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Abstract

An example of a hybrid system architecture integrating
connectionist models and symbolic knowledge
processing is introduced. In particular the inclusion of
non-symbolic knowledge sources (data from physical
processes, measurememnts, sensors etc.), transformation
of learned knowledge into a symbolic form (rule
extraction) and associative storage as well as retrieval
of information will be discussed by means of
application examples. Finally, parallel hardware
support for the proposed hybrid system architecture will
be presented.

INTRODUCTION

In recent years there has been an increasing interest in
alternative approaches to information processing
systems in those domains where at present humans
outperform any currently available high performance
computers. Examples may be seen in areas like auditory
perception, vision, or sensory-motor control. In
principle these approaches can be classified as symbolic
or sub-symbolic data processing systems and the
combination of both paradigms (Palm et. al. (1)).

The usefulness of a symbolic knowledge processing and
representation  on  which  traditional  artificial
intelligence (AI) relies has been shown in areas like
diagnosis. construction, and planning. An important
property of knowledge stored in symbolic form is that it
can be interpreted and communicated by experts or
computers. The limits of such an approach, however,
turn out to be quite cvident when sensor data or
measurement data are handled. Inconsistent data can
force symbolic systems into an undefined state. A
further problem in expert system design is the
acquisition of knowledge. It is almost impossible for an
expert to describe his domain specific knowledge
entirely in form of rules or other knowledge
representation schemes. Hence, automatic knowledge
acquisition (machine learning) methods are of great
interest.

Known for their learning capabilities are artificial
neural networks (ANNs). They are successful in
technical applications dealing with sub-symbolic raw
data, in particular, if the data are noisy or inconsistent.

The computing power of biological neural networks
stems to a large extend from a highly parallel, fine-
grained and distributed processing and storage of
information as well as from the capability of learning.
Such subsymbolic-level processing seems to be
appropriate for perception tasks and perhaps even for
tasks that call for combined perception and cognition.
For example, ANNs are able to learn structures of an
input set without using a priori information.
Unfortunately, they cannot easily explain their
behaviour because a distributed representation of the
knowledge is used. Typically, they only can tell about
their knowledge by showing responses to given inputs.
In other words, they have no reasoning component.
Despite  this disadvantage, neural information
processing is expected to have a wide applicability in
areas that require a high degree of flexibility and the
ability to operate in uncertain environments where
information usually is partial, fuzzy, or even
contradictory.

Both approaches of modelling brain like information
processing capabilities are complementary in the sense
that traditional Al is a top-down approach starting from
high-level cognitive brain functions whereas ANNs are
a bottom-up approach on a biophysical basis of neurons
and synapses (1). It is a matter of fact that the symbolic
as well as the subsymbolic aspects of information
processing are essential to systems dealing with real-
world tasks. When we try to recognize a certain pattern,
it helps if we know what we are looking for (Pao (2)).
The combination of both paradigms allows the merging
of learning algorithms offered by ANNs and the
representation of qualitative transparent rules in
inference systems. Hence, linking symbolic and
subsymbolic information processing is certainly a
challenging research task motivating a national
research project sponsored by the german government.
The project, called Knowledge Processing in Neural
Architecture, started at the beginning of 1991 and will
be finished at the end of 1994. The partners of the
project are the University of Ulm, Dept. of Neural
Information Processing, headed by Prof Palm, the
University of Dortmund, Dept. of Electrical
Engineering (Prof. Goser), the University of Marburg,
Dept. of Artificial Intelligence (Prof. Ultsch) and the
Technical University of Hamburg-Harburg, Dept. of
Technical Electronics (Prof. Riickert). Scientific
objectives and first results of our project will be
presented in the following.
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Figure 1: Architecture of the hybrid knowledge processing system

