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Son cosas chiquitas. 

No acaban con la pobreza, 

no nos sacan del subdesarrollo, 

no socializan los medios de producción y de cambio, 

no expropian las cuevas de Alí Babá. 

Pero quizá desencadenen la alegría de hacer, 

y la traduzcan en actos. 

Y al fin y al cabo, actuar sobre la realidad 

y cambiarla aunque sea un poquito, 

es la única manera de probar 

que la realidad es transformable. 

 

Eduardo Galeano 

 

 

 

 

 

 

 

 

 

 





 

i 

AGRADECIMIENTOS 

Por más que mis directores me hubieran dicho varias veces que ésta era mi 
tesis, para que me responsabilizara por su desarrollo, toda la ayuda y el 
apoyo que he recibido a lo largo de estos años hacen que esta tesis sea el 
resultado del esfuerzo de muchas más personas, a las que quiero agradecer 
desde estas líneas. 

En primer lugar quiero agradecer a mis directores de tesis, Sergio 
Ausejo y Juan Tomás Celigüeta, por querer que participara en el proyecto 
DHErgo, por confiar en mí y haberme dedicado tanto tiempo y energía. A 
Sergio quiero agradecer sobretodo que haya insistido siempre para apuntar 
más alto y que me haya ayudado a ver los caminos que se abrían a medida 
que avanzaba esta investigación. A Juanto quiero agradecer especialmente la 
practicidad con la que me ha ayudado a centrar mis esfuerzos, sus 
comentarios y correcciones, y la empatía que siempre me ha transmitido, 
tanto en los éxitos como en los fracasos. 

Quiero extender mis agradecimientos también a Ángel Suescun, que 
me ha mostrado siempre una disponibilidad incondicional para ayudarme a 
resolver las dudas que me surgían y a interpretar las cuestiones matemáticas 
más espinosas. Además quiero agradecerle a él y a Juan Flaquer la 
oportunidad que me brindaron de ser su asistente para las clases de álgebra 
de la Universidad. 

También estoy agradecida por la ayuda que me ha dado Antonio 
Martín Meizoso en el análisis de la base de datos y en la definición de los 
índices empleados en la comparación de movimientos. Le agradezco mucho 
su interés hacia las cuestiones que le planteaba y la disponibilidad que 
siempre me ha mostrado. Gracias a él y a Eli Viles por aclararme muchos 
temas de estadística. 

Quiero agradecer además a Diego Borro su disponibilidad y sus 
contribuciones en temas de colisiones. También le agradezco a Carlos 
Buchart por haberme guiado en mis primeros pasos con NURBS y            
B-splines. 

Muchas gracias a mis compañeros de despacho(s), porque han sido 
muy buenos compañeros de viaje y me han ayudado tanto en cuestiones 



ii Agradecimientos 

 

relacionadas con la tesis como en desconectar en los ratos de descanso. 
Especialmente quiero agradecerle a Yaiza por su alegría y por su amistad 
dentro y fuera del CEIT y a Alex por todo lo que compartimos, codo a 
codo, en los primeros tres años de esta aventura. 

Muchas gracias también a María Ibarburu, por ayudarme en gestionar 
las dificultades y el estrés de estos años, y a Juan y las chicas de pintura por 
hacer descansar mi hemisferio izquierdo y distraerme de la tesis con 
actividades creativas y divertidas. 

Finalmente, quiero agradecer a mi familia italiana y argentina por todo 
el apoyo y el cariño que siempre me han dado. Gracias de forma especial a 
mis padres, por creer en mí, apoyarme, y darme las herramientas que me 
han permitido llegar hasta aquí, y a mi Nonna Anna por su dulzura y por 
confiar en que lograría todos mis objetivos. No puedo expresar todo el 
agradecimiento que tengo hacia Emmanuel, por haberme acompañado, 
querido, animado, apoyado y ayudado durante todos estos años. Esta 
experiencia fuera de Italia se la debo a él, y a él está dedicada esta tesis. 

 



 

iii 

ABSTRACT 

Digital human models are more and more frequently employed in product 
development processes to take human factors into account since the earliest 
stages of product design. To simulate the interaction of different user 
populations with a variety of environments, human motion prediction is a 
useful tool, as it aims at predicting the motion that a generic subject of a 
user population would reasonably perform to carry out a specific task in a 
given environment. 

The motivation of the research work presented in this thesis is the 
improvement of current motion prediction methods in terms of realism and 
representativeness. On the one hand, dynamics is included in our 
formulation, in order to yield physically sound predictions and in view of 
the fact that the forces and torques acting on and within the human body 
play a relevant role in discomfort perception. On the other, a hybrid 
approach is followed, combining the advantages of both data-based 
methods (which rely on actually performed motions for reference) and 
knowledge-based methods (which rely on the identification of the motion 
control laws underlying task-oriented motions). 

First the method is introduced, and is then applied to the prediction 
of clutch pedal depression motions. For this purpose, a database of clutch 
pedal depressions was analysed to gain insight into the subject-related and 
environment-related features that mostly affect the motion and into the 
different behavioural patterns that people exhibit carrying out the task. 

Both a qualitative and quantitative validation of our motion 
prediction method are presented. The former consists in comparing the 
most relevant kinematic and dynamic magnitudes in the motion against 
actually performed motions; the latter is based on the definition of a novel 
measure, which represents the realism and the representativeness of the 
predicted motions, and which is compared to the inherent variability of 
actually performed motions. 

The results obtained show that the proposed motion prediction 
method is a valid alternative to current methods, when both the physical 
soundness and the realism of the motion are required in the prediction. 
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RESUMEN 

Los modelos humanos digitales son cada vez más empleados en el 
desarrollo de nuevos productos, a fin de tener en cuenta la ergonomía del 
producto desde las primeras fases del diseño. La predicción del movimiento 
humano es una herramienta útil para simular las interacciones de diferentes 
poblaciones de usuarios con varios entornos, ya que permite predecir el 
movimiento que un sujeto genérico de una población de usuarios 
razonablemente realizaría para llevar a cabo una tarea específica en un 
entorno dado. 

La motivación del trabajo de investigación presentado en esta tesis es 
mejorar los métodos de predicción actuales en términos de realismo y 
representatividad. Por una parte, la dinámica se incluye en nuestra 
formulación a fin de generar movimientos físicamente correctos y puesto 
que las fuerzas y los pares que actúan en el cuerpo humano desempeñan un 
papel importante en la percepción del discomfort. Por otra parte, se sigue 
un enfoque híbrido, que trata de combinar las ventajas de los métodos 
basados en datos (que emplean movimientos realmente efectuados como 
referencia) y los métodos basados en el conocimiento (que se basan en la 
identificación de la ley de control del movimiento que guía la realización de 
la tarea). 

En primer lugar, se presenta un nuevo método de predicción del 
movimiento y posteriormente se aplica a la predicción de movimientos de 
pisado de embrague. Con ese objetivo, se ha analizado una base de datos de 
dichos movimientos para identificar y comprender cuáles son los factores 
humanos y del entorno que más afectan al movimiento y cuáles son los 
diferentes patrones de comportamiento empleados por las personas. 

Se presenta una validación del método tanto cualitativa como 
cuantitativa. La cualitativa consiste en la comparación entre el movimiento 
predicho y los movimientos realmente realizados en términos de las 
magnitudes cinemáticas y dinámicas más relevantes; la cuantitativa se basa 
en la definición de una nueva medida, que representa el realismo y la 
representatividad de los movimientos predichos, y que se compara con la 
variabilidad inherente a los movimientos reales. 
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Los resultados obtenidos muestran que el método propuesto es una 
alternativa válida a los métodos actuales, cuando se requiere que la 
predicción genere un movimiento físicamente correcto y realista. 
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GLOSSARY 

Anatomical planes and axes: planes and axes used to describe positions and 
orientations in relation to the human body; they are defined in the standard 
anatomical position shown below. 

 

Animation: the process of guiding the DoFs in a model in order to perform a 
user-defined motion. 

Basis functions: a set of linearly independent piecewise polynomials employed in 
the B-spline parameterisation. 

Control points: coefficients of the linear combination of the basis functions 
employed in the B-spline parameterisation. They constitute the design variables for 
which the optimisation problem is solved. 

Data-based: prediction methods (or conditions included in the prediction) that 
seek to resemble actually performed motions. 

DHM: abbreviation for Digital Human Model. 
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Distal: further from the pelvis. 

End-effector: controlled point in the DHM in charge of fulfilling a specific task in 
the motion. 

Hybrid: a combination of data-based and knowledge-based methods (or 
conditions included in the prediction). 

Key-frames: relevant frames in the motion at which a goal (or sub-goal) is 
accomplished. 

Knowledge-based methods: prediction methods (or conditions included in the 
prediction) that seek to follow the motion control law that guides actually 
performed motions. 

Motion control law: set of criteria which (more or less consciously) drive the 
human motion. 

Prediction: the process of generating a realistic and representative motion of a 
generic specimen of the target population. 

Prediction environment: the environment employed in the prediction, in which 
the predicted motion is carried out. 

Prediction scenario: the combination of the subject and the environment 
employed in the prediction. 

Prediction subject: the subject employed in the prediction, which represents a 
generic specimen of the target population. 

Proximal: closer to the pelvis. 

Reference environment: the environment in which the motion selected as 
reference was performed. 

Reference motion: actually performed motion which is to be resembled in data-
based simulations. 
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Reference scenario: the combination of the subject that performed the reference 
motion and the environment it was performed in. 

Reference subject: the subject that performed the motion selected as reference. 

Root joint: joint that connects the root segment to the ground. 

Root segment: segment in the DHM that is connected to the ground through the 
root joint. 

Scenario: combination of the subject performing the motion and the environment 
it is performed in. 

Simulation: the process of generating a synthetic motion, which has not actually 
been performed. Both animation and prediction methods fall into the present 
definition of simulation. 

TD: abbreviation for Time-averaged Distance, it quantifies the resemblance 
between the predicted motions and the actually performed motions by the target 
population in the prediction environment. 

Target Populations: the groups of users for which a product design is being 
developed. 

WPMV: abbreviation for Within Population Motion Variability, it represents the 
inherent variability of actually performed motions by a specific population in the 
prediction environment. 
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CHAPTER 1 

CHAPTER 1: INTRODUCTION 

In an expanding, global and competitive economic environment, the 
concept-to-market time of a new product is required to be as short as 
possible. Since the 1960’s, computer aided design (CAD) technologies have 
been employed to help the designers of new products increase their 
productivity and improve the quality of the designs (Narayan, 2008). Shortly 
after, the first digital models of the human body were developed (Bubb and 
Fritzsche, 2009) and integrated in virtual designs to assess the performance 
or the safety of the human-environment interaction. 

Since then, digital human models (DHMs) have been more and more 
employed in product and workplace design (Chaffin, 2007; Duffy, 2009; 
Monnier et al., 2006), allowing human factors to be taken into account since 
the earliest phases of the design. As computers evolved into more powerful 
and capable machines, improved and more sophisticated software 
applications were developed to represent the interaction between the target 
customers (or workers) and the designed system. Such applications allow to 
virtually assess the ergonomics or the safety of the design, thus reducing the 
physical prototyping process, and consequently the development costs and 
the concept-to-market time of new products. 

In order to study the interaction of the end user and the product, two 
main features are required by ergonomic evaluation software: a DHM and 
the motion it is to perform. The DHM must be defined with sufficient 
accuracy to represent the task being studied and must adapt to the majority 
of the target users of the product (Figure 1.1). For what concerns the 
motion of the DHM, certain applications (for instance motion analysis) may 
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employ actually performed motions, reconstructed in the virtual scene, in 
order to evaluate the kinematics and dynamics involved in the motion. 
However, in order to test a new product without resorting to a costly and 
time-consuming prototype for each change in the design, motion prediction 
is an interesting and useful tool. In fact, as explained later (Section 1.2), 
motion prediction is concerned with predicting the motion that 
representative members of the target users would perform while interacting 
with the new design. A novel design therefore can be first tested directly in 
the virtual space, delaying the actual physical prototype to a more final stage 
of the designing process, thus expediting the designer’s work. 

 
Figure 1.1: RAMSIS DHMs representing short to tall females and short to tall males 

(reproduced from http://www.lfe.mw.tum.de/en/research/labs/ramsis). 

In order to help the designer evaluate the future product, the DHM 
should be able to represent the realistic behaviour of the human interacting 
with the new environment, not only in terms of anthropometry, but also of 
motion and discomfort perception. 

1.1 DIGITAL HUMAN MODELS 

In the study of human motion, DHMs are mathematical descriptions of the 
human musculoskeletal system, which provide digital representations of the 
human body inserted into a virtual environment. Several assumptions and 
simplifications are usually made, which depend on the accuracy with which 
the DHM must resemble the actual human body. For instance, to study a 
human motion on the whole, the model may not be very concerned with a 
detailed description of each articulation, whereas other biomechanical 
studies (for instance studies focused on the behaviour of a specific joint) 
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may require a higher level of detail in the representation of the specific part 
of the human body under examination. 

In most studies concerning general human motion, the skeletal system 
is modelled with a multi-body approach, which is followed also in this work. 
Multi-body human models can be separated into musculoskeletal and purely 
skeletal models, according to whether the muscles in the human body are 
included in the model or not (Figure 1.2). The work presented in this thesis 
has been developed for purely skeletal models, in which the action of the 
muscles is represented as an equivalent set of forces and torques acting at 
the joints in the DHM. 

 
Figure 1.2: Purely skeletal model of the DHM Santos (adapted from (Xiang et al., 

2010)) on the left, and musculoskeletal model of the DHM AnyBody (reproduced from 

www.anybody.aau.dk/?Repository) on the right. 

Open chain multi-body DHMs can be represented with a tree 
structure (Figure 1.3) in which a segment, called root segment, is connected 
to the ground by a joint, called root joint. Segments which are closer to the 
root joint are called proximal whereas segments which are further away 
from the root joint are called distal. The points in the DHM which are in 
charge of fulfilling the goals in the motion are called end-effectors, and are 
generally located in the most distal segments of the DHM. 
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Figure 1.3: Interior and exterior model of Santos DHM (adapted from (Yang et al., 

2004)). The root joint is shown in colours, and the end-effectors are marked by black 

rectangles. 

Several DHMs are commercially available in either visualisation 
software or in complete ergonomic tools (Bubb and Fritzsche, 2009). JACK 
(Figure 1.4a) is a very common human model which allows to integrate 
user-defined methods and procedures, visualise them in the virtual space 
and apply analysis tools for factory workspace planning or vehicle design. 
Several aerospace and vehicle companies employ JACK, as well as various 
universities, such as the HUMOSIM Laboratory of the University of 
Michigan. 

Human Builder (Figure 1.4b), originally called SAFEWORK, is a 
DHM conceived for workplace design in factory planning as well as product 
design, and is integrated in the CAD software tool CATIA of Dassault 
Systèmes. Human Builder can be used in conjunction with several modules 
which allow posture and movement analysis to improve human comfort, 
performance and safety. 

The DHM most commonly employed in vehicle design is RAMSIS 
(Figure 1.4c), developed by Human Solutions, which is used by more than 
75% of all car manufacturers. The anthropometry of the DHM is 
determined through an international anthropometric database which 
encompasses percentiles and secular growth models. Several functions are 
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available to analyse vehicles and vehicle interiors for cars, heavy machinery, 
buses and aircraft in terms of accessibility, vision, comfort, safety, etc. 

The newest development in DHMs is Santos (Figure 1.4d), developed 
in the Virtual Soldier Research programme by the University of Iowa, which 
is an anatomically correct human model, with over 100 degrees of freedom 
(DoFs). Santos is employed in the software application Santos Engine, 
which allows to predict postures and motions to test equipment design and 
to assess task performance. Currently research is being carried out to create 
a musculoskeletal version of Santos, and to develop modules that enhance 
the software abilities in performance evaluations. 

 
Figure 1.4: A workspace design application of JACK (a) and Human Builder (b), 

RAMSIS mannequins inside a car (c), and Santos climbing a ladder (d). Images adapted 

from http://www.deskeng.com/articles/aaaxns.htm, http://www.uniplm.de/CATIA-

Human-Builder-Simulation-89.html, http://www.appliedgroup.com/ramsis, and 

http://www.engineering.uiowa.edu/~amalek/DHL. 

1.2 MOTION PREDICTION 

For most of the tasks that people carry out, the DHMs representing the 
human body are kinematically redundant systems, which means that they 
present more degrees of freedom (DoFs) than those strictly necessary to 
fulfil the goals in the task. For instance, even the simple task of reaching a 
close target with a hand does not uniquely define the position of the wrist 
and elbow joints (Figure 1.5). Therefore, the motion is not completely 
determined by the goal to be accomplished, and usually there are infinite 
sets of DoF values which ensure the fulfilment of the task. 

Nevertheless, not all the possible motions that accomplish the goal 
are realistic. Among the infinite sets of DoF values which ensure the 
fulfilment of the task, only some represent motions that people would 
actually perform. Actually performed motions can generally be grouped into 
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strategies and styles, according to the behaviours exhibited by the people 
performing them. 

 

Figure 1.5: Due to the kinematic redundancy of the DHM, the end-effector (small black 

sphere) can reach the target (orange sphere) with different configurations. The large 

spheres represent the joints of the DHM. 

Strategies are defined when evident differences are observed in the 
performance. For instance, in seat belt buckling motions, subjects present 
three different strategies to reach the latch plate (Monnier et al., 2003): 
some people use their right hand, others use their left from above their 
shoulder and others use their left from below their shoulder (Figure 1.6). 
Styles, on the other hand, can be defined as more subtle differences which 
are generally identified by a more detailed analysis of the motion. 
Continuing with the seat belt buckling example, styles may be depend for 
instance on the orientation of the hand reaching the latch plate or on the 
coordination between the hand and the torso (Monnier, 2004). 

 
Figure 1.6: Different strategies employed to reach the seat belt latch plate: right hand 

(a), left hand up (b) and left hand down (c). Adapted from (Monnier, 2004). 
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The generation of realistic motions and the representation of the 
variety in behaviour adopted in actually performed motions are the aims 
and challenges in motion prediction. In this sense, motion prediction is 
opposed to motion animation. Both animation and prediction are 
concerned with the generation of motions which have not actually been 
performed. Defining with the term “simulation” the process of creating a 
synthetic motion, both animation and prediction methods can be regarded 
as motion simulation methods. However, the difference between animation 
and prediction, initially defined by Badler (1993)1, lies in the goal of the 
simulation. Animation consists in moving an articulated figure in order to 
perform the motion expected by the animator. The goal is to produce a 
motion that looks realistic, although it is exaggerated or defies the laws of 
physics (as it often occurs in cartoon animation). Hence, animation is a 
suitable tool to be used in videogames or film animation, and is therefore 
highly concerned with the performance of the algorithm (which in the case 
of videogames is required to reach real time) and with the simplicity of use 
of the method (i.e. few parameters to be tuned). 

Human motion prediction, on the other hand, is a field concerned 
with generating the motion that a member of a specific population would 
reasonably perform to carry out a task in a given environment. The 
predicted motion, therefore, must be realistic, representing actual human 
behaviour. Additionally, if real subjects perform a task adopting different 
behaviours, the prediction method should be able to generate realistic 
representations of all the variety of behaviours actually encountered. The 
prediction therefore must be both realistic and representative, not focusing 
on the motion of a specific individual, but reflecting the behaviours of the 
entire population being predicted, hereinafter referred to as “target 
population”. All the above-mentioned characteristics make motion 
prediction an interesting and useful tool to be applied in ergonomics, in 
safety analysis or in motion analysis. The high level of realism and 
representativeness expected from motion prediction leads the performance 
of motion prediction algorithms to be of secondary importance. 

                                                      

1 In (Badler et al., 1993) the term “simulation” refers to what is called “prediction” in 
this text. 
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1.3 MOTIVATION 

This thesis has been developed initially in the frame of the European 
project DHErgo (Digital Humans for Ergonomic design of products), in 
the Seventh Framework Program of the European Commission. The 
project is led by a European consortium composed by: 

 ERT (Europe Recherche Transport) for project coordination and 
management; 

 the following academic research organisations: IFFSTAR (French 
Institute of Science and Technology for Transport, Development 
and Networks), CEIT (Centre of Studies and Technical Research of 
Gipuzkoa), Technical University of Munich and Free University of 
Brussels; 

 the software editors Human Solutions and ESI Group; 

 the end-users (car manufacturers) Renault, PCA (Peugeot Citroën) 
and BMW. 

 
Figure 1.7: DHErgo project, www.dhergo.org. 

The aim of the project was to develop more advanced DHM tools for 
the ergonomic design of products, especially concerning the automotive 
industry. These tools were required to perform the following tasks: 

 evaluation of the motion-induced discomfort; 

 prediction of population behaviour (especially including age 
effects, as elderly people represent an increasing part of the 
drivers’ population); 

 prediction of the interaction between the human body and 
the task-related environment. 

The research core of the project was composed by the following work 
packages: 

http://www.dhergo.org/
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 collection of anthropometric data to generate more accurate 
models of the human body; 

 motion capture of several subjects representing different 
target populations, performing vehicle-related tasks; 

 dynamic reconstruction of the captured motions to create a 
motion database; 

 development of a novel dynamic motion prediction method, 
to overcome the limitations of current prediction methods; 

 development of discomfort models. 

The work carried out in this thesis stems from the aim of the 
DHErgo project to overcome the limitations of current motion prediction 
methods. In fact, as detailed later (Chapter 2), the methods employed in 
motion prediction can be classified according to whether they rely on 
actually performed motions as a reference in the prediction (data-based 
methods) or whether the prediction is based on the identification of the 
motion control law which guides the motion (knowledge-based methods). 

