |

We finally construct the bounded canonical model. In the model, the set of Kripke states is the
set of prime bounded context€), A) ordered by inclusion. A place belongs to the st@e A)
only ifitis in @, and an atomA is placed in a place in the stat€ @, A) only if Aatr € A. More
formally, we have:
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Definition 22 (Bounded Canonical Model) Given a finite set of place® and two finite sets of

pure formulaed, T" C Frm(P), theT-prime and(P, ©)—bounded canonical modid the quadruple

Kean (K, <, {Px}rer, {Ix}rer), Where

e the setk is the set of al( P, ©)—bounded contexts that afeprime;

(Ql, Al) < (QQ, AQ) if and Only |fQ1 - QQ andAl - Ag, and

ef
Pga) = Q;
for k = (Q, A), the functionl}, : Atoms— Pow(P}) is defined as

ef
Iig.a)(A) = {geQ: Aatge A},

Given a finite set of placeB and a finite set of formulaé € Frm(P), we say thaf’ is consistent
if T;¥P 1 atpforanyp € P. If T is consistent, then Lemma 21 guarantees that the set of states
in the canonical model is non-empty. This ensures that the bounded canonical model is a Kripke
model:

Lemma 23 (Canonical Evaluation) Given a finite set placeB and two finite sets of pure formulae
©,T € Frm(P) such thaf is consistent, lek’.,,, be thel'—prime and(P, ©)—bounded canonical
model. Then

1. K. an is a Kripke model; and

2. if =k is the forcing relation oiC..,,,, then for everyp € ©*, (Q,A) € K andq € Q:

(Q,A) Ex patgifandonly ifp atg € A.

Proof Clearly, all the properties required for a Kripke model are verified. The proof forZiara
standard induction on the structure of formulae. |

We are now ready to prove completeness. It will imply the completeness theorem for birelational
models as a corollary.

Theorem 24 (Completeness)f P is finite and the judgemerit; A F* ¢ atp is valid in every
Kripke model, then it is provable in the logic.

Proof Assume that’; A =7 ¢ atp is valid. We have:
1. PL(T) UPL(A) UPL(p) U {p} C P.

2. If K = (K, <,{Px}rex,{Ix}rex) is @ Kripke model, then for every € K such that
P C P,
k E ¢ atp wheneverk =T A.

We need to show that; A -7 ¢ at p.
Assume that’; A ¥F o at p. We fix© f {0y : ¢y eTU{p: patqg € A}U{p}. Please note
that® € Frm(P) and (P, A) is a(P, ©)-bounded context. By Lemma 21, there i§-g@rime and
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(P,©)— bounded contextQ, ) extending(P, A) such thafl; > ¥? ¢ atp. We getp atp ¢ X.
Fix (Q,X).

Now consider thé'-prime and( P, ©)-bounded canonical mod#l,.,,, as constructed in Defini-
tion 22, and let=x be the forcing relation if'C.,,,. Consider the Kripke statg), X). We claim that
(Q» Z) ':IC I; A

Pickty € T, r € @ and fix them. We first show that; ¥ -9 [Ow atr. In the proof, we first
choose a new place: ¢ @, and then use the inference ruleto conclude that) at r is derivable
from ', 3. We then use the inference rul# to obtainl'; 3 F9 (i atr. More formally,

G
[;¥ FOF™ ) atm
I;¥ HQ Oy atr

As ) € T', we have thafly € ©. Asr € @, we have by definition of prime contexfsy atr € ¥.
Using Lemma 23, we get théaf), ) =x Oy atr.

Furthermore,A is contained inX. Therefore, by Lemma 23Q,%) =« p atq whenever
patg € A.

Hence, we get that the Kripke stat@,>) = T'; A. By our assumption, we gétQ, %) =x
© atp also. By Lemma 23, we getatp € 3. However our choice of), ¥ was such thap atp ¢
¥.. We have just reached a contradiction, and hence we can conclude that? ¢ at p. |

Now, by the encoding of Kripke models into birelational models (see Proposition 16), if a judge-
ment is valid in all birelational models then it is valid in all Kripke models. As the class of Kripke
models is complete, we get that the class of birelational models is also complete for the logic.

Corollary 25 If P is finite and the judgemeiit A - ¢ at p is bi-valid in every birelational model,
then it is provable in the logic.

The proofs in this section can be suitably modified to allBwo be infinite, as they do not
actually require context sets to be finite. Finiteness is actually required for the proof of the finite
model property, and not for completeness.

