
A Hybrid Linear Programming and Relaxed Plan Heuristic for Partial
Satisfaction Planning Problems

J. Benton
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287, USA
j.benton@asu.edu

Menkes van den Briel
Dept. of Industrial Engineering

Arizona State University
Tempe, AZ 85287, USA
menkes@asu.edu

Subbarao Kambhampati
Dept. of Computer Science and Engineering

Arizona State University
Tempe, AZ 85287
rao@asu.edu

Abstract

The availability of informed (but inadmissible) planning
heuristics has enabled the development of highly scalable
planning systems. Due to this success, a body of work has
grown around modifying these heuristics to handle extensions
to classical planning. Most recently, there has been an interest
in addressing partial satisfaction planning problems, but ex-
isting heuristics fail to address the complex interactions that
occur in these problems between action and goal selection. In
this paper we provide a unique heuristic based on linear pro-
gramming that we use to solve a relaxed version of the partial
satisfaction planning problem. We incorporate this heuris-
tic in conjunction with a lookahead strategy in a branch and
bound algorithm to solve a class of over-subscribed planning
problems.

Introduction
A popular and successful method for solving planning prob-
lems has been to use heuristic search with relaxed plan
heuristics that based on ignoring delete lists. Typically these
heuristics, first introduced by the planner FF (Hoffmann and
Nebel 2001), are based on finding relaxed solutions over a
planning graph. In classical planning and many of its vari-
ants these heuristics allow best-first search frameworks to
find feasible solutions. However, finding such solutions is
not enough in partial satisfaction planning (PSP). In these
types of problems, actions are given costs and goals are
given utility. Additionally, only a subset of the goals need
to be satisfied such that we can achieve the maximum differ-
ence between the utility of the goals and cost for achieving
them, or net benefit. Any sound plan can represent a solution
to such problems. As such, simply reaching a feasible goal
state is trivial. Instead, we must find the state with the best
quality.

While some attempts have been made towards adapting
relaxed plan heuristics to PSP problems (van den Briel et al.
2004; Do et al. 2007), there is a fundamental mismatch. Re-
laxed plan heuristics are good at estimating the set of actions
(and their cost) for achieving a given set of top level goals.
In PSP problems, we do not up front know the goals that will
be supported in the eventual optimal plan. The actions and
the goals need to be selected together so as to optimize the
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net benefit. This requires a heuristic estimate (relaxation)
with a more global “optimization” perspective.

A standard way of setting up a relaxation that is sensitive
to global optimization perspective involves (i) setting up an
integer programming (IP) encoding for the PSP problem and
(ii) computing a linear programming (LP) relaxation of this
encoding. In addition to being sensitive to the objectives of
the optimization, such a relaxation is also sensitive to the
negative interactions between the actions–something that is
notoriously missing in the standard relaxed plan heuristics.
One challenge in adopting this approach involves deciding
on the exact type of IP encoding for the PSP problem. Al-
though IP encodings for PSP problems have been proposed
in the literature (Do et al. 2007), such encodings are made
for bounded horizons. The normal idea in bounded hori-
zon planning is to put a bound on the number of plan steps.
While this idea works for finding feasible plans, it does not
work for finding optimal plans since it is not clear what step
bound is required to guarantee optimality.

In this paper, we adopt an encoding that is not dependent
on the horizon bound. In particular, we describe a causal
encoding for action selection that accounts for the delete ef-
fects of the actions but ignores action ordering. While we
use its solution value as a heuristic to guide search, the en-
coding also presents opportunities to exploit its unique struc-
ture. Namely, because it is informed of negative interactions,
its action selection can bring greater insight as to what oper-
ators are required to reach the goal than the typical relaxed
plan heuristic. We use the action selection to our advantage,
by performing lookahead based on the actions that it selects,
similar to what is done in the planner YAHSP (Vidal 2004).
This helps offset the cost of solving the encoding by find-
ing high-quality states and giving candidate solutions in a
branch and bound search.

To perform the lookahead procedure effectively, we must
have an ordered set of actions. One way to find such an
ordering is to use a typical relaxed plan. We propose a
novel way of combining the output of the linear program-
ming relaxation of the action encoding with relaxed plan ex-
traction.1 Specifically, the relaxed plan extraction is started
with the goals “selected” by the LP solution, and is biased
to choose actions that appear in the LP solution.2

1In fact, this technique can be used in combination with any
other goal and action selection technique.