The main advantage of data-based methods lies in the intrinsic 
realism of the reference motion. However, these methods present the 
drawback of requiring, for each task to be predicted, a large database of 
motions, among which to select the most adequate reference. Additionally, 
current data-based motion prediction methods are only kinematic, as they 
do not take into account the forces and torques acting on and within the 
DHM. 

On the other hand, knowledge-based methods tend to employ 
dynamic performance measures to represent the motion control law. 
However, motion control laws are generally difficult to identify, as even 
simple reaching motions seem to require the combination of several 
performance measures at once. Their difficulty of conferring realism to the 
predicted motion is the main drawback of knowledge-based methods. 

Therefore, current motion prediction methods seem to require 
improvement in order to be successfully employed in the ergonomic 
evaluation of designs. Kinematic predictions may not be sufficient to assess 
the motion-induced discomfort, as the dynamics involved in the motion 
seem to play a relevant role in discomfort perception. Additionally, a 
motion generated through kinematic prediction may not be actually feasible 
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as the forces and torques required to carry out the motion are not taken into 
account. Moreover, the extrapolation capabilities of purely data-based 
predictions may not be satisfactory to allow new products to be tested 
virtually. On the other hand, purely knowledge-based predictions do not 
seem to ensure adequate levels of realism to be implemented in ergonomic 
evaluation tools. 

The work package of the DHErgo project dealing with the 
development of a novel motion prediction method is organised as shown in 
Figure 1.8. 

 
Figure 1.8: Workflow of the DHErgo work package concerned with the development of 

a motion prediction method. 

The work carried out in this thesis follows the workflow presented in 
Figure 1.8.  

1.4 OBJECTIVES 

The main purpose of this research work is the development a novel motion 
prediction method to overcome some of the limitations encountered in the 
existing methods. This purpose leads to the definition of the following 
objectives. 
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 The first objective of this thesis is developing a dynamic motion 
prediction method in order to generate physically sound motions. 
Moreover, by taking into account the forces and torques acting on 
and within the human body (which play a relevant role in discomfort 
perception) the motion-induced discomfort may be assessed more 
accurately. Additionally, the dynamic human-environment interaction 
must be described and taken into account in the prediction. 

 The second objective consists in including both data-based and 
knowledge-based principles in the prediction method, that is 
therefore hybrid as it combines both data-based and knowledge-based 
approaches. The purposes of the data-based contribution to the 
method are to enhance the realism of the prediction through the 
actually performed reference motion, and to allow to reproduce the 
variability in behaviour exhibited in actually performed motion. The 
knowledge-based contribution seeks to reduce the dependency on the 
goodness of the reference motion and to improve the extrapolation 
capabilities of the prediction method. 

o The data-based contribution to our motion prediction method 
requires a motion database analysis, in order to identify the most 
relevant features that affect the kinematics and dynamics of the 
motion and to structure (i.e. organise) the database consequently. 
A structured database, in fact, is needed to identify the most 
adequate reference motion for each motion to be predicted. 

o Additionally, the analysis of the motion database serves the 
purpose of gaining insight into the motion performance, which is 
useful in the motion control law identification required by the 
knowledge-based contribution to the method. 

 The third objective of this thesis is to develop a method that can be 
employed for the ergonomic evaluation of product design in 
industrial development and research. For this purpose, the method is 
required to be a general method, which is not oriented to the 
prediction of only a specific group of users but that can predict a 
variety of target populations. 

 The fourth objective consists in the application of the developed 
method to the prediction of a specific task, which should contain the 
most relevant features to test the method. The clutch pedal depression 
in vehicles seems an adequate task to be used as test case: it is a task-
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oriented motion in which specific goals must be met, it requires 
dynamic interaction between the subject and the environment, and 
nevertheless it remains a relatively simple task. Additionally, the 
DHErgo project provided us with all the necessary experimental data 
for this specific task. 

 Simple tasks are generally employed as test cases for motion 
prediction methods, especially for validation purposes, which 
constitute the fifth objective of the thesis. In fact, to carry out a 
qualitative and quantitative validation, the predicted motions must be 
compared to motions actually performed in the same conditions as 
the ones being predicted. Therefore, complex motions do not 
constitute an appropriate candidate since to carry out the validation it 
would be necessary to find other subjects that perform the task with 
exactly the same style throughout the motion, which is difficult to 
find. 

1.5 ORGANISATION OF THE DOCUMENT 

The content of this thesis is organised as described hereafter. 

The first chapter has introduced the main aspects concerning motion 
prediction. The motivation for this thesis has been presented and the 
objectives to be achieved have been set. 

Chapter 2 is focused on the review of the state of the art in human 
motion simulation methods: both animation and prediction methods are 
included, as they share similar methodologies in the generation of motions 
which have not actually been performed. The most relevant validation 
procedures proposed for motion prediction methods are subsequently 
presented, followed by a section dedicated to experimental data capture and 
analysis in which the motion analysis methods encountered in the literature 
are reviewed. 

The hybrid dynamic motion prediction method developed in this 
research work is presented in Chapter 3, which describes the mathematical 
modelling employed in our optimisation-based method. The inputs and 
outputs are defined, as well as the main steps composing the prediction 
algorithm. 

Chapter 4 is dedicated to the analysis of a database of experimental 
motions consisting of clutch pedal depressions. An overview on the 
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experimental protocol and the reconstruction process open the chapter, 
which thereafter focuses on the analysis of temporal, kinematic and 
dynamic features of the motions, which led to the structuring of the 
database. 

The application of the motion prediction method to the clutch pedal 
depression task is presented in Chapter 5, in which the test case is defined 
in terms of application of the method to a specific task, target populations 
definition and description of the contact models employed to represent the 
human-environment interactions. The results of the prediction and the 
validation of the method are discussed Chapter 6. A comparison between 
kinematic and dynamic predictions is then presented, followed by a 
comparison between motion control laws (in order to assess the most 
adequate one to represent the task), and by a comparison between data-
based, knowledge-based and hybrid approaches. Finally, the hybrid dynamic 
motion prediction method is validated, qualitatively and quantitatively, 
against actually performed motions by the target populations. 

Chapter 7 presents the conclusions which are drawn from the work 
presented in the previous chapters and proposes some future research lines. 
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CHAPTER 2 

CHAPTER 2: STATE OF THE ART 

This chapter presents a review of the state of the art in the most relevant 
topics concerning motion prediction, applied to purely skeletal DHMs (see 
Section 1.1). First a review of the methods adopted in motion simulation is 
presented (Section 2.1); as will be explained later, both animation and 
prediction methods are included in the review as they share similar 
methodologies. The validation procedures encountered in the literature are 
reported in the following section (Section 2.2). Subsequently, experimental 
data capture and reconstruction are introduced to review the methods 
developed in motion analysis (Section 2.3). Finally, the last section presents 
the conclusions drawn from the review and places the work carried out in 
this thesis in the current state of the art (Section 2.4). 

2.1 MOTION SIMULATION METHODS 

The field of motion simulation is vast and the methods developed and 
employed vary substantially depending on several features. Different 
taxonomies may be applied to classify existing methods: whether they are 
animation or prediction methods; if they consider kinematics alone or 
include dynamics; if they modify existing motions or generate the new 
motion from scratch; and whether they rely on optimisation or statistical 
modelling techniques. 

All taxonomies are useful to highlight specific aspects of the different 
formulations. In this review, existing motion simulation methods are 
presented classifying them according both to the mechanical variables 
included in the simulation and to the source of realism employed in the 
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simulation. The reason behind this choice is that both these classifications 
highlight features of motion simulation methods that are relevant to the 
context in which this research work has been carried out. 

Both animation and motion prediction are included in the review, 
since the methods developed in both fields present similar features. As 
mentioned in Section 1.2, the main difference between animation and 
prediction methods lies in the different goals of the simulation. This mainly 
affects the required validation process, as will be detailed in Section 2.2. 

For what concerns the different procedures adopted to carry out the 
simulation, both optimisation-based and statistical modelling approaches are 
presented among the methods reviewed in this chapter. The relevant 
features of each approach are detailed throughout this section. 

A graphical summary of the main simulation methods encountered in 
the literature, classified according to the considered taxonomies, may be 
found in Section 2.4. 

2.1.1 MECHANICS TAXONOMY 

The current methods used to predict human motion can be divided into 
kinematic, dynamic and static methods. The kinematic methods take into 
account only the kinematic variables of the motion, such as the joint angle 
profiles and the positions of the end-effector, i.e. the point in the DHM 
that is in charge of fulfilling the task. The dynamic methods, on the other 
hand, include dynamic variables in the prediction, such as external and 
internal forces. Finally, the static methods are only concerned with the 
generation of a posture instead of a whole motion and may involve or not 
the evaluation of forces and torques. As Multon et al. (1999) pointed out, 
the choice of which formulation to adopt depends on the requirements of 
the application. 

2.1.1.1 Kinematic Simulation 

Most of the methods developed to perform kinematic motion simulations 
are based on inverse kinematics, as opposed to forward kinematics. In 
motion simulation, forward kinematics (FK) is used to obtain the position 
x  of the end-effector given the values of the DoFs of the system θ . 
Inverse kinematics (IK) on the other hand is used to obtain the DoFs of the 
system θ  given the position x  of the end-effector: 
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 
 xθx

θxθ
fkinematicsInverse

fkinematicsForward




→:

→:
 (2.1) 

Generally, the DHM is described following a relative coordinates 
formalism. Hence, the DoFs θ  are the angles and distances between the 
segments of the multi-body DHM. 

Due to the redundancy of DoFs in DHMs (Section 1.2), there are 
infinite sets of DoF values which allow a specified point in the model to 
occupy a determined position. Among the infinite sets of DoF values, the 
most appropriate one must be identified. This process is generally carried 
out through optimisation: the returned set of DoFs is that which best 
follows a specific criterion. In motion edition, which represents a wide 
portion of kinematic simulation methods, an existing motion is available 
and the optimisation criterion generally seeks to resemble it. 

Kinematic simulation methods can be divided into per-frame and per-
key methods, according to whether IK is performed at each frame in the 
motion or only at key-frames, i.e. relevant frames in the motion at which a 
goal is accomplished. Both per-frame and per-key methods are hereafter 
described. 

Per-frame Methods 

In per-frame methods, the position of the end-effector is controlled 
throughout the motion. However, since an IK problem is defined and 
solved independently at each frame, the challenge in these methods is that 
of ensuring a smooth simulated movement. 

Monnier et al. (2003) used a per-frame method to perform kinematic 
predictions of reaching and seat belt buckling motions. To solve the IK 
problem, the authors adopted the pseudo-inverse method, an iterative 
method which updates the DoF values θ  to reach the point x : 

  φJJIxJθ ddd    (2.2) 

where J  is the Jacobian matrix defined as: 

j

i
ij θ

x
J




  (2.3) 

and J  is its pseudo-inverse. 
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The increment θd  is obtained combining two terms. The first term, 

xJ d , is in charge of reaching the desired position minimising the joint 
angle rates θd . The second term operates in the null space of J , i.e. 
modifies the joint angles without affecting the end-effector position2: 
Monnier et al. defined the vector of joint angles φd  in order to resemble 
the DoF values of an existing motion, performed in similar conditions to 
those to be predicted. The motions obtained with this approach seem not 
to present spikes due to the choice of φd . 

Other authors chose to explicitly ensure the continuity of the 
generated motions. Gleicher (2001) presents an animation method in which 
a low-pass filter is introduced to smoothen the result of the per-frame 
method. This process however may undo the work done by the per-frame 
algorithm (i.e. the constraints may no longer be met), so the per-frame 
simulation and the filtering process are performed iteratively. 

On the other hand, the animation method presented by Lee and Shin 
(1999) avoids discontinuities by using a hierarchical B-spline fitting to 
approximate the motion obtained with the per-frame method (the main 
properties of B-spline curves are detailed later in Section 3.5.1). The DoF 
profiles are fitted with multilevel B-splines, which are a linear combination 
of B-splines characterised by a different number of control points, yielding 
a coarse-to-fine hierarchical approximation. 

Per-frame methods have also been used in combination with path 
planning techniques to simulate the motion of an articulated figure carrying 
out a task while avoiding obstacles in the environment (Pan et al., 2010; 
Shapiro et al., 2007; Yamane et al., 2004). In (Yamane et al., 2004) and in 
(Pan et al., 2010), the goal is to generate human-like motions for object 
manipulation in constrained environments (i.e. in which obstacles are 
present). The motion of the articulated figure carrying out the task is 
obtained by adjusting the result of randomised motion planning techniques 
in order to resemble the motion performed by a real subject in similar 
conditions. The main difference between the works of Yamane et al. and 
Pan et al. lies in that the former considers environments with few obstacles 
while the latter is concerned with simulating motions in highly cluttered 
areas or tight spaces, in which obstacle avoidance is the primary aim and 

                                                      

2 Due to the redundancy of DoFs, the null space of J  is not an empty set. 
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naturalness comes second. Shapiro et al. (2007) on the other hand presented 
a motion editing method in which a given motion is modified in order to 
avoid user-defined obstacles in the environment. Similarly to Yamane, the 
method is better suited for open environments with few obstacles rather 
than tight spaces. 

Per-key Methods 

Opposed to per-frame methods, per-key methods apply IK only at relevant 
frames in the motion (key-frames), at which the end-effector position must 
be ensured. The time span from one key-frame to the next is called time-
period, and during this period the DoF values are obtained by modifying a 
given motion in order to match the DoF values, obtained through IK, at the 
key-frames. 

Bindiganavale and Badler (1998) retargeted an original motion to a 
different subject by imposing that between key-frames the new velocities θ  
of the DoF profiles must be proportional to the velocities in the original 

motion Oθ . For each DoF θ : 

211 )(·)(→)(·)( VOVOV ctθctθtθctθ    (2.4) 

The coefficients 1Vc  and 2Vc  are obtained by solving a system of equations 
in which Equation (2.4) is evaluated at the key-frames delimiting the time 

period, at which both Oθ  and θ  are known. 

Zhang (2002) compared the velocity proportional (VP) approach, 
described by Equation (2.4), to an acceleration preserving (AP) approach3, 
which imposes to the new motion the same acceleration profiles as the 

original DoFs Oθ . For each DoF θ : 

21·)()(→)()( AAOO ctctθtθtθtθ    (2.5) 

The coefficients 
1Ac  and 

2Ac  are obtained as in the VP approach. The 
comparison, applied to the prediction of reaching motions, shows that both 
approaches generally yield similar results. The main advantage of VP is that 

                                                      

3 In (Zhang, 2002) the VP approach is called amplitude-proportional and the AP 

approach is called time-proportional. 
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it maintains the zero velocities of the end-effector, however if the initial and 
final values of θ  are very similar, numerical problems may arise in the 

evaluation of the coefficients 1Vc  and 2Vc , making AP preferable in such 
cases. 

The motion prediction method presented by Park et al. (2004; 2005a) 
consists in segmenting the DoF profiles of the original motion into 
increasing, decreasing and stationary periods, separated by boundary points. 
The new motion must maintain the same sequence of periods (i.e. the 
velocity of the DoFs must maintain its sign) and in each period the joint 
angle profiles are obtained by shifting and scaling the original segments. 
First the postures at key-frames are calculated, solving the IK problem with 
non-linear programming techniques. The values of the DoFs θ  in the 
DHM at each key-frame are obtained by solving a constrained optimisation 
problem, in which θ  must fulfil the end-effector spatial constraints while 
resembling the posture at the key-frame in an existing motion, performed in 

similar conditions to those to be predicted, Oθ : 

    O

T

O θθθθ min  (2.6) 

The values of the boundary points in between key-frames are obtained 
minimising the difference between the new DoF velocities θ  and the 

original DoF velocities Oθ  in the time period. For each DoF θ : 

    
T

O dttθtθ
0

2

min  -  (2.7) 

In the time period in between the boundary points, each DoF is modified 
through a VP method in order to match the boundary point values 
calculated through (2.7). 

Another per-key motion modification method was proposed by 
Unuma et al. (1995), which allows to generate new motions by blending 
existing motions together. The method is applied to the animation of 
periodical motions, such as walking or running, which are approximated 
with a truncated Fourier series. Motions are then combined linearly allowing 
both interpolation and extrapolation: considering for instance that the 
original motions are a normal walk and a tired walk, motion blending may 
interpolate a not-so-tired walk or extrapolate a very tired walk. 
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Finally, Witkin and Popovic (1995) introduced the concept of motion 
warping in per-key animation methods: not only the DoF profiles are 
modified, but also the key-frames may be displaced in time. 

Respect to per-frame methods, per-key methods present the 
advantage of being computationally more efficient. However, their main 
drawback is that they cannot ensure the fulfilment of constraints applied in 
between the key-frames. This may be problematic for constraints that need 
to be applied throughout the motion, such as joint limits or the condition 
that while walking the foot must not penetrate the floor. 

Generally, all kinematic simulation methods are computationally less 
expensive than dynamic methods. However, the conditions to be simulated 
by kinematic methods are limited as, for instance, they are not able to 
reasonably predict the motion of lifting a heavier box or the motion of a 
weaker subject. For such predictions, dynamic variables must be included in 
the problem. 

2.1.1.2 Dynamic Simulation 

Dynamic simulation methods generate predictions which take into account 
factors that actually play a front-stage role in human motion, such as effort, 
strength or endurance. Not only the joint angle profiles but also the 
system’s internal forces and torques are accounted for. These internal 
efforts are actually exerted by the muscles in the human body. However, 
instead of taking into account each muscular force, as is typical in 
musculoskeletal DHMs (Anderson and Pandy, 2001; Eriksson, 2008; 
Eriksson and Nordmark, 2011; Kaplan and Heegaard, 2001; Todorov, 
2004), in methods employing purely skeletal DHMs it is common to deal 
with joint torques, which correspond to the resulting action of all the 
muscles at a joint. 

Most of the dynamic simulation methods use inverse dynamics to 
relate the joint angle profiles (and their time derivatives) to the joint torques. 
Inverse dynamics is a process opposed to forward dynamics, in a similar 
way as IK is opposed to FK (Section 2.1.1.1). Forward dynamics (FD) is the 
process of obtaining the motion (i.e. the DoF profiles )(tθ ) given the 
forces )(tF  and torques )(tτ  that the system is subject to. On the other 
hand, the starting point of inverse dynamics (ID) is the system DoF profiles 

)(tθ  and ID consists in obtaining the efforts )(tF  and )(tτ  that generate 
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the given motion (some of the forces and torques may be given as well: 

)(ˆ tF , )(ˆ tτ ). 

 
 
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 (2.8) 

When a dynamic simulation is carried out, both the motion and the 
efforts are unknown (unless ID is performed a posteriori on a simulated 
motion). This means that the approach adopted in simulation methods is 
neither FD nor ID. However, the relationship between the DoF profiles 
and the forces and torques must be defined in the method. Adopting the 
relationship defined following ID is computationally less expensive than the 
relationship given by FD, since in ID the equations of motion are not 
integrated (Xiang et al., 2010a). 

Including dynamics in the formulation implies that the frames in the 
motion are related to one another: not only the values θ  of the DoFs, but 
also their first and second derivatives, θ  and θ , appear in the equations of 
motion. Hence F  and τ  do not depend on three independent sets of 
variables, but on variables that are related through derivation. This implies 
that as opposed to kinematics, in which each frame in the motion can be 
considered independently from the rest, in dynamics the configuration of 
the system at each instant in time is not independent from the rest of the 
motion. Nevertheless, it must be mentioned that a per-frame dynamic 
motion simulation method was proposed (Tak and Ko, 2005): however, the 
DoFs and their derivatives at each frame are considered as independent 
variables and the correct relationship between them is restored only as a 
post-process, smoothing the per-frame results by approximating the DoFs 
with B-spline curves (Section 3.5.1), similarly to (Lee and Shin, 1999). The 
method presented by Tak and Ko seeks to include dynamics in an on-line 
animation tool through control theory, applying iteratively the Kalman 
filter4 to each frame, to enforce the constraints to the motion, and a local  

                                                      

4 The Kalman filter is a control algorithm that estimates the states of a system given its 

present input measurements and the previously calculated state. In (Tak and Ko, 2005) 

the measurements are the goals of the constraints evaluated at each frame. 
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B-spline curve fitting to the current sequence of frames, to restore the 
correct relationship between the DoFs of the DHM and their derivatives. 

To include the relationship between the DoFs and their derivatives in 
the formulation, Witkin and Kass (1988) introduced a method called 
spacetime constraints. The motion of an animated figure is simulated 
solving a constrained optimisation problem in which the vector of design 
variables contains the values of the DoFs and forces of the system at each 
frame: considering n DoFs and forces and m frames, the vector of design 
variables is composed of n×m elements. The relationship between the 
variables is established by defining velocities and accelerations in each frame 
with finite differences and imposing the equations of motion as constraints. 
The objective function to be minimised is the squared sum of torques 
across the motion (see Section 2.1.2.2). The method, proposed as an 
animation tool, is applied to the simulation of a jumping motion performed 
by a 6 DoFs model of a Luxo lamp. Spacetime constraints have also been 
applied by Chang et al. (2001) to simulate a manual lifting task in the sagittal 
plane. The vector of design variables contains the values of the DoFs of the 
system at every frame and the function to be minimised is the squared sum 
of torques across the motion, as in (Witkin and Kass, 1988). 