There is another way in which we can deduce the completeness resultsBnbénfinite. For
this, we take recourse to the following proposition which states that to derive a judgment, it is
sufficient just to consider the set of places appearing in the formulae of the judgement itself. This
was proved for the logic without disjunctive connectives in [18], and the proof can be extended for
the whole logic.

Proposition 26 Let Py = PL(T") U PL(A) UPL(¢) U {p}, andP, C P. Thenl'; A - patp if
and only if T'; A F o at p.

In order to use completeness result for judgements in wRichinfinite, we proceed as follows.
Suppose that
;A ¥ patp.
Let Py = PL(T") UPL(A) UPL(¢) U {p}. Please observe that by the above proposition, we get
I; AP g atp.

Using Theorem 24, we get a Kripke workd with a Kripke statek such that: forcesI'; A but not
p atp. Furthermorek has at leasP, places. Without loss of generality, we can assume Xhat
does not contain any place in the &t P, (otherwise we can rename them). Now pjgke P,
and fix it. In each Kripke state o€ add new place® \ P, each duplicatingy,. It can be shown
that in the resulting model the Kripke stdtestill forcesT'; A but noty at p. Therefore, we obtain
completeness for Kripke semantics whetis infinite.
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5 Finite Model Property

In this section, we will show that if a judgement is not provable in the logic, then there is a finite
birelational model that invalidates it. The proof will use the counter-model from the proof of com-
pleteness ig4. The birelational model constructed in the proof of completeness consists of worlds
of the form(Q, A, q) where(Q, A) are prime bounded contexts apd& (). The model constructed

may be infinite as it may contain infinitely many worlds. However, by using techniques similar to
those used in [38], we will be able to construct a finite model that is equivalent to the counter-model.
The key technique in the construction is the identification of trigl@sA, ¢) that differ only in
renaming of places other than thoseAnWe start the proof by discussimgnaming functions

5.1 Renaming functions

Given any two sets of place&3;, 2, arenaming functionis a functionf : Q1 — @-. Intuitively,
f renames a placgin Q1 as f(q). Given a renaming functiofi : Q1 — @2, we can extend to
a function from the seffrm(Q,) into the setFrm(Q-2) by replacing all occurrences of placg®y
f(q). More formally,

o f(A) 4" A for all atoms4;

o f(p102) o flp1) o fpe) foro e {Vv,A,—};

def

e f(pQq) = f(p)Qf(q);

def def

e f(Op) = Of(p)andf(Op) = Of(¢).

This can be further extended to contekt\ by applyingf to all formulae inl* and all sentences in
A with f extended to sentences Ay at q) o (o) at f(q).

If fis a renaming function, then we can transform a proof of a judgeifeht-?: p atqto a
proof of the judgemenf (T'; A) F92 f(y) at f(q):

Lemma 27 (Provability Preservation Under Renaming) Let f : Q1 — Q- be a renaming func-
tion. Then for any set of pure formuldg any set of sentences, any formulap and any place
such thaPL(I") U PL(A) UPL(¢) U {q} C @1, we have:

;AR p atq implies f(T'; A) Q2 flp)at f(q)-

Proof Intuitively, replace all occurrences of placesn the proof of'; A F@1 p atq by f(r) to
obtain a proof off(I'; A) F@2 f() at f(¢). This can be shown inductively on the length of the
proof of I'; A F9t ¢ atq. [ ]

For example, le); = {p,q} andQs = {r}. Let f : Q1 — Q2 be the functionf(p) =
r, f(q) = r. Let A be an atom, and |6t to be the empty list. We havig; A atp F9 A@p atq.
Then by the Lemma 2T;; A atr 92 AQr atr.

5.2 Pointed Contexts and Morphisms

Let P, @ be finite sets of places such thatC Q. Let© C Frm(P) be a finite set of pure formulae
with sub-formula closur®*. Please recall that given a finite set of senterkewe say thatQ, A)
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is a (P, ©)—bounded context if for every sentengeat r it is the case thap € ©* andr € Q.
Given a(P, ©)—bounded context@, A), we will say that(Q, A, ¢) is apointed(P, ©)—bounded
contextif ¢ € Q. Henceforth, we refer to such triples @, ©)—pcontexts The elemeny is said to
bethe pointof the pcontex{@, A, q). Following [38], we lift the notion of renaming functions to
morphisms between pcontexts:

Definition 28 (Morphism) Letw; andws be two (P, ©)—pcontexts, and leb; = (Q., A;, ;) for
i = 1,2. A morphismfrom w; to wo is a renaming functiorf : Q; — Q- such that

1. f(p) = pforeveryp € P;
2. if patq € A; thenyp at f(q) € As; and

3. f(Q1) = q2-

We writew; = ws Whenever there is a morphism fram to ws. Furthermore, we writey; = wo

~

if wy j wo andws j w1.