2Given that the LP solution will be fractional, “selected by LP



Problem Representation and Notation
Classical planning problems can be described by a set of
fluents F of predicate symbols, an initial state I defined by
the predicates of F , a goal set G specified by a partial set
of F and a set of actions A. Each action a ∈ A consists
of a tuple 〈pre(a), add(a), delete(a)〉 where pre(a) is the
set of preconditions of a, add(a) is the add list of a and
delete(a) is the delete list of a. Applying an action a is
possible when all of the preconditions are met in a state S.
Given a state S, the application of an action a is defined as
Apply(a, S) = (S

⋃
add(a)) del(a) iff pre(a) ⊆ S.

Partial satisfaction planning with goal utility dependen-
cies PSPUD (Do et al. 2007) extends classical planning
by assigning a utility value to sets of goals using k lo-
cal utility functions, fu(Gk) ∈ R on Gk ⊆ G, where
any goal subset G′ ⊆ G has an evaluated utility value of
u(G′) =

∑
Gk⊆G′ fu(Gk). This follows the general addi-

tive independence(GAI) model for specifying utility (Bac-
chus and Grove 1995). In this way, any set of goals may
be assigned a real valued utility. Additionally, each action
a ∈ A has an associated cost cost(a), such that cost(a) ≥ 0.

LP Heuristic
We present a novel admissible heuristic that solves a re-
laxation of the original PSP UD problem by using the LP-
relaxation of an IP formulation. We build on the heuristic
discussed in (van den Briel et al. 2007) for classical plan-
ning. While most heuristics ignore the delete effects of the
actions, this heuristic accounts for the delete effects, but ig-
nores action orderings instead. The formulation that we de-
scribe is based on the SAS+ planning formalism (Bäckström
and Nebel 1995), where a SAS+ planning task is a tuple
Π = 〈V, A, s0, s∗〉 such that V = {v1, . . . , vn} represents
a set of state variables, A is a finite set of actions, s0 in-
dicates the initial state and s∗ denotes the goal variable as-
signments. Each v ∈ V has a domain Dv and takes a single
value f from it in each state s, stated as s[v] = f . Each
action a ∈ A includes a set of preconditions, pre(a), post-
conditions, post(a), and prevail conditions, prev(a).

Previous work has shown that we can translate classi-
cal (STRIPS) planning problems into SAS+ planning prob-
lems (Edelkamp and Helmert 1999).

IP Encoding
Our formulation is based on the domain transition graphs.
Each of the graphs represents a variable in the SAS+ formal-
ism with a value of a variable existing as a vector and effects
as arcs between them. We define a network flow problem
over each of them. Side constraints are introduced to handle
pre-, post-, and prevail-conditions of actions. Additionally,
we incorporate parameters, variables, and constraints to han-
dle aspects of PSP UD problems. Unlike previous integer
programming formulations ours does not use a step-based
encoding. In a step-based encoding the idea is to set up a
formulation for a given plan length and increment it if no
solution can be found. Such an encoding may become im-

solution” is interpreted as goals (actions) that have values above a
threshold.

practically large, even for medium sized planning tasks and
cannot guarantee global cost optimality.

The variables in our formulation indicate how many times
an action is executed, and the constraints ensure that all the
action pre- and post-conditions must be respected. We also
include variables for achievement of goal utility dependen-
cies, where the achievement of specified sets of goals forces
modifications in the final net benefit values.

In order to describe our formulation, we introduce the fol-
lowing parameters:
• cost(a): the cost of action a ∈ A.
• utility(v, f): the utility of achieving the value f in state

variable v in the goal state.
• utility(k): the utility of achieving the goal utility depen-

dency Gk in the goal state.
and the following variables:
• action(a) ∈ Z

+: the number of times action a ∈ A is
executed.

• effect(a, v, e) ∈ Z
+: the number of times that effect e in

state variable v is caused by action a.
• prevail(a, v, f) ∈ Z

+: the number of times that the pre-
vail condition f in state variable v is required by action
a.

