
AHybrid Josephson Transmission Line and Passive
Transmission Line Routing Framework for Single

Flux Quantum Logic
Shucheng Yang, Xiaoping Gao, Ruoting Yang, Jie Ren, and Zhen Wang

Abstract—The Single Flux Quantum (SFQ) logic family is a
novel digital logic as it provides ultra-fast and energy-efficient
circuits. For large-scale SFQ circuit design, specialized
electronic design automation (EDA) tools are required due to
the differences in logic type, timing constraints and circuit
architecture, in contrast to the CMOS logic. In order to
improve the overall performance of an SFQ circuit, an
efficient routing algorithm should be applied during the
layout design to perform accurate timing adjustment for
fixing hold violations and optimizing critical paths. Thus, a
hybrid Josephson transmission line and passive transmission
line routing framework is proposed. It consists of four main
modules and an exploration of the potential timing
performance based on the given layout placement. The
proposed routing tool is demonstrated on seven testbench
circuits. The obtained results demonstrate that the operating
frequency is greatly improved, and all the hold violations are
eliminated for each circuit.
Index Terms—Single flux quantum, Electronic design

automation, Routing, Passive Transmission Line.

I. INTRODUCTION

ingle Flux Quantum (SFQ) logic [1] is a digital logic
based on Josephson junction and superconducting

material. It is recently widely used as the superconducting

This work was supported by the Strategic Priority Research Program of

Chinese Academy of Sciences (Grant No. XDA18000000), Shanghai

Science and Technology Committee (Grant No. 21DZ1101000), the

National Natural Science Foundation of China (Grant No. 62171437 and

92164101). (Corresponding author: Jie Ren).

Shucheng Yang, Xiaoping Gao, Ruoting Yang are with the Shanghai

Institute of Microsystem and Information Technology, Chinese Academy

of Science, Shanghai 200050, China and also with the CAS Center for

Excellence in Superconducting Electronics (CENSE), Shanghai 200050,

China.

Jie Ren, Zhen Wang are with the Shanghai Institute of Microsystem and

Information Technology (SIMIT), Chinese Academy of Science (CAS),

Shanghai 200050, China, with the CAS Center for Excellence in

Superconducting Electronics (CENSE), Shanghai 200050, China and also

with the Univerisity of Chinese Academy of Science Beijing, Beijing

100049, China (e-mail: jieren@mail.sim.ac.cn).

fabrication technologies evolve. The Rapid-SFQ (RSFQ),
its derived version - Energy-efficient RSFQ (ERSFQ)[2-5]
and eSFQ [6] have large advantages on the operating
frequency and power consumption, compared with the
CMOS logic, due to the fact that the essential active
element Josephson junction transmits SFQ signal on
picosecond level and dissipates almost 10−19 J per
switching [1]. In the RSFQ logic, the logic value “true” or
“false” is defined by whether a flux quantum is stored in
the superconducting loop. Therefore, the basic boolean
gates - AND, OR and NOT, require an additional clock port
for timing. This leads to a different timing strategy and
clock tree structure for logic synthesis and layout synthesis.
For large-scale SFQ circuit design, the electronic design

automation (EDA) tools are essential, due to the fact that a
designer cannot manually perform logic synthesis and
layout synthesis on this level. However, due to the
previously mentioned divergences, most of the current
commercial or open-source EDA tools developed for
CMOS logic cannot be directly applied to the SFQ logic,
especially for routing optimization in layout synthesis. This
paper presents a hybrid Josephson transmission line (JTL)
and passive transmission line (PTL) routing framework for
SFQ logic, which fixes hold violations and optimizes
critical path delay using a specialized global and detailed
routing algorithm. The proposed routing tool comprises
four parts: the data preparation, global routing, detailed
routing and hybrid route widgets generation. More
precisely, the routing environment for parallel computation
is prepared by clustering and sorting the routing queue in
the data preparation step. In the global routing step, the
router calculates the best locations for each path by
different types of routing layers. In the detailed routing step,
the design timing is optimized based on the results of the
global routing phase. After all the paths are optimized, the
hybrid route widgets generator analyzes the grid nodes and
produces JTL and PTL widgets. By applying this routing
tool, seven testbench circuits are successfully routed with
no hold violations, and with an operating frequency of up to
74.18 GHz, based on the proposed SIMIT-Nb03 [7, 8]
technology and its advanced version referred to as

S

SIMIT-Nb04 in this paper, which is under development.
The process consumes less than 688 s for each circuit. In
addition, the framework is able to be compatible with
advanced processes in the future, as long as the process
design kit (PDK) data are imported.
The remainder of this paper is organized as follows.

Section II introduces the previous works, standard cell
library, timing constraints and placement and clock tree
structure. Section III presents the proposed routing
framework and algorithms. Section IV details the
experimental results and their analysis. Finally, the
conclusions are drawn in section V.