The first part of the definition says that the renaming function does not change the plates in
Now for every sentencg at g € A4, itis the case that € Frm(P). Therefore, the second condition
is equivalent to saying that(A;) € As. Hence,(Q1,A1,¢1) 2 (Q2,Aq, ¢o) intuitively means
that A, has “more” sentences thak, up-to renaming. Finally, the third part says that a morphism
preserves the point of a pcontext.

For example, letP = {p}, © = {A} andQ, = Q2 = {p,q,r}. Letf : Q1 — Q2 be
the renaming function defined &$p) = p, f(¢) = r» and f(r) = ¢. Consider the three sets of
sentences:

e Ay =Ay,={Aatq,Aatp}, and
o AN'={Aatp,Aatr}.

We havef(A atq) = A atr. Now, we have thatl atr ¢ A, andA atr € A’. Therefore,f is
not a morphism fron{@Q;, A1) to (Q2, Az). On the other handf is a morphism from{Q1, A1) to
(Q2,47).

Clearly, 3 is a preorder. The identity function gives reflexivity and function composition gives
transitivity. This makes the relation an equivalence relation. 16 is a pcontext, then we shall use
[w] to denote the class of the pcontexts equivalent twith respect to the relatior. We shall use
these equivalence classes as the worlds of the finite counter-model. The order amongst the worlds
will be given by the preorder. We will now show that the relatiog partitions the set of pcontexts
into finite number of classes. Please note that it is in this proof, we use the fact that fRasset
finite:

Lemma 29 (Finite Partition) The set of(P, ©)—pcontexts is partitioned into a finite number of
equivalence classes by the equivaleace

Proof We will show that every P, ©)—pcontext is equivalent to @nonical pcontextThe set of
canonical pcontexts will be finite. Before we proceed, please notettzatd © are finite sets by
definition. Hence, the sub-formula closu#é and the powersePow(©*) must be finite sets.

We will now define the set of canonical pcontexts. For eAcfi ©* we choose a new place

ra¢ Psuchthatr o, # ra, if Ay # Ag. LetR def {ra:A CO*}. The cardinality ofR is the
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same as the cardinality dfow(©*), and henceR is finite. A canonical pcontext will have places
amongstP U R. Furthermore, the canonical pcontext will contain the sentenaer , if and only

if r A is a place in the pcontext and € A. More formally, we say that the tripl&?, X, ¢) is a
canonical( P, ©)-pcontexif

e ()is asetof places suchth&tC Q C PUR.
e A is the union of two seta p andAg, where

1. Ap is a set of sentences such thaat s € Ap means thap € ©* ands € P; and
2. Agisthe set ofall sentences at r 5, wherep € Aandr o € Q N R. In other words,
ARdét{@at ra:p€eA rye@QnNR}.

e g€ Q.

Clearly, a triple that satisfies the above points i§/20©)—pcontext. Furthermore, as the sets
P, R, ©* are finite, the set of canonical pcontexts must be finite also.

We will now show that for every pcontext = (Q, A, ¢) there is a canonical pcontext equivalent
to it. This would immediately give us that the number of equivalence classes inducedHinite.

Letw = (@, A,q) be a(P,0)—pcontext. Fixw. Fors € @, let H(s) C ©* be the set of
formulaey such thatp at s € A.

We now definew’ = (Q’, A’,¢’), the canonical pcontext equivalentioas follows. P will be
contained inQ’. For eachs € @ \ P, we add the place () to Q'. Forp ¢ P, asentence atp
will be in A’ only ifitis in A. A sentencep at r () will be in Q" only if ¢ € H(s). Finally, the
pointq’ will be ¢ if ¢ € P. Otherwise the poing’ will be r ;). More formally, we define:

° Q/défPU{rH(S)ZSEQ\P}
o A Ap U Ag, where
- Apdéf{<patp:<patpeAandpeP}
def

~Ar = {patryy:seQ\ Pandp € H(s)}

q,def{q if g € P;
M H(q) IquQ\P.