ARCHITECTURE OF THE HYBRID SYSTEM

An overview of the hybrid knowledge processing
$ystem developed in the project is given in Fig. 1. To be
able to meet the demands of many real-world problems
the system can deal with symbolic as well as sub-
Symbolic input data, possibly from different sources. At
firsg, 1h§: input data has to be analysed in order to find a
CODV;?ment and valid organization of the data, based on
the inherent structure and relationships among the
patierns. This process may be seen as dividing the
pattern space into a minimal number of regions over
Which this pattern space is relatively uniform on the
bgs:g of perceived similarities and assigning them to
crent classes. Especially for large high-dimensional
data spaces this processing calls for efficient and robust
data analysis techniques. Some methods are known
from multivariate statistics (e.g. cluster analysis) and
Paltern recognition (Bezdek and Pal (3)). Furthermore,
NNs have been proposed by several authors for this
task as well (e.g. (2) and (3)), since ANNs are claimed
0 have advantages over conventional methods in
ha.n,d““g noisy and incomplete data. In addition, by
utilizing the parallelism inherent in ANNs an efficient
mplementation for real-time applications is feasible.

Within our hybrid system data analysis is done by the
module called Neural ¢ ‘lassifier (Fig. 1). At present, we
are mainly engaged in selforganizing feature maps
(SOFMs) as proposed by Kohonen (4) and variants of
them. (e.g. (5), (6)). A SOFM uses an unsupervised
leamning algorithm to adapt itself suitably to the
Structure of a given (high dimensional) data space. The
Algorithm can be thought of as a mapping from R™ to a
flattened two-dimensional surface (layer of neurons)
Such that interesting topological relations and the point
density of the vectors are preserved (4). For the

interpretation of the learning result of SOFMs an
automatic method for wvisualization of clusters is
required. Such a method was developed by Ulisch and
Siemon (7), the so called unified distance matrix or
short U-matrix method. The U-matrix displays its
clements as hight over a grid that corresponds to the
lattice of the SOFM. This display has valleys where the
weight vectors in the map are similar and hills or walls
where the weight vectors in the map have large
differences. Consequently, groups of neurons on the
SOFM representing data sets that have something in
common are separated by walls. A wall represents large
weight vector to weight vector distances of adjacent
neurons and indicates the dissimilarity of the vectors in
the data space. For a more detailed discussion of this

method see (7).

By using SOFMs and the U-matrix method structure in
data sets can be detected and visualized automatically.
The next step is the automatic interpretation of the
results which is the task of the rule extraction module
(Fig. 1). This module aims at automatic discovery of the
properties of each cluster detected by the neural
classifier and their reformulation into a symbolic form.
Therefore, the structure learned by the ANN has to be
examined and subsequently transformed into (c.g.
PROLOG) rules. These rules can then be inspected by a
human expert and added to a rule base.

Two different methods have been implemented within
our project so far. The first algorithm called sig*
developed by the group of Ultsch (7) is able to generate
PROLOG rules whereas the second algorithm by
Surmann et al (8) generates fuzzy rules. Both
approaches are based on the clustering result of a
SOFM and the resulting U-matrix. By inspecting the
individual components of the neuron weight vectors the



implemented methods try to discover algorithmically
the propertics of the clusters. For examplc, by taking a
look at the weight vector components of the trained
SOFM 1t is possible to formulate stmple fuzzy rules:

If comp0 is high and compl is low and comp2 is low
then vector belongs to cluster?

If compO is high and compl is high and comp? is

medium then vector belongs to clusterd

Obviously, the implementation of the above mentioned
intuitive operation by looking at the component cards is
not straightforward. The proposed algorithms are now
tested and evaluated with real-life application data in
more than three dimensions. An example is given later
on (Applications).

In summary, one important path in our hybrid
knowledge processing system is from sub-symbolic and
symbolic data sources via the neural classifier and the
rule extraction module to the rule base of the inference
mechanism (Fig. 1). By using ANNs this approach
enhances the reasoning capability of classical expert
systems with the ability of generalization and the
handling of incomplete data. At present, the inference
module consists of a commerciatly available PROLOG
interpreter for symbolic proofs and a simple fuzzy
controller. Since there is still a lack of understanding in
all these steps of this path, analysis tools for each of the
subcomponcnts are an important part of the sysiem
(svstem analysis tools. Fig. 1). For example. to explore
the properties of a SOFM we already proposed to
interprete the map by means of the U-matrix.
Alternative graphical representations are spanning
trees, vector maps, and component cards (4). Examples
for analvtic evaluation parameters are homogeneity or
heterogeneity of the learned clusters or the topographic
product (9). The main motivation for using SOFMs for
data analysis is the possibility to extract automatically
the learned knowledge which is not the case for many
other ANN models. The SOFM have similarities to
fuzzy and adaptive k-means clustering (3). combined
with a multidimensional scaling algorithm to get a low
dimensional representation of the cluster centres. But
for SOFMs we don't need to fix the number k of cluster
centres. A disadvantage of the SOFMs is the lack of a
permanent learning capability. So far. the training
process of the SOFM is a batch process which is not
appropriate for adaptive systems. Therefore, several
variants of the original SOFM algorithm are under
development at the moment (see e.g. (5). (6)).