II. BACKGROUND

A. Previous work

Several SFQ routing algorithms exist [9-14]. In most of
the cases, the logic gates in their standard cell library are
designed have the same height. Moreover, due to the
pipeline structure of the SFQ circuits, applying a row-based
placement is usually a better choice. Most of the existing
routing algorithms use a fixed routing structure (i.e. a fixed
location of JTLs and PTLs) for connecting the clock tree
and logic cells [9,10,14], or use the JTL-only [11] and
PTL-only [12] routing strategies. Furthermore, the use of
PTL for multi-fanout and short-distance interconnections is
very limited, which is quite different from metal wires in
CMOS logic. Using a hybrid routing methodology may
improve the overall circuit performance, in order to save
the layout space and optimize the maximum clock
frequency.

B. Standard Cell Library

1) Logic Gates
Standard cells based on SIMIT-Nb03 [7, 8] and

SIMIT-Nb04 do not typically have the same height, as
mentioned in the previous section for JTL wiring and
manufacturing reasons. All the logic gates are designed
based on a unit pitch size. For instance, the sizes of the
AND gate, OR gate and NOT gate are 2 units x 2 units,
while that of the D flip-flop is 2 units x 1 unit. Note that the
unit pitch size can be changed in different process versions.
All the ports of logic gates are distributed around the block
edge at the middle of the pitch (cf. Fig.1.).

Fig. 1. Examples of logic gates layout in the SIMIT-Nb03
and SIMIT-Nb04 standard cell library.
In order to reduce the intrinsic delay of a logic gate, the

ports are not connected with a PTL driver or receiver. If the
PTL is applied in the Routing phase, the drivers and
receivers should be placed in advance.
2) Route units
The SIMIT-Nb03 and SIMIT-Nb04 standard cell library

has two route units: Josephson Transmission Line (JTL)
and Passive Transmission Line (PTL).

Fig.2. Schematics of (a) JTL (b) PTL
JTL is similar to a buffer. It provides a more stable

transmission of SFQ pulses. However, it has a larger delay
than PTL. The simplest JTL shown in Fig.2 (a) comprises
two Josephson Junctions. When an SFQ pulse arrives at the
input port, the first Junction is triggered. It then generates a
new SFQ pulse to switch the second Junction, and the
transmission process continues, and therefore the signal is
delivered. A part of the JTL layouts in the SIMIT-Nb03 and
SIMIT-Nb04 standard cell library is shown in Fig.3. The
first two rows are referred to as long-JTL. They consist of 2
junctions. However, their layout is longer than normal. The
last 4 layouts in the last row are standard size JTL
containing 3 or 4 junctions. These JTL layouts allow a wide
range of delay unit choices for fixing hold violations in the
routing procedure.

Fig.3. Examples of JTL layout in the SIMIT-Nb03 and
SIMIT-Nb04 standard cell library.
PTL is similar to the metal wire. However, it requires a

driver and receiver to connect with other SFQ cells at the
beginning and end. A microstrip line is the core part of PTL,
which can transmit an SFQ pulse at the speed of almost
one-third of the light velocity. In this study, the unit time
delay of PTL is approximately one-tenth of a standard 2-JJ
JTL. However, similar to a JTL, the driver and receiver
have a relatively larger delay. Only when the wire length
satisfies equation (1), the PTL can have a shorter overall
delay than JTL of the same length. In the considered
standard cell library, this minimum length is 5 units.

���� + ���� + (� − ���� − ����) ∗ ���� ≤ � ∗ ���� (1)

� ≥
���� + ���� − (���� + ����) ∗ ����

���� − ����
(2)

The design of the logic gates and route units will remain
the same in the future advanced process. The only
difference between the processes is the number of metal
layers for power, clock and signal wiring.

C. Timing constraints

Similar to other digital logics, the timing constraints of
the SFQ logic can be illustrated with a simple model,
shown in Fig.4. Most of the SFQ logic gates are clocked.
Therefore, a pair of connected SFQ logic gates follows the
same timing constraints as the D flip-flop pair (cf. Fig.4).
The timing constraints for the SFQ circuits can then be
classified into three categories.

Fig.4. Timing constraints model.
1) Hold time constraints
The hold time constraints denote the length of a time

window that allows an input signal to arrive after the clock
arrives. These constraints are expressed as:

�1 + ������ + ����� ≥ �2 + �ℎ��� (3)
where ������ and �ℎ��� are respectively intrinsic values of
DFF1 and DFF2 that are not changeable in the optimization,
�1 and �2 are respectively clock arrival times for DFF1

and DFF2, and ����� is the wire delay between DFF1 and
DFF2.
The three variables can be optimized in order to fix the

hold time violations in the routing process, which is a
priority in the timing optimization phase of routing in this
paper. The design will not correctly perform if a path fails
due to hold time violations. Note that there are no other
external means to fix these kinds of violations.
2) Setup constraints
The setup constraints are the time window which allows

an input signal to arrive before the clock arrives. This
constraint defines the maximum clock frequency value. It is
expressed as:

�1 + ������ + ����� ≤ �2 + ���� − ������ (4)
For a specific path, the maximum of ���� can be
determined by the other five variables. As mentioned in the
hold time constraints, �1 , �2 and ����� are optimizable.
They are used to fix hold violations in priority. By
combining the setup time constraints and hold time
constraints, an optimization problem can be obtained:

min ���� (5)
s. t. �1 + ������ + ����� ≥ �2 + �ℎ��� (6)
�1 + ������ + ����� ≤ �2 + ���� − ������ (7)