Clearly,(Q', A’ ¢') is a canonica( P, ©)—pcontext. Moreover, the renaming functions

[:Q—a 1(s) “ { Sr H(s) gtzeerv{;;e
t !f te P/;
9:Q —@ 9(t) = ? gt?e:rvgiée, wheré e @\ P is chosen s.t.
t= 1 5.
are morphisms fronw to w’ and fromw’ to w, respectively. We conclude that— w'. [ ]
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5.3 The Finite Counter-Model

Given a finite set of placeB and two finite sets of pure formuldg © C Frm(P), let K., be the
I'—prime and(P, ©)—bounded canonical Kripke model as definedién(see Definition 22). Let
Wean = (W, <, R, I, Eval) be theK.,,,—birelational model obtained by using the encoding of
K can into a birelational model (se€§3.2). We callV.,,, theT'—prime and(P, ©)—bounded canon-
ical birelational model. Please recall from the proof of completenessigahat if a judgement
I';¥ FP patp is not provable, them,,,, provides the birelational counter-model for the judge-
ment for an appropriate choice 6f

The worlds ofWW,,,, are pcontext$@, A, q) where(Q, A) arel'—prime and(P, ©)—bounded.

Two worldsw; = (Q1, A1, ¢1) andwy = (Q2, Ag, g2) are reachable from each otheidf = Q-
andA; = A,. FUrthermOl’e(QhAl,ql) < (QQ,AQ,(]Q) if Q1 - QQ, A1 C Ay andq1 = (2. A

world w = (Q, A, q) € I(A) for some atomd if Aatq € A. The evaluation is a total function,
andE((Q, A, q)) = ¢q. Furthermore, as a consequence of definition of canonical models, a world
w = (Q, A, q) forces a formulgp € ©* ifand only if p at ¢ € A.

Even though the worlds in canonical birelational are composed of bounded pcontexts, the set
of the worlds may itself be infinite. Following [38], we shall construct a finite model, called the
quotient modelequivalent to the canonical model. For this model, we will use morphisms between
pcontexts. Please recall that given pcontextsandw, wi; = ws if there is a morphism from

wy INtO we, andw; = we if wy 3 we andws =3 wy. The relationz is a preorder anck is an
equivalence. The set of equivalence classes generateddfinite by Lemma 29. We writéw] for
the equivalence class af.

In the quotient canonical model, the set of worlds willTsg... , the set of equivalence classes
generated by~ on . We have thatV,.. is finite. Our construction will ensure that in the
canonical birelational model forces a formylae ©* only if [w] forcesep.

In the quotient modelw;] will be less tharjws] only if wy < wy. As 3 is a preorder, it follows
easily that this ordering is well-defined. R is the reachability relation on the canonical model,
then[w; ] is reachable fronfw,] in the quotient model only if there is somg € [w;] andw) € [ws]
such thatw] Rw). The equivalence of ensures that reachability relation is well-defined! it
the interpretation of atoms in the canonical model ang (Q, A, ¢), then an aton¥ will be placed
in aworld[w] only if A atq € A. Since a morphism between pcontexts always preserves points, the
interpretation function is also well-defined.

Finally, the evaluation of a worlflv] in the canonical model will beartial. It is defined only
if the point ofw is in P, and in that case the evaluation [af] is the point ofw. Please note that
morphisms between pcontexts always fixes elementy end therefore the evaluation is also well-
defined. Moreovermpartiality is essential for the well-definedness of the evaluation as a morphism
of pcontexts may not preserve places other than thoge in

We start by defining the quotient model formally, and show that this is indeed a birelational
model.

Definition 30 (Quotient Canonical Model) Given a finite set of placeB and two finite sets of pure
formulael’, © C Frm(P), let We,,, = (W, <, R, I, Eval) be thel'—prime and(P, ©)—bounded
canonical birelational model with set of placB&. The quotient model o¥V.,,, has set of places
P, and is defined to be the quintudlé’,.., <', R, I, Eval’), where

1. The setV,.. is the set of the equivalence classes generated by the relatoril’.

2. The binary relatior<’ is defined asfw,] <’ [ws] if and only if wy 3 ws.
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3. The binary relationR’ is defined asjw;] R’[w,] if and only if there existsv] € [w;] and
w} € [wq] such thatw] R w).

4. The functionl’ : Atoms— Pow(W,..) is defined as:
! def
I'(A) = {[w] w e I(A)}
5. The partial functiorBval’ : W, — P is defined as:

/ def | p if w=(Q,A,p)andp € P;
Bual'([w]) = { not defined otherwise.

As we discussed befores’, R’, I’ and Eval’ in the quotient model are well-defined. The
guotient model is a finite birelational model, as stated in the following proposition.

