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Abstract: In recent times, Wireless Sensor Networks (WSNs) are becoming more and more popular
and are making significant advances in wireless communication thanks to low-cost and low-power
sensors. However, since WSN nodes are battery-powered, they lose all of their autonomy after a
certain time. This energy restriction impacts the network’s lifetime. Clustering can increase the
lifetime of a network while also lowering energy use. Clustering will bring several similar sensors to
one location for data collection and delivery to the Base Station (BS). The Cluster Head (CH) uses more
energy when collecting and transferring data. The life of the WSNs can be extended, and efficient
identification of CH can minimize energy consumption. Creating a routing algorithm that considers
the key challenges of lowering energy usage and maximizing network lifetime is still challenging.
This paper presents an energy-efficient clustering routing protocol based on a hybrid Mayfly-Aquila
optimization (MFA-AOA) algorithm for solving these critical issues in WSNs. The Mayfly algorithm
is employed to choose an optimal CH from a collection of nodes. The Aquila optimization algorithm
identifies and selects the optimum route between CH and BS. The simulation results showed that
the proposed methodology achieved better energy consumption by 10.22%, 11.26%, and 14.28%, and
normalized energy by 9.56%, 11.78%, and 13.76% than the existing state-of-art approaches.

Keywords: Aquila optimization algorithm; cluster head; mayfly; routing protocol; wireless sen-
sor networks

1. Introduction

WSNs comprise many low-energy sensors with substantial sink power responsible for
establishing paths within specified transmission protocols [1]. WSNs are used in dynamic
networks because of their ease of installation and quick synchronization with other sensors.
WSN sensors can sense, gather, and send data in real-time [2]. Systematizing sensor
networks into clustered frameworks has received much attention recently, resulting in
many organizations developing their clustering methods [3].

Clustering is a basic methodology for designing energy-efficient, reliable, and flexible
distributed sensor networks. Clustering decreases correspondence overhead, lowering
energy consumption and impedance among the SNs [4]. The ultimate objective is to exploit
the interaction between the sensors and eliminate the frequent repetition. Combining
existing data with data acquired by sensors at CHs, the total amount of data transmitted to
the sink may be drastically reduced [5].

While cluster-based sensor network connection and inclusion support protocols had
previously been discussed, they have not been organized systematically [6]. Existing
approaches for selecting CH nodes are based on various parameters, including the highest
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residual energy, area of the CH concerning alternate nodes, topological data, and last
movement of the SN as a CH [7]. Most of these CH selection approaches ignore the
network’s requirement for complete inclusion over long periods [8]. When removing nodes
from regions that are sparsely populated with SNs, the passing of an SN issued in a densely
populated territory has a lower impact on network inclusion. The importance of each
SN to the incorporation endeavor may be quantified using an inclusion-conscious cost
metric. This cost metric considers the node’s incredible energy and the inclusion outside its
detecting range, measuring the node’s contribution to the network’s inclusion concerns [9].

In this sense, this article looked into the differences between energy-adjusted and
inclusion-conscious sensor network association, with a particular focus on clustered WSNs.
The traditional method is insufficient for effective CH selection. The main reason is that the
node may shift from one cluster area to the other, making it difficult to choose a CH. As a
result, the shortest path selection for RN is proposed to solve this problem, allowing data
transfer even when the cluster zone changes [10]. Moreover, all these operations must be
completed efficiently to avoid wasting the restricted sensor battery life. The sensor’s life
cannot be increased by providing external or extra energy since most sensors are placed
in difficult-to-reach locations. A network system with too many dead nodes may become
paralyzed and unable to function correctly [11]. Therefore, it is not very easy for WSNs to
develop energy-balanced and energy-efficient routing algorithms.

The lifespan of a network may be successfully extended by balancing the energy
usage of nodes and enhancing energy efficiency. By separating nodes into many clusters,
hierarchical clustering methods lengthen the network lifespan [12]. Clustering protocols
attempt to identify the best CH set and rotate the function of the CH across all nodes for
the optimization of node energy usage. The chosen CHs should significantly influence the
clustering protocol’s performance.

Meta-heuristic optimization techniques are the best alternative for selecting appro-
priate CHs to extend the network’s lifespan. There are also many interesting applications
of heuristics in different technical fields such as optimization in electric systems [13] and
remote sensing models [14]. However, the algorithms face several common difficulties,
such as fast convergence, local search concerns in the fitness function, and increased cost.
Meta-heuristic algorithms are preferred when searching for the optimal solution becomes
exhausting. Efficient meta-heuristic algorithms must include the solution space where
there is a global optimum and develop novel and better solutions. There are meta-heuristic
algorithms such as Particle Swarm Optimization (PSO) and Cuckoo Search that strive for
global optimization (Exploration) and methods such as Simulated Annealing (SA) and
Harmony Search Algorithm (HSA) that are restricted to local optima in the literature. For a
better solution, a balance between exploration and exploitation is required. This prompted
the combination of two popular meta-heuristic algorithms, MFA and AOA.

This research presents a hybrid Mayfly-Aquila optimization technique for an energy-
efficient clustered routing protocol in WSNs to address earlier mentioned difficulties. To
minimize energy consumption, this work proposes to include energy consumption as a
node choosing the path. For that, the following tasks must be prioritized:

i. The shortest route between BS and CH because of its usage of less energy.
ii. The selection of CH between clusters.

MFA is a new evolving meta-heuristic that has a higher potential for finding the opti-
mum solution than PSO and can identify more optimal solutions. Premature convergence
may decrease the eventual solution’s quality in some cases. Combining an algorithm with
high exploration skills with another approach with strong exploitation characteristics is
possible. The MFA approach successfully explores the search space, whereas the AOA
algorithm utilizes and improves existing feature subsets.

The following are the research’s key contributions:

• In the WSN, Mayfly is employed to determine the CH because of its excellent stability
and low computing cost. Mayfly chooses the CH in this research based on many
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objective values, including residual energy, the distance between neighboring nodes,
the distance towards the BS, density of the nodes, and node centrality.

• AOA determines the shortest route between CH and BS because of its capability of
delivering speed detection of solutions. To address the constraint of the unpredictable
convergence time, the AOA is optimized using residual energy, the density of the
node, and distance.

• The network lifetime is increased due to the efficient CH selection and optimal path
creation for data transmission. Furthermore, by reducing the energy usage of the
nodes while transferring data packets, the total number of packets retrieved by the BS
is enhanced.

The organization of this paper is as follows: Section 2 illustrates the existing works,
Section 3 presents the proposed hybrid MFA-AOA algorithm, Section 4 discusses the result
and discussion, and the conclusion and future work are presented in Section 5.

2. Related Works

In this section, the main related works in the area are analyzed to justify the need for
the proposed work.

Murugadass, G. and Sivakumar, P. (2020) [15] presented a hybrid approach of Elephant
Herding Optimization with a Cultural Algorithm for optimum CH selection (EHO-CA) to
increase the lifespan. The advantages of the belief space provided by the cultural algorithm
were used to define a separation operator that effectively created different local optimum
solutions in the search space in this presented EHO-CA approach. Moreover, the addition of
belief space assisted in providing the balance between an ideal exploitation and exploration
process and better search abilities in the selection of optimal CH. The presented EHO-CA
method improved the distinguishing qualities by combining separation and clan updating
operators for optimal selection of CH to increase the network’s lifespan. The limitation of
this proposed method was that it required more processing time.

For obtaining an extended network lifespan in sensor networks, Rambabu et al.
(2019) [16] proposed a combined Artificial Bee Colony (ABC) and Bacterial Foraging (BF)
(ABC-BF) based clustering method. The benefits of Bacterial Foraging Optimization were
integrated with this proposed ABC-BFA approach for enhancing the local search ability
of the ABC algorithm to achieve maximal exploitation and exploration of the parameters
evaluated for the selection of CH. The proposed ABC-BFA approach was assessed in simu-
lations utilizing a percentage of living and dead nodes and throughput using various SNs
in the network. However, the packet drop in the proposed technique was high.