By solving this optimization problem, the best ���� can be
obtained and considered as the optimization target.
3) I/O constraints
The I/O timing constraints for a single SFQ circuit are

independent of the previous constraints. The only
requirement for a single circuit is that all the inputs should
arrive either before the clock or after the clock, while it is
better to be closer. This can be expressed as:

min |���� − ������| (8)
s. t. ���� > ������ (9)

or

min |���� − ������| (10)
s. t. ���� < ������ (11)

Ideally, the constraints (10) ~ (11) are preferred since
they follow the same rules as the timing constraints inside
the circuits. However, this consumes a large number of
layout resources to delay the input signal. In addition, this
is not an efficient solution in other designs that may use this
circuit as a macro (cf. Fig.5). A practical method consists in
following the first constraints and minimizing the
difference between ���� and ������ . It is much easier to fix
the timing violations when connecting two circuits, since

only a slight delay should be added to a critical signal path.

Fig.5. Schematic of interconnections between circuits

D. Placement and Clock Tree Structure

As previously mentioned, the clocked SFQ logic gates
lead to the gate-level pipelined circuit structure. Bit-array is
one of the best placement strategies. However, due to space
limitations, the placement algorithm is not discussed in this
paper. For a clock tree schema, the most recent works focus
on the H-tree and its enhanced version HL-tree for SFQ
logic [15]. In the experiments, the HL-tree and concurrent
flow structure are used to minimize the size of the gigantic
clock tree (cf. Fig.6.).

Fig.6. Example of placement and HL-clock tree structure.

III. PROPOSEDALGORITHM

The proposed routing algorithm can be divided into four
phases: the data preparation, global routing, detailed
routing and hybrid route widgets generation. The proposed
flow diagram is shown in Fig.8. The proposed routing
strategy aims at improving the overall performance of the
algorithm, while exploring the possibility of increasing the
clock frequency of the SFQ design in a routable area.
In the data preparation phase, all the route prerequisites,

such as the layout of logic gates, routable layer and
synthesis result of a sizeable fan-out signal (in most cases,
the clock and reset signal), should be obtained. The route
map data is then processed together with a procedure of
clustering and sorting route nets. The clustering procedure
can improve the efficiency during the rip-up and reroute

process in the global routing phase, and provide grouped
data for multi-processing route calculation. However, for
each routing group, the sequence of a routing queue
determines the final results. Therefore, a better sorting
strategy should be applied to each routing queue in order to
improve the outcomes.
In the global routing phase, the primary task consists in

connecting all the nets in the given route layer. In contrast
to the CMOS routing algorithm, two attributes for the
routing layer are defined: the JTL enabling layer and PTL
enabling layer. For the JTL enabling layer, the routing
search program follows the JTL path rules, including the
routing direction constraints and generating JTL cross and
splitters. The PTL enabling layer follows the PTL path rules
with PTL routing constraints. These two types of routing
layers are controlled by given processes. Currently, only
when the routing search program cannot completely find a
path on the bottom layer (which has to be the JTL enabling
layer), the top layer (which may be the PTL enabling layer)
will be activated.
The JTL and PTL enabling layers are defined as the

attributes of a metal layer in the framework. For the global
router, the JTL enabling layer rules have a priority over the
PTL enabling layer rules (i.e. on the metal layer which is
both a JTL enabling layer and PTL enabling layer). The
global router will try JTL routing first, since a JTL path can
be more easily optimized than a PTL path in the detailed
routing phase. In the SIMIT-Nb03 process, two metal layers
only exist for logic cells and wiring (cf. Fig.7.). M0 and M1
are defined as both JTL enabling layer and PTL enabling
layer, in order to potentially use PTL for delay optimization
in the detailed routing phase. In the SIMIT-Nb04 process,
we have M2 and M3 for Micro-Strip Line (MSL) only.
Therefore, M2 and M3 are defined as PTL enabling layer,
while M0 and M1 remain the same. In this case, only when
M2 and M3 are out of space, a PTL delay optimization on
M0 and M1 is allowed in the detailed routing phase.

Fig.7. Metal layers for logic and wiring in SIMIT-Nb03 and
SIMIT-Nb04.

Fig.8. Flowchart of the routing process
Once there is no path for a net in the group, the rip-up

and reroute procedure is performed, until the program
reaches its exit condition.
The detailed routing phase aims at fixing up the hold

violation and optimizing the path delay for all the paths.
The hybrid JTL and PTL optimizer are applied with a
random optimization strategy, in order to explore the
optimization space in the proposed algorithms. In the
beginning, the program adjusts all the clock tree nets in
order to minimize the clock tree skew in each logic level. It
then calculates all the clock arrival time, output port emits
time, hold time window and setup time window. Given all
the timing data, the hold time constraints and setup time
constraints can be derived.
The optimizer can fix all the hold violations and shorten

the critical path delay. After the first optimization cycle, the
detailed router will try to perform an incremental
optimization on the clock tree bridges and branches in order
to improve the overall performance. In contrast to other
existing routers, different delay units (i.e. 3 or 4-junction
JTL) are first used to enlarge the path delay, rather than
detouring the violated path, which possibly saves the
routable area for other nets.
Finally, in the hybrid route widgets generation phase, the

JTL layout and PTL layout widgets are generated. The
generator analyzes the path information from detailed
routing, including its coordinates and widgets type, then
outputs a script file according to the user input option. By
running the output script file in corresponding layout edit
tools, the routed layout is transferred, and the following
tasks, such as DRC and LVS, can be performed.
In the sequel, details about these three phases are

provided.