Proposition 31 (Birelational Preservation) Let W.,,, = (W, <, R, I, Eval) be thel'—prime and
(P,©)—bounded canonical birelational model with set of pla¢éds. Let W,.. = (W,.,<’

, R',I', Eval") be the quotient model a1/,,,,. ThenW,.. is a finite birelational model with set of
placesP.

Proof The finiteness o#V,.. follows from Lemma 29. The properties required by Definition 7 are
easily checked, a particular attention is needed only to prove the transitivify f@ince this case

is tricky but not illuminating, we refer to the companion technical report [11]. As an example, we
show uniqueness faEval’ here.

Considerw, |, [wa] € W).. such thafw;] R'[w,]. This means that there exist , w; € W such
thatw; « w] Rwh = we. Assume thafw,]] ¢ and[ws]| q. Thenw! | ¢ andw}]| ¢ in Weu,. The
unigueness property iW,.,,, says thatv]; = w}. Hencew; = w} = wy. We concludgw;| = [ws]
as required by uniqueness. |

We will show that a worldw forces a formula ir©* in the canonical birelational model if and
only if [w] forces the formula in the quotient model. For this, we will need the following proposition
which states that given worlds; = w- in the canonical model, ifv; forces a formula ir©* then
so doesws:

Proposition 32 (Forcing Preservation Under Morphisms) Given a finite set of placeB and two
finite sets of pure formula&,® C Frm(P), let Wea,, = (W, <, R, I, Eval) be thel'—prime
and(P, ©)—bounded canonical birelational model. Liety, be the extension of interpretatidrto
formulae. Then for everyw,,w, € W, andyp € ©*:

1. Ifwy 3 we thenw; |y g implieswy Ewy .
2. If wy = weq, thenw; Ew ¢ if and only if wy =y .

Proof We prove the first point as the second one is straightforward consequence of the first one.
Considerw;, ws € W such thatw; = ws. This means thaty; = (Q1,A1,q1) andwy, =
(Q2, As, g2) Where(Q;, A;) are-prime and(P, ©)-bounded contexts for = 1,2. Moreover,
there is a morphisnf : Q; — Q2 such thatf(¢1) = ¢o.

Assume thaiv, |y ¢ for somep € ©*. This means from the definition of canonical birela-
tional model thatp atg; € A;. Sincef is a morphism fromuv; to wo, we get thatp atgs € As.
Once again, we get from the definition of canonical birelational modekihat,y, . |
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We are now ready to prove that if the worldin the canonical birelational model forcess 6%,
then the worldw] in the quotient model also forces and vice-versa.

Lemma 33 (Quotient Forcing Preservation) Given a finite set of place® and two finite sets of
pure formulael’,©® C Frm(P), let Wea,, = (W, <, R, I, Eval) be thel'—prime and(P,©)—
bounded canonical birelational model. D& = (W,.., <, R’,I’, Eval’) be the quotient model
of Wean. Let =y and =, .. extend the interpretationsand/” to formulae respectively. Then, for
everyp € ©* andw € W:

w FEw @ ifand only if [w] =, .

Proof The proof proceeds by induction on the structure of the formua©*.

Base caseThe lemma is verified ofi’, and on_L by definition. Consider now the case when
p = A € Atoms Thenw =y A meansw = (Q, A, g) for some@, A, g andA atq € A. Hence,

[w] € I'(A), and thereforéw| |=,.. A. The other direction is similar.

Induction hypothesisWe consider a formulg € ©*, and we assume that the lemma holds
for each sub-formula op that is in®*. We will proceed by cases on the structuresofFor the
sake of clarity, we will just consider the case of modalitiesand @p. The other cases can be
dealt with similarly. Please note that @ is closed under sub-formulae, the induction hypothesis
can be applied to all sub-formulae of Moreover, by definition, ifv; = (Q1,A1,¢1) andws =
(Q2, Ag, g2) are two worlds iV suchw; < we thenw; = ws.

Casep = Lp;. Letw [y . We need to show thadtv] =, Op;. Considerfw;] > [w] and
[wa] R'[w1]. It suffices to show thdtw,] =, 1. The hypothesigw,] R'[w,] >’ [w] means
thatw; = w andwy = ws R w4 = w; for some worldsws, wy € W. We get thatvy =~ w as
< is apreorder.

We havew, 7 w, and hencev, =y ¢y by Proposition 32. By definition of forcing,
ws Ey 1. Thereforews =y, 1 by Proposition 32. The induction hypothesis says that
[wa] =/ 1, and so we concludey] =, ;.