The other important path of our system gocs from the
Neural Classifier through the Newral Associative
Memory (NAAL to the inference modul. NAMs for
which theoretical work on their performance is already
elaborated are used for two types of tasks; fault tolerant
pattern mapping and pattern completion (e.g. (4) and
Palm (10)). ANNs are well suited for the
implementation of associative memories, at least
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because the processing clements (artificial neurons) in
an ANN operate in a highly parallel way and thus a
considerable gain in speed is to be expected (Riickert
(11)). Another interesting feature of NAMs is that
information 1s stored in a distributed way over many
processing units and not anywhere in particular. The
distributed representation of information is a major
characteristic of NAMs and appears to be particular
appropriate for massively parallel systems. Obviously,
this functionality makes them attractive for the use in
our hybrid knowledge processing system. Especially, in
regard to noisy or incomplete inputs of subsymbolic and
symbolic data sources, because the access to stored data
is based on similarity.

The NAM path is mainly used for fast and fault-tolerant
access to stored factual knowledge (facts) supplied by
an expert or extracted from the input data (Neural
Classifier). An incoming pattern (question, stimuli)
would be classified by the Neural Classifier and passed
to the NAM which in turn associates the corresponding
output pattern (answer, reaction). If the associated
output is questionable, the inference module is evoked
to resolve the conflict. Another possibility is that the
inference module controls the interaction between the
Neural Classifier, the NAM and itself. A query from the
uscr via the user interface (Fig. 1) is processed by the
inference module which apply partially instantiated
facts to the NAM when necessary, and the NAM
returns the best match from stored facts. The inference
module also has access to the Neural Classifier; cither
to obtain detailed information on the input data, or to
provide additional input for the classification of those
data. This can be important if there already exists
knowledge about structures in the input data, which
might be used during the classification process (1).

One important condition for an efficient use of NAMs
1s a sparse coding of input/output patterns. In most
ANN models for associative memory the problem of
coding of the input and output patterns is not explicitly
discussed. Usually, randomly generated patterns are
assumed with a certain probability p for a component to
be active (1) and a corresponding probability 1-p for a
component to be inactive ('0’). Most of the models only
consider p=1/2. But it turns out, that for sparsely coded
patterns (small p) the storage efficiency of NAMs
(number of bits per synapse that can be stored) and the
number of patterns that can be stored with low error
probability is much larger (10). The problem of sparse
coding of /O patterns is one of the basic problems that
has to be considered for each prospective application of
a NAM. The investigation of various data analysis
techniques (see above) helps in designing sparse codes.
For example, a cluster analysis groups similar objects
into (usually disjoint) subsets called cluster. The
membership of a pattern to a cluster may be interpreted
as a special property of this pattern which can be used
to transform the pattern into a sparsely coded feature
vector. In addition to sparseness, such a code may have



the further important advantage of being similarity
preserving (Palm (12)).

The research group of Palm (Ulm) is actually working
on a theory and on formal design strategies for sparse,
similarity preserving codes. The research group of
Rickert (Hamburg-Harburg) explores the use of trained
SOFMs for the generation of such codes. Even if the
problem of sparse coding has not been solved
completely at the moment, such a code is biologically
motivated (12) and has a great deal of potential in
associative storage and retrieval of information.

PROTOTYPE IMPLEMENTATION

Apart from the theoretical investigations the
mplementation of the hybride system (Fig. 1) was
another important topic of our research project. A
realization of a prototype system has a couple of
Inferesting  consequences. For example. interfaces
PetWeen the different components have to be developed
In order to get a working prototype. Theoretical results
concerning the application of different ANNs for
qcrtain subtasks within such a system could be verified
directly. Last but not least, test applications of the
Prototype system will give an idea of the computational
fequirements of the system which may motivate parallel
dware implementation of neural subcomponents.