A. Data Preparation

Before running the algorithm, a routing environment

should be prepared. As previously mentioned, the input
files consist of layout, netlist and large fan-out information.
The layout information contains logic gates with gate
model, origin coordinates and orientation. The program will
then use these data to create a route map. The logic gates
are added as the blocked area on corresponding layers for
global routing calculations in the route map. Route
coordinate pairs for global routing can also be obtained by
combining the layout and interconnection data derived from
the netlist. The large fan-out information is processed and
converted into route coordinate pairs. It is then appended to
the routing queue. Apart from large fan-out signals, the
coordinate pairs are clustered for multi-processing
calculation. The coordinates are the criterion for the
clustering program. If one coordinate pair intersects with an
existing group, it will be added to this group. Otherwise,
the program will generate a new group. For each group, a
margin enlarges the border. Typically, a margin of 5 units is
enough for the proposed clustering program. The diagram
of the clustering result is presented in Fig.9.

Fig.9. Diagram of the clustering result.
After clustering, the coordinate pairs in each group are

sorted by fan-out of a net descending. The coordinate pairs
having the same fan-out are sorted using the sum of
Manhattan distance descending. However, the large fan-out
signals are always the priority in the routing queue.

B. Global Routing

In this phase, the used global router is based on a
modified version of the A* algorithm [13]. The basic A*
algorithm calculates the sum of the move cost and estimate
cost. However, in the proposed global router, two new
items of cost are used: corner cost and layer cost. The
updated formulation is expressed as:

����� = ����� + ℎ���� + ����� + ����� (12)
After finding the destination, the program selects a path

of shortest length with the minimum number of corners and
best location on the routing layer. All these conditions are
essential for later processes. In addition, a searching bound
box of 4 units margin (cf. Fig.10) is assigned before the
searching program starts, which can shorten the time for
searching a path that is failed. The algorithms used in this
part are provided in Algorithm 1.1 and Algorithm 1.2.

Fig.10. Route boundary for a single path.
Algorithm 1.1:Modified A* routing

1:
2:
3:
4:
5:

6:
7:
8:
9:

10:
11:
12:
13:
14:
15:
16:
17:

Input: source, destination, Map
Output: path
/* Start path searching */
currLocation←source
/* Create two list for path searching. openList is for
nodes to be checked, and closedList is for nodes that
are inoperable*/
openList,closedList←initialize()
Append currLocation to openList
while True do
// Find the fast position (minimum �����) in the
openList, as current location
currLocation←getFastPosition(openList)
if currLocation is None ||
currLocation is the destination then
// Exit whenthe destination is found or no invalid
path
break

Append currLocation to closedList
openList.pop(currLocation)

18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:

// Find the adjacent positions of the current location
posList←getAdjacentPositions() // Algorithm 1.2
// Calculate the cost of each node
for pos in posList do
if pos in closedList then
continue

else
H,G,C,L←calculateCost(pos,map,destination)

if pos in openList && pos.G > G then
pos.G←G
pos.F←G+H+C+L
pos.preLoc←currLocation

else
Append pos to openList
pos.G←G
pos.F←G+H+C+L
pos.preLoc←currLocation

end
end
/* Record the path start, from destination to source*/
while currLocation is not None do
Append currLocation to path
currLocation←currLocation.preLoc

end
return path

Algorithm 1.2 presents a function for finding adjacent
positions in Algorithm 1.1. The constraints mentioned
above and below, are performed in this function.
Algorithm 1.2: Obtain the Adjacent Position

1:
2:
3:
4:
5:
6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:

Input: currLocation, searchBound, pathDict, Map
Output: Positions
/* Get moving offsets under constraints*/
if currLocation on JTL layer then
// Corner case. Only one direction is allowed.
if currLocation is a corner on other path then
offsets←Corner direction

// Cross case. Only straight direction is allowed.
else ifMap[currLocation]==1 then

offsets←Straight directions
else if PTL channel opened then

offsets←6-way directions
else if currLocation.G>4 then

offsets←4-way directions, vertical first
else

offsets←4-way directions, horizontal first
else if currLocation on PTL layer then
if layer.index is odd then

19:
20:
21:
22:
23:
24:
25:
26:
27:
28:
29:
30:
31:
32:
33:

offsets←Verticle directions
else

offsets←Horizontal directions
/* Get adjacent positions*/
adjPositions←initialize()
for offset in offsets do

nextLocation←currLocation+offset
if nextLocation is out of searchBound then

continue
else ifmap[nextLocation]>=2 then

continue
else

Append nextLocation to adjPositions
end
return adjPositions

Besides these constraints, the routed paths and blockages
on the route map also affect the global router. For the JTL
enable layer, 4-way moving directions are applied. Only
when enabled, in cases such as no valid path for this
coordinate pair and PTL layer exists, the additional choice
of moving upwards or downwards through different layers
are allowed. The capacity of a JTL enable layer is set to 2
for the SIMIT-Nb03 process technology. The map is
encoded as follows:
0: nothing on the node.
1: one path on the node, which means another path can

go through this node using JTL-cross.
2: two paths are crossed on this node, or a splitter is

placed on it.
3: Blockage.
If the net is a single fan-out, the path coordinates with

corresponding encoded values are added to the route map
after each path is routed. For multi-fanout cases, this
process is performed after all the paths of this net are routed
and refined (cf. Fig.11).

