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A Hybrid Linear-Neural Model for Time Series
Forecasting

Marcelo C. Medeiros and Álvaro Veiga

Abstract—This paper considers a linear model with time varying
parameters controlled by a neural network to analyze and forecast
nonlinear time series. We show that this formulation, called neural
coefficient smooth transition autoregressive (NCSTAR) model, is in
close relation to the threshold autoregressive (TAR) model and the
smooth transition autoregressive (STAR) model with the advan-
tage of naturally incorporating linear multivariate thresholds and
smooth transitions between regimes. In our proposal, the neural-
network output is used to induce a partition of the input space, with
smooth and multivariate thresholds. This also allows the choice of
good initial values for the training algorithm.

Index Terms—Neural networks, nonlinear time series analysis,
piecewise linear models.

I. INTRODUCTION AND PROBLEM DESCRIPTION

T HE MOST frequently used approaches to time series
model building assume that the data under study are

generated from a linear Gaussian stochastic process [5]. One of
the reasons for this popularity is that linear Gaussian models
provide a number of appealing properties such as physical
interpretations, frequency domain analysis, asymptotic results,
statistical inference and many others that nonlinear models still
fail to produce consistently. Despite those advantages, it is well
known that real-life systems are usually nonlinear, and certain
features, such as limit-cycles, asymmetry, amplitude-dependent
frequency responses, jump phenomena, and chaos cannot be
correctly captured by linear statistical models. Over recent
years, several nonlinear time series models have been pro-
posed both in classical econometrics (see [28] and [9] for a
comprehensive review) and in machine learning theory, where
artificial neural networks (ANNs) have been receiving much
attention [34]. Their flexibility and forceful pattern recognition
capabilities make them an attractive alternative when the
structure of the data generating system is unknown. However,
when formulated as a predictive model, ANNs are usually
difficult to interpret and to test for the statistical significance
of the parameters. In fact, ANN structures are more inter-
pretable when used in a pattern recognition context, due to the
underlying partition of the input space induced by the hidden
layer [4]. In econometrics, where interpretation is one of the
main concerns, nonlinearity has been treated more as one-step
simple extensions of the linear formulation. Time-varying
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linear models or bilinear [8] models are good examples of those
extensions. Another extension that has found a large number of
successful applications is the threshold autoregressive (TAR)
model, proposed by Tong [26] and Tong and Lim [29].

The central idea of the TAR model is to change the param-
eters of a linear autoregressive model according to the value
of an observable variable, calledthreshold variable. If this
variable is a lagged value of the time series, the model is called
self-exciting threshold autoregressive (SETAR) model. Chan
and Tong [7] proposed a generalization of the SETAR model
with two regimes, incorporating a smooth transition between
them. This model is called smooth threshold autoregressive
(STAR) model. For a review and further developments on STAR
models, see [25]. Other extensions of the TAR models are con-
tinually being proposed, as the time-varying smooth transition
autoregressive (TV-STAR) model [15] and the multiple regime
STAR (MRSTAR) model [31]. The fuzzy-regression studied
by Makamori and Ryoke [18] goes on the same sense, defining
fuzzy regions associated to different linear regressions.

The goal of this paper is to consider a new formulation that
combines the ideas from the threshold autoregressive models
and from artificial neural networks. In our proposal, called
neuro-coefficient smooth transition autoregressive (NCSTAR)
model, the coefficients of a linear model are the output of a
feedforward neural network with one hidden layer. The idea
of the model is to use the geometrical features of a layer of
hidden neurons to create a smooth threshold structure. We will
show that the NCSTAR model generalizes the TAR model, by
allowing multivariate thresholds and, like fuzzy regressions
and the STAR model, a smooth switching between regimes.
The NCSTAR model was first proposed in [21] and [32] (see
also [20]). Here, we further developed the model, improving
the estimation algorithm and considering an extension to deal
with heteroscedasticity.

The article is organized as follows. Section II gives a brief
description of TAR models. Section III presents the NCSTAR
model and reviews the geometrical features of the first hidden
layer of a neural network. This analysis is very important to jus-
tify and explain the properties of NCSTAR model. Section IV
compares the NCSTAR model with other nonlinear models.
Section V presents two training algorithms for parameters
estimation. Section VI deals with initial conditions. Section VII
presents an extension of the NCSTAR model to estimate the
error variance. Section VIII shows an empirical illustration
with simulated data. Section IX presents an application to real
data. Concluding remarks are made in Section X.