• endvalue(v, f) ∈ {0, 1}: is equal to 1 if value f in state
variable v is achieved at the end of the solution plan, 0
otherwise.

• goaldep(k) ∈ {0, 1}: is equal to 1 if goal utility depen-
dency Gk is satisfied, 0 otherwise.
The objective is to find a plan that maximizes the differ-

ence between the total utility that is accrued and the total
cost that is incurred.

MAX
∑

v∈V,f∈Dv

utility(v, f)endvalue(v, f)

+
∑

k∈K

utility(k)goaldep(k) −
∑

a∈A

cost(a)action(a)

The constraints ensure that the action pre- and post-
conditions are respected, and link the utility dependencies
with their respective state variable values.
• Action implication constraints for each a ∈ A and v ∈ V .

The SAS+ formalism allows the pre-conditions of an ac-
tion to be undefined (Bäckström and Nebel 1995). We
model this by using a separate effect variable for each
possible pre-condition that the effect may have in the state
variable. We must ensure that the number of times that an
action is executed equals the number of effects and prevail
conditions that the action imposes on each state variable.
Hence, if an action is executed twice, then all its effects
and prevail conditions are required twice.

action(a) =
∑

effects of a in v

effect(a, v, e)

+
∑

prevails of a in v

prevail(a, v, f)



• Effect implication constraints for each v ∈ V , f ∈ Dv .
In order to execute an action effect its pre-condition must
be satisfied. Hence, if we want to execute an effect that
deletes some value multiple times, then we must ensure
that the value is added multiple times.

1{if f ∈ s0[v]} +
∑

effects that add f

effect(a, v, e) =

∑

effects that delete f

effect(a, v, e) + endvalaue(v, f)

• Prevail implication constraints for each a ∈ A, v ∈ V ,
f ∈ Dv . In order to execute an action prevail condition it
must be satisfied at least once. Hence, if there is a prevail
condition on some value, then that value must be added.
We set M to an arbitrarily large value.

1{if f ∈ s0[v]} +
∑

effects that add f

effect(a, v, e) ≥

prevail(a, v, f)/M

• Goal dependency constraints for each goal utility depen-
dency k. All values of the goal utility dependency are
achieved at the end of the solution plan if and only if the
goal utility dependency is satisfied.

goaldep(k) ≥
∑

f in dependency k

endvalue(v, f)

− (|Gk| − 1)

goaldep(k) ≤ endvalue(v, f) ∀f in dependency k

The solution to our formulation is a relaxation because
it ignores action ordering. We further use the linear pro-
gramming (LP) relaxation of this formulation as an admis-
sible heuristic in our branch and bound framework,and in
this sense our heuristic is doubly relaxed.3 At every node
in the branch and bound search we solve the correspond-
ing LP, however, we avoid instantiating a new LP at every
node by adjusting the initial state and updating the respec-
tive coefficients in the constraints. This allows us to quickly
re-solve the LP as the LP solver will use current solution
LP to optimize over the updated coefficients. We call the
heuristic hLP . Given the non-relaxed version of this heuris-
tic, hIP , and the optimal heuristic, hopt, we have the rela-
tionship hLP ≥ hIP ≥ hopt.
Example: To illustrate the heuristic, let us consider a trans-
portation problem where we must deliver a person, per1 to a
location, loc2 using a plane, p1, and must end with the plan
at loc3. The cost of flying from loc1 to loc2 is 150, from
loc1 to loc3 is 100, from loc3 to loc2 is 200, and from loc2
to loc3 is 100. To keep the example simple, we start per1 in
the plane. There is a cost of 1 for dropping the person off.
Having the person and plane at their respective destinations
each give us a utility of 1000 (for a total of 2000). Figure 1
shows an illustration of the example.

3Note that when we subtract the cost to a node, we find the
node’s f-value, f(S) = g(S) + h(S) (the combination of the
heuristic and node cost).

loc1

loc3

loc2
150

100

100200

Figure 1: A transportation domain example with each edge
labelled with the cost of travelling the indicated direction.
Not shown are the utility values for achieving the goal of
having person 1, per1, at loc2 and the plane, p1, at loc3
(1000 utility for each goal).