Fig.11. Diagram of the multi-fanout path refinement in the
global routing phase.
For the PTL enable layer, the constraints are much easier.

Similar to the CMOS metal wire, the PTL layer is divided
into horizontal and vertical layers. On a specific PTL layer,
only vertical or horizontal directions are allowed in terms

of the layer index. In addition, a PTL path should start from
and end at a JTL layer, as the driver and receiver should be
placed on a JTL layer. However, the global router will not
route a PTL unless the JTL layer is used up, since in most
of the cases, the PTL path can hardly achieve multi-fanout.
Performing a path replacement for delay optimization in the
detailed routing phase, is a better way for using PTL.
The overall global routing control flow is shown in

Fig.12. If a failed path exists in a route group, the rip-up
and reroute program will be triggered. All the map data of
routed paths in this group will be cleaned up, and the failed
paths will be added to the front of the route queue. A restart
routing is then performed for all the paths. The rip-up and
reroute program will also determine whether the route
queue after resorting is invalid, i.e. the resorted route queue
is similar to a previous one in the history. In this case, the
program will exit and report the failed path to the designers.
Finally, the global router will select a routed path result
with the least failed paths and highest layout area utilization
for each group.

Fig.12. Flowchart of the global routing algorithm.

C. Detailed Routing

The proposed detailed router aims at fixing and
optimizing the timing for the routed paths from the global
routing. In order to optimize the critical paths, different
types of JTLs and PTLs in the cell library are used to

achieve flexible and accurate timing adjustment, rather than
detouring routed paths for fixing timing violations or using
the rip-up and reroute strategy. For both clock tree and
signal path optimization, a multi-fanout path optimizer
which can fix hold time violations and sequentially shorten
critical paths, is developed.
For a multi-fanout net, the following scheme is used to

explain the algorithm. After global routing, the multi-fanout
path is naturally divided by the splitters. From the
destinations to the source, the path segments are sorted by
their index size ascending. In the example, the optimize
sequence is PathSeg1, PathSeg2, PathSeg3, PathSeg4,
PathSeg2.3, PathSeg1.2.3 and PathSeg1.2.3.4. This
optimization strategy can ensure the minimum influence to
other paths. For a single fanout net, since only one path
exists in the group, this strategy is also applied.

Fig.13. Scheme of a multi-fanout path.
The multi-fanout path optimizer first analyzes the

encoded value of the path segments group on all the route
maps, in order to derive the changeable widgets. The latter
are all widgets except those containing splitters, JTL cross,
driver, receiver and MSL. Before optimization, the target
timing and current timing of each routed path are calculated
and then sent to the optimizer. For each widget, the
estimate timing uses the standard delay of a 2-junction JTL
for the JTL path, and standard delay of a unit MSL cell for
the PTL path.

For each path segment in the sorted list, the priority is
to fix hold violation using the 3 or 4-junction JTLs in order
to randomly replace the changeable widgets, then updating
the timing. Only when all the paths are out of hold violation
in the path segment, the optimizer starts shortening the path
segment by replacing the changeable widgets with
long-distance JTLs. In addition, if PTL is allowed, the
optimizer will first try to use PTL replacement. Note that in
the shorten operation, the maximum number of path

widgets that can be shortened is calculated based on the
worst timing constraints in this path segment according to
Eq.(3). This means that no more hold violations should be
produced in this operation.

Fig.14. Diagram of path segments optimization. The circles
represent the path coordinates (widgets) in the layout map.
PTL driver and receiver are placed in terms of layout map
condition and maximum reduction of this PathSeg.
Algorithm 2:Multi-Fanout Path Optimizer

1:
2:
3:

4:
5:

6:
7:
8:
9:
10:
11:
12:
13:
14:
15:
16:
17:
18:
19:
20:
21:
22:
23:
24:
25:
26:
27:
28:

Input: targets, paths, map, options
Output: residueList, newPath
/* Store the path coordinates information (location,
path index and number of junctions) into a hash
table */

posDict←getPosInfo(paths,map)
/* For each path, calculate the current residue
between the path length and target length */

residueList←calculateResidue(paths,targets)
/* Create the pathseg sequence (cf. Fig.13) */

iterKey←getPathSegIndex(posDict)
/* Fix hold violations */
for i in iterKey do

if all residue in residueList >=0 then
// all the paths are out of hold violation, exit
break