Tabatabaei et al. (2019) [17] investigated clustering SN to improve WSN lifespan. The
Lion pride optimizer algorithm reduced energy consumption by grouping SN into clusters.
For picking the best nodes as CHs, this method used two criteria: battery power range and
distance from the sink. The remaining nodes that were not CHs are then joined to the CH
closest to them. Clusters were produced in this manner. After clusters were constructed,
data routing was facilitated by a direct virtual backbone, which was based in the sink
node and made up of CHs. However, from the results, it was identified that the proposed
method has a high processing overhead and attained less throughput.

Through the development of the Rider-Cat Swarm Optimization (RCSO) algorithm for
beginning communication in SN, Shyjith et al. (2021) [18] built a platform for data transfer
in WSN. The proposed RCSO method, which incorporated the ROA in the CSO algorithm,
was used to build the CHs of the WSN nodes, and the CHs aid communication with the
ideal CH, determined using the fitness function. The network was first established with
initial energy, and the node mobility was regulated using the mobility model. During the
setup phase, the CHs for data transmission from the nodes to the BS were determined
using the clustering algorithm, which was created by determining the best threshold and
CHs using the proposed RCSO method. Following the selection of the CHs, data transfer
from the CH to the BS commenced. However, this method did not consider the Quality of
Service (QoS) metric.
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Poonguzhali and Ananthamoorthy (2020) [19] proposed a novel routing protocol based
on Ant Colony Optimization (ACO) and HSA with optimum parameter selection. This
research looked at how to send packets quicker without sacrificing data quality. The results
demonstrated that the proposed strategy is more effective than other ways of increasing
the network’s energy efficiency. However, the limitation of this work was that it only
allowed for a meta-heuristic approach, which may have restricted utility in recovering
prior network routing parameters.

Wang et al. (2020) [20] investigated the topic of reducing WSN energy consumption
and proposed an energy-efficient routing protocol relying on an enhanced ABC algorithm.
This research employed the modified ABC method to optimize the fuzzy C-means clustering
and pick the optimal CH. In addition, this article employed a polling control access method
based on busy/idle nodes, which conserved energy and improved network throughput.
According to the simulation findings, the proposed method performed well in energy
usage balance, power efficiency, network lifespan, network stability duration, and network
throughput. Nevertheless, the developed algorithm could only be used in fixed networks.

Hassan et al. (2020) [21] proposed an enhanced energy-efficient clustering protocol to
increase the lifetime of WSN-based IoT networks by addressing clustering structure issues
that decrease protocol performance. By optimizing the clustering structure, the proposed
technique lowered and balanced the power usage of nodes. As a result, the presented
protocol was declared viable for networks with a longer lifespan requirement. In addition,
the proposed method used a novel goal function to choose CHs in ideal locations. Though,
uncertainty is a big concern with this model.

Al Mazaideh and Levendovszky (2021) [22] developed a method for determining
the optimal values of direct detection of paradigm elements by multiple objective genetic
algorithms. It was discovered that adjusting these factors will optimize energy efficiency
while reducing the likelihood of reconstruction error. The proposed method achieved a
fair balance between these two goals. They also devised a compressive sensing approach
to conserve energy by decreasing the length of the sensing vector. When the proposed
algorithms were evaluated to the performance of typical cluster selection algorithms, it
was discovered that they had greater energy efficiency. However, the complexity of this
technique was high.

Osamy et al. (2020) [23] introduced the hybrid Chicken Swarm- GA (CSGA) clustering
algorithm, in which the CSO algorithm was updated to optimize the energy utilisation
in WSNs, to enhance network lifespan. CSGA used a hierarchal order approach. The
population was separated into three groups and then sorted according to fitness values to
choose the finest nodes that function as CHs every round. To enhance population variety,
CSGA used crossover and mutation mechanisms. In addition, the fitness function was
created to reduce the overall amount of energy spent and the total number of times the
chosen set of nodes worked as CHs. However, this method failed to address the network
heterogeneity.

To tackle the optimal data transmission routing path in WSNs, Zhang et al. (2021) [24]
proposed a unique and efficient Robust ACO (RACO) method based on ACO. The proposed
method comprehensively considers power consumption, node distance, and connection
security, improving ACO’s heuristic value. Furthermore, the numerical testing revealed
that the RACO approach was resilient and improved network overhead performance
without raising network design, operation, or communication. However, the proposed
method has a higher computational cost.

To prolong the lifetime of heterogeneous WSNs, Li et al. (2020) [25] developed a
Modified GA (MGA). In contrast to prior studies, MGA represented solutions using two-
level organized chromosomes. The value of this chromosome was that it represented the
exact scheduling of each set and the detailed energy allotment of each sensor. For the
generation of the initial population, a greedy strategy was used. This approach has a
temporal complexity. However, it considerably increases the pace of searching. Forward
and backward mutation procedures were created as unique mutation operations. The
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forward mutation ensures chromosomal variety, whereas the backward mutation can aid in
efficiently leaping out of local optima. However, scalability and mobility were not provided
in this approach.

Li et al. (2019) [26] proposed a unique Load Balancing Ant-based routing protocol
(LBAR) for WSNs. Under the limits of a limited energy supply, LBAR aimed to balance
energy consumption, extend network lifetime, and speed up route-finding convergence.
In the development of LBAR, a pseudo-random method was used to find routes, which
speeds up the search for an efficient route and considers the energy balance. Furthermore,
the pheromone trail updating mechanism took energy and path length information into
account, resulting in a network lifespan extension. However, this method was unable to
determine the cluster technique’s optimality.

Elsmany et al. (2019) [27] introduced the energy-efficient Scalable Routing Technique
(SRA), a flexible, low-energy, and adaptive clustering hierarchical routing algorithm to
sustain network lifespan despite network size growth. To minimize the stress on CH, SRA
implemented a three-layer hierarchy structure and used multi-hop broadcast for intra-
cluster communication. In this work, SRA was compared to different WSN routing schemes
using network performance as a function of network size changes. According to simulation
data, SRA outperformed benchmarking techniques through load balancing and energy
efficiency for WSNs. However, this proposed method did not analyze the computational
time and complexity.

Zhou et al. (2019) [28] presented Privacy-Preserving Data Aggregation (PPDA), a
new aggregating technique that is both energy-efficient and secure. A sensor network was
structured into an aggregation tree, and the leaf nodes of the tree were connected to form
multiple chains, according to the proposed strategy. It reduced the number of leaf nodes
in the basic aggregation tree. The simulation study findings revealed that the proposed
algorithm is more efficient when compared to conventional aggregation techniques while
maintaining superior privacy protection. PPDA performed well in terms of efficiency and
accuracy of aggregation outputs. However, this technique was unable to develop a data
aggregation model to reduce duplicate data.

It has been discovered that a great deal of effort has gone into controlling CH selection
and improving data transfer across SN while the sink is moving. However, there has been
a sprinkling of research that has concentrated on both aspects at the same time using any
hybrid strategy. Using a hybrid method to combine the best features of both optimization
techniques to obtain the best network performance.

3. Proposed MFA-AOA Algorithm

CHs are chosen using a formula based on the node’s various properties in traditional
protocols. Even though these approaches are easy and simple to apply, they do not
consider suitable criteria for choosing CHs. Although metaheuristic-based methods are
more efficient in picking optimal CHs than classical techniques, they suffer from high time
and computational difficulties since an iterative algorithm must be used to identify CHs at
each round. The three categories mentioned above all have the disadvantage of not being
application-specific. Therefore, the controllable parameters cannot be adaptively altered to
meet the application’s needs. Though these procedures may provide acceptable results in
certain situations, their effectiveness may be compromised in others. Furthermore, most
present protocols do not use adequate criteria for selecting CHs (during the clustering
phase) and forwarders (during the multi-hop routing phase). The proposed MFA-AOA is
offered to address the problems mentioned earlier.