The optimal plan for this problem is apparent. With a to-
tal cost of 251, we can fly from loc1 to loc2, drop off per1,
then fly to loc3. Recall that the LP heuristic, while it relaxes
action ordering, works over SAS+ multi-valued fluents. The
translation to SAS+ captures the fact that the plane, p1, can
be assigned to only a single location. This is in contrast to
planning graph based heuristics that ignore delete lists. Such
heuristics consider the possibility that objects can exist in
more than one location at a given step in the relaxed prob-
lem. Therefore, at the initial state, a planning graph based
heuristic would return a relaxed plan (RP) that allowed the
plane p1 to fly from loc1 to loc2, and loc1 to loc3, putting it
in multiple places at once.

In contrast, the solution from the LP-based heuristic for
this problem at the initial state includes every action in the
optimal plan. In fact, “1.0” is the value returned for these
actions.4 Though this is a small example, the behavior is
indicative of the fact that the LP, through the encoding of
multi-valued fluents, is aware that a plane cannot be wholey
in more than one place at a time. In this case, the value
returned (the net benefit, or 2000 − 251 = 1749) gives us
the perfect heuristic.

To use this solution as a candidate in the branch and bound
search described in the next section, we would like to be
able to simulate the execution of the relaxed plan. For the
example problem, this would allow us to reach the goal op-
timally. But because our encoding provides no action or-
dering, we cannot expect to properly execute actions given
to us by the LP. For this example, it appears that a greedy
approach might work. That is, we could iterate through the
available actions and execute them as they become applica-
ble. Indeed, we eventually follow a greedy procedure. How-
ever, blindly going through the unordered actions leads us
to situations where we may “skip” operations necessary to
reach to goals. Additionally, the LP may return values other
than “1.0” for actions. Therefore, we have two issues to han-
dle when considering the simulation of action execution to
bring us to a better state. Namely, we must deal with cases

4The equivalant to what is given by hIP .



where the LP returns non-integer values on the action vari-
ables and simultaneously consider how to order the actions
given to us.

Using a Planning Graph for Action Order

Though standard relaxed planning graph based heuristics ig-
nore negative effects, they also have the well-established
virtue of giving some causal relationships between actions.
We exploit this fact and present a method of using the LP to
guide relaxed plan extraction in a planning graph that is cre-
ated by ignoring delete lists. This gives us a set of ordered
actions that we may simulate in an effort to reach higher-
quality states during search. Note that, though we use the
solution to the LP for guiding relaxed plan extraction, this
method can be combined with any action and goal selection
technique.

Recall that a relaxed planning graph is created by iter-
atively applying all possible applicable actions given the
propositions available, thereby generating a union of the pre-
viously available propositions with the ones added by apply-
ing the actions. This can provide a cost estimate on reaching
a particular proposition by summing the cost of each action
applied to reach it, always keeping the minimum summed
cost (i.e., we always keep the cheapest cost to reach any
proposition). This process is called cost propagation. After
this, we can extract a relaxed plan from the planning graph
by finding the supporting actions for the set of goals. The
heuristic value is typically taken from the sum of the cost
of all actions in the relaxed plan. If we could extract an op-
timal relaxed plan the heuristic would be admissible. How-
ever, due to the difficulty of this task (which is NP-complete)
greedier approaches are generally used (such as preferring to
select the cheapest supporting action at each step).

In over-subscription planning we have additional consid-
erations. In particular, we should only extract plans for sets
of goals that appear to be beneficial (i.e., provide a high net
benefit). We can use the LP for this, as it returns a choice of
goals. Given that the LP can produce real number values on
each variable (in this case a goal variable), we give a thresh-
old, θG on their value. For every goal g, there is a value
assignment given by the LP, V alue(g). If V alue(g) ≥ θG

then we select that goal to be used in the plan extraction pro-
cess.

The idea for extracting a relaxed plan using the LP as
guidance is to prefer those actions that are selected in the
LP. When extracting a relaxed plan, we first look at actions
supporting propositions that are of the least propagated cost
and part of the LP solution. If no such actions support the
proposition, we default to the procedure of taking the ac-
tion with the least propagated cost. Again, since the LP can
produce fractional values, we place a threshold on action
selection, θA. If an action variable Action(a), is greater
than the threshold, action(a) ≥ θA, then that action is pre-
ferred in the relaxed plan extraction process given the de-
scribed procedure. The complete algorithm is shown in Al-
gorithm 1.The key difference between a typical relaxed plan
extraction process and our algorithm are lines 11-15, which
cause a bias for actions that are in the LP.