// Select all pos in posDict that pos.index==i

posList←getPosList(posDict,i)
for pos in posList do

if pos.junctions<4 then
pos.junctions+=1

// Update the residueList
updateResidue(residueList,pos,variance)
if all residue in residueList >=0 then

// all the paths are out of hold violation, exit
break

end
end
/* optimize delay */
for i in iterKey do

if all residue in residueList <=1 then

29:
30:
31:
32:
33:
34:
35:
36:
37:
38:
39:
40:
41:
42:
43:
44:
45:
46:
47:
48:
49:
50:
51:
52:
53:

// all the paths have already been optimized,
exit
break

// find the pathSeg in posDict and map (cf. Fig.14)

pathSeg←getPathSeq(posDict,i)
if PTL layer is enabled then

// Firstly, try ptl routing for optimization
// Get the maximum reduction in this group

reduction←getReduction(residueList,pathSeg)
// find a proper location for driver and receiver

source,dest←getPTLRouteInfo(reduction, map)
// reroute the path in target PTL layer

PTLpath←AStarRoute(source,dest,ptlMap)
// replace the original path with PTLpath
updatePathInfo(pathSeg, PTLpath)
// update the residueList
update(residueList, pathSeg, variance)

// Secondly, try long-jtl for optimization.

reduction←getReduction(residueList, pathSeg)
// find the locations for long-JTL

longJTLPath←shortenPath(reduction, map)
// update the optimization result
updatePathInfo(pathSeg, PTLpath)
update(residueList, pathSeg, variance)

end

Based on the previously presented multi-fanout path
optimizer, the detailed router performs the optimization in
four phases:
(I) For concurrent-flow HL trees, the optimization range

of each sub-tree is calculated by the optimizer. However, no
optimization results are presently applied. According to the
optimization range, the target timing of each sub-tree is
calculated by level descending. In other words, if the clock
arrival time of the final level is n, the target timing of the
previous sub-tree should ideally be no less than n. After
clock tree optimization, the timing skew of each sub-tree is
almost balanced, depending on the layout condition.
Simultaneously, the clock arrival time of each node is
marked.
(II) The output emit time, hold time window and setup

time window are computed by giving the timing
information from the clock tree optimization and the cell
library. The target timing and current timing of all the
routed signal paths are then calculated. With all the
prepared requirements, the multi-fanout path optimizer can
work on the routed signal path, in order to fix the hold time
violation and shorten the critical path.

(III) Retiming the clock tree. After signal path
optimization, the timing conditions are updated. For each
logic level, the minimum value of ����� − �ℎ���is calculated.
In other words, the clock bridge between levels can be
optimized under this constraint. If the constraint of one
logic level is below zero, the optimizer will shorten the
clock tree bridge between the previous and current logic
level, in order to eliminate the hold violations. Otherwise,
the optimizer will lengthen this bridge to help reduce the
maximum delay. Afterwards, for each instance, the
optimizer will adjust the clock tree branch connected to it,
based on the timing of the current instance and the instance
connected to it in the next logic level (cf. Fig.15 (d)~(e)).
This is due to the fact that moving the clock arrival time of
the current instance affects the output emit time and the
data arrival time of the next instances. The maximum value
for delaying the clock arrival time of an instance is
expressed as:

��� (�����_����� − �����_�����)/2 (13)
�. �. �����_����� = �����_���� − �����_ℎ��� (14)
�����_����� = �����_���� − �����_ℎ��� (15)

The program will gather all the related timing information,
find the best target for all the clock tree branches in one
clock sub-tree, then call the multi-fanout path optimizer
again in order to optimize this clock sub-tree, while
ensuring that no more hold violations are created in this
phase.
(IV) If IO routing is applied, the input stage is optimized

based on the constraints in Section II.D (3).
Once the detailed routing is completed, the timing

conditions of all the logic gates and the layout size are
re-calculated for performance analysis reports. In addition,
the path widgets type is marked with its coordinate for the
layout generation.

D. Hybrid Route Widgets Generation

Based on the optimization results obtained from the
detailed router, the hybrid route widgets generator starts by
analyzing the path coordinates with its corresponding
widget type. For the JTL widget, a long-JTL is created in
terms of its start and end coordinates, while the standard
size JTL, splitter and cross are created based on the input
directions, output directions and number of junctions. For
the PTL paths, the first and last coordinate together with the
route directions, are used to create the driver and receiver,
respectively. The middle part of a PTL is used to create
micro-strip line widgets and vias in terms of its widget
coordinate, layer, input and output directions.

Fig.15. (a) Phase I: optimizing the clock tree. (b) Phase II: optimizing the signal path. (c) Phase III: retiming the clock bridge.
(d) Phase III: retiming the clock sub-tree. (e) Final result for one net. (f) Phase IV: optimizing the input stage.
All the widget information will be compiled and

outputted to the script file for corresponding layout edit
tools. The designers can then run the script and generate the
routed layout for future use. Due to the fact that a path is
optimized based on its timing constraints in detailed routing,
it is possible that the widget generator presents an all-PTL
path, a hybrid path or an all-JTL path after compilation.
Examples of the possible generation results are presented in
Fig.16.