1045–9227/00$10.00 © 2000 IEEE
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II. THRESHOLDAUTOREGRESSIVEMODELS

The threshold autoregressive model was first proposed by
Tong [26] and further developed by Tong and Lim [29] and Tong
[27]. The main idea of the TAR model is to describe a given
stochastic process by a piecewise linear autoregressive model,
where the determination of whether each of the models is active
or not depends on the value of a known variable.

A time series is athreshold processif it follows the model

(1)

where is a white noise process with zero mean and finite
variance , and the terms are real coef-
ficients. is an indicator function, defined by

if ;
otherwise

(2)

where , , is a partition of the real
line , defined by a linearly ordered subset of the real numbers,

, such that , where
and . Model (1) is composed byautoregressive linear
models, each of which will be active or not according to the in-
terval where is. The choice of the threshold variable,,
which determines the dynamics of the process, allows a number
of possible situations. An important case is whenis replaced
by a lagged value of the time series, where the model be-
comes the SETAR model

(3)

where . The scalar is known as thedelay pa-
rameteror thelength of the threshold.

The parameters of the SETAR model are estimated by a grid
search based on the Akaike’s information criterion [1]. In [30],
Tsay developed a graphical procedure and a statistical test for
nonlinearity to estimate the thresholds.

A natural generalization of the SETAR model is the STAR
model, proposed by Chan and Tong [7] and expressed as

(4)

where , calledtransition function, is a continuous, mono-
tonically increasing function. The parameteris responsible by
the smoothness of the function . When , (4) be-
comes a SETAR model with two regimes. The scalar parameter

is known as thelocation parameter.
Teräsvirta [25] suggested the use of the logistic or the ex-

ponential functions as transition functions and derived a model
building procedure consisting of the stages of specification, es-
timation, and evaluation.

The parameters of the STAR model are estimated by the non-
linear least squares or maximum likelihood.

Fig. 1. Hyperplane defined by!!! x = � in .

III. T HE NCSTAR MODEL

As stated in Section II, the dynamics of a TAR model are con-
trolled by a partition of the real line induced by the parame-
ters . However, in a more general situation, it will be useful
to consider a partition of an-dimensional space, say and a
smooth transition between regimes.

In this section we present a new formulation to handle this
general situation, based on a hybrid structure linking linear
models and neural networks, called the NCSTAR model. In
the NCSTAR structure, the coefficients of a general linear
model are given by the output of a neural network with only
one hidden layer. The main idea of the NCSTAR model is to
use a neural network to produce a piecewise linear model with
multivariate and smooth thresholds.

What a layer of hidden neurons does is well known, and can
be found in several fundamental textbooks [4], [12]. However,
it is important to review some concepts in order to understand
the main idea of the proposed model.

Consider the output of a neuron of the hidden layer of a
neural network with logistic activation function expressed as

(5)

where
-dimensional input vector;

vector of weights of the synapses ar-
riving at the considered neuron;
offset parameterof the same neuron.

When , the parameters and define a hyperplane
in -dimensional Euclidean space

(6)

Fig. 1 shows an example in . The direction of determines
the orientation of the hyperplane and the scalar term de-
termines the position of the hyperplane in terms of its distance
from the origin.
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Fig. 2. Architecture of the neural network of the NCSTAR model. The outputs
of the network are the coefficients of a linear model. The hidden layer creates
multivariate smooth thresholds in the input space. The input variables are called
transition variables.

A hyperplane induces a partition of the space into two regions
defined by the halfspaces

(7)

and

(8)

associated to the state, activated or not, of the neuron. The norm
of is called theslope parameter. In the limit, when the slope
parameter approaches infinity, the logistic function becomes an
indicator function.

With hyperplanes, an -dimensional space will be split
into several polyhedral regions. Each region is defined by the
nonempty intersection of the halfspaces (7) and (8) of each hy-
perplane.

The main idea of the proposed model is to use (5) to create
a smooth multidimensional threshold structure. Suppose that an

-dimensional space is spanned by a vectorformed by lagged
observations of a time seriesand/or any other exogenous vari-
ables, and suppose we haveneurons defined by ,

, each of which defines a smooth multivariate
threshold. Now consider a time-varying time series model ex-
pressed as

(9)

where
parameter vector;

;
-dimensional vector of explanatory variables formed

by lagged variables of the time series and/or any
other exogenous variables.