Given the extremely large number of variables required by spacetime 
methods, only simple articulated figures have been used to generate short 
animation clips. Some authors, however, proposed to simplify either the 
model (Popovic and Witkin, 1999) or the dynamic constraints (Abe et al., 
2006; Liu and Popovic, 2002) in order to apply spacetime methods to more 
complex characters and motions in motion editing animations. Popovic and 
Witkin (1999) presented a motion transformation algorithm based on 
spacetime constraints: a given motion is simplified, adapting it to a 
simplified articulated figure, and is modified through spacetime constraints. 
The changes in the simplified figure are then transferred back to the original 
character. The method is applied to modifying a running and jumping 
motion by changing the footstep length, gravity, obstacle positions, etc. Liu 
et al. (2002) and Abe et al. (2006) instead maintained the complexity of the 
articulated figure but imposed dynamic constraints only to the linear and 
angular momentum of the figure. Apparently, momentum constraints 
reflect the aggregate effect of the natural energy storage-and-release of real 
motions, for instance jumping or running. Motion edition through 
momentum modification was also employed by Sok et al. (2010), who scale 
the momentum of the original motion to generate motions such as higher 
jumps. The new trajectory of the figure’s centre of mass (CoM) is 
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calculated, and the rest of the body is adapted to the new CoM trajectory 
while considering the constraints imposed to the motion by using IK. 

Another way of including the relationship between the DoFs and 
their derivatives in the formulation is by performing a parameterisation of 
the DoF profiles. Parameterisations allow to represent the motion with 
fewer variables than spacetime methods: the motion is assumed to be 
described by a combination of an independent set of functions and the 
coefficients of the combination constitute the new set of variables 
describing the motion. On the one hand the simulation is simplified, as the 
number of variables is reduced; on the other hand, attention must be paid 
to the number of constraints that are to be imposed to the motion, which is 
limited by the variable reduction. 

The parameterisation carried out through principal component 
analysis (PCA) seems to fulfil the requirements of animation methods (Lim 
et al., 2005; Park and Jo, 2004; Safonova et al., 2004): it drastically reduces 
the number of variables which describe the motion, significantly decreasing 
the computational cost of the simulation, while preserving the most relevant 
features of the motion. The ability of accounting for the majority of the 
DoF variations during the motion, using such a reduced number of 
variables, is possible because the principal components of the motion are 
obtained through the solution of an eigenproblem. PCA considers a matrix 
X  for each DoF, containing the values that the DoF presents across several 
experimental motions. A singular value decomposition is performed on 
each X  and only the first few “modes” (termed principal components) are 
selected to represent the motion. Depending on the type of motion and on 
the adequacy of the experimental data, 4 to 7 principal components per 
DoF were considered sufficient to simulate arm raising and reaching 
motions (Lim et al., 2005; Park and Jo, 2004), or walking, running and 
jumping motions (Safonova et al., 2004), once again imposing the 
minimisation of the squared sum of torques across the motion. 

Different parameterisations have been adopted in motion prediction 
methods, such as in the method presented by Abdel-Malek and Arora 
(2009), called predictive dynamics. Predictive dynamics is an optimisation-
based method in which the design variables are the coefficients of the 
parameterisation that is performed on the DoFs profiles. A common 
parameterisation is that of B-splines (described later in Section 3.5.1), which 
leads the design variables to be the B-spline control points. However Ren et 
al. (2007) use a Fourier series to parameterise the DoFs profiles in a walking 
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motion, given the cyclic nature of the movement. Generally in predictive 
dynamics a set of B-splines is used to parameterise the DoF profiles, and 
the torque profiles are defined as a function of the DoFs and their 
derivatives. Nevertheless, Xiang et al. (2010c) adopt a set of B-splines to 
approximate the DoF profiles, and another set to approximate the torque 
profiles (i.e. the problem is stated as a function of both the DoF and torque 
profiles). This way, however, the torques and the DoF values and 
derivatives are decoupled: the equations of motion relating the two are set 
as constraints, but these constraints are imposed only at certain frames of 
the motion, leaving the remaining frames to present incongruousness 
between kinematics and dynamics. The objective function to be minimised 
in predictive dynamics is energy related, as detailed later in Section 2.1.2.2. 
Predictive dynamics has been used to simulate several different motions. 
Kim et al. (2006; 2007) predicted pulling motions for an upper body DHM 
with one or two arms respectively. Also running (Chung et al., 2007), lifting 
(Xiang et al., 2010b) and walking motions (Xiang et al., 2007; Xiang et al., 
2011) have been predicted. In these whole body motions the ground 
reaction forces have also been taken into account: they are applied at the 
zero moment point (ZMP), and for balance the ZMP must be contained in 
the support area. To impose balance, Ren et al. (2007) instead limited the 
tangential ground forces to be balanced by friction. 

Respect to kinematic simulations, dynamic simulations allow to 
generate more physically sound motions, by including balance in the 
formulation and taking the internal efforts of the human body into account. 
This way, not only the joint range of motion (RoM) but also the joint 
maximum torques can be accounted for, producing motions that are more 
likely to be actually performed by real subjects. 

2.1.1.3 Static Simulation 

Methods have been developed also to simulate postures of articulated 
figures. Some of these methods only consider the joint angle values and 
body positions; others include joint torques and external forces. In this 
regard, these methods can be seen as special cases of the kinematic and 
dynamic simulation methods previously described, in which the motion is 
composed of only one frame. 

Static animation methods are also known as postural manipulation 
methods. Manipulation is the interactive specification of positions and 
postures for the DHM. It is an animation technique that usually involves 
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some movement of the figures, but only with the purpose to get them into a 
desired static posture. A way to manipulate a figure is to control the relative 
rotation of the segments by adjusting the joint angles using FK, as described 
in (Multon et al., 1999). However the user more commonly desires to 
specify the position or orientation of specific points and segments in the 
figure, and IK is used instead. Zhao and Badler (1994) obtained the posture 
of an articulated figure specifying spatial goals (positions and orientations). 
The fulfilment of these goals is included in the objective function of an 
optimisation problem in order to deal with the case in which all goals 
cannot be satisfied at once. Different weights can be associated to the goals 
to reflect their relative importance and different scaling factors can be 
associated to the DoFs in the figure to reflect their rigidity, improving 
posture realism. Instead of including the goals of the motion in an objective 
function, Baerlocher and Boulic (2002; 2004) defined a task-priority 
formulation. Priorities are associated to each goal, which is fulfilled at its 
best without affecting the achievement of higher priority goals. This 
formulation was developed by introducing an Augmented Jacobian matrix, 
which piles up the Jacobians of all the individual tasks of higher priority, 
and projecting the IK solution of each task on the null space of its 
augmented Jacobian, extending the concept stated by Equation (2.2). In the 
case of an unachievable set of goals, the approach followed by Zhao and 
Badler (1994) leads to a solution in which no goal is actually accomplished; 
on the other hand the task-priority formulation ensures the fulfilment of the 
goal with highest priority. Buss and Kim (2005) introduced a selectively 
damped least squares method to deal with the IK singularities. A different 
damping constant is applied to each singular value of the SVD of the 
Jacobian, effectively reducing oscillations when target positions are out of 
reach.  

For what concerns posture prediction, a kinematic method has been 
developed by Park et al. (2006). The method is able to obtain the different 
postures humans are likely to assume in order to reach a target while 
avoiding collisions with the environment. Of all the postures which achieve 
the goal, only those in which the DHM does not collide with the obstacles 
are retrieved. Other posture prediction methods have been developed 
including dynamic variables. Seitz et al. (2005) developed a force-controlled 
posture prediction method (FOCOPP) to obtain postures which require 
minimum joint strain to be maintained under static loads. Finally, predictive 
dynamics has been adapted to static postures for the upper body by Yang et 
al. (2004) and Marler et al. (2005). 
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2.1.2 SOURCE OF REALISM TAXONOMY 

Realism may constitute another feature according to which a taxonomy of 
simulation methods can be carried out: depending on the adopted source of 
realism, methods can be divided into data-based and knowledge-based 
methods. Data-based methods rely on experimental data to carry out the 
simulation, modifying and adapting them in order to fit the conditions to be 
simulated; whereas knowledge-based methods impose the simulated motion 
to follow a specific motion control law, i.e. the law which guides actually 
performed motions. Efforts have recently been made to combine the 
advantages of both approaches in a hybrid method, described in Section 
2.1.2.3. 

2.1.2.1 Data-based Methods 

The main advantage of data-based methods lies in that they provide the 
simulation with an intrinsically realistic starting point. The goal of the 
simulation method is to maintain the realism of actually performed motions 
during the modification process. The main drawback, however, is that only 
tasks that are present in the database can be simulated; hence, to consider a 
new task, additional experimental data must be recorded and analysed, 
which is a complex and time consuming process. 

Data-based methods can be divided according to whether the data are 
necessary to supply a reference motion to the simulation or whether the 
methods rely on a statistical analysis of the data. 

Methods Based on Reference Motions 

Some data-based methods which use a real motion for reference have 
already been mentioned in Sections 2.1.1.1 and 2.1.1.2. However, in this 
context, prediction methods must be distinguished from animation 
methods: as mentioned in Section 1.2, the aim of motion prediction is to 
generate a motion which is not only realistic, but also representative of the 
population to be predicted. This is why the motion editing methods used in 
animation, such as in (Gleicher, 2001; Unuma et al., 1995; Witkin and 
Popovic, 1995), simply require the availability of a motion of the same kind 
in order to modify it and generate a new motion. For instance, to obtain the 
animation of a particular way of running, nothing more than a realistic 
running motion must first be available. On the other hand, data-based 
motion prediction requires an entire database of motions in order to predict 
the motion of a subject belonging to the target population: for instance, to 
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predict the motion that a subject of specific anthropometric characteristics 
would perform to fasten a seat belt, motions representing the variety of 
behaviours actually adopted by similar subjects must be available. Such a 
database allows the prediction method to answer the question of how could 
a subject belonging to a specific population move, and how would they 
move. Hence, in data-based motion prediction methods, the data provide 
not only the source of realism but also the source of representativeness for 
the method. 

One of the first data-based motion prediction methods was presented 
by Monnier et al. (2003) and consists of three steps: constitution of a 
structured database; reference motion selection; and its modification to 
meet the constraints for the new motion. The structured database is 
composed of experimental motions of subjects performing a specific task, 
which are classified according to the subject’s characteristics, the 
environmental conditions and the descriptors associated to the adopted 
motion strategy and style. The different strategies and styles observed in 
motions belonging to the same population characterise the population 
variability. This variability may then be replicated in the predicted motions, 
hence representing the variability of the target population as well. This is 
achieved in the reference motion selection step, as described hereafter. 
Defining with the term “scenario” the combination of a subject and an 
environment, the input to generate a motion prediction is the characteristics 
of the scenario to be predicted. Among the motions composing the 
database, those carried out in the most similar scenarios to the one to be 
predicted are retrieved as eligible reference motions. By selecting among 
them one motion for each adopted strategy and style, a collection of 
reference motions is generated, which presents the variability encountered 
in actually performed motions in similar conditions. The prediction can 
then be carried out with each of the reference motions to replicate the 
encountered variability or only with the reference which represents the most 
common observed behaviour (Monnier et al., 2006). The modification 
process followed by Monnier et al. consists in modifying the end-effector 
trajectory of the reference motion in order to meet the new targets 
(adopting a VP or AP modification, Section 2.1.1.1) and in obtaining the 
DoFs profiles by solving the IK problem with the pseudo-inverse method, 
as described in Section 2.1.1.1. 

The method presented by Park et al. (2004; 2008a), called memory-
based motion simulation, is composed of three basic elements, similarly to 
the method presented by Monnier et al.: motion database, motion finder, 
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motion modification algorithm. The difference respect to Monnier et al. lies 
in how the variability in strategies and styles is identified. Monnier et al. 
identify it manually by analysing the experimental data (as described later in 
Section 2.3.3.2) and include the information in the structured database. Park 
et al. on the other hand have the motion finder module retrieve all motions 
in the database which were performed in similar scenarios to the one to be 
predicted and then apply an automatic process to identify the different 
movement techniques (detailed later in Section 2.3.3.2). Another difference 
between Monnier et al. and Park et al. lies in the motion modification 
process: the former’s modification is per-frame, whereas the latter’s is per-
key (as described in Section 2.1.1.1). 

Park et al. also presented a data-based posture prediction method 
with collision avoidance (Park et al., 2006), which was mentioned in Section 
2.1.1.3. However, the database employed in the method is not constituted 
by experimental motions: on the contrary, it is a synthetic database, 
obtained by random postures which respect the joint RoMs and ensure that 
the projection of the CoM of the DHM lies in the base of support. Finally, 
of all the postures which achieve the goal, only those in which the DHM 
does not collide with the obstacles set by the user are retrieved. 

The use of a synthetic database reduces one of the greatest drawbacks 
of data-based motion prediction methods, which is the cumbersome task of 
generating a large database of human motions that must be performed, 
captured and analysed. On the other hand though, also the main advantage 
of data-based methods is reduced, as the realism and representativeness of 
the database may not be guaranteed. 

Methods Based on Statistical Analysis 

Motion simulation methods which require data to supply a reference 
motion to the simulation may or may not need a large database depending 
on whether they are prediction or animation methods. On the other hand, 
the methods which use data for statistical analysis always require a large 
database: how large it must be mostly depends on how noisy and variable 
the data are. 

One of the statistical methods used in motion simulation is functional 
regression. Functional regression was first presented by Faraway (1997) as a 
method to build predictive models. It is a statistical modelling technique 
which relates a smooth functional response )(ty  to some known covariates 



30 Chapter 2: State of the Art 

 

x  by a combination of parameter functions )(tβ  which are to be 
estimated. The method is applied to the prediction of joint angle profiles in 
reaching motions: y  represents the joint angle profiles and the covariates x  

are the coordinates of the target location [ zyx ccc ;; ]. The aim of the method 

is to obtain the parameter functions )(tβ  which, multiplied by the 
covariates, best approximate the )(ty  curves in all motions of the database. 
Using a quadratic model, the joint angle profiles are expressed as: 
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(2.9) 

Once the β  functions are obtained by fitting Equation (2.9) to the joint 
angle profiles y  of the database, the same equation is used to predict new 
y  curves, given new target positions. However, the predicted motion may 

not exactly meet the target: only the joint space (i.e. DoF values) is modified 
by the method and no constraint on the task space (i.e. end-effector 
position) is imposed. For this reason, an a posteriori rectification is 
performed (Faraway et al., 1999) using IK, ensuring that the end-effector 
reaches the target while minimising the angle differences respect to the 
motion originally predicted through Equation (2.9). 

Another way of employing functional regression analysis to carry out 
a motion prediction, this time without the need of rectifying the final 
posture, was described by Faraway (2003). The method relies on a different 
representation of the DHM linkage, introducing the stretch pivot 
coordinates (SPCs) which ensure that the constraints to achieve the goal in 
the motion are implicitly satisfied. The number of SPCs needed to describe 
a kinematic chain matches the degree of redundancy of the chain. SPCs 
form a linearly independent set and allow to avoid solving an optimisation-
based IK problem to ensure that the goal is met: the very same values of the 
SPCs adopted in an actually performed motion may be used to determine 
the motion of a new subject performing the task in a new environment 
while ensuring that the new target is reached. However, rather than 
adopting the SPCs of a specific motion, Faraway proposes to follow two 
different paths to seek a greater generality to the predicted motion. One 
consists in averaging the SPCs of a reduced collection of motions which 
were performed in conditions similar to those to be predicted. The other 
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consists in performing a functional regression analysis of the SPCs to 
generate the predicted motion. 

Functional regression has also been used by Faraway et al. (2007) to 
model and predict end-effector trajectories using Bézier curves. Bézier 
curves (Piegl and Tiller, 1997) are similar in concept to B-spines, (Section 
3.5.1). Cubic Bézier curves are fitted to the trajectories in the database and 
the control points are obtained imposing maximum similarity between the 
original data and the Bézier curves. An average response over the complete 
data set is then generated and used to construct predicted trajectories. 

The advantages of performing a functional regression analysis lie in 
the modelling of the contribution of all the factors which are considered to 
affect the motion, gaining insight into the effect of each factor (target 
distance, subject age and gender, etc.). Moreover the method is more rapid 
than optimisation-based methods. On the other hand, the main weakness of 
these simulation methods lies in that biomechanical considerations such as 
joint RoMs or balance conditions are not included. However, unless the 
conditions to be predicted correspond to large extrapolations from the 
database, the realism of the predicted motion is supported by the realism of 
the motions in the database. 

Jung and Choe (1996) used a regression model to describe the 
discomfort associated to a specific posture while holding a certain load. Hip, 
shoulder, elbow and wrist angles, along with the load imposed by the object 
to be held, were selected as independent variables. Five different levels were 
assigned to each variable and volunteers were asked to hold all of the 
postures, obtained permuting the levels of each variable, and rate their 
perceived discomfort. A function relating discomfort to the covariates was 
then determined through regression and new postures were predicted by 
minimising the obtained discomfort function. 

Zhang and Chaffin (2000) presented a method in which motions in a 
database are fitted with a function which assumes that the change in 
position of the end-effector is distributed across the joint angles in order to 
minimise the weighted sum of their displacement. The weights in the sum 
are obtained imposing maximum resemblance to the motions in the 
database. A statistical analysis of the weights is then performed to relate 
their values to certain predictors, which account both for the target position 
and the subject’s anthropometry. Finally, the obtained weights are used to 
perform novel predictions adopting an IK method, with an accuracy which 
is similar to the trial-to-trial variability encountered in the database. 
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Mavrikios et al. (2006) used a statistical design of experiments 
approach both to evaluate the influence of human anthropometrics on car 
ingress motions and to predict novel motions. The body height, hip width 
and spinal flexibility appear to be the most relevant factors that influence 
the motion, and two levels for each factor are defined to carry out a 2

n-1 
factorial design. A 2

n-1 factorial design consists in carrying out 2
n-1 

experiments to analyse the influence of n factors on the outcome of the 
experiments, considering that each of the n factors may assume 2 different 
levels or values. The authors set the limit between the levels for each factor 
in order to have approximately 50% of the experiments performed in each 
factor level. Experiments carried out in the considered permutations of the 
factor levels are then analysed to determine how each factor affects the joint 
angle profiles or point trajectories. Regression equations are obtained to 
relate joint angle profiles and point trajectories to the influence parameters, 
and are used to predict novel car ingress motions. 

Finally, Wang (2002) combined the two data-based methods 
described in this section: those based on reference motions and those based 
on statistical analysis. Clutch-pedal operation motions are predicted 
following a similar modification method as that described in (Monnier et al., 
2003). However the reference motion is not selected from the database, but 
is obtained from the database through statistical regression. A linear 
functional regression model is used to parameterise the DoFs of the DHM, 
the end-effector trajectory and its velocity. The covariates are selected as the 
seat height, the pedal travel length, travel angle and resistance as well as the 
subject’s stature. Once the scenario to be predicted is defined in terms of 
values of the covariates, the DoFs profiles and end-effector trajectory 
obtained through the regression equations are used as reference during the 
simulation. The goals in the motion are fulfilled while resembling the 
obtained reference motion by solving the IK problem with the pseudo-
inverse method described in Section 2.1.1.1. The predictions obtained with 
a functional-regression-reference are similar to actually performed motions, 
however adopting a motion from the database as reference seems to yield 
better results, probably due to the fact that the latter has actually been 
performed whereas the former is an averaged motion, not a real one. 
Faraway, on the other hand, seems to believe that predictions which 
consider averaged motions tend to be superior to the predictions based on a 
single motion, as averages possess lower variances (Faraway, 2003). 
However, the comparison performed by Wang appears to raise the 
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suspicion that the approximation carried out in functional regression might 
reduce the realism of the motion. 

The data-based motion prediction methods described in this section 
are all kinematic. Although some animation methods reviewed in Section 
2.1.1.2 include dynamics in the formulation, data-based dynamic motion 
prediction methods have not been encountered in the literature. 

2.1.2.2 Knowledge-based Methods 

As opposed to data-based methods, knowledge-based methods do not rely 
on a database of captured motions for reference, but aim to conferring 
realism to the predicted motion through the identification of an appropriate 
performance measure to be minimised, representing the motion control law 
that drives the motion. 

The main advantage of knowledge-based methods is that they do not 
require the costly creation of an experimental database. Moreover, they may 
help to gain insight into the principles underlying human motion patterns: 
the closer the predicted motions are to actually performed motions, the 
more adequate the adopted performance will seem to be in representing the 
motion control law that guides the subjects’ motion. On the other hand, the 
difficulty of identifying an adequate performance measure is the greatest 
drawback to knowledge-based methods. Moreover, it is reasonable to 
expect not only that different tasks require different performance measures, 
but also that different performance measures are associated to the various 
strategies and styles adopted to carry out each task. In addition, complex 
tasks (such as vehicle ingress-egress motions) may require different 
performance measures across the motion, as the various sub-goals of the 
motion are accomplished. These difficulties explain the reason why current 
knowledge-based methods are concerned with the prediction of relatively 
simple motions, such as lifting or walking, and have not yet taken up the 
challenge of predicting more complex motions or representing the 
variability of behaviours that people naturally seem to exhibit. 

Furthermore, although no database of motions needs to be created 
for knowledge-based methods, experimental data should anyhow be 
available: the analysis of real motions may help attain deeper knowledge into 
the criteria adopted to carry out the considered task, and actually performed 
motions are necessary to validate the prediction method and the adequacy 
of the selected performance measure. 