To see why the LP makes an impact on the relaxed plans
we extract, let us revisit our ongoing example. Figure 2

Algorithm 1: ExtractRelaxedP lanLP , an LP-guided
relaxed plan extraction. effect+(a) represents the set of
positive effects of an action a.
Input: Set of all actions above threshold θA in LP,

ALP ; set of all goal assignments above
threshold θG in LP, GLP ; propagated relaxed
planning graph with action layers A1 . . . An

Initialize RP = {};1

for i := 1 . . . ‖G‖ do2

g := ith cheapest goal achieved in planning graph;3

if g ∈ GLP then4

OpenConditions := OpenConditions + g ;5

end6

end7

for i := n . . . 1 do8

forall p ∈ OpenConditions do9

p := first(OpenConditions);10

if ∃a ∈ Ai−1

⋂
ALP such that p ∈effect+(a)11

then
Find minimum cost action a in12

Ai−1

⋂
ALP such that p ∈effect+(a);

else13

Find minimum cost action a in Ai−1 such14

that p ∈effect+(a);
end15

RP := RP + a;16

end17

forall a ∈ A, p ∈ pre(a) do18

OpenConditions := OpenConditions + p;19

end20

end21

return RP22

shows the relaxed planning graph with each action and
proposition labelled with the minimum cost for reaching it
(using a summing cost propagation procedure). Recall that
we want to bias our relaxed plan extraction process toward
the actions in the LP because it contains information that the
planning graph lacks–namely, negative interactions.

We now see what happens when we follow the algo-
rithm using the example. The LP returns the action set
{fly(loc1, loc2), fly(loc2, loc3), drop(p1, loc2)}. Also, both
goals are chosen by the LP, causing us to place both goals
into the set of open conditions (line 5). We have three layers
in the graph, and so we progress backward from layer 3 to 1
(line 8). We begin with the least expensive goal and find its
cheapest action, fly(loc1,loc3). Since this action is not part
of the LP solution (i.e., its value is 0), we move on to the next
least expensive supporting action, fly(loc2,loc3). This action
is in LP’s returned list of actions and therefore it is chosen
to satisfy the goal at(p1,loc3). Next, we support the open
condition at(per1,loc2) with drop(per1,loc2). This action is
in the LP. We add the new open condition at(p1,loc2) then
satisfy it with the action fly(loc1,loc2). We now have the fi-
nal relaxed plan by reversing the order that the actions were
added. Note that without the LP bias we would have the
plan {fly(loc1,loc2), fly(loc1,loc3), drop(per1,loc2)}, which
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Figure 2: The planning graph for the running example show-
ing LP-biased relaxed plan extraction. Numbers above the
actions are their propagated costs. The order of the final re-
laxed plan is indicated by the circled numbers next to the
actions.

is only partially executable in the original planning problem.

Branch and Bound Search
A common method for solving combinatorial problems is
to use a branch and bound search where a global bound is
kept that represents the objective value of the best feasible
solution found so far. In this type of search it is well known
that quickly finding a good, close to optimal bound allows
for more efficient pruning of the search space. An admis-
sible heuristic is typically used at each search state, s, to
determine the potential value that may be found by branch-
ing there. Note that our lookahead procedure may give us
states that, although high in net benefit, do not lead to better
solutions (i.e., they are locally optimal but not globally opti-
mal). Branch and bound search allows for situations where
we want to continue searching despite having found such a
solution and so the algorithm has an anytime behavior. This
is in contrast to best-first search, which stops after finding
a feasible solution. The algorithm, shown in Algorithm 2,
requires that we keep a global lower bound that provides the
value of the currently best-valued node (in terms of total net
benefit or g-value). This allows us to maintain optimality de-
spite choosing paths that may potentially lead to in-optimal
states.

The variable fbound represents the candidate solution with
the best net benefit found so far by the search. If a search
state ever has an f-value that is less than this bound, we can
discard the node without looking at it further. Note that for
each state, we attach the ordered relaxed plan to it after we
calculate the LP-based heuristic.