By altering the components, an optimization strategy is utilized to reduce or maximize
a function’s output. All viable options for this problem are referred to as possible solutions,
and the best is referred to as the optimal solution. All swarm intelligence algorithms are
population-based, which means that their iterative approach improves the position of
individuals in the population and, as a result, their progress toward better positions. The
network model, energy model, Mayfly optimization description, and Aquila optimization
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technique are all covered in this section. Figure 1 depicts the construction of the WSN. The
following factors are used to develop the network model:

• All SNs starting energy and process time in a WSN are comparable.
• The Euclidean distance formula is used to compute the distance between the sensors
• The SNs are placed in the sensing region at random, and their position remains

constant after installation
• The SNs send information to BS regarding the reserve energy and distance. An efficient

CH selection method is used to choose CHs for all SNs based on that data. The routing
procedure is then employed to find the optimal path between the CHs and the BS [29].
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3.1. Energy Model

A 1st order radio model computes the transmitter and receiver energy. Equations (1)
and (2) represent the amount of energy used to send and collect k bit packets over a given
distance s [30].

MTX(k, s) =
{

k×Melec + k× εed × s2 i f s ≤ s0
k×Melec + k× εnp × s4 i f s > s0

(1)

MRX(k, s) = k×Melec (2)

where Melec is the amount of energy released at the transmitter (MTX)/receiver (MRX)
and s0 denotes the threshold distance. The following Equation (3) is used to compute the
threshold distance.

s0 =

√
εed
εnp

(3)

where and are the amplification energies for the free space εed and multipath model εnp,
respectively. The transmitter amplifier type determines these factors.
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3.2. Mayfly Algorithm

A mathematical concept based on mayfly social behavior is named the mating process.
Mayflies are considered adults in this method when they hatch from the egg, and only the
fittest mayfly survives. The ideal solution to the issue is represented by the location of every
mayfly in the search space. Each mayfly’s position in search space symbolizes a possible
solution to the problem. Based on the fitness function, this algorithm identifies the optimal
position, referred to as the best CH. This mathematical model considers nuptial dance and
mayfly movement within a certain range. In addition, it determines the crossover value
among mayflies to arrive at the ideal place.

Two sets of mayflies are first produced randomly and positioned in problem space as
a potential solution signified by a dimensional vector. The velocity of a mayfly is defined
as a variation in its location while evaluating fitness function g(x). Each mayfly’s flight
path is in a dynamic direction. Each mayfly’s location is modified to the best (Pbest) position
attained by any mayfly in the swarm before (gbest). The best position is chosen as the basis
for CH selection. The mayfly selects the best CH for all sensors based on node degree and
centrality and the distance to its neighbors [31].

3.2.1. Position of Male Mayflies

Male and female mayflies are initialized independently. Every mayfly modifies its
position in response to its individual and its neighbors’ experiences. It is considered that the
mayfly’s present location is xt

j and that the search space is designated as j at time t. When

velocity Ct+1
jk is added to the present location, position changes. It may be expressed as:

xt+1
j = xt

j + Ct+1
jk (4)

Here, velocity Ct+1
jk = h ∗Ct

jk + y1e−αr2 ∗ p
(

Pbestjk − Ct
jk

)
+ y2e−αr2 ∗ g

(
gbestjk − Ct

jk

)
.

y1 and y2 are positive attraction constraints. Pbestjk is the optimal position of mayfly
j had ever visited. Here, r2 is the distance between male and female mayflies, h is the
gravity coefficient and α is a fixed visibility coefficient. Pbest can be determined using
minimization problems as follows:

Pbestj =

{
xt+1

j , i f
(

xt+1
j

)
< f

(
pbestj

)
iskeptsame, otherwise

(5)

Similarly, at time step t, gbest can be given as:

gbest ∈ {pbest1, pbest1, . . . . . . , pbestN | f (pbest)}
= min{ f (pbest1), f (pbest2), . . . . . . , f (pbestN)}

(6)

where, Pbest1 is the first mayfly in the swarm and N is the total number of male mayflies.

3.2.2. Movement of Female Mayflies

Male and female attraction is depending on the effectiveness of the existing solution.
The best performing male attracts the best forming female, and so on until all partners
are found. Moreover, the updated position yt+1

j for female mayflies can be expressed
as follows:

yt+1
j = yt

j + Ct+1
jk (7)

where, yt
j is the present female mayfly position. The best female attracts the best male and

the second best female to the second best male when considering female mayflies, velocity
can be determined. The modified equation for a female’s velocity Ct+1

jk is:
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Ct+1
jk =


i f f itness

(
yj
)
> f itness

(
xj
)

h ∗ CXY + y2 ∗ e−αr2m f ∗
(

Yjk − Xjk

)
elsei f f itness

(
Yjk < Xjk

)
h ∗ Ct

XY + f l ∗ r

(8)

where Ct+1
jk is the velocity of jth element kth female mayflies at time t, f itness

(
yj
)

is the
fitness value of female mayfly location, f itness

(
xj
)

is the fitness value of male mayfly
location, the Yjk is the location of the female mayfly in dimension k at time t, Xjk is the
jth element of the location of the male mayfly in dimension k at time t, y2 is the earlier
determined attraction constant, h is the gravity coefficient, rm f is the Cartesian separation
between the male and female mayflies, and r is a random number between [−1, 1]. In the
scenario where a female is not attracted to a male f l ∗ r = f l0 × βitr, then f l is a random
walk coefficient. Here itr is the present iteration number and β is a random value Є [0, 1].

3.2.3. Crossover

By initially recognizing a male mayfly and subsequently a female mayfly, a crossover
operation happens. Best males breed with best females, and selection is based on fitness
value. The equation below illustrates the offspring that result from a crossover.

o f f spring1 = roff ∗ (1− roff) ∗ f emale (9)

o f f spring2 = roff ∗ f emale + (1− roff) ∗male (10)

This selection may be made at random or in accordance with the fitness function. Here,
the male stands in for the male father and the female for the female parent. A value at
random inside a certain range is called roff. Offspring velocities are initially set to zero.

3.3. Aquila Algorithm

One of the most studied birds in the world is the Aquila, which is famous for its
hunting bravery. Male Aquila’s caught a lot more prey when they hunted alone. Aquila
uses their speed and strong nails to hunt other animals. [32]. The Aquila optimization
algorithm, which is a population-based technique, starts with a population of candidate
solutions (Y), which is created randomly between the upper limit and lower bound of
the given problem. The best-obtained solution is roughly selected as optimal in every
iteration process.

In AOA, the optimization begins the improvement processes by producing a predeter-
mined random population of potential solutions. The search criteria of the AO examine the
reasonable locations of the best-obtained solution or the near-optimal solution through the
repetition trajectory. The number of iterations needed by AO to reach the ideal solution is
relatively low. It is clear from the solution’s trajectory that its magnitude and frequency
are high in the initial iterations. They have almost totally vanished in recent versions. This
demonstrates AOA’s strong ability for exploration in the early iterations and its strong
ability for exploitation in the last iterations. This behavior indicates that there is a good
likelihood that AOA will find the optimal solution.

Four different procedures are used to catch the prey in the Aquila algorithm [33].

3.3.1. Approach 1: Extended Exploration

Initially, the Aquila recognizes the prey’s position and flies around looking for it.

Yi(t + 1) = Ybest (t)×
(

1− t
T

)
+ YM (t)−Ybest (t) ∗ rand (11)
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where Yi(t + 1) denotes the ith individual’s location at iteration t + 1. The best location at
the current iteration is represented by Ybest (t). The mean locations of all individuals at the
current iteration are represented by YM (t).