34 Chapter 2: State of the Art 

 

Performance Measures 

Several performance measures have been proposed and analysed in the 
literature: 

 Joint displacement 

Joint displacement is a purely kinematic performance measure 
employed in posture prediction (Yang et al., 2004), which 
minimises the difference between the predicted values of the 

DoFs 
iq  and those corresponding to a “neutral” posture N

iq , 
defined as a relatively comfortable posture (such as standing with 
arms at one’s sides, according to Abdel-Malek and Arora (2009)). 

 



nDoFs

i

N

iii qqwf
1

2

 

(2.10) 

The sum is weighted through 
iw  to take into account the 

different motility of each DoF and to stress the importance of 
particular joints. 

 Discomfort 

The discomfort performance measure described in (Yang et al., 
2004) and in (Marler et al., 2005) is a variation of joint 
displacement: the joint displacement is normalised taking into 

account the upper U

iq  and lower L

iq  joint limits and penalty 
functions are added to represent the increase of discomfort as 
joint values approach their limits. G  is the penalty associated to 
meeting the exact joint limits and 

iQU  and 
iQL  are functions 

which decrease the penalty to zero as the DoFs move away from 
their upper and lower limits respectively. 
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 Delta-potential-energy 

The delta-potential-energy performance measure, also employed 
in posture prediction (Yang et al., 2004), minimises the change in 
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potential energy respect to the neutral posture. Considering the 
system composed by nM lumped masses: 
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where 
ih  and N

ih  represent the height of the i
th lumped mass in 

the predicted and the neutral posture, respectively. The masses of 
the segments in the DHM are the inherent weights for the motion 
of the different segments. However, this cost function only 
considers joint displacements which produce a vertical 
movement, hence the horizontal motion is uncontrolled. 

 Effort 

The effort performance measure, described in (Abdel-Malek and 
Arora, 2009), is a variation of the joint displacement applied to 
motion prediction. The neutral posture is substituted by the initial 

posture of the motion Iniq , which must be resembled by the DoF 
values )(tq  throughout the motion. 
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 Jerk 

The jerk performance measure consists in minimising the 
derivative of the acceleration across the motion: 
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This condition was introduced by Hogan and Flash (1987) to 
generate smooth motions and has been used in (Abdel-Malek et 
al., 2006) to obtain the path to be followed by the hand in a 
reaching motion, minimising the jerk of the hand’s trajectory. 

 Dynamic effort 

Dynamic effort is an energy-related performance measure 
described in (Abdel-Malek and Arora, 2009; Chang et al., 2001; 
Chung et al., 2007; Xiang et al., 2007; Xiang et al., 2010b; Xiang et 
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al., 2010c), and adopted also in animation methods, as mentioned 
earlier in Section 2.1.1.2. The cost function is defined as the 
integral of squares of all joint torques over time: 
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A variation of Equation (2.15) has been adopted in (Seitz et al., 
2005; Xiang et al., 2009; Xiang et al., 2010c; Xiang et al., 2011), 
and it consists in normalising the joint torques respect to their 
maximum value: 
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 Energy 

The mechanical energy expenditure across the motion is the 
performance measure adopted in (Ren et al., 2007). The 
mechanical energy is evaluated as the time integral of mechanical 
power across the motion: 
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where Rel

iω  is the relative angular velocity between the two 
segments linked by the ith joint. 

Another formulation to minimise the energy in the motion, 
encountered in (Kim et al., 2006; Kim et al., 2007), consists in 
minimising the metabolic energy rather than only the mechanical 
energy. The metabolic energy is the chemical energy required by 
the muscles, which is transformed into mechanical energy, heat 
and basal metabolic energy. Hence, two additional terms appear 
respect to Equation (2.17): one representing the muscle 
maintenance heat (expended in proportion to the joint torque), 
the other the minimum amount of energy needed out to carry out 
metabolism activity at rest: 
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where imh  is the generalised coefficient of the maintenance heat 

for the i
th DoF and B  is the basal metabolic rate. This cost 

function is an adaptation of the metabolic energy performance 
measure proposed by Anderson and Pandy (2001) for 
musculoskeletal models. 

 Dynamic jerk 

Dynamic jerk is defined in (Xiang et al., 2010a) as an alternative to 
the jerk magnitude: rather than evaluating the acceleration rate, 
the cost function takes into account the joint torque rate: 
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 Stability 

The stability performance measure is generally considered in gait 
or standing posture simulation. In Xiang et al., 2010b) the stability 
is defined as the deviation of the zero moment point (ZMP) 
position from the centre of the support polygon: 
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Where nb is the number of segments which compose the foot 
support boundary and 

is  is the distance between the ZMP and 
the ith boundary segment. 

Multi-Objective Optimisation 

Human motions appear to be guided by more than one performance 
measure at a time (Dingwell et al., 2010). To deal with the issue that more 
than one performance measure may have to be taken into account in order 
to improve the realism of the predicted motion, multi-objective 
optimisation (MOO) has been applied to knowledge-based motion 
simulation.  
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One way of solving MOO problems consists in converting the 
original multi-objective problem into a single-objective optimisation 
problem by combining the various performance measures and minimising 
the combination, a process termed “scalarisation”. The performance 
measures may be combined in different ways, as described in (Marler and 
Arora, 2004). The most intuitive is probably the weighted sum method, 
which obtains the cost function F  as a weighted sum of the N considered 
performance measures: 
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Another method is called the weighted min-max method and consists 
in minimising the performance measure which presents the greatest value, 
hence priority is given to the performance measure which is approximated 
the least: 
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A third method instead, called the weighted global criterion method, 
minimises the following aggregate function: 
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The parameter p  represents the emphasis that is placed on minimising the 
objective function with the highest value: when 1p , Equation (2.23) 
reduces to the weighted sum method; and when p , it reduces to the 
weighted min-max method. 

Other scalarisation methods are described in (Marler and Arora, 
2004), as well as methods which solve MOO problems without scalarisation 
(termed “vector optimisation” methods). However, the three reported 
methods are of interest since Yang et al. (2004) compared them to obtain 
posture predictions combining the following performance measures: joint 
displacement, discomfort and delta-potential-energy (Equations (2.10), 
(2.11) and (2.12), respectively). The postures obtained with MOO appear to 
differ from those obtained with each single-objective optimisation, but on 
the other hand they are very similar one another. This result may hint that 
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combining performance measures is more decisive than the way in which 
they are combined. 

MOO has also been used to investigate the most appropriate 
performance measures (Xiang et al., 2010b). As opposed to the posture 
prediction in (Yang et al., 2004), in which the weights associated to each 
performance measure are simply decided and imposed to the simulation (a 

priori articulation of preferences), Xiang et al. carried out several simulations 
with different weights, in order to assess the importance of each 
performance measure and obtain the best combination (a posteriori 
articulation of preferences). The method is applied to a lifting task motion 
prediction in which the considered performance measures are dynamic 
effort and stability (Equations (2.15) and (2.20), respectively). When only 
stability is considered, the resulting simulation differs from experimental 
data much more than when effort is considered as well. By varying the 
weights of the two performance measures, the authors are able to obtain the 
set of weights which minimise the error of the simulation respect to 
experimental data. 

When several performance measures are combined, as in MOO, it is 
useful to transform them so that they all have similar orders of magnitude 
and all share the same dimension. Different transformation methods are 
described in (Marler and Arora, 2005) and yield dimensionless functions: 

 Lower-bound approach 

The performance measure is normalised respect to the modulus 
of its minimum value: 
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The lower limit of the normalised function 
ifn  is restricted to –1 

(+1 if 0min if ) whereas the upper value is unbounded. This 
method may lead to numerical difficulties if the denominator is 
close to zero. 

 Upper-bound approach 

The performance measure is normalised respect to its maximum 
value: 
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The upper limit of the normalised function 
ifn  is restricted to 1 

whereas the lower value is unbounded. Also this method may lead 
to numerical difficulties if the denominator is close to zero. 

 Upper-lower-bound approach 

The normalised performance measure is defined as: 
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If 
ifmin  and 

ifmax  are determined accurately, the normalised 
function is restricted between 0 and 1. This method is the most 
robust transformation method as division by zero is always 
avoided for any non-constant function. 

The advantages of normalising the performance measures can be 
noticed in simulations with both a priori and a posteriori articulation of 
preferences. In the former, normalisation helps setting the weighting 
parameters more accurately since the weights strictly represent the relative 
importance that a performance measure should have respect to the others, 
not having to account for the relative magnitudes of the performance 
measures. In the latter, normalisation improves the ability to depict the 
whole feasible set of solutions by systematically varying the weights: when 
performance measures are not normalised, a single one may dominate the 
aggregated objective function, clustering the solutions in one area rather 
than spreading out evenly over the feasible set. 

Especially in simulations with a posteriori articulation of preferences, a 
convex combination of performance measures is used, i.e. the set of weights 
is restricted to sum up to 1. This way the set of weights generating a specific 
simulation is unique and it is easier to formulate a systematic approach for 
ensuring an even, consistent sampling of the weight space in terms of the 
weights’ relative values, as in (Xiang et al., 2010b). 

2.1.2.3 Hybrid Methods 

In parallel to the hybrid prediction method presented in this document, 
another method has been developed with the aim of combining the 
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advantages of both data-based and knowledge-based motion prediction 
methods (Xiang et al., 2012). 

The method proposed by Xiang et al., called hybrid predictive 
dynamics, modifies the knowledge-based framework of predictive dynamics 
(Abdel-Malek and Arora, 2009; Xiang et al., 2010b; Xiang et al., 2010c) by 
including the condition that the DoFs in the DHM should resemble 
experimental values. The adopted parameterisation consists in using          
B-spline curves to approximate the DoF profiles of an existing motion. The 
control points of the B-splines constitute the design variables for the 
optimisation problem, as described in Section 2.1.1.2. The data-based 
contribution to the method appears as a condition on the values of the 
control points, which must resemble the values with which the reference 
motion was approximated. This condition is included as an inequality 
constraint, and may also appear in the objective function along with the 
selected performance measure.  

It may be argued that the data-based information included in hybrid 
predictive dynamics is extremely limited for a prediction method, as the 
experimental data correspond to one single captured motion: not only the 
different behaviours that people exhibit are not taken into account, but 
there is no way to assess that the considered motion is actually 
representative of the motions which may be performed in similar 
conditions. However, the motivation behind the hybrid predictive dynamics 
method is to refine the purely knowledge-based predictive dynamics 
method by including limited experimental data: the aim is to enhance the 
realism of the prediction without losing the advantage of knowledge-based 
methods of not requiring the cumbersome generation of a database of 
captured motions. 

Principal component analysis (PCA), introduced in Section 2.1.1.2, 
may be regarded as a hybrid data- and knowledge-based animation method. 
On the one hand, the parameterisation carried out by PCA is data-based, 
since the principal components are extracted from experimental motions. 
On the other, the PCA simulation method adopted in (Lim et al., 2005; 
Park and Jo, 2004; Safonova et al., 2004) consists in modifying the 
contributions of each principal component with the aim of minimising the 
performance measure of dynamic effort, defined in Equation (2.15). The 
method, however, is employed only for animation purposes and apparently 
has not found application in motion prediction methods. This is probably 
due to the assumption on which PCA is based: that the DoF profiles of the 
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motion to be simulated may be expressed as a linear combination of the 
experimental DoF profiles (moreover approximated to the first k principal 
components). Such an assumption may not be acceptable for prediction 
methods, since it limits the richness of the possible profiles generated.  

2.2 VALIDATION METHODS 

As mentioned earlier, motion animation and motion prediction have 
different goals, since the former desires the output to look realistic whereas 
the latter expects the resulting motion to be both realistic and 
representative. It follows that the validation process for both kinds of 
simulations is different. 

Since motion animation is mainly concerned about the looks of the 
generated motion, the validity of the method is usually assessed by visual 
inspection: snapshots of key events in the motion are commonly reported in 
the literature, for instance in (Bindiganavale and Badler, 1998; Chang et al., 
2001; Gleicher, 2001; Lee and Shin, 1999; Park and Jo, 2004; Popovic and 
Witkin, 1999; Safonova et al., 2004; Unuma et al., 1995; Yamane et al., 
2004). 

Motion prediction, on the other hand, requires a more thorough 
analysis of the resulting motion, compared to actually performed motions in 
similar conditions. To validate data-based methods, it is common to 
compare the predicted motion against motions performed by a sample of 
the target population, recorded together with the motions that would 
compose the database, as in (Monnier, 2004; Park et al., 2004; Wang, 2002; 
Zhang, 2002). In knowledge-based approaches, instead, data are not used in 
the prediction method and must be collected specifically for validation 
purposes. Some authors, however, carry out the validation through visual 
inspection, as in motion animation (Abdel-Malek et al., 2006; Chung et al., 
2007; Jung and Choe, 1996; Kim et al., 2006; Kim et al., 2007; Marler et al., 
2005; Seitz et al., 2005; Xiang et al., 2010c; Yang et al., 2004). 

Other authors compare the results of their prediction method to 
measured data, representing the measured and predicted magnitudes in the 
same graph. Usually, not all the variables describing the motion are 
compared, but only a selection of them, called predictors, is analysed. These 
predictors are chosen among the variables as those which best characterise 
and represent the most relevant features of the motions. Examples of 
selected predictors are the torso, hip, knee and ankle flexion-extension angle 
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profiles for walking (Ren et al., 2007); the trajectories of two markers, one 
placed at the acromion (shoulder) and the other at the trochanterion (hip), 
for vehicle ingress-egress motions (Mavrikios et al., 2006); or the flexion-
extension torques at the elbow, shoulder, hip and knee for lifting motions 
(Chang et al., 2001). 

Other authors include a statistical analysis of the available data in their 
validation, and compare the results of the prediction with the average 
profiles observed in motions actually performed by subjects belonging to 
the target population, along with a measure of their variability. The 
intention is to prove that the predicted motion is contained in the range of 
natural variability encountered in actually performed motions, i.e. that the 
probability that the predicted motion could have been performed by a 
subject of the target population is not very low. This probability decreases 
with the distance between the predicted motion and the average motion of 
the target population. For normally distributed data, the probability 
decreases following a cumulative Gaussian curve. Some authors carry out a 
qualitative validation (Anderson and Pandy, 2001; Chang et al., 2001; Ren et 
al., 2007; Xiang et al., 2009; Yang et al., 2007) whereas others perform a 
quantitative validation (Faraway et al., 2007; Monnier, 2004; Park et al., 
2004; Zhang, 2002). Qualitative methods are based on comparing the 
profiles of selected kinematic and dynamic magnitudes obtained in the 
prediction against the profiles of actually performed motions in similar 
conditions. On the other hand, quantitative methods rely on the evaluation 
of a specific measure. Both qualitative and quantitative validation methods 
are presented hereafter. 

In the validation of the human walking prediction method proposed 
by Anderson and Pandy (2001), the authors considered the variability of the 
DoF profiles as an area defined by a standard deviation σ above and below 
the average profile μ. For normally distributed data, 68.27% of the data lie 
in the range delimited by μ±σ. This means that more than 30% of actually 
performed motions are expected to exceed the μ±σ range. Therefore, a 
motion that exceeds the range only states that its probability of belonging to 
the target population is below 32.73%: it does not prove the motion to be 
invalid. A range of μ±2σ might have been more critical in establishing 
whether the predicted motion may not be reasonably considered as 
performed by the target population, since only 5% of the motions 
performed by the target population fall out of that range. 
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Xiang et al. also carried out a statistical analysis of the motions 
performed by subjects of the target population, and compared the most 
relevant DoFs in walking (Xiang et al., 2009; Xiang et al., 2011) and in 
lifting (Xiang et al., 2010b) to the average profiles of the measured data. 
However, rather than representing the variability of the population, as in 
(Anderson and Pandy, 2001), the authors reported the 95% confidence 
intervals (CIs) for the mean μ. Such CIs delimit an area in which the actual 
mean of the target population has 95% probability of falling. The thickness 
of the area depends on how many data were used to evaluate the mean μ: 
the more data were available, the more exact the mean estimation is and the 
closer the CIs are to μ. What the CIs for the mean do not represent is the 
variability of the population: they only indicate how exact the estimated 
mean μ is. Hence, they are not an appropriate variability measure against 
which to compare a predicted motion. Nevertheless, if a motion falls in the 
95% CIs for the mean, it also belongs to the range delimited by the 95% 
CIs for the population (i.e. μ±2σ for normally distributed data). 

On the other hand, the information provided by the CIs for the mean 
served the purpose of the posture prediction validation presented by Yang 
et al. (2007): the validation procedure carried out consists in replicating 
captured upper body postures by adopting the posture prediction method 
described in (Yang et al., 2004). The values assumed by the selected 
predictors in the experimental postures are compared to the predicted 
values and a linear regression is performed to best fit the experimental-vs.-
predicted data. The CIs for the obtained average trend line are used to 
determine whether the desired slope value of the trend line (unity) is 
included in the calculated CIs. Moreover, the accuracy of the trend line 
respect to the data is assessed through the coefficient of determination R2. 

For what concerns quantitative validation methods (Faraway et al., 
2007; Monnier, 2004; Park et al., 2004; Zhang, 2002), the measure 
commonly employed is called time-averaged distance (TD) and quantifies 
the difference between the predicted and experimental motions: 
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where 
Px  represents the value of the predictor x  in the predicted motion 

and 
Ex  its value in the actually performed motion. The validation is carried 

out by comparing the distance between the predicted and an experimental 



2.2 Validation Methods  

 

45 

motion to the distances between actually performed motions in similar 
conditions, as detailed hereafter. 

Both Monnier (2004) and Park et al. (2004) employed TDs to validate 
their motion prediction methods (described in Sections 2.1.1.1 and 2.1.2.1) 
applied to seated reaching motions. Simple motions appear to be more apt 
for validation purposes as they do not present the variety of strategies and 
styles which characterise more complex motions. To validate a complex 
motion, in fact, it would be necessary to find at least a subject which 
performed the motion with exactly the same style during the whole motion, 
which is highly improbable. Both Monnier and Park et al. selected as 
predictors the positions of the end-effector and of the upper body joint 
centres and calculate a TD for each predictor. The TDs are then compared 
to the inherent variability in repeated reaches, quantified by applying 
Equation (2.27) to each pair of repeated reaching motions, for each of the 
selected predictors. The parameters thus obtained are termed within-subject 
inter-trial motion variability (WIMV) as they refer to reaches towards the 
same target carried out by the same subject. Park et al. observed that when 
the target in the reference motion is close to the target in the prediction 
scenario, the mean TDs are comparable to the mean WIMVs: the accuracy 
of the prediction is within the natural variability in human motion. 
However, increasing the distance between targets, the difference between 
the mean TDs and the mean WIMVs is more significant. Park et al. stated 
that the TDs are not significantly different from the WIMVs for close 
reference and prediction targets, and that the differences are significant for 
further targets, defining the threshold for significance with a p-value of 
0.05, i.e. there is less than 5% probability of a WIMV to match or exceed 
the obtained TD value. Monnier et al. on the other hand carried out the 
reaching predictions following a slightly modified methodology than the 
one described in Section 2.1.2.1: the end-effector trajectory in fact is not 
obtained modifying the reference trajectory but the actual trajectory 
followed in the experiment is imposed in the prediction. The TDs between 
the predicted and the actually performed motions are then compared to the 
WIMVs. Monnier established a threshold to determine whether a predicted 
motion is to be considered realistic or not: if the calculated TDs do not 
exceed the WIMVs by more than 10mm, the motion is considered realistic. 
However, the WIMVs are different for each predictor (the variability 
increases towards the most distal joints), therefore a relative increment 
respect to each WIMV may have been more adequate to define a threshold. 
The results of the validation process lead to state that the prediction of the 
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most distal joint trajectories is very satisfactory, probably due to the 
imposition of the actual trajectory for the end-effector, whereas the error in 
more proximal joint trajectories depends on the distance between the 
reference and the prediction targets, in agreement with Park et al. While 
Monnier focused only on seated reaching motions, Park et al. further 
extended the validation to load-transfer motions. In this case, however, the 
computed TDs are compared to a different measure of variability, termed 
between-subject inter-trial motion variability (BIMV), obtained by applying 
Equation (2.27) to motions performed in the prediction environment by 
subjects of similar anthropometric characteristics (not the same subject, as 
for WIMVs). Once again, the mean TDs appear to be comparable to the 
mean variability measures. 

TDs were employed also by Zhang (2002) to assess the validity of the 
VP and AP modification methods described in Section 2.1.1.1. The motions 
involved are once again seated reaching motions and the predictors are 
similar to those selected by Monnier (2004) and Park et al. (2004). The 
average TDs in the location of the predictors obtained with the VP and AP 
approaches are compared showing that both approaches yield very similar 
results as mentioned earlier. 

Also Faraway et al. (2007) used TDs to validate the functional 
regression method used to model and predict end-effector trajectories, 
comparing the TDs between the predicted and experimental trajectories to 
the natural WIMVs and BIMVs observed in the experimental data. The 
error in the trajectory predictions appear to be comparable to the 
encountered natural variation in human motions.  

A common inappropriate practice in validation (Prieto Valiente and 
Herrantz Tejedor, 2005) is to define a threshold according to which results 
are considered significant and methods valid: for instance, the p-value limit 
as in (Park et al., 2004) or the margin to the natural variability introduced in 
(Monnier, 2004). It is more important to report the actual value of p or of 
the WIMVs, respectively, rather than to classify the results as significant or 
not, as a slight crossing of the threshold is considered as unsatisfactory as a 
large one. 
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2.3 EXPERIMENTAL DATA CAPTURE AND 
ANALYSIS 

Regardless of whether a prediction method is data-based or knowledge-
based, experimental data are always required, either for both the database 
construction and the validation processes (data-based methods), or for the 
validation process alone (knowledge-based methods). The captured data 
must then be reconstructed adopting the same DHM employed in the 
motion prediction. Finally, the reconstructed motions should be analysed to 
characterise the temporal features of the motion, to identify the different 
strategies and styles adopted during the experiments, and/or to assess the 
influence of experimental parameters on the motions. The analysis of the 
motions composing the database is necessary in data-based prediction 
methods, and useful in knowledge-based methods, as it may provide insight 
into the most adequate performance measures for the considered task.  