For the other direction, lgtv] |=,.. Cp,. Considenv; > w andws Rw;. We have to show
thatw, ): ©1.

We havew; =~ w, and hencéw,] > [w]. We also have by the definition of the quotient model
that [wo] R'[w:]. Therefore, agw| |=,.. O, we get thafws] =, ¢1. Hencews =y 1

by induction hypothesis. We conclude that=yy, O, .

Casep = ¢1Qq. Asp € ©* and®* C Frm(P), we get thaty € P.

Now, if w |w ¢ then there existsv; Rw such thatw; =y ¢ andw;| . We have
[wi] R'[w] by definition of quotient model. Ag € P, we also havgw,]| q. Therefore,
[w] ':/2 ©1Qq.

For the other direction, lgtv] |=,.. . Then there existgu;] R'[w] such thafw,] =, ¢1,
and[w:]| ¢. This means that there atg andw’ such thatv; = w} Rw' = w, andw, E=w
1 by induction hypothesis. Furthermore; | ¢ andw/ | ¢. By Proposition 16, we get that
w] Ew 1. Hence, by definition of forcingy’ =y, ¢1@Qq. By Proposition 16 once again,
w FEw p1Qg. u

As aresult of Lemma 33, we have a way to going from a canonical model to an equivalent finite
model. As shown above, the canonical model forces a formula if and only if its finite quotient does,

and we get finite model property:

29



Theorem 34 (Finite Model Property) Assume thatP is a finite set of places. If the judgement
I'; A FP p at p is not provable, then there existdimite birelational modelV with set of places?,
such thaf; A ¥ ¢ atp is not valid inV.
Proof We fix© < {Oy;¢ e THUTU{yY : ¢ atqg € AYUPL(p)U{p}. Consider th&-prime and
(P, ©)—bounded canonical birelational modél..,,. From the proof of completenessga there is
a world of W...,, sayw, such thatw evaluates t@® andw forcesI'; A but noty.
Consider the quotieltV, . of W..,,. W,.. is a finite birelational model and has set of plages
The world[w] evaluates t@. Furthermore, as a consequence of Lemma 33, we can easily show that
[w] forcesT'; A but noty. Therefore)V,.. is the required finite counter-model. [ |

Decidability is based on the Harrop criterion, cf. [15]: every finitely axiomatisable modal logic
with the finite model property is decidable.

Corollary 35 (Decidability) The provability of the judgemert; A - ¢ at p is decidable in the
logic.

Proof Let P’ bePL(T) UPL(A) UPL(p) U {p}. By Proposition 26T; A ¥ , atp if and only
if ;A F p atp. As the functionPL can be effectively computed, we just need to consider the
judgement’; A - o at p for the decidability result.

We can enumerate all proofs in the logic in which the set of places considered is finite. Hence,
we obtain an effective enumeration of all provable judgements. We can also effectively enumer-
ate all finite birelational models, and effectively check whether the judgement-"" ¢ atp is
refutable in a given finite birelational model. As a consequence of the finite model property proved
aboveI; A - o atp is refutable only if it is refutable in some finite birelational model. By per-
forming these enumerations and checks simultaneously, we obtain an effective test for provability of
r;A HE p atp. |

The procedure detailed in the corollary above would not have worked if we had used Kripke
models instead of birelational models. This is because the finite model property fails for Kripke
models. For example, consider the judgemeént—A atp +{P} ——[A4 atp. We claim that this
judgement is valid for everfnite Kripke model.

Indeed, let: be a Kripke state in some finite Kripke modékuch thatk, p) = O-—-A. Pick any
I > k in K such that is maximal with respect to the ordering of Kripke states.(Ag) = O-—A,
we get by definition thatl,r) = ——A for every placer in the statel. From the semantics of
implication and the fact thdtis a maximal state, it must be the case tfiat) |= A for every place
r in the statd. Again, ag is maximal, we getl, p) = OA. As the model is finite, there is always a
maximall’ above any:’ > k, We conclud€k, p) = ——A from semantics of implication.

On the other hand, we showed that the judgement is not valid in the finite fdgdel,, in
Example 9. The modélV, ..., has two worldsw; andws such thatw; < ws, w; Rws, I(4) =
{ws}, w11 andws] p. As we discussed therej, = O-—A andw, = ——[A. As we mentioned
before, this example is adapted from [28, 38].