YM(t) =
1
L ∑L

i=1 Yi(t) (12)

where Yi(t) denotes the location of the ith individual at iteration t, and L is the swarm
population size. T denotes the maximum permitted iteration number, while rand is the
random number in a Gaussian distribution between 0 and 1. Based on this condition, if
t ≤

( 2
3
)
T, the exploration phases will be activated; else, the exploitation phases will be

carried out, and the AOA algorithm can switch from exploration phases to exploitation
phases utilising different behaviours.

3.3.2. Approach 2: Narrowed Exploration

The next approach is narrowed exploration. Continuing with the exploration tech-
nique, the Aquila would fly surrounding the prey and ready the land once it located it.

Yi(t + 1) = Ybest (t)× Levy (E) + YR (t) + (x− y) ∗ rand (13)

where E denotes the dimensionality of the problems to be solved. Levy (E) stands for Levy
flights, which are computed as follows:

Levy (E) = p× α× β

|δ|
1
γ

(14)

where α, δ are random values between 0 and 1, and p = 0.01 is a constant parameter. β is
determined in the following way:

β =
Γ
(
(1 + γ)× sin

(πγ
2
))

Γ
((

1+γ
2

)
× γ× 2

γ−1
2

) (15)

where γ is a fixed value of 1.5. Γ indicates the gamma function. At the current iteration,
YR (t) represents a randomly picked candidate. The spiral form is represented by x and y,
which are computed as follows:

x = rcosθ (16)

y = rsinθ (17)

r = r1 + V × E1 (18)

θ = −ω× E1 + θ1 (19)

θ1 =
5π

2
(20)

where r1 is a fixed value ranging from 1 to 20 and V is a small value fixed to 0.00464. E1 is
an array of integer numbers ranging from 1 to the whole length of the issues. The number
ω = 0.004 is a constant.

3.3.3. Approach 3: Extended Exploitation

When the Aquila fails to detect the target during the exploitation operation, they may
re-initialize themselves; they then update their locations using the equation below.

Yi(t + 1) = σ× [Ybest (t)−YR (t)] + ε× [(UB− LB)× rand + LB] (21)

The definitional domain of the presented issue is [LB,UB]. σ and ε are two little
fixed integers.
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3.3.4. Approach 4: Narrowed Exploitation

When the Aquila comes near the prey, they use the following equation to restrict
their exploitation.

Yi(t + 1) = Q×Ybest (t)− H1 ×Y1 (t)× rand− H2 × Levy (E) + rand× H1 (22)

The AO’s different tracking motions during the session are represented by H1, which
is computed using Equation (24). The flight slope of the AO utilized to follow the prey
during the escape from the starting position to the final position (t), which is derived using
Equation (25), is represented by H2 by decreasing values from 2 to 0. Q is a quality function
that is employed to optimize the search plan, and it is derived using the equation below.

Q = t
2×rand−1
(1−T)2 (23)

H1 = 2× rand− 1 (24)

H2 = 2×
(

1− t
T

)
(25)

3.4. Proposed Method

The proposed method works based on the characteristics of two algorithms: one for
selecting the CH and the other for network routing. First, the Mayfly algorithm identifies
appropriate sensors and Aquila determines the best path between the CH and the BS.
Following that, the CHs send the data obtained to the BS through the path generated by the
Aquila algorithm. Figure 2 illustrates the overall procedure of the proposed technique. The
proposed MFA-AOA optimization approach has a powerful hybrid algorithmic framework
based on the behavior of the mayfly and Aquila. The best results are attained when this
technique is paired with a routing protocol.

Cluster maintenance is one of the most critical stages in this analysis for balancing
the load amongst clusters. Due to inter-cluster communication, clusters closer to the BS
consume too much energy. Therefore, the cluster maintenance stage is necessary to prevent
node failure. It increases the lifespan of data transmission from the SN to the BS. The MFA
algorithm is re-initialized to cluster the network if the CH’s residual energy exceeds the
threshold level. The CHs are then chosen using the clustering technique, and the AOA
is utilized to find the routing path between the CHs and the BS. The MFA algorithm is
used in this proposed technique to conduct an effective CH selection. The CHs are chosen
based on five criteria: node level, node density, distance from neighbors, distance from
the BS, and residual energy. These characteristics are used to choose the best CH from the
available nodes.
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3.4.1. Evaluation of MFA Fitness Function

The best CH is chosen from the network’s collection of sensors using the identical
fitness function of MFA. To avoid using a dead node as a CH during the clustering process,
the residual energy taken into account by the fitness function is used. The next step is to
choose the best CH to reduce the nodes’ energy consumption using the distance between
the nodes and the distance from the potential CH to the BS. The node degree is taken
into account when choosing the CH with the lowest normal nodes in order to keep the
node for the next rounds. Additionally, the cluster members’ transmission distances to
CH are reduced due to the enhanced centrality of the cluster member. The fitness factors
have been optimised for the best possible outcomes. The developed model fitness function
is for minimising the energy usage and thereby extends network lifespan. The fitness
function initialization parameters taken into account for CH selections are explained in the
following sections.
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3.4.2. Residual Energy

CH chooses its primary factor depending on the remaining energy in each round. The
CH rotation is based on the nodes’ residual energy, which results in energy distribution
across the network. Maximum energy is used to pick CH in this proposed network. This
metric represents the ratio of residual energy to the total energy. It can be expressed
as follows:

g1 =
1

∑R
i=1

Wr
WT

(26)

where R stands for the maximum number of nodes. Wr stands for residual energy, while
WT stands for total energy spent. Decreased value of g1 possibility of picking that node as
CH gets minimal.

3.4.3. Distance

The distance between nodes and BS determines the amount of energy consumed.
Although the separation across the node and the BS are shorter, each node consumes more
energy. Conversely, when the distance between the node and the BS is small, every node’s
energy consumption is small. As a result, routing protocols use the distance factor as a
primary measuring metric. The following is an example of a distance factor:

g2 = ∑R
i=1

S(R(i)−B)

Savg(R(i)−B)
(27)

The distance between the ith node and BS are represented by S(R(i)−B).The average
distance between ith node and BS are represented by Savg(R(i)−B). For CH selection, this
fitness measure should be at its maximum.

3.4.4. Rate of Energy Consumption

Scr or the energy consumption rate is a key component in determining whether a node
is suitable for CH selection. It is the difference between the node’s starting energy and the
residual energy of the node after the first round. The variation between initial and residual
energy is considered in the computation. As a result, Scr is measured and compared to
the voltage threshold. If the computed value is lesser than the threshold value, that node
is designated as CH. Otherwise, the node remains a member node. The Scr is computed
as follows:

g3 = ∑R
i=1

(
S(c(i) − S(sc(i)

)
S(c(i))

(28)

S(c(i)) denotes the present location energy value of the ith node in the preceding round
and indicates the energy used by the ith node in the current round. When the number
of iterations increases by one, the energy from the last round becomes the new round’s
beginning energy. The node with the minimum energy within the cluster is not considered
while computing the average threshold value of ECR. A node that uses a lot of energy is
not suitable for CH selection.

3.4.5. Node Degree

It describes the number of SNs associated with each CH. The CHs with higher clusters
lose their energy over longer periods of time, hence the CHs with fewer sensors are chosen.
Equation (29) expresses the node degree.

g4 = ∑R
i=1 Ji (29)

where Ji denotes the number of SNs.
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3.4.6. Node Centrality

Node centrality describes how far a node is from its neighbours.

g5 = ∑R
i=1

√(
∑j∈m s2(i, j)/n(i)

)
Network Dmensions

(30)

where n(i) denotes the number of neighboring SNs.
Each objective value is given a weight value. In this instance, a single objective

function replaces the multiple objectives. α1, α2, α3, α4 and α5 are the weighted values. The
Equation (32) depicts the single objective function.

The fitness function equation of MFA is as follows:

g(x) = Max{G} (31)

G =
1

α1g1 + α2g2 + α3g3 + α4g4 + α5g5
(32)

where, ∑5
i=1 αi = 1, αi ∈ (0, 1).