An overview of the three above-mentioned steps, shown in Figure 2.1 
below, is presented in the following sections. 

 
Figure 2.1: Steps characterising experimental capture and analysis. 

2.3.1 MOTION CAPTURE 

The first step consists in recording the subjects’ kinematic and kinetic 
observable variables involved in the motion. 

For what concerns the motion’s kinematics, the capture may be based 
upon several technologies: some rely on the tracking of sensors (markers) 
located on the subject’s skin, whereas others are markerless. Among the 
sensor tracking technologies, the optoelectronic capture systems are the 
most commonly employed. In these systems, several cameras 
simultaneously record reflective or active markers placed on the subject’s 
skin. All the 2D data recorded by each camera are used in 
stereophotogrammetric methods to generate a 3D trajectory for each 
marker. The major drawback of optical systems is that the position of a 
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marker cannot be calculated unless at least two cameras see it. It is quite 
common that a marker is hidden from a camera, which occurs whenever an 
object interposes between them (the object may be an element of the 
environment or the same body of the subject). However, provided at least 
two cameras see the marker freely, its trajectory can be adequately recorded. 
The obtained marker trajectories are then used to guide the motion of a 
DHM. This process is called kinematic motion reconstruction and is 
described in the following section. 

On the other hand, in order to record the motion's kinetic variables, 
both the environment and the subject may be equipped with appropriate 
sensors. The environment with which the subject interacts may present 
measurement devices such as force sensors (Wang et al., 2000), force plates 
(Robert et al., 2006), or pressure maps (if the pressure distribution over a 
surface is to be measured). Including kinetic data in the definition of the 
motion of the DHM is a process called dynamic motion reconstruction and 
is described in the following section along with the kinematic motion 
reconstruction. 

2.3.2 MOTION RECONSTRUCTION 

According to whether the motion of the DHM is to be defined only 
kinematically or also in dynamic terms, the motion reconstruction process is 
either kinematic or dynamic. 

Kinematic motion reconstruction uses inverse kinematics to obtain, 
from the captured marker trajectories, the motion of the DHM, which may 
be described using relative (Lu and O'Connor, 1999) or natural coordinates 
(Ausejo, 2006; Ausejo et al., 2011). The methods may be divided into local 
and global methods: the former obtain the motion of each segment in the 
DHM independently from the others; the latter obtain the motion of all 
segments at once, considering the constraints imposed by the joints 
connecting the segments. The reconstruction is usually carried out defining 
an optimisation problem in which the points representing the markers on 
the DHM must minimise the difference between their position and the 
position of the captured markers at each frame in the motion. 

The reconstructed motion is an approximate representation of the 
actually performed motion due to errors deriving from the instrumental 
measurements and the assumptions made in the definition of the adopted 
DHM. For what concerns the instrumental errors, their high-frequency 
content may be eliminated by using low-pass filters on the trajectories of the 
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captured markers: the characteristic frequencies of captured motions (such 
as vehicle ingress/egress or gait) are relatively low and signals of above 5-
6Hz may generally be considered as noise (Ausejo, 2006). Lower-frequency 
errors may not be eliminated that easily, such as the skin artefact error, 
which derives from the assumption that the markers placed on the skin are 
rigidly connected to the bones. The skin artefact alone may produce errors 
of up to 4cm, due to the movement of the marker on the skin with respect 
to the underlying bone (Cappozzo et al., 1996). Errors in the reconstruction 
are due not only to the marker capture system: the adopted DHM also 
introduces errors in the reconstruction. To start with, a DHM is an 
approximation of the complex human musculoskeletal system: the accuracy 
required in the DHM definition depends on the level of detail expected 
from the reconstruction; nevertheless some assumptions are always made to 
create a mathematical model of the human body. Moreover, the DHM must 
be tailored to the subject it represents and although some anthropometric 
parameters may be measured (subject weight, body segment lengths, marker 
positions, etc.), others are usually estimated (joint centre locations, centre of 
mass locations, moments of inertia, etc.). 

For what concerns dynamic motion reconstruction, the kinetic 
response of the subject is estimated through inverse dynamics, given the 
measured kinematic and kinetic variables of the motion. Dynamic motion 
reconstruction can either be a post-process of the kinematic reconstruction 
(Robert et al., 2006) or the dynamic data can be used to adjust the kinematic 
reconstruction (Riemer and Hsiao-Wecksler, 2008), seeking to reduce the 
error it involves. In the first case, ID is performed to obtain the forces and 
torques acting at the joints in the DHM: the motion of the DHM is defined 
by the kinematic reconstruction and the external forces it is subject to are 
obtained through the measurements of the kinetic sensors, appropriately 
filtered. Robert et al. (2006) filter the results of the kinematic reconstruction 
before performing ID to avoid high values of accelerations due to the 
independently reconstructed frames. Riemer and Hsiao-Wecksler (2008), on 
the other hand, seek to perform a more accurate motion reconstruction 
considering at once the measurement of the marker positions and of the 
forces acting on the human body. The reconstruction is carried out by 
solving an optimisation problem in which the measured forces must be 
resembled while the position of the markers must match the recorded 
positions within a specified tolerance, improving the reconstruction of both 
joint angle and torque profiles. 
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2.3.3 MOTION ANALYSIS 

The analysis of databases of reconstructed motions is very useful both in 
the generation of a structured database and in the understanding of the 
human motion and the factors that affect people's performances. The 
analysis of performed motions can lead to identifying the most relevant 
frames in the motion (key-frames), establishing the natural variability in 
behaviour exhibited in the performed motions, and assessing the influence 
that experimental parameters may present on the motions. 

2.3.3.1 Key-Frames 

As mentioned earlier, key-frames are defined as the frames at which relevant 
(or key) events occur in the motion and their identification is important to 
determine the sub-goals which are set and met in actually performed 
motions. Key events are usually associated to a specific interaction between 
the subject and the environment, which may be classified according to 
whether a collision is established or avoided. The identification of the key-
frames may be carried out in several ways: through visual inspection of 
motion clips, for instance to determine when obstacles are successfully 
avoided (Chateauroux and Wang, 2010); by analysing the velocity profiles of 
the end-effector seeking null values, under the assumption that the end-
effector only stops for a reason related to the fulfilment of the task 
(Chateauroux et al., 2011); similarly, by analysing the end-effector 
acceleration profiles seeking null values, to take into account changes of 
velocity direction (Bindiganavale and Badler, 1998); or analysing the force 
sensor measurements to establish when a contact is produced, as the sensor 
would start reading a non-zero force. 

2.3.3.2 Strategies and Styles 

A common goal in database analysis is to identify the different behaviours 
exhibited while carrying out a specific task: for instance, seat belt reaching 
(Monnier, 2004; Monnier et al., 2003), vehicle ingress or egress (Ait El 
Menceur et al., 2009; Ait El Menceur et al., 2008; Chateauroux and Wang, 
2010; Chateauroux et al., 2011), or lifting motions (Park et al., 2005b). As 
mentioned earlier (Section 2.1.2.1), the behaviours can be classified 
according to the adopted strategies or styles. Strategies usually differ one 
from the other in such a clear way that they may be identified through visual 
inspection of the motion clips. For instance, Monnier et al. (2004; 2003) 
report that for seat belt reaching there are three different strategies 
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according to how the latch plate is reached: with the right hand; with the 
left hand above the left shoulder; and with the left hand below the left 
shoulder. On the other hand, motion styles (also referred to as sub-
strategies) present more subtle differences, which may become evident 
analysing the joint angle profiles or point trajectories of the motion. In this 
regard, Monnier et al. are able to identify several styles depending on the 
position of the hand on the belt, on whether the torso moves or not, and on 
the orientation of the hand. Generally, the adopted styles depend on which 
strategy was adopted in the first place, hence the term “sub-strategy”. 

The qualitative analysis of the database carried out by Monnier et al. 
was also adopted by Chateauroux and Wang (2010) to identify the strategies 
and styles which characterise car egress motions, performed by both young 
and elderly people. The encountered behaviours are classified into strategies 
depending on whether the subjects start standing with only the left foot on 
the ground or whether the pelvis lifts only when both feet are out of the 
vehicle for support. The age effect is evident in the choice of behaviour, 
since elderly people tend to seek maximum stability and adopt the second 
strategy, which is never employed by younger subjects. Key-frames are 
identified for each strategy, depending on the interactions which occur 
between the subjects and the environment, and motions are further 
classified according to the adopted styles (for instance, some subjects tend 
to bend laterally whereas others rotate the torso). The contacts between the 
subjects and the environment highlight the support sought by the subjects, 
which once again reveals differences between young and elderly subjects: 
the latter tend to rely more often and on more elements of the environment 
for support. 

Chateauroux et al. (2011) also analysed truck cabin egress motions, 
which are more complex than car egresses as more contacts with the 
environment are involved and the coordination between the upper and 
lower limbs plays a relevant role. Two strategies were identified for the 
lower limbs, similarly to (Chateauroux and Wang, 2010). Additionally, the 
upper limb motions (how the hands moved along the handles) were 
classified into four different strategies. The visual identification of the 
various strategies is supported by contact diagrams, which show how 
contact forces between the hands and feet of the subjects and the 
environment are distributed throughout the motion. The contact diagrams 
prove to be a resourceful aid to understanding how the forces are 
transferred from one support to the other and how the upper and lower 
limbs are coordinated. 
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Both ingress and egress motions were analysed by Ait El Menceur et 
al. (2008). The authors identified the same strategies described by 
Chateauroux and Wang (2010), i.e. one foot or two feet, for the egress 
motions and define similar strategies for the ingress motions as well. 
However the egress styles defined by Ait El Menceur et al. do not match 
those of Chateauroux and Wang: the former focus more on the position of 
the body respect to the vehicle, whereas the latter give more importance to 
the motion of the trunk. In (Ait El Menceur et al., 2008) not only the age 
effects are considered, as the motions were performed by both young and 
elderly subjects, but also the effect of prostheses is taken into account, as 
some subjects had undergone hip or knee replacement surgery in one or 
both legs. Analysing the frequency with which each strategy and style is 
adopted, it appears that elderly subjects prefer multiple supports throughout 
the motion, in agreement with (Chateauroux and Wang, 2010). 

The differences in behaviour of young and elderly people were also 
studied by Reid et al. (2010), who focused on stair climbing motions. A 
principal component analysis (PCA), described in Section 2.1.1.2, was 
performed on the angles, forces and torques at the knee joint for young and 
elderly subjects respectively, to discover common and singular traits 
between the two groups. The components which seem to be most affected 
by the subject’s age are generally the first or second principal component, 
suggesting that the adopted strategies are substantially different. Specifically, 
the greatest variations are encountered in the dynamic variables, apparently 
due to a different strategy for load redistribution across the joints adopted 
by elderly and young subjects. 

Alongside the qualitative methods for strategy and style identification, 
quantitative methods have been proposed, most of them relying on 
statistical classification techniques. One of these methods was presented by 
Park et al. (2005b), as mentioned in Section 2.1.2.1. The authors define a 
quantitative index, called joint contribution vector (JCV), to represent the 
relative importance of the DoFs in the fulfilment of the considered task, 
and employ statistical clustering methods to classify the motions according 
to the values of their JCV. Considering for simplicity that the task goal 
consists in moving the end-effector along the x axis to reach a determined 
position, the JCV is a vector, whose length matches the number of DoFs in 
the DHM, and is defined as follows. Each element of the JCV represents 
the contribution of the corresponding DoF to the achievement of the task 
goal along the x axis: 
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i

xC  is the contribution of the ith DoF; x  is the trajectory of the end-effector 

in charge of accomplishing the goal; and ix  is its trajectory if the ith DoF is 
fixed to zero: the greater the difference in position is, the more important is 

the effect of the considered DoF on the motion. The contribution i

xC  is 
then normalised in Equation (2.28) to form the JCV. 

If the end-effector moves in a 3D space, Equation (2.28) actually 
represents the normalised contribution of all joints to the end-effector 
trajectory along the x axis only. In this case, similarly to 

xJCV , also yJCV  

and 
zJCV  are defined. Combining the vectors, a unique vector is created to 

characterise each motion:  zyx JCVJCVJCVJCV  . A JCV is calculated for 

each motion and cluster techniques are adopted to separate the data into k 
clusters, in order to maximise the similarity of JCVs within each cluster and 
maximise their dissimilarity among clusters. The obtained clusters are 
assumed to represent the alternative movement techniques, and the method 
succeeds in identifying stoop and squat lift motions (Park et al., 2005b) and 
different styles employed in whole-body reaching or load-transferring 
motions (Park et al., 2008a). 

A similar technique was adopted to identify different balance 
strategies (Park et al., 2008b), through the definition of a balance strategy 
vector (BSV), which represents the contribution of each DoF to the 
position of the DHM centre of mass (CoM) in the horizontal plane. In fact, 
in static conditions, balance is lost when the projection of the DHM centre 
of mass falls out of the support area of the feet. The BSV is calculated, 

analogously to the JCV but the contribution i

xC  is defined considering the 
position of the CoM rather than of the end-effector. The BSV was adopted 
to identify different balance strategies exhibited in lifting motions. Three 
strategies were encountered: in one, the greatest contributors to the motion 
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were the knee and ankle joints; in the second, also the shoulder played a 
relevant role; and in the third also the hip and elbow seemed to be 
considerably involved in the motion. Apparently, the subjects were 
consistent in the choice of the lifting strategy, regardless of the variations in 
weight, size or position which characterised the object to be lifted. 

The JCV was also adopted by Ait El Menceur et al. (2009) to perform 
a quantitative strategy identification for vehicle ingress motions. The 
authors defined a 3 based joint contribution vector (3BJCV) which 
combines three JCV, one for each chain in the model: each of the JCVs 
represents the contribution to the position of the pelvis of the DoFs in the 
two lower limb chains and in the head-and-trunk chain, respectively. A 
clustering technique was applied to the 3BJCV and led to the identification 
of two main strategies, depending on whether the vehicle is first entered 
with the right foot or with the pelvis. To further classify the motions, the 
same kinematic chains were considered, albeit independently: for each 
chain, the authors analysed the contribution of each DoF in the chain to the 
position of the chain end-point. The results of this quantitative classification 
are in agreement with the qualitative analysis of ingress motions performed 
in (Ait El Menceur et al., 2008): most strategies are identified by both 
procedures, demonstrating that a good correspondence may be achieved 
between manual and automatic motion analysis. 

2.3.3.3 Influence of Experimental Parameters 

Another interesting application of motion analysis is to determine which 
factors mostly affect the way in which motions are performed. Some factors 
may be subject-related, such as subject stature or weight, or environment-
related, such as object disposition in the environment or specific 
environmental characteristics (e.g. softer vs. harder or shorter vs. taller 
chairs in seating motions). 

Some of the works presented in Section 2.1.2.1 perform simulations 
based on a statistical analysis of captured data. The methods seek to 
determine a regression function which relates kinematic and dynamic 
variables to a set of controlled parameters, in order to simulate novel 
motions through the application of the obtained regression function. 
Therefore, the first part of the method consists in evaluating the effect of 
several factors on the performed motions. For instance, Faraway (1997) 
analysed the effect of the target position on the joint angle profiles of 
reaching motions; Jung and Choe (1996) determined how a lifting posture 
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and the carried load affect the perceived discomfort of subjects; and 
Mavrikios et al. (2006) assessed the influence of anthropometric parameters 
on car ingress motions. 

Motion analysis has also been carried out without generating a 
predictive model for novel motions. Wang et al. (2000) analysed the effect 
of 4 environmental parameters involved in clutch-pedal operations (seat 
height, pedal travel length, pedal travel angle and pedal resistance) on the 
motion performed by three groups of people: short females, average males 
and tall males. An analysis of variance5 (ANOVA) was conducted on each 
group separately and also for all subjects together. The pedal characteristics 
seem to consistently affect the duration of the foot deceleration phase after 
the peak velocity during the pedal depression. On the other hand, the seat 
height apparently has a strong effect on the hip, knee and ankle flexion-
extension angles. Attention is paid to the direction of the pedal force, which 
is not uniquely determined by the geometric configuration of the system 
due to friction. Although the flexion-extension angles are affected by the 
seat height, the direction of the pedal force seems to be consistently aligned 
with the direction defined by hip and the pedal contact point: the friction 
force exerted on the pedal tends to adapt in order to maintain such a pedal 
force direction. The authors further investigate whether the force direction 
is such that the minimal joint torques are required: to this purpose, the 
posture at the end of pedal travel (corresponding to maximum pedal 
reaction) is estimated minimising a minimum torque objective function, and 
the results seem to agree with the experimental data. 

Reed et al. (2000) analysed the effect of subject- and environment-
specific parameters on the trajectories followed by the feet of truck drivers 
entering a truck mock-up with two adjustable steps. Both the subject stature 
and mass were considered, as well as the relative position of the adjustable 
steps. Cubic Bézier curves were fitted to the foot trajectories and 
normalised in order to examine the shape of the trajectories independently 
of the overall extent of the movement. A multivariate analysis of variance 
(MANOVA) revealed little dependency on the step configurations, whereas 
the subject-specific parameters were found to mostly affect the shape of the 
trajectories. 

                                                      

5 In ANOVA each factor is considered to be independent from the rest. The interaction 

between factors is taken into account in multivariate analysis of variance (MANOVA). 
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2.4 CONCLUSIONS 

In this chapter some of the main motion simulation methods developed to 
date have been reviewed, as well as the adopted validation procedures. 
Subsequently, motion capture and reconstruction techniques have been 
introduced, in order to explain how motion databases are generated, and 
motion analysis methods have then been described. 

For what concerns motion simulation methods, the review 
highlighted the advantages and limitations of the current approaches. The 
following chart (Figure 2.2) summarises the classification of the main 
motion simulation methods reviewed in Section 2.1. 

Kinematic simulation presents the largest variety of developed 
methods. The reason is that for most animation techniques the modification 
of the kinematic variables alone provides a wide range of possibilities in the 
generation of apparently realistic motions. Also in motion prediction, 
kinematic variables seem sufficient to describe motions in which dynamics 
does not play a relevant role, for instance motions in which no significant 
forces characterise the interaction between the DHM and the environment. 

The appeal of kinematic methods lies in the relatively low 
computational cost required to carry out the simulation. On the other hand, 
tasks in which strength or effort plays a relevant role may not be simulated 
adequately, let alone predicted. It may be noticed in Figure 2.2 that no 
dynamic data-based prediction method has been developed, to our best 
knowledge. Motion edition methods involving dynamics have been 
developed (Abe et al., 2006; Lim et al., 2005; Liu and Popovic, 2002; Park 
and Jo, 2004; Popovic and Witkin, 1999; Safonova et al., 2004), but are 
meant as animation tools: in fact, simplifications which may not be 
compatible with the goals of motions prediction are adopted in the 
formulation, in order not to excessively compromise computational 
efficiency. Dynamics is currently included in motion prediction only in the 
knowledge-based framework of predictive dynamics (Abdel-Malek and 
Arora, 2009; Xiang et al., 2010b; Xiang et al., 2010c) and in the more recent 
hybrid method (Xiang et al., 2012) originated therefrom. 

However, the main drawback of knowledge-based methods is the 
difficulty of identifying the most adequate performance measure to be 
minimised. Multi-objective optimisation approaches have been adopted 
(Xiang et al., 2010b; Yang et al., 2004) in order to generate more realistic 
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predictions, as single performance measures did not seem to be able to 
adequately represent even simple tasks such as reaching. 

Moreover, knowledge-based methods seem concerned only with 
realism issues, and do not consider the representativeness of the predicted 
motion: the various strategies and styles which account for the natural 
variability in human motion are not yet included in the goals of knowledge-
based prediction methods. In this sense, data-based methods present an 
advantage over knowledge-based predictions, since reproducing the 
variability in behaviour in data-based methods is a relatively simple task: it is 
enough to change the reference motion and consider one which exhibits a 
different strategy or style (Park et al., 2008a). 

 
Figure 2.2: Graphical summary of the classification of the main motion simulation 

methods reviewed in the chapter. The lower triangles contain animation methods and 

the upper triangles contain prediction methods. 

This advantage is paid for by the required cumbersome task of 
recording, reconstructing and analysing a sufficiently large database of 
motions, which constitutes the drawback of data-based methods. 
Additionally, data-based methods may not present adequate extrapolation 
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capabilities: it was observed in reaching motions (Monnier, 2004; Park et al., 
2004) that depending on how close the reference target is to the prediction 
target, the predicted motion may be considered to belong or not to the 
range of natural variability of actually performed motions. 

The possibility of combining the advantages of both data-based and 
knowledge-based motion prediction methods has been explored by Xiang et 
al. (2012) in parallel to the work carried out in this thesis. Xiang’s method 
branches from the predictive dynamics framework and seeks to generate 
more realistic predictions by included limited data-based information in the 
method, as detailed before. However, the method lacks a thorough 
validation procedure, which is carried out by comparing the profiles of 
selected kinematic predictors in the predicted and the reference motions. 
Moreover, the representativeness of the reference motion (and hence, of 
predicted motion too) is not assessed. 