The most flexible approach is the software
implementation on a workstation. Each component of
the hybrid knowledge processing system has been
mdi"iduaﬂy implemented and tested. In addition to the
methods discussed above, alternative methods have

1 implemented for each module. For example, for
the Neural Classifier different variants of SOFMs and
an adaptive k-means clustering algorithm have been
Implemented. Alternatives for the NAM are b-trees and
hashing as well as variants of NAMs. Together. all
Modules build up a working and flexible software
Prototype of the desired hybrid system.

Simulation of ANNs on conventional (serial) hardware
IS rather slow, especially for large net sizes. TherefO(e,
Parallel hardware support is greatly appreciated. Wnthl_n
our project we developed a distributed and hybrid
Parallel hardware support based on the VME-Bus. The
System can be connected to a SUN workstation or a PC
and integrates commercially available processor cards
as well as special-purpose add-on-boards for ‘ fast
Simulation of ANNs. For NAMs with binary weights
and input/output patterns a special purpose SIMD
architecture called PAN 1V (Parallel Associative
Network) was built (Palm and Palm (13)). The first
Prototype system consists of 144 special purpose ICs
(digital ASICs) and 144 MByte memory. For Neural
Classifiers and variants of the binary NAM an add-on-
board on the basis of the INTEL i860 microprocessor
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was developed. Both subsystems were designed for the
VME-Bus.

On our hardware platform the concept of virtual
networks  builds the fundamental base for
multiuser/multitasking operation controlled by the
operating system PANOS (Parallel Associative Network
Operating System, (13)). Several virtual networks can
be defined and placed arbitrarily into the physical
network provided by the hardware. Input/Qutput
control is done by the workstation.

In addition to these parallel hardware platforms task-
dedicated VLSI architectures for NAMs and SOFMs
have been implemented as well. At the University of
Dortmund and Technical University of Hamburg-
Harburg(Goser/Riickert) several prototype chips for
NAMs based on analog, digital and digital/analog
circuit techriques have been successfully realized and
tested already ( Goser et al (14), Rickert (i1)). A
digital VLSIchip was implemented for SOFMs
(Riiping et al (15)). Based on these VL.Si architectures
for NAMs and SOFMs which are optimized in respect
to speed, size and testability a small size and high
performance microsystem implementation of our hybrid
knowledge processing system is feasibie.

APPLICATIONS

The four research groups cooperating in the WINA
project are investigating different applications of the
hybrid knowledge processing system. The work on
these applications is done in close cooperation with
industrial partners and other faculties at the
Universities of Dortmund, Hamburg-Harburg, Marburg,
and Ulm. The Palm group (Ulm) works on speech
recognition (spoken words or syliables, subsymbolic
data) and on written text (symbolic data). By using the
PAN IV hardware they develop a new associative
information-retrieval system which is able to deal with
complex subsymbolic and symbolic data structures. The
Goser (Dortmund) group apphes the hybnd knowiedge
processing system 1o process monitoring and quality
assurance of their own chip fabrication facilities.

The Ultsch group (Marburg) 1s engaged with medical
(blood) and environmental (local water quality) data for
diagnostic pusposes. For cxample, they tested the path
from sub-symbolic inputs via a neural classifier to the
rule-base with a data set of 242 patients with 11 clinical
test values cach (7). This data sct was uscd for
diagnosis of iron defficiency. The rules gencrated by the
sig* algorithm (rule extraction module) show a high
degree of coincidence with expert's diagnosis rules, and
exhibit knowledge not prior known to them while
making sense to the expert (16). Deviding the data set
equally into a training set and a test set the system
produced in 119 out of 121 cases (98%) the right
diagnostic (7). Hence, the hybrid system implements



the automatic acqusition of knowledge out of a set of
unlabeled examples very well. In addition, this group
applies the hybrid knowledge processing system to
quality assurance (mechanical engineering) and process
control.