The values of α1, α2, α3, α4 and α5 are 0.33, 0.25, 0.20, 0.12 and 0.1 respectively. To
prevent the node failure as a CH, the α1 is given consideration for taking residual energy
as a higher priority. Then, the α2 and α3 are given second and third priority concerns to
locate the CH from the BS with the shortest distance possible, hence minimising energy loss.
The node degree is specified as the fourth priority to choose the CH with the lowest node
degree α4. In order to strengthen the connection between the CH and cluster members, the
node centrality α5 is also given final priority.

To determine the optimal solution, the fitness values of the updated and initial mayflies
are compared. After analyzing each fitness value, the best mayfly in the present location is
selected as CH. The optimum fireflies’ fitness value is also compared to the gbest to achieve
the optimal solution.

3.5. Routing Using the Aquila Algorithm

Data transmission to the BS in a clustered WSN is energy-efficient due to suitable
routing between CHs. After figuring out the best paths for every CH in the network, this
study uses AOA, as explained in Section 3.3, to identify the best routes for sending raw
data to BS.

3.5.1. Initialization

Each Aquila in AOA-based routing reflects a path from each CH that the MFA has
chosen to the BS, which is defined as the prey area. Each Aquila has a dimension equal to
the number of CHs chosen by MFA. Every Aquila position in the network is initialised in
the solution vector to represent a subsequent SN towards the BS. Assuming Ai represents
the ith Aquila in the network, each Aquila’s position is assigned at random SNs from CHs.

3.5.2. Fitness Function for Routing

The fitness function uses three factors to determine the best path from CH to BS. The
first constraint determines the distance between CH and SN, the second determines the
distance between SNs and BS, and the third determines the residual energy of SNs. Below
are the derivations of these three parameters.

(a) Distance between CH and Sensor nodes:

PsCHSN stands for a function that calculates the distance between the CH and its chosen
SNs at random. Equation (33) contains the derivation of this function.

PsCHSN = ∑x
i=1 dist(CHi, SN(CHi) (33)
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where SN(CHi) represents sensor node of ith CH.

(b) Distance between SNs and BS:

A function called PsSNBS is used to calculate the separation between the SNs and BS
that were chosen at random. It is energy-efficient to send data from CH to BS over SNs if
the distance between those two devices is kept to a minimum. This function’s derivation is
provided in Equation (34).

PsSNBS = ∑x
i=1 dist(SN(CHi), BS) (34)

(c) Residual energy of SNs:

The function RESN is used to determine the residual energy of the subsequent SNs. If
SNs have enough remaining energy, it would be advantageous to be selected as SN by a
CH. Using Equation (35), the residual energy of SNs is computed as:

RESN = ∑x
i=1 RESN(CHi) (35)

As the overall fitness function AOrouting is a minimization problem, the calculation of
PRESN , which reflects a minimization of RESN , is done using Equation (36).

PRESN =
1

RESN
(36)

The concluding fitness function combining the parameter functions described in
Equations (33)–(35) is regarded as a minimization problem and is determined using
Equation (37), which is also a minimization problem.

Minimize AOrouting =
1
2
[PsCHSN + PsSNBS + PRESN ] (37)

3.5.3. Updating AOA

As stated in Section 3.3, AOA employs four processes to identify the optimal solution.
Equation (11) is utilised in the expanded exploration phase to update the locations of the
AOA, and Equation (37) is employed to compute fitness. The process is carried out until
the iteration stopping requirement is not met if the updated population’s fitness is higher
than the previous one. Equations (13), (21) and (22) are also used to update the locations
in the other three stages of narrowed exploration, extended exploitation, and narrowed
exploitation. The top positions are determined using the best fitness value for each phase.
The best optimal path to the BS is discovered once all AOA iterations have been completed.
This energy-efficient channel enables sending aggregated data to the BS.

Algorithm 1 shows the pseudo-code for the proposed hybrid clustering algorithm
in MFA-AOA. Initially, a random population Q0 is created and split into two groups: Q1
(MFA) and Q2 (AOA). The whole populations of MFA and AOA (Q1 and Q2) are assessed
by the suggested multi-objective function during each iteration of MFA-AOA. The two
populations Q1 and Q2 are then shuffled and reassembled into new Q1 and Q2 populations,
which are then chosen at random. The procedure is continued until it reaches the maximum
number of iterations. When the proposed MFA-AOA is finished, the algorithm’s global
best solution is decoded to find the relevant CHs.
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Algorithm 1: Proposed hybrid MFA-AOA Algorithm

#MFA optimization
initialize population of male mayflies
initialize population of female mayflies
Calculate the fitness and update Q1best
Find pbest and gbest
while (iteration < max_iteration)

Update male mayfly’s velocity using Equation (4)
Update female mayfly’s velocity using Equation (8)
Perform crossover using Equation (9)
Distinct male and female mayfly
Replace the worst solution with the latest one
Compute the fitness function of the best mayfly using Equation (32)
Update pbest and gbest

End while
Return Q1best
#AOA optimization
initialize population of Q2:

While
(

t ≤
(

2
3

)
max2

)
do

Calculate fitness and update Q2best
For (i = 1:M)

IF rand < 0.4
Update Q2newi by using Equation (11) #Extended Exploration

Else;
Update Q2newi by using Equation (13) #Narrowed Exploration

End If
Compute the fitness value of Q2newi and Q2i using Equation (37)
Update Q2i
End For

Else:
For (i = 1:M)

IF rand < 0.4
Update Q2newi by using Equation (21) # Extended Exploitation

Else;
Update Q2newi by using Equation (22) # Narrowed Exploitation

End If
Compute the fitness value of Q2newi and Q2i using Equation (37)
Update Q2i
End For

Else if
t = t + 1

End while
Return Q2best
Post-process results and discussions

BS constantly monitors the remaining energy of the nodes to prevent node failure
during data transmission. The AOA method finds the best transmission path from the SN to
the BS through CH. It finds the shortest way to lower the nodes’ energy consumption. This
MFA and AOA-based optimum CH selection and route development created an energy-
efficient WSN. As a result, an energy-efficient WSN is utilized to increase the total number
of packets transferred to the BS at data transmission, extending the network lifetime.
Algorithm 1 shows the pseudo-code for the proposed hybrid MFA-AOA algorithm.

4. Results and Discussion

The proposed MFA-AOA optimized protocol, as well as the existing Hybrid Red Deer-
Simulated Annealing (RDSA) [34], Genetic Algorithm-PSO (GAPSO) [35], Clan Separator
Elephant Herding Optimization operator (CSEHO) [36], and Moth Flame-GA (MFGA) [37]
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techniques, are tested using MATLAB 2019b. The simulation setup consists of 500 SNs
distributed randomly in a network area of 1500 × 1500 square meters, with one sink node
at 500 m. Three thousand five hundred rounds were employed in the implementation
process. In addition, Table 1 shows the simulation setup used to implement the proposed
MFA-AOA optimized protocol.

Table 1. Simulation parameters of the proposed MFA-AOA protocol.

Simulation Parameters Values

Network Area 1500× 1500 square meters
Number of Sensor Node 500

Number of Nodes used for implementation 3000
Location of the sink node (500 m, 500 m)

Size of the packets 10,000 bits
Initial energy of the node 2 Joules

Range of nodes 20–30 meters
EAmp 100 pJ/bit/square meters
EElec 5 nJ/bit
EDA 50 nJ/bit/signal

Maximum Network Throughput 1 Mbps data

The proposed MFA-AOA optimized protocol and the existing RDSA [34], GAPSO [35],
CSEHO [36], and MFOGA [37] techniques are first examined in terms of network lifetime,
energy usage, throughput, and packet delay with SN density.