Fig.16. Possible generation results for a path segment after
compilation (not exhausted).

IV. EXPERIMENTAL RESUILTSANDANALYSIS

The hybrid routing algorithm is implemented using
Python and C++ on the server, with Intel Xeon CPU
E5-2698 @ 2.3Ghz and 252.2 GB Memory. Some circuits
from ISCAS c-series and previous SFQ designs performed

by our team, are selected as test cases, using the
SIMIT-Nb03 and SIMIT-Nb04 technologies.

Fig.17. JTL and PTL hybrid symbol layout.
For the SIMIT-Nb03 technology, the framework is used

to verify the functionality and fix the hold violations, since
only two metal layers exist, so that the delay optimization
(especially PTL usage) is limited. The SIMIT-Nb04
technology is mainly used in order to show the ability to
optimize the post-routing clock frequency. In practice, the
layout placement still needs to be manually adjusted, due to
the fact that the available placement and clock tree
synthesis tools are not efficient enough. The best
experimental results of each testbench circuits based on
SIMIT-Nb04, are summarized in Table I.
Theoretically, if the placement and clock tree synthesis

result is ideal, the routing optimization result should be
close to the limitation of the given standard cell library. For
the SIMIT-Nb03 and SIMIT-Nb04 standard cell library, the
timing limitation is derived from:

����_��� = ���(�ℎ��� + ������), (16)

which is 13.2 ps or 75.6 GHz, including a safe value for
hold and setup constraint. In general, the maximum
expected clock frequency is almost 56.2 GHz, since it is
limited by the timing constraints of the worst gate. Note
that in our library, the worst one is the NOT gate.

Fig.18. C499 (a) Post-routing layout. (b) Junction density.
(c) Route density.
It can be seen from Table I that C17 and SR-array are
simple enough to achieve the ultimate clock frequency after
detailed routing. For C499 and other complex circuits, the
maximum clock frequency is restricted by the critical path,
even though the optimizer will prioritize it. However, the
maximum clock frequency may increase if a better detailed
placer is applied, due to the lack of a well-optimized layout

placement. In terms of fixing hold violations, the proposed
framework is able to eliminate all the violations in the
given testbench circuits.
In addition, the waveform of logic synthesis netlist and

post-layout netlist are compared for post-layout verification.
Fig.19 shows that after the routing optimization, the
functionality of the testbench circuit is matched with its
logic synthesis result.
Besides the less-optimized placement, the layout size and

wire length may be restricted due to the used stricter PTL
design rules based on the manufacturing and testing results,
such as wider MSL, larger size of via, corner and interface,
for example.

V. CONCLUSION

This paper presents a hybrid JTL and PTL routing
framework for large-scale SFQ logic design automation. By
combining the utilization of JTL and PTL, the proposed
tool can accurately perform on the SIMIT-Nb03 and
SIMIT-Nb04. It highly increases the maximum clock
frequency and fixes almost all the hold violations. The
global router of the proposed tool uses a modified A*
algorithm for multi-layer and multi-type global routing,
finds the best path coordinates and shape on both JTL layer
and PTL layer. It then achieves the highest routing
completion rate. The detailed router of the proposed tool
uses a specially designed path optimizer and four-phases
optimization framework for accurate timing adjustments.

Table I
Routing Results of ISCAS c-series, 4bit-KSA, 8bit-ALU, AES-SBOX and 64x64-SR array

circuit Pre-routing

/post-routing

junctions

Nets Area

(mm2)

Wire length

(μm)

JTL/PTL

usage (unit)

Pre-routing/

post-routing

hold

violations

Worst

slack

(ps)

Pre-routing/

post-routing

frequency

(GHz)

Run

time

(s)

C17 234/683 54 0.323 9.2E3 161/54 5/0 9.40 26.71/72.54 0.052

C499 29274/90365 3400 63.79 1.51E6 4.1E4/2.2E4 178/0 5.24 1.28/18.83 142.8

C1908 51884/184563 6073 126.2 2.16E6 5.2E4/2.3E4 1356/0 3.81 1.03/12.35 687.9

4bit-KSA 2394/6374 314 5.367 1.12E5 2.1E3/1.6E3 7/0 8.46 6.24/38.12 2.563

8bit-Alu 7938/19438 767 16.34 1.47E5 4.6E3/9.3E2 86/0 6.40 4.78/24.72 6.243

AES-

SBOX

10254/44167 1926 38.46 8.46E5 1.8E4/1.1E4 114/0 9.66 3.98/28.74 16.38

64x64-SR array 33748/291203 12415 205.46 8.32E6 1.5E5/1.1E5 7552/0 10.24 55.2/74.35 63.52

Fig.19.Waveform comparison between logic synthesis netlist and post-layout netlist (8bit-ALU).
Finally, the experimental results demonstrate that the

proposed tool successfully optimizes several testbench
circuits at clock frequencies up to 74.18 GHz, with no hold
violations and an execution time less than 688 s.

ACKNOWLEDGMENT

The authors would like to thank Ling Xin for inspiring
routing algorithms as reference, and Xi Gao, Qi Qiao for
providing PTL design rules and testing data.