6 Related Work

The logic we studied is an extension of the logic introduced in [18, 19]. In [18, 19], it was used as
the foundation of a type system for a distributedalculus by exploiting th@roofs-as-terms and
propositions-as-typeparadigm. The proof terms corresponding to modalities have computational
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interpretation in terms of remote procedure call®), commands to broadcast computations, (

and commands to use portable codd.( The authors also introduce a sequent calculus for the
logic without disjunctive connectives and prove that it enjoys cut elimination. Although the authors
demonstrate the usefulness of logic in reasoning about the distribution of resources, they do not have
a corresponding model.

The proofs-as-terms and propositions-as-typesadigm has also been used in [23, 24, 25]. In
[24], the logic studied is an intuitionistic modal logic derived fré85 and the modalities have
a spatial flavour. Specifically, Kripke states are taken to be nodes on a network. The corifective
reflects the mobility of portable code, agdeflects the address of a fixed resources. The work in [25]
extends [18, 19, 24] to a lambda calculus for classical hyBEavith network-wide continuations
which arise naturally from the underlying classical logic. These continuations give a computational
interpretation of theorems of classical hyb88 In [23], the relationship between modal logics and
type systems for Grid computing is investigated. The objects withfypee interpreted as jobs that
may be injected into the Grid and run anywhere. The main difference from [18, 19, 25, 24] is that
the underlying logic is based d¥rather tharS5 Whereas [18, 19, 25, 24] assume all nodes are
connected to all other nodes, networks may have a more refined accessibility relation.

From a logical point of view, the logic in this paper can be viewed as a hybrid modal logic
[1,2,4,5,6, 31, 32]. A hybrid logic internalises the model in the logic by using modalities built from
pure names. The original idea of internalising the model into formulae was proposed in [31, 32], and
has been further investigated in [1, 2, 4, 5, 6]. This work has been mostly carried out in the classical
setting. More recently, classical hybrid logic is combined with linear temporal logic in [29] and that
logic accounts for both temporal and spatial aspects. Intuitionistic versions of hybrid logics were
investigated in [7, 18, 19].

There are several intuitionistic modal logics in the literature, and [38] is a good source on them.
The modalities in [38] have a temporal flavour. The spatial interpretation was not recognised then. In
[38], for example, the accessibility relation expresses the next step of a computation. The work in [7]
extends the modal systems in [38] and creates hybrid versions of the modal systems by introducing
nominals These are a new kind of propositional symbols which project semantics into the logic. A
natural deduction system for these hybrid systems along with a normalisation result is also given in
[7]. A Kripke semantics along with a proof of soundness and completeness is also introduced.

The extension we gave to the logic in [18, 19] is a hybrid version of the intuitionistic modal
systemlS5[27, 33, 38]. The modalityap internalises the model in the logic. In the modal system
IS5 first introduced in [33], the accessibility relation among places is total. The main difference in
the logic presented in [7] and the logic in [18, 19] is that names in [18, 19] only occur in the modality
@p.

From the point of view of semantics, Kripke semantics were first introduced in [21] for in-
tuitionistic first-order logic. Kripke semantics for intuitionistic modal systems were developed in
[12, 13, 27, 30, 38]. Birelational models for intuitionistic modal logic were introduced indepen-
dently in [12, 13, 30]. They are in general useful to prove the finite model property as demonstrated
in [28, 38]. The finite model property fails for Kripke semantics [28, 38], and an example for this
was adapted in this paper.

Some other examples of work on logics for resources are separation logics [3],ahd logic
of bunched implications [26, 35, 36]. Separation logic is an extension of Hoare logic that permits
reasoning about low-level imperative programs with shared mutable data structure. Formulae are
extended by introducing a ‘separating conjunction’ whose subformulae are meant to hold for disjoint
parts of the system, thus enabling a concise and flexible description of structures with controlled
sharing.Bl is the theoretical base to separation logics. While separation logic is based on particular
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storage model®3| describes resources more generally and its model theory is inspired by a primitive
of resource composition.

Bl is a substructural system which combines freely the propositional intuitionistic logic and the
multiplicative fragment of propositional linear logic. Assertions are not in a sequencelhutéhes
contexts with two combining operations, one reflected in the logic by the intuitionistic conjunction
and the other by the multiplicative (linear) one. In [26, 35, 36], the authors give a Kripke model
based on monoids. The formulae of the logic are the resources, and are interpreted as elements of
the monoid. The monoidal operation is reflected in the logic by the multiplicative connective. The
focus of this work is the sharing of resources and not their distribution.