By simulating the execution of relaxed plans we have
the potential to quickly achieve better lower bounds. Al-
gorithm 4 shows how the relaxed plan simulation is done.
The procedure works greedily, continually trying to execute
relaxed plans in the order that they are given until either the
actions in the RP are exhausted (i.e., completely executed)
or we cannot apply any more actions from the relaxed plan.
We continue to apply the relaxed plans of the resulting state.
Similar to what is done in (Yoon et al. 2007), we add each
state found after performing the lookahead procedure.

This method works with the search by always first at-
tempting to execute the relaxed plan of a node pulled off
the queue. In our example we have the relaxed plan

Algorithm 2: Branch and bound search.
fbound :=net benefit of initial state;1

LP := LP encoding of the initial state;2

S := initialstate;3

S.RP := ExtractRelaxedP lanlp(LP );4

SQ := Priority queue initially {S};5

while SQ 6= {} do6

i := 0;7

S := dequeue(SQ);8

if f(S) < fbound then9

discard(S);10

continue;11

end12

if i = 0 then13

while S′ 6= S do14

S′ :=SimulateRelaxedPlan(S);15

ProcessState(S′);16

enqueue(SQ, S′);17

end18

else19
/* Note: Helpful actions first */
select an action a ∈ A;20

S′ := Apply(a,S);21

end22

ProcessState(S′);23

if net benefit(S’) > fbound then24

Output Best Node(S’);25

fbound := net benefit(S’);26

end27

enqueue(SQ, S);28

i = i + 1;29

end30

{fly(loc1, loc2), fly(loc2, loc3), drop(p1, loc2)}. Given the
simulation of this relaxed plan from the initial state, the first
exploration gives us a high quality search state that achieves
the goals (in this case optimally) with a value of 1749 (the
net benefit). Search continues generating states for each ap-
plicable action at the initial state. When we subsequently
pull the nodes off of the queue we can discard them. Though
this example gives a best case scenario, it serves to show the
strength of combining the heuristic, relaxed plan simulation,
and search technique. Note that, during the selection of ac-
tions, we first attempt so-called helpful actions, as used in
the planner FF (Hoffmann and Nebel 2001).

With the admissible heuristic and search strategy, the al-
gorithm will, given enough time, return an optimal solution.
Otherwise it will return the best found solution (which has
the same value as fbound). Additionally, the heuristic pro-
vides an upper bound measure on the best possible total net
benefit at the initial state. That is, the heuristic value re-
turned at the initial state provides us with some measure of
“how close to optimal” we may be.

Any solution that we are given can be checked against
the bound found at the beginning of search (from the initial
state). As we shall see in the empirical analysis, this bound
provides insight into the quality of the solution found for any



Algorithm 3: ProcessState
Input: A state S
updateInitialConstraints(S, LP );1

hLP (S) := solve(LP );2

S.f :=hLP (S) − cost(S);3

S.RP := ExtractRelaxedP lanlp(LP );4

return S;5

Algorithm 4: SimulateRelaxedPlan, greedily lookahead
using a relaxed plan.
Input: A state S with an associated relaxed plan, RP
executed := boolean array set to false with size |RP |;1

while not done do2

forward := false;3

for j = 1 . . . RP size do4

if not executed[j] and applicable(S ′, RP [j])5

then
S′ := Apply(RP [j], S′);6

executed[j] := true;7

forward := true;8

if net benefit(S’) > fbound then9

Output Best Node(S’);10

S′′ := S′;11

fbound := net benefit(S’);12

end13

end14

end15

if not forward then16

done := true;17

end18

return S′′;19

end20

given problem.

Empirical Analysis
We created a planner called BBOP-LP (Branch and Bound
Over-subscription Planning using Linear Programming, pro-
nounced “bee-bop-a-loop”) on top of the framework used
for the planner SPUDS (Do et al. 2007), which is capable of
solving the same type of planning problems and was written
in Java 1.5. hLP was implemented using the commercial
solver CPLEX 10. All experiments were run on a 3.2 Ghz
Pentium D with 1 GB of RAM allocated to the planners.