Figures 3 and 4 show the comparison of the proposed MFA-AOA optimized routing
protocol with existing protocols in terms of network lifespan, energy usage, and density of
SN. Since it included the advantages of MFA into the AOA for determining the superior
nodes of the network as CH, the network lifespan of the proposed MFA-AOA optimized
protocol and the existing methods demonstrate a better life with a systematic increment
of SNs. Furthermore, this dominance of the proposed MFA-AOA optimized protocol is
achieved by replacing MFA’s searching phase with AOA’s hunting phase throughout the
search space to preserve the trade-off between exploitation and exploration.
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The proposed MFA-AOA optimized protocol and the existing schemes’ energy con-
sumptions are shown to grow consistently as SN density increases. However, because it
comprises different techniques that combine candidate solutions into prospective offspring
solutions, the proposed MFA-AOA optimized protocol can sustain energy consumption.
This analysis of future offspring focused on identifying and eliminating the worst solutions
that avoid the least critical SNs from being chosen as CHs. The proposed MFA-AOA
optimized protocol enhances network lifespan by 9.78%, 11.24%, and 14.25% with varied
density of SNs, compared to the RDSA [34], GAPSO [35], CSEHO [36], and MFOGA [37]
techniques. With different densities of SNs, the proposed MFA-AOA optimized routing
protocol reduces energy consumption by 10.22%, 11.26%, and 14.28%, which is better than
the existing systems.

Figures 5 and 6 compare proposed MFA-AOA optimized protocols with existing
protocols in terms of throughput and packet delaying of SN densities. The proposed
MFA-AOA optimized protocol’s throughput is verified to be superior to the RDSA [34],
GAPSO [35], CSEHO [36], and MFOGA [37] techniques with scaling increases in the density
of SNs. Furthermore, this capacity of the proposed protocol is improved proportionally
because of the benefits of hunting, which assisted in better CH selection and prevented
packet drop to an expected level.
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Similarly, the proposed MFA-AOA optimized protocol achieves significantly lower
packet latency. The selection of prospective CH in the network was always ensured
by categorizing solutions and creating important offspring solutions. As a result, the
proposed MFA-AOA optimized protocol enhances throughput by 11.36%, 12.79%, and
14.45%, respectively, when compared to the RDSA [34], GAPSO [35], CSEHO [36], and
MFOGA [37] techniques. Furthermore, with variable densities of SNs, the proposed MFA-
AOA optimized protocol reduces packet latency by 9.27%, 10.34%, and 12.78%, which is
better than the existing systems. The proposed MFA-AOA optimized protocol, as well as
the RDSA [34], GAPSO [35], CSEHO [36], and MFOGA [37] techniques, are compared in
terms of the number of living and dead SNs, throughput, and mean residual energy over
several rounds.

The comparison of the number of living SNs and the number of dead SNs deployed in
the network of the proposed MFA-AOA optimized protocol and the RDSA [34], GAPSO [35],
CSEHO [36], and MFOGA [37] techniques are shown in Figures 7 and 8. As the network’s
energy is saved by choosing only the possible SNs as CH throughout the clustering process,
the proposed MOA-AOA optimized routing protocol is superior to the state-of-art schemes
in terms of the number of alive nodes maintained. This selection technique eliminates
unnecessary clustering because the worse SNs are not picked as CH nodes. It keeps the
network’s energy at a reasonable level by preventing wasteful energy-draining in the
SN. As a result, the proposed MFA-AOA protocol maintains the number of living nodes
by 12.54%, 13.63%, and 15.28%, respectively, compared to the RDSA [34], GAPSO [35],
CSEHO [36], and MFOGA [37] techniques. Furthermore, the proposed MFA-AOA protocol
reduces the number of dead nodes by 11.46%, 13.28%, and 14.63% with varied rounds,
which is superior to the existing methods.

Figures 9 and 10 show the comparison of throughput and mean residual energy
of the proposed MFA-AOA optimized protocol as well as the RDSA [34], GAPSO [35],
CSEHO [36], and MFOGA [37] techniques with different rounds.



Sensors 2022, 22, 6405 19 of 25

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26 
 

 

number of living nodes by 12.54%, 13.63%, and 15.28%, respectively, compared to the 

RDSA [34], GAPSO [35], CSEHO [36], and MFOGA [37] techniques. Furthermore, the 

proposed MFA-AOA protocol reduces the number of dead nodes by 11.46%, 13.28%, and 

14.63% with varied rounds, which is superior to the existing methods. 

 

Figure 7. Different Number of Rounds vs. Alive sensor nodes [34–37]. 

 

Figure 8. Different Number of Rounds vs. Dead sensor nodes [34–37]. 

Figures 9 and 10 show the comparison of throughput and mean residual energy of 

the proposed MFA-AOA optimized protocol as well as the RDSA [34], GAPSO [35], 

CSEHO [36], and MFOGA [37] techniques with different rounds. 

Figure 7. Different Number of Rounds vs. Alive sensor nodes [34–37].

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26 
 

 

number of living nodes by 12.54%, 13.63%, and 15.28%, respectively, compared to the 

RDSA [34], GAPSO [35], CSEHO [36], and MFOGA [37] techniques. Furthermore, the 

proposed MFA-AOA protocol reduces the number of dead nodes by 11.46%, 13.28%, and 

14.63% with varied rounds, which is superior to the existing methods. 

 

Figure 7. Different Number of Rounds vs. Alive sensor nodes [34–37]. 

 

Figure 8. Different Number of Rounds vs. Dead sensor nodes [34–37]. 

Figures 9 and 10 show the comparison of throughput and mean residual energy of 

the proposed MFA-AOA optimized protocol as well as the RDSA [34], GAPSO [35], 

CSEHO [36], and MFOGA [37] techniques with different rounds. 

Figure 8. Different Number of Rounds vs. Dead sensor nodes [34–37].

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 9. Different Number of Rounds vs. Throughput [34–37]. 

 

Figure 10. Different Number of Rounds vs. Mean Residual Energy [34–37]. 

The proposed MFA-AOA strategy outperforms the other schemes in terms of 

throughput because the local search ability initiated by MFA into AOA allows for en-

hanced CH selection. MFA’s local search capability is also essential to minimize local 

points of optimization problem and stagnation to the maximum level, regardless of the 

number of implementation cycles performed. As a result, the proposed MFA-AOA pro-

tocol enhances throughput by 8.52%, 10.98%, and 12.69%, respectively, compared to the 

existing techniques. In addition, the mean residual energy of the proposed MFA-AOA 

protocol improves by 9.56%, 11.78%, and 13.76% with a varied number of rounds, which 

is superior to the benchmarked methods. 

Figure 11 shows the convergence rate of the proposed MFA-AOA algorithm for 100 

nodes. The performance of MFA, AOA, and hybrid MFA-AOA is calculated at the 15th 

iteration. Hybrid MFA-AOA provides an optimal path with the minimum time con-

sumption compared to the individual MFA and AOA algorithm performances. 

Figure 9. Different Number of Rounds vs. Throughput [34–37].



Sensors 2022, 22, 6405 20 of 25

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26 
 

 

 

Figure 9. Different Number of Rounds vs. Throughput [34–37]. 

 

Figure 10. Different Number of Rounds vs. Mean Residual Energy [34–37]. 

The proposed MFA-AOA strategy outperforms the other schemes in terms of 

throughput because the local search ability initiated by MFA into AOA allows for en-

hanced CH selection. MFA’s local search capability is also essential to minimize local 

points of optimization problem and stagnation to the maximum level, regardless of the 

number of implementation cycles performed. As a result, the proposed MFA-AOA pro-

tocol enhances throughput by 8.52%, 10.98%, and 12.69%, respectively, compared to the 

existing techniques. In addition, the mean residual energy of the proposed MFA-AOA 

protocol improves by 9.56%, 11.78%, and 13.76% with a varied number of rounds, which 

is superior to the benchmarked methods. 

Figure 11 shows the convergence rate of the proposed MFA-AOA algorithm for 100 

nodes. The performance of MFA, AOA, and hybrid MFA-AOA is calculated at the 15th 

iteration. Hybrid MFA-AOA provides an optimal path with the minimum time con-

sumption compared to the individual MFA and AOA algorithm performances. 