REFERENCES

[1]. K. K. Likharev and V. K. Semenov, “RSFQ logic/memory family: A

new Josephson-junction technology for sub-terahertz-clock-frequency

digital systems,” IEEE Trans. Appl. Supercond., vol. 1, no. 1, pp. 3–28,

Mar. 1991.

[2]. O. A.Mukhanov, “Energy-efficient single flux quantum technology,”

IEEE Trans. Appl. Supercond., vol. 21, no. 3, pp. 760–769, Jun. 2011.

[3]. D. Kirichenko, S. Sarwana, and A. Kirichenko, “Zero static power

dissipation biasing of RSFQ circuits,” IEEE Trans. Appl. Supercond.,

vol. 21, no. 3, pp. 776–779, Jun. 2011.

[4]. D. S. Holmes, A. L. Ripple, and M. A. Manheimer, “Energy-efficient

superconducting computing—Power budgets and requirements,” IEEE

Trans. Appl. Supercond., vol. 23, no. 3, Jun. 2013, Art. no. 1701610.

[5]. M. H. Volkmann, A. Sahu, C. J. Fourie, and O. A. Mukhanov,

“Implementation of energy efficient single flux quantum digital

circuits with sub-aJ/bit operation,” Supercond. Sci. Technol., vol. 26,

no. 1, 2013, Art. no. 015002.

[6]. M. H. Volkmann, I. V. Vernik, and O. A. Mukhanov, “Wave-pipelined

eSFQ circuits,” IEEE Trans. Appl. Supercond., vol. 25, no. 3, Jun.

2015, Art. no. 1301005.

[7]. L. Ying et al., "Development of Multi-Layer Fabrication Process for

SFQ Large Scale Integrated Digital Circuits," in IEEE Transactions on

Applied Superconductivity, vol. 31, no. 5, pp. 1-4, Aug. 2021, Art no.

1301504, doi: 10.1109/TASC.2021.3065277.

[8]. X. Gao et al., "Design and Verification of SFQ Cell Library for

Superconducting LSI Digital Circuits," in IEEE Transactions on

Applied Superconductivity, vol. 31, no. 5, pp. 1-5, Aug. 2021, Art no.

1101105, doi: 10.1109/TASC.2021.3062570.

[9]. S. N. Shahsavani, T. Lin, A. Shafaei, C. J. Fourie and M. Pedram, "An

Integrated Row-Based Cell Placement and Interconnect Synthesis Tool

for Large SFQ Logic Circuits," in IEEE Transactions on Applied

Superconductivity, vol. 27, no. 4, pp. 1-8, June 2017, Art no. 1302008,

doi: 10.1109/TASC.2017.2675889.

[10]. C. J. Fourie, C. L. Ayala, L. Schindler, T. Tanaka and N. Yoshikawa,

"Design and Characterization of Track Routing Architecture for RSFQ

and AQFP Circuits in a Multilayer Process," in IEEE Transactions on

Applied Superconductivity, vol. 30, no. 6, pp. 1-9, Sept. 2020, Art no.

1301109, doi: 10.1109/TASC.2020.2988876.

[11]. J. Zhai, Y. Cai and Q. Zhou, "Placement and Routing Methods

Considering Shape Constraints of JTL for RSFQ Circuits," in IEEE

Transactions on Circuits and Systems II: Express Briefs, vol. 68, no. 5,

pp. 1571-1575, May 2021, doi: 10.1109/TCSII.2021.3067136.

[12]. T. -R. Lin, B. Zhang and M. Pedram, "Postrouting Optimization of the

Working Clock Frequency of Single-Flux-Quantum Circuits," in IEEE

Transactions on Applied Superconductivity, vol. 30, no. 7, pp. 1-14,

Oct. 2020, Art no. 1301814, doi:10.1109/TASC.2020.3005584.

[13]. Tanaka M, Obata K, Ito Y, et al. Automated

Passive-Transmission-Line Routing Tool for Single-Flux-Quantum

Circuits Based on A* Algorithm[J]. Ieice Trans Electron, 2010,

93(4):435-439.

[14]. T. Dejima, K. Takagi and N. Takagi, "Placement and Routing Methods

Based on Mixed Wiring of JTLs and PTLs for RSFQ circuits," 2019

IEEE International Superconductive Electronics Conference (ISEC),

2019, pp. 1-3, doi: 10.1109/ISEC46533.2019.8990903.

[15]. Jabbari T , Friedma E G , Kawa J . H-Tree Clock Synthesis in

RSFQ Circuits[C]// 2020 17th Biennial Baltic Electronics Conference

(BEC). 2020.

	A Hybrid Josephson Transmission Line and Passive T
	I.INTRODUCTION
	II.BACKGROUND
	A.Previous work
	B.Standard Cell Library
	The design of the logic gates and route units
	C.Timing constraints
	D.Placement and Clock Tree Structure

	III.PROPOSED ALGORITHM
	A.Data Preparation
	B.Global Routing
	C.Detailed Routing
	D.Hybrid Route Widgets Generation

	IV.EXPERIMENTAL RESUILTS AND ANALYSIS
	V.CONCLUSION
	ACKNOWLEDGMENT