The system was compared against SPUDS (Do et al.
2007) and two of its heuristics, hGAI

relax and hGAI
max . The branch

and bound search is in contrast to SPUDS, which implement
inadmissible heuristics that could cause it to stop searching
without finding an optimal solution. The heuristic hGAI

relax
greedily extracts a relaxed plan from its planning graph then
uses an IP encoding of the relaxed plan to remove goals that
look unpromising. Using this heuristic it also simulates the
execution of the final relaxed plan. The other heuristic in
SPUDS that we look at, hGAI

max , is admissible and performs
max cost propagation (i.e., it takes the maximum reachabil-
ity cost among supporters of any predicate or action) on the

planning graph but does not extract a relaxed plan. Instead it
uses the propagated costs of the goals and tries to minimize
the set using an IP encoding for the goal utility dependen-
cies.

We use the BBOP-LP system using three separate options.
Specifically, we use the hLP heuristic without extracting a
relaxed plan for simulation, the hLP heuristic with the LP-
based heuristic extraction process, and the hLP heuristic
with a cost-based heuristic extraction process. Since these
methods are used within the BBOP-LP framework, they pro-
vide a search that can terminate only when a global opti-
mal solution is found (or time runs out). A goal and action
threshold of 0.01 was used.5 We compare with SPUDS us-
ing the hGAI

relax and hGAI
max heuristics. SPUDS, using an any-

time best-first search with the admissible hGAI
max heuristic,

will terminate when finding an optimal solution (or a time-
out). It is possible that SPUDS using the inadmissible hGAI

relax
heuristic will terminate without having found an optimal so-
lution. We have set SPUDS using hGAI

relax to also simulate
the execution of the relaxed plan. Each of the planners is
run with a time limit of 10 minutes.

Problems
We tested using variants of three domains from the 3rd Inter-
national Planning Competition (Long and Fox 2002): zeno-
travel, satellite, and rovers. We generated modified versions
of the competition problems such that utilties were added to
sets of goals and costs were added to actions within reason-
able bounds.

For the domain zenotravel, having a person or plane at a
goal location always gives a positive utility value. However,
having certain groups of people at different locations may
generate additional negative or positive utility, with a greater
likelihood that it would be negative. For the actions, the cost
of boarding and debarking were minimial compared with the
cost of flying, zooming, and refueling.

In satellite, goals involve having a satellite take images of
particular locations. In this domain taking individual images
gives large utility values. However, having certain images
together could effectively negate the utility achieved from
each goal individually (the idea being that we gain redundant
information from these images). For this domain, the cost of
most of the actions is minor compared to with the utility
values. Therefore, this domain is largely about taking utility
dependencies into account.

The modified rovers domain contains goals for taking
measurements and communicating them to some outside lo-
cation. In this domain an optimal solution may include all of
the goals (if not too much navigating is required). However,
as the problems grow in size the cost of navigation likely
outweighs the utility of the goal sets.

Analysis
Figure 3 shows the results of running the planners in terms
of the net benefit of the solutions found and the time it took
to search for the given solution value. In 13 of the prob-
lems, the plans with the highest net benefit are found us-
ing hLP heuristic with the LP-based relaxed plan lookahead

5In our experiments, this threshold provided overall better re-
sults over other, higher values for θA and θG that were tested.
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Figure 3: Results for the zenotravel, satellite, and rovers domains in terms of total net benefit. The upper bound value for each
problem is found by the LP at the initial state. If a planner could not find a plan beyond the value at the initial state, we set its
time to 10 minutes to indicate the wasted search effort.
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Figure 4: Values found in our branch and bound search us-
ing hLP and the LP-based relaxed plan extraction compared
with the anytime search of SPUDS for Rovers problem 20.
hmax represents SPUDS with the hGAI

max heuristic.

technique. In fact, in only four of the problem instances is
this method returning net benefit value less than one of the
other methods (zenotravel problems 14 through 17). Also,
this technique was able find the optimal plan in 15 of the 60
problems (by exhausting the search space). We compare this
with SPUDS, which could find the optimal solution in only
2 of the problems within the time limit.