Figure 10. Different Number of Rounds vs. Mean Residual Energy [34–37].

The proposed MFA-AOA strategy outperforms the other schemes in terms of through-
put because the local search ability initiated by MFA into AOA allows for enhanced CH
selection. MFA’s local search capability is also essential to minimize local points of op-
timization problem and stagnation to the maximum level, regardless of the number of
implementation cycles performed. As a result, the proposed MFA-AOA protocol enhances
throughput by 8.52%, 10.98%, and 12.69%, respectively, compared to the existing techniques.
In addition, the mean residual energy of the proposed MFA-AOA protocol improves by
9.56%, 11.78%, and 13.76% with a varied number of rounds, which is superior to the
benchmarked methods.

Figure 11 shows the convergence rate of the proposed MFA-AOA algorithm for
100 nodes. The performance of MFA, AOA, and hybrid MFA-AOA is calculated at the
15th iteration. Hybrid MFA-AOA provides an optimal path with the minimum time
consumption compared to the individual MFA and AOA algorithm performances.
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Moreover, the number of rounds until the first node death, half of the node death, and
the last node death in the network are explored, and the proposed MFA-AOA protocol is
compared with the existing state-of-art methods [34–37].
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From Figure 12, the proposed MFA-AOA protocol experiences the first node death at
round 3400, whereas the first SN death of the compared techniques occurs between rounds
2695 and 3200. The adaptive technique included by MFA into the basic AOA scheme
throughout the exploitation process is primarily responsible for the proposed MFA-AOA
protocol’s remarkable performance.
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Figure 13 shows that the proposed MFA-AOA protocol is estimated to be half of the
node’s death by round 4250, whereas the other techniques have half of the node’s death
between 3520 and 3892 rounds. The proposed AOA protocol’s critical performance is
achieved by including a flexible exploitation mechanism that varies based on the poten-
tiality of solutions found during the mating phase. Furthermore, Figure 14 shows that the
proposed AOA protocol’s last node death occurs at 4450 rounds, whereas the compared
schemes occur between 3500 and 4126 rounds.
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This extraordinary capacity of the proposed AOA protocol can be seen owing to the
policy implemented for keeping the degree of exploration and exploitation at a predictable
level irrespective of the number of rounds in implementation. The suggested AOA’s signifi-
cant performance is mostly due to the numerous selections of random sample solutions
generated from the same cluster in which the commander solution exists and from the
remaining clusters in the network. Due to the great searching efficiency of MFA combined
with the dynamic exploratory character of AOA, it can be stated that the proposed hybrid
MFA-AOA algorithm outperforms other existing algorithms.

In comparison to the standardised schemes employed for the investigation, Table 2
shows the best, worst, mean, median, and standard deviation in the time complexity of
the proposed MFA-AOA protocol. The findings clearly demonstrated that the presented
MFA-AOA, when measured in terms of best, worst, median, and SD in time complexity,
is superior since it included the benefits of MFA and AOA in the optimal CH and path
selection, hence reducing the difficulty incurred in CH selection.

Table 2. Time complexity comparison of proposed MFA-AOA with existing schemes.

Best Worst Mean Median SD

Proposed MFA-AOA 1.6842 2.9245 1.8947 1.9084 0.1610
RDSA [34] 1.9873 3.4122 2.1115 2.1015 0.1911

GAPSO [35] 2.2741 5.6486 2.2340 2.2115 0.2042
CSEHO [36] 2.3941 12.1641 2.6163 2.6141 0.2141
MFOGA [37] 2.5123 13.2462 3.1211 3.024 0.3042

5. Conclusions

For ensuring lifespan enhancement and energy stability in WSNs, the MFA-AOA
optimized method was presented in this paper: a combination of the global optimization
capabilities of the MFA optimization method with the local optimization ability of AOA.
This inclusion of AOA in MFA aids in achieving a balance between exploration and
exploitation in the selection of CH for long-term energy stability. Meta-heuristic qualities
of MFA and AOA are inherited in this clustering algorithm for locating essential CHs and
the best BS placement to improve energy efficiency. In comparison to the existing RDSA,
GAPSO, CSEHO, and MFOGA methods, the simulation results of the proposed MFA-AOA-
based routing protocol enhanced network lifespan by 9.78%, 11.24%, and 14.25%.

Furthermore, with different densities of SNs, the proposed MFA-AOA routing protocol
reduces energy consumption by 10.22%, 11.26%, and 14.28%, which is better than the
existing methods. Furthermore, it increased the median number of living nodes by 12.54%,
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13.63%, and 15.28%, respectively, while maintaining median normalized energy of 9.56%,
11.78%, and 13.76%, which was superior to the existing schemes. Therefore, it has been
determined that the proposed MFA-AOA should be used to endorse practical issues as part
of the future scope of work. Furthermore, optimization techniques based on self-adaptive
approaches may be employed to address the network’s energy consumption problem.
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Symbols Meanings
MTX Transmitter
MRX Receiver
k Number of bits
s Distance
Melec Amount of energy
s0 Threshold distance
εed Energies for the free space
εnp Multipath model
g(x) Fitness function
Pbest Best position
Pbest1 First mayfly in the swarm
N total number of male mayflies
xt

j Male mayfly’s present location
j Search space
t Time
Ct+1

jk Velocity

xt+1
j Updated position of male mayfly

y1 and y2 Positive attraction constraints
Pbestjk Optimal position of mayfly had ever visited
r2 Distance between male and female mayflies
h Gravity coefficient
α Fixed visibility coefficient
yt

j Female mayfly’s present location
yt+1

j Updated position of female mayfly

f itness
(

yj

)
Fitness value of female mayfly location

f itness
(

xj

)
Fitness value of male mayfly location

Yjk The location of the female mayfly in dimension k
Xjk jth element of the location of the male mayfly in dimension k
rm f Cartesian separation between the male and female mayflies
r Random number between [−1, 1]
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f l Random walk coefficient
itr present iteration number
β Random value Є [0, 1].
roff Value at random inside a certain range
Yi(t + 1) ith individual’s location at iteration t + 1
Ybest (t) Best location at the current iteration
YM (t) Mean locations of all individuals at the current iteration
Yi(t) Location of the ith individual at iteration t
L Swarm population size
T Maximum permitted iteration number
rand Random number in a Gaussian distribution between 0 and 1
E Dimensionality of the problems
Levy (E) Levy flights
γ Fixed value of 1.5
Γ Gamma function
YR (t) Randomly picked candidate
x and y Spiral form
r1 Fixed value ranging from 1 to 20
V Constant 0.00464.
E1 Array of integer numbers
ω Constant 0.004
σ Two little fixed integers
H1 Tracking motions
H2 Flight slope of the AO
Q Quality function
R Maximum number of nodes.
Wr Residual energy,
WT Total energy spent
S(R(i)−B) Distance between the ith node and BS
Savg(R(i)−B) Average distance between ith. node and BS
Scr Energy consumption rate
S(c(i)) Present location energy value of the ith node in the preceding round
Ji Number of Sensor nodes
n(i) Number of neighboring Sensor nodes
α1, α2, α3, α4 and α5 Weighted values
α1, α2, α3, α4 and α5. 0.33, 0.25, 0.20, 0.12 and 0.1
Ai ith Aquila in the network
SN(CHi) Sensor node of ith CH
PsSNBS Separation between the SNs and BS
RESN Residual energy of the subsequent SNs
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14. Basak, H.; Kundu, R.; Singh, P.K.; Ijaz, M.F.; Woźniak, M.; Sarkar, R. A union of deep learning and swarm-based optimization for
3D human action recognition. Sci. Rep. 2022, 12, 5494. [CrossRef] [PubMed]

15. Murugadass, G.; Sivakumar, P. A hybrid elephant herding optimisation and cultural algorithm for energy-balanced cluster head
selection scheme to extend the lifetime in WSNs. Int. J. Commun. Syst. 2020, 33, e4538. [CrossRef]

16. Rambabu, B.; Reddy, A.V.; Janakiraman, S. A hybrid artificial bee colony and bacterial foraging algorithm for optimised clustering
in wireless sensor network. Int. J. Innov. Technol. Explor. Eng. 2019, 8, 2186–2190.