Through the review of the state of the art presented in this chapter, 
the shortcomings of current motion prediction methods justify the 
motivation and the objectives of the present thesis, stated in Section 1.4. 
First of all, a dynamic method is required, in order to generate more 
physically sound motions and to encompass the prediction of motions in 
which the interaction with the environment involves energy and effort, as 
most generally occurs in real tasks (Pannetier and Wang, 2012; Wang et al., 
2011). Moreover, a hybrid method seems appropriate in order to overcome 
the extrapolation limitations of purely data-based predictions, and to 
generate more realistic motions than those resulting from a purely 
knowledge-based approach. To ensure that the knowledge-based 
contribution to the hybrid method actually improves the realism of the 
predicted motion, the identification of the most adequate performance 
measures should also be addressed. 

Hence, a motion database analysis is required both to reveal possible 
motion patterns which may guide the performance measure identification, 
and to generate a structured database, necessary to the data-based 
contribution to the hybrid method. The variability of behaviour exhibited in 
actually performed motions is also a relevant result of the database analysis 
and its application is twofold: on the one hand, once the different strategies 
and styles are identified, they may also be included in the prediction; and on 
the other, the natural variability of motions constitute an appropriate term 
of comparison against which to assess the realism of the predicted motions.  
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Finally, a thorough validation should be carried out to assess the 
qualities of the method and ensure that it fulfils the realism and 
representativeness required from a motion prediction method. Although for 
animation methods a simple validation procedure is generally followed 
(mainly to determine whether the generated motions look sufficiently 
realistic), motion prediction methods require a more extensive validation. 
Both qualitative and quantitative validation methods proposed in the 
literature have been reviewed in this chapter (Section 2.2). The appeal of a 
quantitative method lies in the objective comparisons that it allows; on the 
other hand, the information contained in a unique measure is very 
compressed and it relies on the goodness of the measure definition. 
Combining a quantitative measure with a comparison between the 
kinematic and dynamic profiles of the predicted and actually performed 
motions may yield a more complete and reliable validation. Therefore, both 
a quantitative and a qualitative validation is carried out in this work. 
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CHAPTER 3 

CHAPTER 3: HYBRID DYNAMIC MOTION 

PREDICTION METHOD 

This chapter presents the method developed to carry out hybrid dynamic 
human motion predictions. The first section introduces the method and 
describes the types of digital human models (DHMs) for which the method 
was developed, as well as the adopted dynamic formulation. Subsequently, 
the inputs to the method are presented (Section 3.2), followed by details on 
the main steps composing the method (Sections 3.3-3.5), and the generated 
outputs (Section 3.6). 

3.1 INTRODUCTION 

The two main features of the motion prediction method developed in this 
work are that the method is both hybrid and dynamic. It is hybrid as it relies 
on a database of captured motions on the one hand, and on the other it 
introduces knowledge in the prediction through the definition of the 
motion control law which is assumed to drive the motion. Moreover, 
dynamics is included in the prediction both in the definition of the motion 
control law and in the dynamic balance condition imposed to the DHM 
while performing the task and interacting with the environment. 

The following sections (3.1.1-3.1.3) present an outline of the 
approach with which the prediction method was developed, detail the 
characteristics of the DHMs to which the method may be applied, and 
explain the adopted dynamic formulation. 
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3.1.1 APPROACH OUTLINE 

The developed hybrid dynamic prediction method is composed of three 
main stages, shown in Figure 3.1, and outlined hereafter. 

The first step consists in selecting the reference motion from the 
available database of captured motions, given the characteristics of the 
scenario to be predicted (called prediction scenario). As defined earlier 
(Section 2.1.2.1), a scenario is composed of the subject performing the 
motion and the environment it is performed in. Once the reference motion 
is selected, the pose of the root segment (i.e. its position and orientation) 
and the trajectories followed by the end-effectors of the DHM are modified 
(Step 2) in order to consider the reference motion in the global position and 
orientation specified by the prediction scenario and to match the trajectories 
of the end-effectors required to fulfil the task in the prediction scenario. 
Finally (Step 3) an optimisation problem, comprising both data-based and 
knowledge-based approaches, is defined to carry out the prediction. 

 
Figure 3.1: Flowchart of the proposed hybrid motion prediction method. 

The above-mentioned three steps are inspired by the structure of the 
kinematic data-based method presented by Monnier et al. (2003). However, 
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our method differs substantially from Monnier’s: not only is it hybrid rather 
than purely data-based, but dynamics is included in the prediction, requiring 
a different formulation of the optimisation problem. 

3.1.2 DIGITAL HUMAN MODEL 

Motion prediction methods require the definition of a human model. Our 
method expects the same human model to be employed both in the 
reconstruction process, for the motion database generation, and in the 
motion predictions. The same DHM is required because the data-based 
component of the method seeks to generate a predicted motion which is 
similar to the reference one, and the similarity is imposed to the profiles of 
the DHM degrees of freedom (DoFs). If the DHMs adopted in the 
reconstruction and prediction processes were different, it would be difficult 
to establish a similarity between the motions, as a direct correspondence 
between DoFs would be missing. 

As mentioned in Section 1.1, DHMs are mathematical representations 
of the human musculoskeletal system. Therefore, in order to define a 
mathematical model of the human body, some assumption must always be 
made. In this work, we consider the DHM to be defined as a purely skeletal 
multi-body model, in which the segments are considered as rigid bodies, 
connected one another by ideal joints. The adequacy of the rigid body 
assumption depends on the goals of the study: in this work, we consider 
that the implications of excluding the soft tissues from the modelling do not 
affect the validity of the results. On the other hand, the assumption of ideal 
joints implies that the joints present a fixed centre and fixed axes of 
rotation. Actually, human articulations behave in a much more complex 
way, but the variations in rotation centre and axes are considered negligible 
in this work (along with the joint translations), as we are concerned with the 
global motion of the human body rather than the behaviour of one specific 
joint. Therefore, the joints adopted in this work are lower kinematic pairs: 
rotation, universal and spherical joints are employed to represent the 
articulations of the human body and a floating joint serves the purpose of 
defining the global position and orientation of the DHM. 

Additionally, the developed motion prediction method requires that 
the DHM must be described through the relative coordinates formalism. 
Translational DoFs are represented through the relative position between 
two points in the model, and rotational DoFs with Euler angles. 



64 Chapter 3: Hybrid Dynamic Motion Prediction Method 

 

3.1.3 DYNAMIC FORMULATION OVERVIEW 

Since the method is developed for purely skeletal DHMs, dynamics is 
described by the forces and torques acting at the joints. These joint efforts 
are equivalent to the efforts actually exerted by the muscles in the human 
body and represent the effects at the joints of the muscular activity. 

To evaluate the joint forces and torques in the model, we adopt an 
inverse dynamics formulation, which relates the forces F  and torques τ  at 
the joints with the values of the DoFs q  and their first and second order 
time derivatives q  and q . Specifically, the efforts F  and τ  are evaluated 
through the application of the Newton-Euler recursive method (Craig, 
2005). The method performs two iterations across the model: the first starts 
from the root segment and, moving outwards, obtains the kinematics of the 
segments; the second starts from the distal segments and, moving inwards, 
obtains the forces and torques at the joints by imposing the dynamic 
equilibrium of each segment: 
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In order to evaluate the external forces ExtF  and torques Extτ  acting 
on the DHM, due to its interaction with the environment, contact models 
must be defined. Contact models are mathematical approximations of the 
relationship between the efforts originated in the DHM-environment 
interaction and the variables which describe the motion of the DHM: 
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3.2 INPUTS TO THE METHOD 

Our motion prediction method requires as inputs a motion database and the 
characteristics of the prediction scenario, which are hereafter described. 

3.2.1 MOTION DATABASE 

The database required by the method is a collection of reconstructed 
motions in which a specific task is carried out: the motions are actually 
performed motions, which are captured and subsequently reconstructed, 
adopting the same multi-body DHM considered in the prediction. 
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Once the motions composing the database are reconstructed, the 
database must be structured so as to be used in the reference motion 
selection step. Structuring the database consists in analysing the motions, in 
order to identify their most relevant features, and classifying them 
accordingly. The features identified and considered for the classification 
may be related to the subject, the environment or the motion per se. For 
what concerns the subjects, the motions may be classified, for instance, 
according to the subjects’ age, gender, stature and weight. The relevant 
characteristics of the environment usually depend on the task, but may be 
the position of the elements with which the subject interacts, their 
orientation, the presence of obstacles, etc. Finally, the features related to the 
actual motions may be the variability in behaviour (i.e. adopted strategies 
and styles) as well as the key-events and corresponding key-frames in 
motion. 

3.2.2 PREDICTION SCENARIO 

Along with the motion database, the characteristics of the scenario to be 
predicted are needed as an input to the method. 

The prediction scenario is composed of the DHM performing the 
motion (characterised by age, gender, anthropometry, etc.) and the 
environment it is performed in (characterised by target locations, presence 
of obstacles, geometric and mechanical characteristics of the elements with 
which the DHM must interact, etc.). 

The information that must be provided to characterise the subject to 
be used in the prediction is: 

 subject anthropometry, needed to generate a DHM tailored to the 
specific subject; 

 the values of the subject-related features considered in the 
structuring of the motion database (e.g. age, gender, stature, etc.), 
needed in the reference motion selection. 

To characterise the prediction environment, the following 
information is required:  

 the values of the environment-related features considered in the 
structuring of the motion database (e.g. target locations, presence 
of obstacles, geometry of the environment, etc.), needed in the 
reference motion selection; 
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 additional features necessary to fully characterise the environment 
which had not been considered in the structuring of the database 
(e.g. mechanical characteristics of the elements with which the 
DHM must interact, etc). 

3.3 REFERENCE MOTION SELECTION 

In this step, a motion is selected as reference from the database in order to 
be resembled in the prediction. Comparing the scenarios in the structured 
database with the prediction scenario, the most similar one is selected. The 
similarity between scenarios is assessed through the weighted sum: 
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where jw  is a weighting factor which defines the relative importance of 

each feature and jx  represents the j
th feature related to the scenario which 

was adopted to structure the motions in the database. Specifically, 
Predjx  is 

the value of the j
th feature in the prediction scenario, 

iMotjx  is its value in 

the i
th motion of the database, and )max(

DBjx  and )min(
DBjx  are the 

maximum and minimum values of the jth feature among the motions in the 
database. Some features are quantitative (such as the subjects’ stature), and 
in this case jx  is directly the value of the feature in the prediction scenario 

and in the motion database. Instead, in case of qualitative features (such as 
the subjects’ gender), binary values are assigned to jx  (if the feature 

presents more than two options, discrete levels are adopted to quantify the 
feature). The difference between features is normalised with an upper-lower 
bound approach described in Section 2.1.2.2, which represents the range of 
values of each feature in the database. 

If different strategies and styles are present in the database, a motion 
for each of the exhibited behaviours is retrieved and may be adopted to 
carry out the prediction. Hence, the motion variability actually exhibited 
may be represented in the prediction. 
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Once the reference motion is selected, some of its features may be 
maintained in the prediction, an assumption that relies on the similarity 
between the reference and the new scenarios. In this work all temporal 
characteristics of the reference motion are maintained during the prediction: 
hence both the duration and the key-frames distribution in the predicted 
motion are the same as in the reference motion. 

On the other hand, other characteristics may require modification, 
such as the global position and orientation of the DHM or the trajectory 
followed by the end-effectors. Their modification is described in the 
following section. 

3.4 REFERENCE MOTION MODIFICATION 

As mentioned earlier, the motion selected in the previous step is used as 
reference for the prediction by imposing a resemblance between its DoF 
profiles and those in the predicted motion. However, the global pose of the 
DHM root may vary from the reference to the prediction scenario, 
therefore it must be modified before imposing the resemblance between the 
reference and prediction DoFs. The modification of the root pose is 
described hereafter, in Section 3.4.1. 

Additionally, since the reference and prediction scenarios generally do 
not match, the trajectories followed by the end-effectors in the reference 
motion do not ensure the fulfilment of the task in the prediction 
environment. Therefore, the end-effector trajectories in the reference 
motion are modified in order to fit the prediction scenario, as described in 
Section 3.4.2. 

3.4.1 ROOT POSE MODIFICATION 

In order to place the DHM of the subject to be predicted in the 
desired global configuration respect to the prediction environment, the 
DoFs representing the global position x  and the global orientation θ  of 
the DHM are modified by adding a constant offset ( xΔ  and θΔ , 
respectively) to the reference DoFs profiles: 

θθθ
xxx ΔΔ



)()(

)()(

tt

tt

RefMod

RefMod

 
(3.4) 
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The original values of these DoFs ( Refx  and Refθ ) are replaced by 

the modified values ( Modx  and Modθ ) in the )(tq  vector describing the 
reference DoF profiles (see Figure 3.1). Therefore, )(tq  now describes the 
reference motion considering the global position and orientation of the 
DHM root specified by the prediction scenario. 

3.4.2 END-EFFECTOR MODIFICATION 

For what concerns the end-effectors, the modification process must 
ensure the accomplishment of the task in the prediction scenario. Two 
methods of modification are considered, depending on whether the motion 
to reach the target is free or constrained by the motion of the 
environmental elements with which the end-effector interacts. Both 
modification methods, described in the following sections, rely on the 
similarity between the reference and prediction scenarios in order to 
maintain the realism of the reference motion in the modification process. 

3.4.2.1 Free End-Effector 

When the end-effector’s motion is free, the data required to perform the 
modification are the desired initial and final positions of the end-effector in 
the predicted motion: the goal is to travel from an initial to a final point 
following a trajectory which is not constrained. In this work, two 
modification methods are considered: the velocity proportional (VP) and 
the acceleration preserving (AP) methods, introduced in Section 2.1.1.1. 
These methods were proposed by Bindiganavale and Badler (1998) and by 
Zhang (2002) to modify joint angle profiles. However, Monnier et al. (2003) 
first applied the methods in the modification of end-effector trajectories, as 
described hereafter. The VP method imposes that the velocity profile of the 
end-effector along the modified trajectory Modx  must be proportional to 
that of the reference motion: 

211 )(·)(→)(·)( VRefVModRefVMod tttt cxcxxcx    (3.5) 

In the AP method, instead, the acceleration profile of the end-effector 
along the modified trajectory Modx  is set to be the same as in the reference 
motion: 

21)()(→)()( AARefModRefMod ttttt ccxxxx    (3.6) 
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The vectors of coefficients 1Vc , 2Vc  and 
1Ac , 

2Ac  in Equations (3.5) 
and (3.6) respectively, are obtained by imposing the end-effector’s initial and 
final positions in the reference and prediction motions. 

As discussed in Section 2.1.1.1, both methods generally yield very 
similar results. In this work, however, VP is favoured as it presents the 
desirable feature of maintaining zero-velocity conditions of the end-effector 
(which may occur, for instance, when a target is reached). On the other 
hand, VP fails to generate a reasonable trajectory when the initial and final 
positions of the end-effector are very close to each other, since numerical 
problems arise. In this case, AP is applied instead. 

3.4.2.2 Constrained End-Effector 

When the end-effector interacts with a mobile element of the environment, 
its trajectory is constrained to follow the motion of the environmental 
element. 

The motion of the environmental element in the prediction scenario 
may be obtained by modifying its motion in the reference scenario. For this, 
the initial and final values for each DoF 

iθ  of the environmental element in 
both the reference and prediction environment must be known. To obtain 
the new motion of the environmental element, we use a similar 
modification to the one applied to the free end-effector in the previous 
section, with the difference that in this case the modification is applied to 
the element’s DoFs instead of the end-effector’s position. 

The formulation for the VP modification is: 

211 )(·)(→)(·)( VRefVModRefVMod tttt cθcθθcθ    (3.7) 

If the initial and final values of any of the 
iθ  are very close to each 

other, numerical problems may arise in the VP modification. In such cases, 
the following AP modification is used instead: 

21)()(→)()( AARefModRefMod ttttt ccθθθθ    (3.8) 

Similarly as in Section 3.4.2.1, the vectors of coefficients 1Vc , 2Vc  
and 

1Ac , 
2Ac  are obtained by imposing the initial and final values for the 

iθ  DoFs in the reference and prediction environments. 
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Once the modified motion of the environmental element is obtained, 
the new trajectory for the end-effector must be calculated. The end-effector 
must follow the trajectory described by the contact point in the 
environmental element. The trajectory of the contact point is obtained by 
applying forward kinematics to the environmental element, which moves 
according to the )(tModθ  values of its DoFs. 

3.5 MOTION PREDICTION THROUGH OPTIMISATION 

As mentioned earlier, the human body is a highly redundant system, 
presenting more DoFs than those strictly necessary to carry out most tasks. 
For this reason, imposing the modified end-effector trajectory is not 
enough to define the motion of all the bodies in the DHM, since generally 
infinite sets of values of the DoFs allow its fulfilment. 

In this work, a constrained non-linear optimisation problem is 
defined to carry out the prediction: among the infinite sets of feasible DoF 
values (which fulfil the constraints to the motion), the set which minimises 
the specified objective function is obtained. Hence, the objective function 
must be constructed in order to ensure the realism of the predicted motion. 

The aforementioned optimisation problem is solved with non-linear 
programming techniques and the following three sections describe its main 
features: the selected design variables (Section 3.5.1), the definition of the 
constraints to be fulfilled (Section 3.5.2) and the objective function to be 
minimised (Section 3.5.3). Finally, the optimisation problem is formally 
formulated (Section 3.5.4). 

3.5.1 DESIGN VARIABLES 

As the developed motion prediction method is dynamic, the variables 
required to describe the DHM are the DoF values q  as well as the first and 
second order time-derivatives of the DoFs, q  and q , since they all appear 
in the equations of motion governing the dynamics of the system (Section 
3.1.3). Including the velocities and accelerations in the formulation implies 
that the value of q  at a frame is related with its values at the previous and 
following frames. Hence, although kinematic prediction may be carried out 
one frame at a time, a dynamic prediction must be performed considering 
the motion as a whole. 
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Rather than using the DoFs in each frame as design variables, as in 
spacetime methods (described in Section 2.1.1.2), in this work we chose to 
parameterise the motion, using a B-spline representation of the DoF 
profiles. B-splines are chosen over other parameterisations as they allow to 
fit the most general kind of data while requiring a relatively small number of 
variables to represent the whole motion. 

B-splines curves (Piegl and Tiller, 1997) are defined as a linear 
combination of independent p

th order piecewise polynomial functions N , 
called basis functions, through coefficients called control points (CPs). The 
basis functions are a function of the independent variable of the problem 
(in this case, time t ) and are non-zero only in certain intervals. An example 
of the distribution of basis functions over a normalised time domain is 
represented in Figure 3.2 below. Any given curve may be approximated 
multiplying each basis function by a coefficient (i.e. the control point 
associated to each basis function), hence the name “basis” function. 

 
Figure 3.2: Twelve 5th order uniform basis functions over a normalised time domain. 

The control points are defined in the dependent variables space (in 
this case, the DoFs q ). Each DoF profile 

iq  is represented in B-spline 
form as a combination of nCPi basis functions: 
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 (3.9) 
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where )(tN
p

j
 represents the jth basis functions of the nCPi basis functions 

considered to represent the DoF 
iq ; and 

ji
CP  represents the j

th control 

point for the DoF 
iq , i.e. the coefficient associated to the jth basis function 

for 
iq . 

The velocities and accelerations of the DoFs are easily obtained as a 
linear combination of the time derivatives of the basis functions )(tN

p

j
  

and )(tN
p

j
 , in which the coefficients of the combination are once more the 

control points used to represent the DoFs q : 
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 (3.10) 

Moreover, as the external forces and torques acting on the DHM are 
related to the DoF values and derivatives through the contact models 
(Section 3.1.3), Equation (3.1) describing the dynamics of the system may 
be rewritten as: 
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(3.11) 

where CP  is the vector containing the control points which approximate 
the DoF profiles, obtained in Equation (3.9). 

Equation (3.11) states that all the variables describing the dynamics of 
the system can be expressed in terms of the vector of control points CP , 
and therefore CP  are chosen to constitute the design variables for which 
the optimisation problem is solved. 

The advantages of using B-spline curves are several: they are a flexible 
parameterisation, which fits the most general kind of data; they provide 
local support, given that each basis functions is equal to zero during 
intervals of the motions; they ensure smoothness and continuity up to the 
(p-1)

th derivative; and they are able to describe the whole motion with a 
relatively small number of variables. In fact, B-splines are a common 
motion parameterisation employed in knowledge-based prediction methods, 
as described in Section 2.1.1.2. 
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In this work the assumption is made that the number of CPs which 
adequately describes the DoF profiles in the reference motion is also 
suitable to describe the profiles in the predicted motion. This assumption 
relies on the expected similarity between the reference and predicted 
motions: not only the reference scenario is the closest to the new one, but 
resemblance conditions to the reference motion are imposed in the 
prediction. 

To obtain the number of CPs which yield an appropriate 
representation of the motion, B-splines are adapted to the normalised DoF 
profiles of the reference motion and the smallest set of CPs which 
approximates the profiles to a specified tolerance is retrieved. This process 
is known as global approximation (Piegl and Tiller, 1997). 

Given that dynamics involves up to the second order derivative of the 
DoFs, to guarantee continuity in the accelerations, the basis functions must 
be at least cubic splines. In this work 5th order splines are adopted to ensure 
smoothness in accelerations as well. 

The control points of the B-splines are the design variables for which 
the optimisation problem is solved and the set of control points obtained in 
the global approximation constitutes the initial approximation for the 
optimisation. 