One reason that the LP-based relaxed plan usually per-
forms lookahead better than the cost-based relaxed plan is
that it is more informed as to the obvious negative interac-
tions that exist within the problem (e.g., a plane cannot be
in more than one place at a time). The heuristic hLP finds
flow to the goals on SAS+ variables. As such, only the ac-
tions that contribute to achieving a goal will be chosen by

the heuristic. In the ongoing example from the previous sec-
tions we saw a best-case scenario of this behavior.

The time taken to solve for the final values provides some
insight into the search behavior of the planners. SPUDS
tends to return plans quickly but then does not continue to
find better plans. As can be seen in Figure 3, a consequence
of this is that plan net benefit remains low, but the time re-
quired to achieve that net benefit is also low. To provide
more insight, Figure 4 shows a search behavior compari-
son between BBOP-LP with LP-based relaxed plan extrac-
tion, BBOP-LP with cost-based relaxed plan extraction, and
SPUDS with the hGAI

relax heuristic. We can see that SPUDS
initially reaches a higher quality plan more quickly, but then
makes only incremental improvements. On the other hand,
the planner using the LP-based relaxed plan for lookahead
continues to find plans whose quality soon surpasses those
found by SPUDS.

Another interesting result from this study is the disparity
between the domains in terms of quality of the final plans
found by BBOP-LP and the upper bound net benefit value
found by hLP at the initial state (see (Benton et al. 2007)
for a discussion on the quality of these bounds). We cannot
be sure exactly how close to optimal this bound is, but we
hypothesize that as the problems scale up in size it becomes
less accurate. Looking again at Figure 3, we can see that
in zenotravel we are quite far from the upper bound found.
This gets more pronounced as the problems scale up in diffi-
culty. Another likely contributing factor to the wide margin
is the time spent finding hLP at each node. This calculation
takes much longer on more difficult problems. In problem
20 of zenotravel, for instance, it takes 41 seconds to calcu-
late this value at the initial state on our system. However, on



these problems the lookahead plan simulation process often
provides us with solutions that have a fair quality eventually.

We have shown a novel heuristic, hLP , used to guide
search in a variant of over-subscription planning called
PSPUD. With this, we biased a traditional relaxed plan
extraction toward actions included in the heuristic’s action
selection. This gave us an action ordering to use in a looka-
head procedure in a branch and bound search framework.
This method was shown to be superior for finding high qual-
ity plans over the other tested methods.

Related Work
Much recent work in solving partial satisfaction planning
problems use heuristics taken from planning graphs. The
planner AltWlt selects goals using a planning graph be-
fore the planning process begins (Sanchez and Kambham-
pati 2005). The planner SPUDS, which introduced the con-
cept of goal utility dependency, refines a relaxed plan found
by the planning graph using an IP formulation of it to select
goals dynamically during search (Do et al. 2007). An ap-
proach not using a planning graph is the orienteering plan-
ner (Smith 2004). Also, several planners that work with
preferences as defined in PDDL3 (Gerevini and Long 2005),
the language developed for the 5th International Planning
Competition (Gerevini et al. 2006) use planning graph based
heuristics.

The first instance of using an LP-based heuristic in plan-
ning was done by Bylander 1997 in the planner Lplan. Also,
some planners encode entire classical planning problems as
an IP (Vossen et al. 1999; van den Briel et al. 2005). Opti-
Plan and iPud, two IP-based planners, solve partial satisfac-
tion planning optimally given a bounded length (Do et al.
2007; van den Briel et al. 2004).

The idea of relaxed plan execution simulation to find good
lower bound values in the branch and bound search was in-
spired by the great benefits it showed in the YAHSP plan-
ner (Vidal 2004). This planner uses the concept of “helpful
actions” as used in FF (Hoffmann and Nebel 2001) and ex-
tends upon it to use the relaxed plan for performing a looka-
head to more quickly feasible solutions to classical planning
problems. Since we do this in conjunction with branch and
bound search, we retain optimality (unlike YAHSP).

Future Work
An advantage to using LP-based heuristics is that they are
malleable. We plan to add or change constraints in the
LP encoding used for hLP such that we can achieve bet-
ter heuristic values more quickly. We also will explore new
ways of using the LP with added constraints that give us or-
derings without the use of a planning graph. Further explo-
ration will involve finding ways to encode PDDL3 temporal
constraints.
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