17. Tabatabaei, S.; Rajaei, A.; Rigi, A.M. A novel energy-aware clustering method via lion pride optimiser algorithm (LPO) and fuzzy
logic in wireless sensor networks (WSNs). Wirel. Pers. Commun. 2019, 108, 1803–1825. [CrossRef]

18. Shyjith, M.B.; Maheswaran, C.P.; Reshma, V.K. Optimised and dynamic selection of cluster head using energy efficient routing
protocol in WSN. Wirel. Pers. Commun. 2021, 116, 577–599. [CrossRef]

19. Poonguzhali, P.K.; Ananthamoorthy, N.P. Improved energy efficient WSN using ACO based HSA for optimal cluster head
selection. Peer-to-Peer Netw. Appl. 2020, 13, 1102–1108. [CrossRef]

20. Wang, Z.; Ding, H.; Li, B.; Bao, L.; Yang, Z. An energy efficient routing protocol based on improved artificial bee colony algorithm
for wireless sensor networks. IEEE Access 2020, 8, 133577–133596. [CrossRef]

21. Hassan, A.A.H.; Shah, W.M.; Habeb, A.H.H.; Othman, M.F.I.; Al-Mhiqani, M.N. An improved energy-efficient clustering protocol
to prolong the lifetime of the WSN-based IoT. IEEE Access 2020, 8, 200500–200517. [CrossRef]

22. Al Mazaideh, M.; Levendovszky, J. A multi-hop routing algorithm for WSNs based on compressive sensing and multiple objective
genetic algorithm. J. Commun. Netw. 2021, 23, 138–147. [CrossRef]

23. Osamy, W.; El-Sawy, A.A.; Salim, A. CSOCA: Chicken swarm optimisation based clustering algorithm for wireless sensor
networks. IEEE Access 2020, 8, 60676–60688. [CrossRef]

24. Zhang, Z.; Li, J.; Xu, N. Robust optimisation based on ant colony optimisation in the data transmission path selection of WSNs.
Neural Comput. Appl. 2021, 33, 17119–17130. [CrossRef]

25. Li, J.; Luo, Z.; Xiao, J. A hybrid genetic algorithm with bidirectional mutation for maximising lifetime of heterogeneous wireless
sensor networks. IEEE Access 2020, 8, 72261–72274. [CrossRef]

26. Li, X.; Keegan, B.; Mtenzi, F.; Weise, T.; Tan, M. Energy-efficient load balancing ant based routing algorithm for wireless sensor
networks. IEEE Access 2019, 7, 113182–113196. [CrossRef]

27. Elsmany, E.F.A.; Omar, M.A.; Wan, T.C.; Altahir, A.A. EESRA: Energy efficient scalable routing algorithm for wireless sensor
networks. IEEE Access 2019, 7, 96974–96983. [CrossRef]

28. Zhou, L.; Ge, C.; Hu, S.; Su, C. Energy-efficient and privacy-preserving data aggregation algorithm for wireless sensor networks.
IEEE Internet Things J. 2019, 7, 3948–3957. [CrossRef]

29. Bhattacharyya, T.; Chatterjee, B.; Singh, P.K.; Yoon, J.H.; Geem, Z.W.; Sarkar, R. Mayfly in harmony: A new hybrid meta-heuristic
feature selection algorithm. IEEE Access 2020, 8, 195929–195945. [CrossRef]

30. Barshandeh, S.; Masdari, M.; Dhiman, G.; Hosseini, V.; Singh, K.K. A range-free localisation algorithm for IoT networks. Int. J.
Intell. Syst. 2021. [CrossRef]

31. Lizy, P.J.; Indra, N.C. Metaheuristic energy efficient protocol for heterogeneous WSN. Mater. Today Proc. 2021, in press. [CrossRef]
32. Abualigah, L.; Yousri, D.; Abd Elaziz, M.; Ewees, A.A.; Al-Qaness, M.A.; Gandomi, A.H. Aquila optimiser: A novel meta-heuristic

optimisation algorithm. Comput. Ind. Eng. 2021, 157, 107250. [CrossRef]
33. Zhao, J.; Gao, Z.M.; Chen, H.F. The Simplified Aquila Optimization Algorithm. IEEE Access 2022, 10, 22487–22515. [CrossRef]
34. Rajeswarappa, G.; Vasundra, S. Red Deer and Simulation Annealing Optimization Algorithm-Based Energy Efficient Clustering

Protocol for Improved Lifetime Expectancy in Wireless Sensor Networks. Wirel. Pers. Commun. 2021, 121, 2029–2056. [CrossRef]
35. Sahoo, B.M.; Pandey, H.M.; Amgoth, T. GAPSO-H: A hybrid approach towards optimising the cluster based routing in wireless

sensor network. Swarm Evol. Comput. 2021, 60, 100772. [CrossRef]
36. Lavanya, N.; Shankar, T. Hybrid based energy efficient cluster head selection using camel series elephant herding optimisation

algorithm in WSN. Int. J. Adv. Comput. Sci. Appl. 2020, 11.
37. Sharma, R.; Vashisht, V.; Singh, U. eeTMFO/GA: A secure and energy efficient cluster head selection in wireless sensor networks.

Telecommun. Syst. 2020, 74, 253–268. [CrossRef]

http://doi.org/10.1016/j.suscom.2020.100425
http://doi.org/10.1007/s41870-020-00461-5
http://doi.org/10.1016/j.dcan.2021.03.005
http://doi.org/10.1007/s11276-021-02885-8
http://doi.org/10.1109/TII.2021.3117976
http://doi.org/10.1038/s41598-022-09293-8
http://www.ncbi.nlm.nih.gov/pubmed/35361804
http://doi.org/10.1002/dac.4538
http://doi.org/10.1007/s11277-019-06497-6
http://doi.org/10.1007/s11277-020-07729-w
http://doi.org/10.1007/s12083-019-00814-3
http://doi.org/10.1109/ACCESS.2020.3010313
http://doi.org/10.1109/ACCESS.2020.3035624
http://doi.org/10.23919/JCN.2021.000003
http://doi.org/10.1109/ACCESS.2020.2983483
http://doi.org/10.1007/s00521-021-06303-0
http://doi.org/10.1109/ACCESS.2020.2988368
http://doi.org/10.1109/ACCESS.2019.2934889
http://doi.org/10.1109/ACCESS.2019.2929578
http://doi.org/10.1109/JIOT.2019.2959094
http://doi.org/10.1109/ACCESS.2020.3031718
http://doi.org/10.1002/int.22524
http://doi.org/10.1016/j.matpr.2021.01.232
http://doi.org/10.1016/j.cie.2021.107250
http://doi.org/10.1109/ACCESS.2022.3153727
http://doi.org/10.1007/s11277-021-08808-2
http://doi.org/10.1016/j.swevo.2020.100772
http://doi.org/10.1007/s11235-020-00654-0

	Introduction 
	Related Works 
	Proposed MFA-AOA Algorithm 
	Energy Model 
	Mayfly Algorithm 
	Position of Male Mayflies 
	Movement of Female Mayflies 
	Crossover 

	Aquila Algorithm 
	Approach 1: Extended Exploration 
	Approach 2: Narrowed Exploration 
	Approach 3: Extended Exploitation 
	Approach 4: Narrowed Exploitation 

	Proposed Method 
	Evaluation of MFA Fitness Function 
	Residual Energy 
	Distance 
	Rate of Energy Consumption 
	Node Degree 
	Node Centrality 

	Routing Using the Aquila Algorithm 
	Initialization 
	Fitness Function for Routing 
	Updating AOA 


	Results and Discussion 
	Conclusions 
	References