3.5.2 CONSTRAINTS 

The equality EQΦ  and inequality INΦ  constraints that the motion is subject 
to are of five types, and serve the purpose to: ensure the fulfilment of the 
task goal; impose initial and final conditions to the motion; respect the 
natural joint limits, both in terms of range of motion (RoM) and of 
maximum torques; avoid collisions with obstacles in the environment; and 
maintain the dynamic balance of the system. 

All equality and inequality constraints are normalised following an 
upper-lower bound approach in order to avoid numerical problems in the 
computation. Hence, each constraint 

iΦ  (be it an equality or inequality 
constraint) is normalised as follows: 

Min

i

Max

i

Min

iiN

i ΦΦ ΦΦΦ



  (3.12) 
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where 
N

iΦ  represents the normalised constraint and the superscripts Min 
and Max refer to the minimum and maximum values respectively of the 
quantity 

iΦ  evaluated in the reference motion. 

In the following sections, each constraint type is reported prior to the 
normalisation procedure, for simplicity in formulation: 

3.5.2.1 Goal Fulfilment 

To fulfil the goals in the motion, the trajectory x  of the end-effector must 
match the modified trajectory Modx  obtained in Step 2 (Section 3.4): 

      0,*  ttttt ModTrajEffEnd
EQ

BA xqxΦ  (3.13) 

where 
At  and 

Bt  are the extremes of the time period during which the end-
effector trajectory must be followed exactly. 

Moreover, in certain applications, it may be necessary to specify the 
orientation of the segment containing the end-effector, especially if it is 
restrained by the environment during the interaction. Given a vector r  
belonging to the end-effector segment, the condition that it must follow the 
orientation of the vector Environr  is given by: 

      0,*  ttttt EnvironOrientEffEnd
EQ

BA rqrΦ  (3.14) 

When the above-mentioned constraints are applied to a period in the 
motion (i.e. 

BA tt  ), for instance a period during which the DHM interacts 
with an element of the environment, they are enforced only at specific 
frames *t  in the period to avoid excessively reducing the number of free 
control points. 

3.5.2.2 Initial and Final Conditions 

Conditions may be set to specify the velocity and acceleration conditions at 
the initial and final frames of the motion, 0t  and 

Tt  respectively. 
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 (3.15) 

If a motion is to start and end in states of rest, the values of 0q , 0q , 

Tq  and 
Tq  are all set to zero.  
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Since two conditions are set at each frame 0t  and 
Tt , the constraints 

reported in Equation (3.15) reduce by 4 the number of free control points 
which describe each DoF. Specifically, due to the construction of B-spline 
curves (Piegl and Tiller, 1997), only one of the first three and one of the last 
three control points are independent. Therefore the number of control 
points employed to approximate the DoF profiles must be sufficiently large 
as to allow Equation (3.15) to be set without excessively reducing the 
number of free control points in the motion. 

3.5.2.3 Joint Limits 

To ensure that the predicted motions do not exceed the natural range of 
motion (RoM) allowed by the human articulations and the maximum torque 
that the muscular activity can exert, the following inequalities are set: 

 
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  0,,,

0,,,,





Uτ
IN

Lτ
IN

BA

t

tttt

τqqqτΦ
qqqττΦ





 

(3.17) 

Equation (3.16) restricts the values of q  to a range delimited by the DoFs 

lower and upper limits 
Lq  and Uq , whereas Equation (3.17) imposes that 

the torque τ  at each joint must not exceed its maximum limits, denoted 
with 

Lτ  and 
Uτ . 

Since inequality constraints do not reduce the number of free control 
points, Equations (3.16) and (3.17) can be set throughout the specified 
period of the motion, [

BA tt , ], which may correspond to the whole motion  

( 0ttA   and 
TB tt  ) or to a portion of it. 

In this work, the joint limits (both in terms of RoMs and maximum 
torques) are considered constant and the dependencies that actually exist 
between the limits of a joint and both the values and velocities of the DoFs 
(Anderson et al., 2007; Engstler et al., 2011; Guenzkofer et al., 2011) are not 
taken into account. 

Moreover, the DoFs which represent the global position and 
orientation of the DHM theoretically have no limits in value. However, in 
this work the global rotations are considered to be contained in a specific 
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range (for instance [-π, π]) to avoid ambiguities in rotations. For what 
concerns the global translations, they may be limited too, according to the 
type of motion and the expected position of the root joint. 

3.5.2.4 Collision Avoidance 

In this work, a simplified model is considered to take into account the 
collisions between the DHM and the environment. Obstacles are 
represented as planes, which forbid the DHM to enter the space beyond the 
planes. Obstacle avoidance is treated as an inequality constraint set to a 
specified point in the DHM x : given a vector n , normal to the plane and 
whose origin 0x  is located on the plane’s surface, the condition to be met by 
the point x  in the DHM is expressed through the scalar product of n  with 
the vector connecting the point in the DHM with 0x . This scalar product 
defines the distance between a point and a plane, which must not become 
negative for penetrations not to occur. 

       0, 0  nxqxΦ tttt Collision
IN

BA  (3.18) 

Once again, since inequality constraints do not reduce the number of 
free control points, the constraint can be set throughout the specified 
period of the motion, [

BA tt , ]. 

3.5.2.5 Dynamic Balance 

To balance the forces and torques in the DHM with the efforts exerted by 
the environment, the condition of dynamic equilibrium is imposed. 

As mentioned in Section 3.1.3, the dynamics of the DHM are 
evaluated through an inverse dynamics formulation, applying the Newton-
Euler recursive method: the efforts at the joints are calculated by imposing 
the dynamic equilibrium of each segment, starting from the distal ones 
(Equation (3.1)). Therefore, the dynamic balance of the whole system is 
ensured by imposing the dynamic equilibrium of the root segment: the sum 
of all the forces and torques (external, internal and inertial) at the root joint 
must be zero: 

    0,,,,*  ExtRootBalanceFBA tttt FqqqFΦ   (3.19) 

    0,,,,,*  ExtExtRootBalanceMBA tttt τFqqqτΦ 
 

(3.20) 
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where RootF  and Rootτ  are obtained by summing all forces and torques, 
respectively, acting at the root joint. 

As mentioned earlier (Section 3.1.3), the external efforts acting on the 
DHM ( ExtF  and Extτ ) are related to the values of the DoFs and their first 
order time-derivative (q , q ) through contact models, as stated by Equation 
(3.2). Such contact models on the one hand allow all dynamic variables to 
be described in terms of the control points of the B-spline parameterisation 
of the DoFs (Section 3.5.1), but on the other are only approximations of the 
complex interactions between humans and the environment. Therefore, to 
take into account the possible inaccuracies of the employed contact models, 
the dynamic balance is imposed as an inequality rather than an equality 
constraint. Tolerances may be specified within which the dynamic balance is 
considered fulfilled: 
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 (3.22) 

The tolerances 
Fε  and τε  with which the equilibrium is considered satisfied 

are chosen according to the accuracy with which the contact model is 
defined: the unfulfilment of the exact balance is assumed to be due to the 
approximate nature of the contact model, which is not capable of wholly 
representing the complex DHM-environment interactions which take place 
in reality, and not to an inaccuracy of the resulting predicted motion. 

Additionally, expressing the balance condition as inequality 
constraints, Equations (3.21) and (3.22) may be ensured throughout the 
specified period of the motion, [

BA tt , ]. 

3.5.3 OBJECTIVE FUNCTION 

The objective function represents the criterion that is selected to predict the 
most realistic motion. In this work a criterion that comprises more than one 
objective is considered, as several conditions must be included: some related 
to the fulfilment of the goal, some to the data-based nature of the approach, 
and others to the knowledge-based nature of the approach. To solve this 
multi-objective optimisation problem, the objectives are combined in a 
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single function to be minimised, given by the weighted squared sum of the 
objectives. In matrix notation, the objective function is given by: 

ΨWΨTf
2

1
  (3.23) 

where Ψ  is a vector of objectives, in which each function 
iΨ  represents an 

objective at a given instant in time, and W  is a diagonal matrix containing 
the weights associated to each objective. 

In order to combine non-homogeneous objectives, these are 
normalised using the same upper-lower-bound transformation adopted for 
the constraints: 

Min

i

Max

i

Min

iiN

i ΨΨ ΨΨΨ



  (3.24) 

where 
N

iΨ  represents the normalised objective and the superscripts Min and 
Max refer to the minimum and maximum values respectively of the quantity 

iΨ  evaluated in the reference motion. Although the normalised objectives 
may not be exactly contained in the range [0,1] the values should not exceed 
the range greatly, given the similarity between the reference and prediction 
scenarios. 

Hence, the objective function is actually evaluated as: 

NNTNNf ΨWΨ
2

1
  (3.25) 

Normalisation not only reduces the numerical problems that may 
arise solving a nonlinear optimisation problem, but also allows to use 

dimensionless weights NW  which reflect the relative importance of each 
objective and prevents any single objective from dominating the aggregated 
function. 

As mentioned earlier, the objectives imposed to the predicted motion 
are of three types and are hereafter reported, for simplicity in formulation, 
prior to the normalisation procedure. 

3.5.3.1 Goal Fulfilment 

The condition that the end-effector should follow the modified trajectories 
(Section 3.4) may be imposed as a constraint (Section 3.5.2.1) or may be 
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included in the objective function, if the modified trajectory must be 
resembled rather than matched exactly: 

     tttt ModTrajEffEndBA xqxΨ  ,  (3.26) 

The same applies to the end-effector segment orientation: when the 
orientation of the environmental element with which the end-effector is 
interacting must only be resembled and not matched exactly, the following 
objective is included: 

     tttt EnvironOrientEffEndBA rqrΨ  ,  (3.27) 

Moreover, as mentioned earlier, when a goal fulfilment constraint is 
applied during a period in the motion, it is enforced only at specific frames 
(Section 3.5.2.1). To ensure that the modified trajectory is followed (and 
therefore that the goals in the motion are met) throughout the period, the 
following condition is included in the objective function: 

     tttt ModTrajEffEndBA xqqxΨ   ,,  (3.28) 

The condition is set on the end-effector velocity rather than its 
position in order to resemble the shape of the modified trajectory Modx  in 
between the constraints which affect its value (Equation (3.13)), ensuring a 
smoother trajectory. 

Analogously, to ensure that the end-effector segment orientation 
follows the orientation of the environmental element it is interacting with, 
the following condition on the end-effector segment orientation rate is 
included in the objective function: 

     tttt EnvironOrientEffEndBA rqqrΨ   ,,  (3.29) 

By resembling the orientation rate of the environmental element in 
between the constraints expressed by Equation (3.14), smooth orientation 
profiles are ensured. 

3.5.3.2 Data-based Conditions 

To preserve the realism of the reference motion, conditions are imposed to 
resemble the DoF values, as in Monnier et al. (2003), and/or to resemble 
the DoF velocities, as in Park et al. (2004; 2008a). 
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To resemble the DoF values in the reference motion, the following 
objective is considered: 

     ttttt RefDoFBA qqΨ  ,  (3.30) 

To maintain the shape of the DoF profiles in the reference motion, a 
resemblance condition on the DoF velocities is considered: 

     ttttt RefVelDoFBA qqΨ   ,  (3.31) 

In fact, although the values of the DoFs change depending on the 
subject anthropometry and the geometry of the environment, the shape of 
the DoF profiles seems to be generally maintained (Park et al., 2004). 

3.5.3.3 Knowledge-based Conditions 

To introduce knowledge in the prediction, the motion control laws which 
guide the motion must be identified and represented through a performance 
measure. Our method is prepared to support any performance measure 
expressed as a function of the DoF values or derivatives (q , q , q ): 

   qqqΨ  ,,, fttt LawCtrlMotBA   (3.32) 

Hereafter, we report two of the most commonly employed dynamic 
performance measures which have already been implemented: dynamic 
effort and mechanical energy minimisation. 

Dynamic effort is an energy-related performance measure which 
minimises the squared sum of the joint torques across the motion (Equation 
(2.15)). Given the form of the objective function f  (Equation (3.23)), the 
dynamic effort objective is defined as: 

   tttt EffDynBA ,,,, qqqτΨ   (3.33) 

where τ  is a vector containing the torques at all the joints of the DHM. 

On the other hand, the mechanical energy expenditure is 
approximated by the Riemann sum of the instantaneous power at the joints 
with respect to time. The instantaneous power is given by the scalar product 
of the torques at the joints τ  times the relative angular velocity Relω  of the 
two segments linked by each joint. Therefore, the minimum mechanical 
energy expenditure is represented by the following objective: 
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      ttttt RelT

EnMechBA ΔqqωqqqτΨ  ,,,,,   (3.34) 

where tΔ  is the time interval between two consecutive frames in which the 
objective is evaluated. 

3.5.4 FORMULATION OF THE OPTIMISATION PROBLEM 

As mentioned before, the variables which define the system’s dynamics are 
the DoF values q  and their derivatives q  and q . However, all these 
variables depend on the vector of control points CP , as shown in 
Equations (3.9) and (3.10). 

Hence, the optimisation problem can be formulated as: 
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 (3.35) 

3.5.4.1 Jacobian and Hessian Matrices 

Given the high nonlinearity of the problem, the Jacobian and Hessian 
matrices for the objective function and the constraints are evaluated 
analytically to improve the solver’s convergence. Therefore, both the first 
and second order derivatives of the equations of motion respect to the 
variables describing the system’s dynamics (q , q , q ) are calculated. 
Defining 

iΞ  as a generic function representing either an objective (
ii ΨΞ  ) 

or a constraint (
ii ΦΞ  ), the following derivatives are calculated: 
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The derivatives of each function 
iΞ  must then be evaluated with 

respect to the design variables CP . To apply the chain rule, the derivative 
of the variables respect to the control points must be calculated. Given the 
definition of the B-spline representation of the variables (Equations (3.9) 
and (3.10)), their derivatives respect to the control points are obtained as: 
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where 
ji

CP  represents the j
th control point used to describe the DoF 

iq . 

The derivatives of 
iq  respect to any other CP (belonging to the description 

of another DoF 
kq , with k≠i) is zero. 

Defining s  as a cumulative vector of variables: 

 Tqqqs  ,,  (3.38) 

the derivative of the generic function 
iΞ  respect to the CPs is calculated as: 
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where the repeated index k implies summation. Denoting with the subscript 
s  or CP  the derivative respect to s  and CP  respectively, the Jacobian of 

iΞ  may be rewritten in matrix form as: 

CPsCP sΞΞ
i

T

i

T   (3.40) 

where 
i

T

CPΞ  is the i
th row of the Jacobian matrix CPΞ  whose elements are 

defined by Equation (3.39). 

The second derivative is calculated as: 
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Hence, the Hessian of the generic function 
iΞ  may be rewritten in 

matrix notation as: 

CPsCP
sΞsΞ

CP i

T

i
22   (3.42) 
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where the squared subscripts denote the variable with respect to which 
quantities are derived twice. 

The derivatives of the constraints are obtained directly from 
Equations (3.40) and (3.42), whereas the derivatives of the objective 
function are obtained as: 

  



i
i
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iii

T

i
wf

f

CPCPCPCP

CPCP

ΨΨΨ
ΨWΨ

22 Ψ  (3.43) 

The vectors of constraints Φ  and objectives Ψ  contain the functions 
defined in Sections 3.5.2 and 3.5.3 evaluated at several instants in time. At 
each instant t , the length of the vector of variables s  which affect the 
dynamics of the system is 3×nDoFs. On the other hand, the number of 
control points of a B-spline must be greater than the order of the basis 
functions: given that accelerations must be at least continuous, this implies 
p≥3 and nCP≥4 for each DoF. Hence, the length of the CP  vector must 
necessarily be greater than 4×nDoFs. This implies that the Hessians which 
appear in Equation (3.42) have different sizes, being the Hessian respect to 
CP  always larger than the Hessian respect to s . However, the rank of a 
matrix can never be increased through multiplication, hence the Hessian 
respect to CP  is always rank deficient. An explanation for this 
characteristic is that CP  is a vector which represents the totality of the 
motion, whereas s  only represents a specific instant in time. Due to the 
local support of B-splines, only a certain number of control points affects 
the dynamics of a specific instant t  of the motion: at t , other control 
points have no influence at all, leading to zero derivatives. 

This characteristic has a strong effect on the objective function f , 
which must ensure that all variables (CP ) be controlled: a necessary 
condition for this is that the objectives must be evaluated at a minimum 
number of frames. Given a number n of frames (each being represented by 
a vector of variables s ), the number of variables which describe all n frames 
is n×(3×nDoFs). If the size of the CP  vector were greater than this quantity, 
the evaluation of the objective function at n frames would not be sufficient 
to provide information for each CP, and some CPs would be uncontrolled. 
Hence we may obtain the minimum number of frames at which the 
objectives must be evaluated as: 
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nDoFs

nCP
nMin

3
  (3.44) 

Evaluating the objective function at a number of frames n>nMin 
however does not guarantee that each CP is controlled. For that, the n 
frames must be spaced across the period of the motion in order to involve 
all basis functions in their non-zero interval. 

3.5.4.2 Effect of the Number of Control Points 

According to the allowed tolerance with which the reference DoF profiles 
are approximated, the number of control points for each B-spline may 
range from a minimum value, given by p+1, to a maximum value, given by 
nFrames-1 (if the number of control points equals the number of data 
available, the curve no longer approximates but interpolates the data). A 
larger number of control points on the one hand entails a finer 
approximation to the reference profiles, and on the other increases the size 
of the problem. However, due to the particular construction of the basis 
functions (Piegl and Tiller, 1997), by increasing the number of control 
points, the intervals during which each basis function is equally zero are 
longer: each basis function controls a smaller portion of the motion. This 
implies that by increasing the number of control points in all DoFs, 
matrices get larger but sparser. 

 
Figure 3.3: Hessian matrices of the objective function adopting different numbers of 

control points (considering a problem described by 10 DoFs and parameterised with 5th 

order B-splines). The blue dots represent the non-zero elements of the matrices. 
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Figure 3.3 shows the effect of the number of CPs on the Hessian 
matrix of the objective function, considering a problem described by 10 
DoFs and parameterised with 5th order B-splines. When the number of 
control points is close to the minimum, the matrix is relatively small but full 
(Figure 3.3a corresponds to a case in which the minimum number of CPs is 
adopted); as it increases (Figure 3.3b, c), the size of the matrix is larger but it 
becomes more sparse and with a characteristic multi-diagonal shape. 
Moving towards the right or the bottom of the matrix corresponds to 
moving across the motion in time: in Figure 3.3b and Figure 3.3c it may be 
seen how the effect of the first control points (associated to the first basis 
functions) is nullified while the following control points start affecting the 
motion. 

3.6 OUTPUT FROM THE METHOD 

In the previous section, the optimisation problem which is at the core of 
our motion prediction method was presented. As described earlier (Section 
3.5.1), the design variables employed are the control points of the B-spline 
parameterisation of the DoF profiles. Therefore, the solution to the 
optimisation problem is given as the values of the design variables (i.e. the 
control points) which minimise the objective function, subject to the 
defined equality and inequality constraints. 

From the values of the CPs, the DoF profiles and their derivatives are 
obtained through Equations (3.9) and (3.10) respectively. The external 
forces and torques acting on the DHM, due to its interaction with the 
environment, are then evaluated through the contact models (Equation 
(3.2)). Finally, inverse dynamics is performed to calculate the dynamic 
variables describing the DHM, i.e. the forces and torques acting at the joints 
(Equation (3.1)). 
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CHAPTER 4 

CHAPTER 4: EXPERIMENTAL DATA 

ANALYSIS 

As mentioned in the Introduction, the motion prediction method described 
in Chapter 3 is applied in this work to clutch pedal depression motions. The 
clutch pedal depression presents the advantage of being a relatively simple 
task (it may be regarded as a dynamic reaching motion) while containing all 
the relevant features for testing a dynamic motion prediction method: it is 
task oriented, it intrinsically requires interaction between the subject and the 
environment, and the interaction is both kinematic and dynamic as the 
pedal determines both the motion of the foot and the external forces that 
the DHM is subject to. 

The present chapter describes how a database of clutch pedal 
depression motions has been generated and analysed. The importance of 
this process is twofold. On the one hand, a structured database of motions 
is required as input to our prediction method (Section 3.2.1); for this 
purpose, the most relevant features in the motions must be identified (such 
as key-frames, behaviours, or the influence of experimental parameters). On 
the other hand, the analysis of the database is useful in the validation of the 
motion prediction method (Section 6.5), as it allows to carry out the 
comparison of each predicted motion against the most adequate data set. 

To constitute the database, motions have been captured following the 
experimental protocol detailed hereafter (Section 4.1). Subsequently, a 
DHM is defined (Section 4.2) with which the captured motions are 
reconstructed (Section 4.3). The database composed of the reconstructed 
motions is then analysed (Section 4.4). Finally, the features considered in 
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the structuring of the database for the motion prediction method are 
presented (Section 4.5). 

4.1 EXPERIMENTAL PROTOCOL 

The database is constituted by clutch pedal depression motions, recorded at 
IFSTTAR in the framework of the European Project DHErgo. 

Four groups of five healthy subjects were asked to perform the 
motion in an adjustable vehicle mock-up (shown in Figure 4.1). The 
characteristics which were considered to describe the groups of subjects 
recruited for the experiments are detailed in Table 4.1. 

 
Figure 4.1: Overview of the adjustable vehicle mock-up (reproduced from the DHErgo 

Newsletter n.2). 