Note that the composition of may contain or not common
variables with . The term is a normally distributed white
noise with finite, not necessarily constant, variance. The time
evolution of the coefficients of (9) is given by the output of
a neural network

(10)

Fig. 3. ��� initialization procedure in pseudocode.

Fig. 4. Neural-network architecture for learning the error variance with an
auxiliary hidden unit. The number of neurons in the auxiliary unit is the same as
in the original hidden layer. The error variance is a piecewise constant process
with smooth transitions between regimes, controlled by the transition variables.

Fig. 5. Neural-network representation of model (22).
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Fig. 6. Scatter plot ofy versusy andŷ versusy . The circles are the true values ofy and the dots are the estimatedŷ .

where and , and , are, re-
spectively, the weights of the synapses between the hidden neu-
rons and the output units of the neural network and the offset
parameters of the output units. The neural-network architec-
ture of the NCSTAR model is illustrated in Fig. 2. The ele-
ments of , called thetransition variables, are the inputs of the
neural network. Equations (9) and (10) represent a time-varying
model with a multivariate smooth threshold structure defined by

hidden neurons.
Model (9) can be rewritten as

(11)

where , and ,
, . In the case where the variables of the

model are just lags of , model (11) is denoted by the acronym
NCSTAR( ), where and are, respectively, the
set of lags that compose and .

IV. RELATIONSHIP BETWEEN THENCSTAR MODEL AND

OTHER NONLINEAR MODELS

The idea behind the NCSTAR model is similar to the class
of threshold models. The goal is to change the parameters of a
linear model according to the value of certain variables. How-
ever, in the NCSTAR model the thresholds can be multivariate

and smooth, while in the SETAR model, the thresholds are
monovariate and sharp. The SETAR model can only split the
input space into subspaces with hyperplanes orthogonal to only
one lagged variable of the observed time series, while the
NCSTAR model can create hyperplanes in any direction. In the
STAR model there is only one threshold, while in the NCSTAR
the number of thresholds is not fixed. Finally, the NCSTAR
model, as the STAR model, has a formal algorithm to estimate
the parameters, while in the SETAR model the algorithm is
heuristic.

V. ESTIMATION OF THE PARAMETERS

The cost function to be minimized is the sum of the squared
errors over all patterns, given by

(12)

where is the total number of observations andis the es-
timated value. In this paper, two training algorithms are devel-
oped. The first one is the conventional backpropagation adapted
to the NCSTAR structure and the second one is a hybrid al-
gorithm that mixes the ordinary least squares (OLS) estimator
and nonlinear search, based on the linear property of the output
layer.
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Fig. 7. Scatter plot of the coefficients versusyt � 1.

A. Backpropagation Type Algorithm

Considering the th neuron of the hidden layer andth
input and the bias of theth neuron of the hidden layer, the
parameter-update rule is expressed by

(13)

(14)

(15)

(16)

Fig. 8. Neural network representation of model (23).

where is the learning rate parameter.

B. OLS-Nonlinear Search

Defining , ,
and , (10) can be rewritten as

(17)
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Fig. 9. Scatter plot ofy versusy � 1 andy versusy � 1. The circles are the true values ofy and the dots are the estimatedŷ .

Denoting and , where
, (9) becomes

(18)

Applying thevec1 operator to both sides of (18), and using the
property2 thatvec vec , we obtain

(19)

Equation (19) is a linear regression model to which the ordi-
nary least squares estimator can be applied, obtaining

(20)
Sometimes in practice, the matrix

does not have an inverse and a pseudoinverse should be calcu-
lated by a singular-value decomposition algorithm.

1LetA be a(m � n) matrix with (m � 1) columnsa . Thevecoperator
transformsA into an(mn� 1) vector by stacking the columns ofA.

2
 denotes the Kronecker product. LetA = (a ) andB = (b ) be(m�

n) and(p� q) matrices, respectively. The(mp� nq) matrix

A
B =

a B � � � a B

...
. . .

...

a B � � � a B

is the Kronecker product ofA andB.

The parameters and , can be estimated by
the nonlinear search defined in (15) and (16).

Summarizing, the estimation algorithm works as follows.

1) Choose initial values for the parametersand ,
, by the procedure described in Section VI.

2) Estimate the parameters, , and using
(20).