Bl-Loc, presented in [3], extends the logic of bunched implication by introducing a modality
for locations. Its models anesource treesnode-labelled trees in which nodes contain resources
belonging to a monoid. Every label gives rise to a corresponding logical modality which precisely
indicates the location where a formula holds. AlthougjH_oc offers a separation operator to ex-
press properties holding in different parts of the system, its propositional fragment cannot state
properties verified in an unspecified node or in every node of the system. To fill this gap, authors
introduce quantifications on locations and paths. Validity is undecidable for thBIflbc with
quantifications, but it becomes decidable by avoiding the multiplicative (linear) implication.

The Logic of Bunched Implications has been recently extended in [34] with modalities, in a
Hennessy-Milner style [16]. The new logi¥BIl, is suitable to express properties of concurrent
systems specified in a calculus of resources and processes. This gives a modal logic and a semantics
that combines Kripke relational semantics wigh Kripke monoid semantics. A similar approach
is presented in [8] where Spatial Logicmodels the asynchronouscalculus [22]. The logic is
developed in classical settings and lacks a notion of resources. The main aim of spatial logic is
to describe the behaviour and the spatial structure of concurrent systems. The logic is modal in
space and in time, and a formula describes a property of a particular part of a concurrent system at a
particular time.

Locations can be added to Spatial Logic along the lines of [9] which gives a modal logic based
on Ambient Calculus [10]. Ambients are intended as locations, and there is a modalifyfor
every ambient name which specifies the location where a property holds. These spatial modalities
have an intensional flavour and ‘hybridise’ spatial logics as the modalityhybridises’ IS5 in
the current paper. However, the locations in Ambient Logic unlike this paper have an intensional
hierarchy which is reflected in the logic by having nested formulaertiKe [T]].

7 Conclusions and Future Work

We studied the hybrid modal logic presented in [18, 19], and extended the logic with disjunctive
connectives. Formulae in the logic contain names, also called places. The logic is useful to reason
about placement of resources in a distributed system. We gave two sound and complete semantics
for the logic.

In one semantics, we interpreted the judgements of the logic over Kripke-style models [21].
Typically, Kripke models [21] consist of partially ordered Kripke states. In our case, each Kripke
state has a set of places, and different places satisfy different formulae. Larger Kripke states have
larger sets of places, and the satisfaction of atoms corresponds to the placement of resources. The
modalities of the logic allow formulae to be satisfied in a named plagg, (some place{) and
every placel(l). The Kripke semantics can be seen as an instance of h\@sid, 27, 33, 38].

In the second semantics, we interpreted the judgements over birelational models [12, 13, 30, 38].
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Typically, birelational models have a set of partially ordered worlds. In addition to the partial order,
there is also a reachability relation amongst worlds. In order to interpret the modality the
system, we also introduced a partial evaluation function on the set of worlds. The hybrid nature
of the logic presented difficulties in the proof of soundness. The difficulties are addressed using
a mathematical construction that creates a new model from a given one. The set of worlds in the
constructed model is the union of two sets. One of these sets is the reachability relation, and the
worlds in the second set witness the existential and universal properties.

As in the case of intuitionistic modal systems [12, 13, 27, 30, 38], we demonstrated that the
birelational models introduced here enjoy the finite model property: a judgement is not provable in
the logic if and only if it is refutable in some finite model. The finite model property allowed us to
conclude decidability. The partiality of the evaluation function was essential in the proof of the finite
model property.

As future work, we are considering other extensions of the logic. A major limitation of the logic
presented in [18, 19] is that if a formulais validated at some named place, pathen the formula
p@p can be inferred at every other place. Similarlyip or Oy can be inferred at one place, then
they can be inferred at any other place. In a large distributed system, we may want to restrict the
rights of accessing information in a place. This can be done by adding an accessibility relation as is
done in the case of other intuitionistic modal systems [7, 38]. We are currently investigating if the
proof of the finite model property can be adapted to the hybrid versions of other intuitionistic modal
systems. We are also investigating the computational interpretation of these extensions. This would
result in extensions of-calculus presented in [18, 19]. We also plan to investigate adding temporal
modalities to the logic. This will help us to reason about both space and time.

From a purely logical point of view, the meta-logic used in the paper to reason about soundness
and completeness is classical. In order to obtain a full intuitionistic account for the logic, another
line of investigation would be to consider categorical and/or topological semantics for the logic. This
would allow us to obtain soundness and completeness results when the meta-logic is intuitionistic.
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