The Riickert group (Hamburg-Harburg) implemented a
document retrieval system based on the hybrid
knowledge processing architecturc. The system was
tested with artificial test databases of up to 300.000
keywords and references. This application makes use of
the path from symbolic inputs (typed keywords) via the
Neural Classifier (SOFM). the Neural Associative
Memory. and the inference module to the user interface.
A SOFM (70x70 neurons) was trained with a set of
about 8000 different trigrams which have been
extracted from all used keywords. Trigrams are
sequences of three consequtive letters. For example, the
keyword "neural" includes the following trigrams,
whereby the "#" character marks the beginning and end
of the keyword: neural = (#ne, neu. eur, ura. ral, al#).

Given a keyword as input, the corresponding trigrams
are extracted and passed scquentially to the SOFM. The
best matching neuron for cach trigram of the input
keyword is marked as a point on the SOFM.
Connecting these points with their successors by a
straight line implies a characteristic trajectory for this
keyword on the two dimensional map as show in Fig. 2.
The result of this keyword preprocessing is a sparsely
coded binary vector with 4900 components in which
only h components are set to '1". The number h equals
the number of trigrams or letters in the input keyword.
The activated components ('1°) correspond to the
position of the best matching neurons in the SOFM.
Obviously. the use of a SOFM for this kind of sparse
coding based on trigrams is somewhat artificial. The
proposed coding could be done directly with the help of
a simple coding algorithm (Heimann (17)) resulting in
a shightly better performance. But it shows that the
application of SOFMs is not restricted to subsvmbolic
data and it points out the universality of our hybrid
system architecture.

The sparsely coded binary representation of each
keyword is stored together with a sparsely coded
address to an external list of associated references. In
other words the NAM implements a so called inverted
list (17). The address vector has 4000 components with
k=4 activated components ('1’). This format in
combination with a simple decoding algorithm can be
easily transformed into a decimal notion of the address
(17). Because the output of a NAM may contain more
than the required k activated components (10), the
decoding is done with the help of the inference module
containing knowledge about the decoding algorithm
and rules for resolving conflicts in the output vector
(additional ‘1),

At first glance, this architecture seems to be too
complicated for such a simple task of mapping
keywards to addresses of reference lists. Especially,
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Figure 2: The hybrid system architecture for document
retrieval

because from computer science very efficient
algorithms are known like hashing and b-trees (Aoe
(18)). But a comparison shows that the performance of
these different methods is similar. In Table 1 the result
of such a comparison for a data set of about 175,000
pattern pairs (keyword, address) is summarized. All
methods have been implemented on the same
workstation (Sparc 2) under the same software
environment. As can be seen from Tab. 1, the presented
hybrid system requires the smallest amount of memory
compared to hashing and b-trees. This is suprising, in
particular because the applied sparse input/output
coding is not optimal in respect to the storage efficiency
of the NAM (17). On the other hand the access time
which is the time for calculating the associated address
to the reference list (in decimal notion) is longer. This
Is not suprising, because hashing and b-trees are
methods optimized for sequential computing machines,
whereas ANNs are inherently parallel algorithms.
Conscquently, on the basis of adequate parallel
hardware for the ANN modules (sec Prototype
Implementation) the access time of the hybrid approach
will be speeded up considerably. Last but not least, the
hybrid system shows to a certain degree fault-tolerance,
which means that missing characters, additional
characters, or switched adjacent characters in the
keyword will not seriously affect the performance.
Unfortunately, we are not able to quantify this fault-
tolerance of our system at the moment. We are still
working on this topic.
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Table 1 Comparison of different key search strategies 18]

method memory usage access time paralielism fault-tolerance
[MB] {ms]

b-tree 52 - -

hashing 4.0 - -

hybrid system 20 ++ +

CONCLUSION

The prescnted national research project Knowledge
Processing in Neural Architecture aims at combining
neural information processing and methods known
from Artificial Intelligence. ANNs may bridge the gap
between the “subsymbolic’ raw data and symbolic
knowledge processing. The hybrid knowledge
processing system proposed in this paper is one of the
Possible ways to combine the advantages of the
symbolic and subsymbolic paradigms. The presented
System architecture is modular and transparent, so that
the extension with additional modules or the exchange
of single modules can be done casily. Furthermore, the
software implementation of ANN modules can be
Speeded up by dedicated hardware implementations.
Our first results show that the combination of both
approaches is not only feasible but also useful, even
though our approach was not driven by a special
application.
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