3) Use (15) and (16) to compute new values forand ,
.

4) Repeat Steps 2) and 3) until reaching a (local) minimum
of the cost function.

This type of algorithm is known in the statistical literature as
concentrated least squares [14].

VI. I NITIAL CONDITIONS

This section describes a procedure to choose the initial pa-
rameters of the hidden layer based on its geometric properties.
As shown in Section III, the direction of the weight vector,

, determines the orientation of the thresholds and
the norm of defines the smoothness of the transition between
two half spaces induced by the thresholds. In our procedure the
weights of the synapses arriving at the hidden neurons are ini-
tialized with the same value, given by a constanttimes the first
principal component of ( ). In that sense,
we are assuming that the hyperplanes are parallel and their ini-
tial orientation is in the direction perpendicular of the maximum
variance of the input variables. The constantis data dependent
and in practice we estimate models with different values of.
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Fig. 10. Scatter plot of the coefficients versusy .

The offset term of each neuron determines the position of the
threshold boundary in terms of its distance from the origin. In
our procedure they are initialized so as to divide the range of the
projections of the data points in direction of the first principal
component, , in equal segments around their mean. Denoting
the mean of by , the pseudocode of the algorithm to ini-
tialize the vector is shown in Fig. 3.

VII. L OCAL ERRORBARS FORHETEROSCEDASTICPROCESSES

In this section, we consider the estimation of heterocedastic
models where the variance of the error termdepends on the
same set of input variables as the neural network part of the NC-
STAR model. Although this restriction can be easily relaxed, it
is specially convenient for us to consider the same set of in-
puts since they represent the threshold variables of the SETAR
models that will be considered in the experiments described in
Section VIII. As suggested by Nix and Weigend [22], the vari-
ance can be estimated by an auxiliary network attached to the
original structure, with which it shares the same inputs. This
subnetwork consists of one hidden layer with logistic activa-
tion functions and an output layer consisting of one neuron with
exponential activation function, representing the local variance.
By analogy with the discussion of Section III, this is equiva-
lent to model the variance as a piecewise constant function with
smooth transitions between regimes. The final structure for the
heterocedastic NCSTAR model is shown in Fig. 4. For the het-
eroscedastic version of the NCSTAR treated in this section, the

Fig. 11. Neural-network architecture of model (24).

least squares estimation method described in Section V is no
longer optimum. In order to incorporate the variance in the es-
timation criterion a likelihood function is maximized by a mod-
ified backpropagation algorithm. The estimation process is di-
vided into three steps.

1) Consider time-invariant and and train the NCSTAR
model with one of the learning algorithms described in
Section V, without adding the auxiliary network.

2) Attach the subnetwork and train it to learn the variance.
Freeze the parameters estimated in Step 1, and train the
output unit to predict the squared errors, using the back-
propagation algorithm.

3) Unfreeze all the parameters and train the network to min-
imize the negative logarithm of the likelihood function



MEDEIROS AND VEIGA: A HYBRID LINEAR-NEURAL MODEL FOR TIME SERIES FORECASTING 1409

Fig. 12. Time evolution of the coefficients of the NCSTAR model.

(21)

considering Gaussian errors.

VIII. E XPERIMENTAL RESULTS

In this section we use some computer simulated data to test
the performance of the NCSTAR model in identifying SETAR
processes. We have simulated three models with 300 observa-
tions each one. As our main concern is to test if the NCSTAR
model identifies correctly the simulated processes we used all
the 300 observations to estimate the parameters. In all the ex-
amples, the term is a white noise with zero mean and unit
variance. The experiments were done on a Pentium II computer
(400 MHz processor with 256 Mbytes of RAM). The algorithms
were programmed in MatLab.

A. First Experiment

The first simulated time series follows a SETAR(2;1,1) model
described by

if ;
otherwise.

(22)

There are 159 points in the first regime and 141 points in the
second regime. It is important to stress that the error variance
changes with the regimes.

We fitted an NCSTAR(1;1;1) model with one hidden neuron
and with as the input variable of the neural network. Fig. 5
shows the neural-network architecture.

Fig. 6 shows the scatter plot of versus and versus
with a 95% confidence interval. The training algorithm

correctly identifies the threshold position and the change in the
variance.

Fig. 7 shows the scatter plot of the coefficients of the NC-
STAR model versus the transition variable.

B. Second Experiment

The second simulated time series follows a SETAR(3;1,0,1)
model described by

if ;
otherwise.

(23)

There are 29 points in the first regime, 249 points in the second
regime, and 22 points in the third regime.

We fitted an NCSTAR(2;1;1) model with two hidden neurons
and with as the transition variable. Fig. 8 illustrates the
neural-network architecture.

Fig. 9 shows the scatter plot of versus and versus
with a 95% confidence interval. The training algorithm

correctly captures the dynamics of the data.
Fig. 10 shows the scatter plot of the coefficients of the NC-

STAR model versus the transition variable.
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Fig. 13. Scatter plot of the coefficients versusy � y .

TABLE I
IN-SAMPLE RESULTS

C. Third Experiment

The third simulated time series follows a SETAR(2;2,2)
model with multivariate thresholds described by

if ;
otherwise.

(24)
In this example the error variance does not change with the
regimes. There are 161 points in the first regime and 139 points
in the second regime.

We fitted an NCSTAR(1;1,2;1,2) model with one hidden
neuron and with and as the transition variables.
Fig. 11 shows the neural-network architecture.

Figs. 12 and 13 show the time evolution of the coefficients
and the scatter plot of the coefficients of the NCSTAR model
versus . The NCSTAR model correctly captures the
dynamics of the data.

IX. REAL APPLICATION

Now the task is to forecast a real time series. We used the
annual sunspot number index from 1700 to 1998 (299 obser-

vations). The observations for the period 1700–1979 (280 ob-
servations) were used to estimate the models and the remaining
(19 observations) were used to forecast evaluation. The sunspot
number index is a measure of the area of solar surface covered
by spots. The sunspot number index is also known as the Wolf
number in reference of the Swiss astronomer J. R. Wolf who
first introduced this index in 1848. The sunspot number is a
benchmark time series in nonlinear modeling. Several models
have been fitted along the years [6], [8], [10], [11], [23], [24],
[27]–[29], [33].

In this paper, we adopted the same transformation as in [28],
, where is the sunspot number.

We compare the performance of the NCSTAR model with the
SETAR(2;10,2) model proposed by Tong [28], the linear autore-
gressive model of order 9, AR(9), and an artificial neural net-
work (ANN) model with five hidden neurons and the first nine
lags as input variables and estimated with Bayesian regulariza-
tion [16], [17].

We estimated a NCSTAR model with three hidden neurons,
lags 1 and 2 as transition variables, and the first nine lags of
composing the vector . The choice of the elements of was
based on previous results in the literature. The number of hidden
units and the choice of the transition variables were based on the
estimation of several different models. We chose the one with
the best out-of-sample performance.

Table I shows the standard deviation of the in-sample resid-
uals. As we can see, the NCSTAR has the lowest residual stan-
dard deviation.
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TABLE II
ONE-STEP AHEAD FORECASTS, THEIR ROOT MEAN SQUARE ERRORS, AND MEAN ABSOLUTE ERRORS FOR THEANNUAL NUMBER OF SUNSPOTS

FOR THEPERIOD 1980 TO 1998

We continue considering the out-of-sample performance
of the estimated model. Table II shows, for each model, their
one-step ahead forecasts, the respective forecast error, their
root mean squared errors (RMSEs), and mean absolute errors
(MAEs) for annual number of sunspots for the period 1980 to
1998.

Both the RMSE and the MAE of the NCSTAR model are
lower than the ones of the concurrent specifications. In that
sense, the NCSTAR model outperforms the other formulations.

X. CONCLUSIONS

This article presents a new alternative to nonlinear modeling,
where the coefficients of a linear model are the outputs of a
neural network with only one hidden layer. The proposed model,
called NCSTAR, is based on the geometrical features of a layer
of hidden neurons. The paper shows that the NCSTAR model
generalizes the TAR model, by allowing multivariate thresholds
and a smooth switching between regimes and has a good per-
formance both with simulated and real data. Although not dis-
cussed here, the ideas presented in [2] can useful to select the
variables of the model and the number of hidden neurons. Con-
sidering the problem of local minima, the use of algorithms like
the Broyden–Fletcher–Goldfarb–Shanno (BFGS) algorithm [3,
p. 134–140] or the Levenberg–Marquardt [13], [19] in combi-
nation with the OLS algorithm described in Section V-B can
improve the performance of the training process.
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