 

Group Description N 
Age Stature BMI 

[years] [cm] [kg/m
2
] 

YF Young females 5 21-30 167±3 22.1±1.6 

YM Young males 5 21-34 177±5 22.3±3.0 

EF Elderly females 5 66-72 160±5 24.6±2.6 

EM Elderly males 5 66-78 172±2 27.2±1.2 

Table 4.1: Characteristics of the groups of subjects who took part in the clutch pedal 

depression experiments. The values preceding and following the ± symbol represent the 

mean  and standard deviation σ, respectively. 
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The vehicle mock-up could assume the configuration of six different 
commercial vehicles from BMW, Peugeot-Citroën and Renault. The 
features considered to characterise the six environments are depicted in 
Figure 4.2 and their values are reported in Table 4.2. For what concerns the 
choice of the global coordinate system, it is located and oriented as shown 
in Figure 4.2: x is the longitudinal axis (positive towards the rear); z is the 
vertical axis (positive upwards); and y is the transversal axis, obtained by 
cross-product (positive towards the right). The origin of the coordinate 
system was placed to match the H-point6 of the seat, when it is located in 
the centre of its longitudinal sliding range (during the experiments, the 
subjects were free to slide the seat forwards or backwards). 

 
Figure 4.2: Environmental features used to characterise the different configurations of 

the vehicle mock-up. 

The subjects were asked to perform a clutch pedal operation in each 
vehicle and the motion was repeated 3 times in the vehicle PCA2. Hence, 
each subject carried out 8 motions, which leads to a total of 160 performed 
motions. The motion consists in placing both hands on the steering wheel 
and, starting from the foot rest, reaching and depressing the clutch pedal 
with the left foot, holding the fully depressed position for 3s, and returning 
to the foot rest (although only the depression of the pedal is considered in 
this work). 

                                                      

6 The H-point is defined as the point in the seat occupied by the mid hip point of a 

seated male subject of the 50th percentile. 
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Vehicle 

Seat 

height 

Pedal travel 

length L 

Pedal travel 

angle α 

Pedal rest position 

CPx CPy CPz 

[mm] [mm] [deg] [mm] [mm] [mm] 

BMW1 256 140 0 -814 -60 -69 

BMW2 247 150 0 -831 -110 -64 

BMW4 174 138 0 -816 -120 17 

PCA1 355 132 23 -770 -70 -199 

PCA2 272 158 8 -766 -80 -130 

REN3 360 139 15 -761 -70 -218 

Table 4.2: Characteristics of the environmental features in the different vehicle 

configurations shown in Figure 4.2. 

A total of 37 reflective markers (Figure 4.3) were placed on the 
subject, of which 17 on the pelvis and left leg in order to perform the 
motion reconstruction, shown in red. Additionally, markers were placed on 
the fixed environmental elements to establish their position and orientation 
(such as the seat or the vehicle floor). For what concerns the mobile 
element of the environment, i.e. the clutch pedal, 8 markers were used to 
describe its motion during the task. 

 
Figure 4.3: Position of the reflective markers placed on the subjects. 
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Motions were captured using a VICON optoelectronic motion 
capture system sampling at 100Hz: 10 cameras were employed to record the 
3D location of the reflective markers described above. 

Dynamic instrumentation was also installed: a 3D TME force sensor 
was placed on the clutch pedal to record the force applied by the subjects. 
The contact forces were measured in synchronisation with the motion 
capture system at 100Hz. 

4.2 ADOPTED HUMAN MODEL 

To reconstruct the captured motions, a human model is required. To carry 
out the multi-body reconstruction, a three-dimensional DHM was 
generated, under the assumptions detailed in Section 3.1.2 and following 
RAMSIS specifications (Human Solutions GmbH). 

Since the clutch pedal depression hardly involves any limbs other than 
the left leg, we separated the complete RAMSIS DHM into an active and a 
passive part, shown in Figure 4.4. 

 
Figure 4.4: Graphic representation of the adopted DHM. The active segments are shown 

in red. The corresponding active joints are reported and present a total of 3 translational 

and 10 rotational DoFs. 
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The active part is a 13 DoF model of the pelvis and left leg, which we 
described with the relative coordinates formalism (specifically, Euler angles 
for the rotational DoFs). The rest of the DHM is considered to be fixed in 
the seated posture shown in the figure, and rigidly connected to the pelvis. 

The root joint connects the DHM to the ground, allows all 
translations and rotations, and specifies the global position and orientation 
of the DHM. The remaining joints represent the articulations of the human 
leg: the hip joint is modelled as a spherical joint and both the knee and 
ankle as universal joints. The knee is assumed to allow flexion-extension 
movements and rotations about the shank longitudinal axis (see Figure 
4.11). Similarly, the ankle allows flexion-extension movements and rotations 
about the foot longitudinal axis (see Figure 4.11). 

For what concerns the inertial properties of the segments, they are 
considered constant due to the rigid body assumption. Those corresponding 
to the pelvis and the left leg are estimated employing a method based on 
anatomical landmarks (Dumas et al., 2007), which are relevant points in the 
body segments. Moreover, the inertial properties of the upper part of the 
DHM are taken into account by including them in the pelvis segment: the 
mass and moments of inertia of the upper body segments are estimated 
using regression equations based on the subject’s anthropometry 
(Zatsiorsky, 2002), and combined to the pelvis. For what concerns the right 
leg, the mass and moments of inertia of the upper half of the thigh are 
estimated analogously (Zatsiorsky, 2002) and included in the pelvis; the 
inertial properties of the rest of the limb instead are considered negligible as 
the right leg does not move during the motion and its lower part is assumed 
to unload its weight directly on the floor. 

Finally, a global coordinate system is defined, respect to which the 
motion of the DHM is described. Its origin is located in the average H-
point of the vehicle (considering that the seat may slide forward and 
backward) and is oriented as shown in Figure 4.2 and Figure 4.4. 
Additionally, a local coordinate system is defined in each segment of the 
model. Due to rigid body assumptions, the position of a point belonging to 
a segment, expressed in the segment’s local coordinate system, is constant. 
Hence, the position that each marker is expected to have in its 
corresponding segment is constant and is estimated through an anatomical 
calibration protocol from the global coordinates of markers anatomical 
landmarks in each body segment. 
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As mentioned in Section 3.1.2, the DHM defined to carry out the 
motion reconstruction is also adopted in the motion prediction process. 

4.3 MOTION RECONSTRUCTION 

Marker-based kinematic motion reconstruction is the process of obtaining 
the motion of a DHM, in terms of the variables adopted to describe it, 
given the trajectories of the markers placed on a subject. 

To perform the motion reconstruction, the trajectories of the markers 
were first filtered in order to eliminate high frequency noise. For this 
purpose, a Butterworth 3rd order filter with a zero-phase lag was employed, 
with a cut off frequency of 3.5Hz. 

The kinematics of the captured motions were reconstructed using the 
optimal tracking method (OTM) proposed by Ausejo et al. (2006; 2009; 
2011). OTM relies on a natural coordinate description of the DHM and 
solves a constrained non-linear optimisation problem in each frame: the 
distance between the position of the markers on the DHM and their 
measured position is minimised while imposing the constraints deriving 
from the natural coordinates formalism. 

If during the motion a marker disappears (it is not visible to at least 
two cameras), it may lead to discontinuities in the motion: the position of a 
segment which at first was determined by approximating n markers, is now 
determined by only n-1. Hence, the contribution of these n-1 markers to the 
segment position changes from one frame to the next, leading to jerky 
motions. To address this issue, a window was specified within which the 
trajectory of the missing marker was interpolated from its last known value 
before disappearance, to its first known value once it reappears. 

Once the motion was kinematically reconstructed, inverse dynamics 
(ID) was applied as a post-process to obtain the forces and torques at the 
joints. For this purpose the dynamic data recorded by the force sensor was 
filtered with the same Butterworth filter employed for the marker 
trajectories. From the kinematic reconstruction, the values of the Euler 
angles were obtained and a recursive Newton-Euler method was applied to 
solve the ID problem (Craig, 2005). 
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4.4 MOTION ANALYSIS 

Of the 160 performed motions, only 153 were captured due to technical 
difficulties. Moreover, only 120 of the 153 motion captures were successful: 
in the remaining cases, the capture began when the motion had already 
started. These 33 motions were discarded immediately from the database. 

Additionally, the motions performed by two elderly male subjects 
were eliminated from the database as their body segment parameters were 
not estimated correctly, leading to an erroneous DHM anthropometry and 
therefore erroneous motion reconstructions. Also the motions performed 
by two EF were discarded as the actual experimental conditions did not 
match the theoretical ones. 

Moreover, 10 motions were eliminated from the database as the 
subjects’ left foot started from the vehicle floor rather than the foot rest, 
affecting the shape of the foot trajectory (see Section 4.4.3). Another 2 
motions were discarded since the subjects readjusted the position of the 
foot on the pedal. Finally, 5 motions were eliminated due to missing 
markers which led to problems in the reconstruction. 

Therefore, the database of clutch pedal motions which we consider in 
the following analysis is composed of 78 motions, distributed among the 
groups and vehicle configurations as shown in Table 4.3. 

Group BMW1 BMW2 BMW4 PCA1 PCA2 REN3 Total 

YF 4 2 2 4 13 4 29 

YM 2 3 2 4 9 3 23 

EF 2 0 0 2 2 2 8 

EM 2 3 1 2 8 2 18 

Total 10 8 5 12 32 11 78 

Table 4.3: Number of motions present in the database performed by each group in each 

vehicle configuration. 

The following sections present the results obtained analysing the 
motion database. Given the purposes of the analysis, stated at the beginning 
of this chapter, a qualitative approach seemed both sufficient and adequate. 
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4.4.1 KEY-FRAME IDENTIFICATION 

As mentioned earlier, key-frames are frames at which a relevant event 
occurs in the motion (e.g. a target is reached). 

The following key-frames were identified in the pedal depression 
motion: 

 StartMotion is the frame at which the motion starts. It is 
identified as the last frame before the left foot starts moving 
(the velocity of the foot at StartMotion 0v ); 

 StartDepression is the frame at which the left foot reaches the 
clutch pedal. It is identified as the first frame at which the 
force sensor placed on the pedal records a non-zero force: 

0F ; 

 EndDepression is the frame at which the pedal is fully 
depressed. It is identified as the frame at which the foot stops 
moving (the velocity of the foot at EndDepression 0v ); 

 EndMotion is the frame at which the motion ends. The motion 
is considered to end 0.3s after the EndDepression key-frame, 
after which the subjects hold their final posture. 

The aforementioned key-frames are shown in Figure 4.5, which 
reports the velocity profiles of the end-effector (EE) and the description of 
the main phases which characterise the 3D motion of the left foot. In this 
work, the exact point in the left foot which is considered as end-effector is 
the point in the DHM which reaches the centre of the clutch pedal at the 
key-frame StartDepression. 

The shape of the EE velocity (Figure 4.5) presents the typical double 
hump of clutch pedal depressions(Wang et al., 2000): the foot moves rapidly 
to the proximity of the pedal, slows down to come into contact with the 
pedal, moves rapidly again during the depression, and slows down towards 
the end of the pedal travel. The key-frames StartMotion, EndDepression, and 
EndMotion are shown in the figure, as their definition is closely related to the 
motion of the end-effector. On the other hand, for what concerns 
StartDepression, its definition depends on the force values recorded by the 
pedal sensor. It may be noticed, however, that it marks the beginning of the 



96 Chapter 4: Experimental Data Analysis 

 

second phase of higher velocities for the end-effector, which in fact 
corresponds to the beginning of the pedal depression. 

 
Figure 4.5: Velocity of the end-effector (EE) in a clutch pedal depression motion. Both 

the motion key-frames and the description of the phases in the end-effector’s motion are 
reported. 

4.4.2 MOTION DURATIONS 

Once the key-frames for clutch pedal depressions were identified, we 
analysed the temporal features of the motions composing the database. 

First, the overall time employed by the subjects to carry out the task is 
considered. Figure 4.6 shows box plots of the total time for each group of 
subjects and for each vehicle configuration. The box plots represent the 
median for each set of data (the red line in the figures) along with its 95% 
confidence interval (the red triangles in the figures). The boxes define the 
inter-quartile range (from the 25th to the 75th percentile) and the whiskers 
show the maximum and minimum values in each data set (excluding the 
data considered as outliers, which are marked as red crosses). 

What must be noticed is that the confidence intervals (CIs) for the 
medians depend on the number of samples in each data set. This is true not 
only for the CIs values (the amplitude of the CIs is inversely proportional to 
the squared root of the samples), but also for the CIs own confidence 
intervals: the fewer the motions in a data set, the greater the uncertainty on 
the accuracy of the CIs. These considerations are relevant especially for the 
elderly females (EF) group: the motions present in the database performed 
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by EF are less than half than those performed by the other subject groups 
(see Table 4.3), hence the CIs for EF are less reliable to be accurate. 

To assess whether the subjects’ age is a factor which influences the 
motion duration, we compare the medians of the elderly subjects (EF, EM) 
with the CIs of the young subjects (YF, EM), and vice versa (Figure 
4.6a).The reason behind this cross-comparison between medians and CIs is 
that the aim is to ascertain whether two different data sets may or may not 
be considered as belonging to the same population. If the median of a data 
set does not fall within the CIs of another, we may state that the data sets 
are different (i.e. they belong to different populations) at a 95% confidence 
level. From the box plots it may be seen that the median of the elderly 
males (EM) falls within the CIs of the young males (YM), but on the 
contrary the YM median does not fall within the EM CIs: hence we may 
conclude that young males tend to carry out the motion in more time than 
elderly males. Although the same considerations may be applied to the 
female subjects (YF and EF respectively), the CIs of the EF group present a 
greater uncertainty than the rest, as explained above. Therefore the claim 
that age reduces the motion duration remains a speculation for female 
subjects. 

 
Figure 4.6: Box plots of the total motion duration, organised according to the subject 

groups (a) and the vehicle configurations (b). The red line represents the median, the 

blue box contains the inter-quartile range (from the 25th to the 75th percentile), and the 

black whiskers extend from the minimum to the maximum values (outliers are marked 

with red crosses). The red triangles mark the 95% confidence intervals of the medians. 

Additionally, the motion durations seem to change depending on the 
vehicle configurations (Figure 4.6b). The CIs for PCA2 are those evaluated 
with greater accuracy (see Table 4.3) and the medians of BMW1, BMW4, 
PCA1 and REN3 do not fall within them: hence, the time required in these 
vehicle configurations is smaller than the time required in PCA2. It may 



98 Chapter 4: Experimental Data Analysis 

 

seem that both PCA2 and BMW2 present longer motion durations, but the 
CIs for BMW2 do not allow to demonstrate this claim. 

Analysing the relative duration of the reach phase respect to the pedal 
depression phase (R/D duration) shown in Figure 4.7, it may be seen that 
younger subjects employ almost the same time to reach the pedal as to 
depress it, in accordance with Wang et al. (2000). Age does not seem to 
affect the relative duration of the phases for female subjects. On the other 
hand, the EM subjects, however, employ significantly less time reaching 
than depressing the pedal respect to YM. 

 
Figure 4.7: Box plots of the relative duration of the reach phase respect to the pedal 

depression phase (R/D duration), organised according to the subject groups (a) and the 

vehicle configurations (b). 

For what concerns the vehicle configuration, it seems to influence the 
relative duration of the reach respect to the depression phase strongly. The 
R/D duration in REN3 is the least among the vehicles, followed by PCA2. 
Both BMW2 and PCA1 present similar R/D durations, close to the unit 
value. Finally, BMW1 and BMW4 present similar R/D durations, and 
require more time reaching than depressing the pedal. Although these 
differences between vehicle configurations were expected to depend on the 
relationship between the distance of the pedal rest position from the H-
point and the pedal travel length, a clear dependency was not found. 
However, considering the height from the vehicle floor of the clutch pedal 
at rest (obtained as the difference between the seat height and the vertical 
position of the pedal at rest, and reported later in Table 4.6), the R/D 
durations seem to follow the same distribution: the higher the rest position 
of the clutch pedal from the floor, the higher the foot must travel from the 
foot rest, and the longer it takes to reach it. 
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Finally a normalised time scale was defined, in order to plot and 
compare the kinematic and dynamic profiles of all the motions. First of all, 
the key-frames in each motion are expressed as a percentage of the duration 
of the motion. Subsequently, each time period between key-frames is scaled: 
this way each key-frame corresponds to the same position in the normalised 
time scale. The positions assigned to each key-frame are obtained by 
averaging their percent value across the motions. The average key-frames 
are reported in Table 4.4 and are shown in Figure 4.8, along with the 
distribution, among groups (a) and vehicle configurations (b), of their actual 
values. 

Key-frames Average value 

StartMotion 0% 

StartDepression 41.27% 

EndDepression 84.13% 

EndMotion 100% 

Table 4.4: Average value of the key-frames respect to the total duration of the motions. 

The distance between the average key-frame values and the 
distribution of their actual values in a specific group or vehicle (Figure 4.8) 
express how much the time periods in the considered set of motions are 
stretched or compressed in the normalised time scale. 

 
Figure 4.8: Key-frame distribution in the database in a normalised time domain. The 

average distribution is shown in solid thick black lines and compared to the distribution 

among the groups (a) and vehicle configurations (b). The coloured solid lines represent 

the mean of each set and the coloured dashed lines represent the 95% confidence 

intervals of the means. 
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The average key-frames are generally very similar to the mean values 
in each group and vehicle configuration. The only exception is given by the 
BMW4 vehicle configuration, which is associated to a smaller number of 
motions, and its mean values are therefore less reliable (the CIs in fact are 
larger than in the other vehicle configurations). 

4.4.3 END-EFFECTOR TRAJECTORIES 

As mentioned earlier, some of the reconstructed motions were not included 
in the database for issues related to the trajectory followed by the end-
effector. In Figure 4.9 the 3D trajectories followed by the end-effector (EE) 
in the REN3 vehicle configuration are shown as example: it may be noticed 
how one of the trajectories followed by the EE of a YM subject starts from 
a lower point (i.e. the floor) and presents a different shape from the rest. 
Therefore, all motions in which the left foot started from the floor have 
been discarded from the database, as they may lead to erroneous 
considerations in the analysis. 

 
Figure 4.9: 3D (left) and 2D (right) views of the trajectories followed by the end-

effector in the REN3 vehicle configuration. The different colours represent the subject 

groups performing the motion: YF (magenta), YM (cyan), EF (red) and EM (blue). The 

yellow circle marks the pedal rest position. 

The mean trajectory followed by the end-effector (EE) in the 
database and its 95% CIs are shown in Figure 4.10, according to the subject 
groups (a1, b1, c1) and vehicle configurations (a2, b2, c2). The vertical black 
lines mark the average StartDepression and EndDepression key-frames. As 
expected, the vehicle configurations appear to strongly affect the EE 
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trajectory, which depends on where the pedal is located at rest and its travel 
characteristics. The vehicle configuration seems to govern not only the 
depression phase (in which the foot is guided by the pedal geometry) but 
also the reach phase: although the trajectory followed by the end-effector is 
free, all subjects seem to move in a very similar way from the foot rest to 
the pedal rest position. The only group-related difference lies in the starting 
position of the foot on the foot rest (Figure 4.10a1, Time = 0%): females 
tend to start closer to the seat than males, probably due to their shorter 
stature. 

 
Figure 4.10: Mean trajectory followed by the end-effector along the 3 axes in the 

various groups (a1, b1, c1) and vehicle configurations (a2, b2, c2). The dashed lines 

represent the 95% confidence intervals of the means. The vertical black lines mark the 

average StartDepression and EndDepression key-frames. 

4.4.4 DOF PROFILES 

In this section we compare the mean DoF profiles (and their CIs) among 
subject groups and vehicle configurations. From the analysis it is possible to 
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identify which DoFs are more affected by the group performing the motion 
and which others depend more on the environment. 

As mentioned earlier, the DHM is described with a relative 
coordinates formalism. Specifically, the rotational DoFs are represented 
using Euler angles, which are hereafter always reported in their rotation 
order in the text. The values of the angles are calculated assuming that an 
upright standing position corresponds to a null value of the angles 
(Kapandji, 1987), and adopting the following sign criterion: flexion-
extension (FE) angles are positive for flexions; abduction-adduction (AA) 
angles are positive for abductions; and longitudinal rotations (LR) are 
positive for clockwise rotations respect to the parent segment. The rotations 
allowed by the DoFs in the left leg are shown in Figure 4.11, along with the 
following local axes of the thigh, shank and foot segments: medio-lateral 
axis (ML), antero-posterior (AP) axis, and infero-superior (IS) axis. 

 
Figure 4.11: Movements of the segments in the left leg allowed by the joint DoFs and 

direction of the medio-lateral (ML), antero-posterior (AP) and infero-superior (IS) axes 

in each segment of the left leg: thigh, shank and foot. 

For what concerns the hip joint (Figure 4.12), its motion is described 
by the following rotations: flexion-extension (FE), abduction-adduction 
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(AA) and longitudinal rotation (LR). Among these, the DoF which mostly 
governs the clutch pedal depression is the FE DoF, as the motion is mainly 
carried out in the sagittal plane (see Figure 4.2). The average shape of the 
FE hip DoF is similar in all sets of data, however its values across the 
motion differ, and seem to be influenced by the vehicle configuration 
(Figure 4.12a2) more than by the subject group (Figure 4.12a1). In fact, the 
average profiles of both PCA1 and REN3 are not contained in the 
remaining vehicle CIs. This observed difference may be related to the seat 
height in the vehicle configuration (Table 4.2): in fact, both PCA1 and 
REN3 present the highest seats, which may reasonably lead to a more 
extended hip joint, in accordance with Wang et al. (2000). 

 
Figure 4.12: Mean joint angle profiles for the hip joint in the various groups (a1, b1, c1) 

and vehicle configurations (a2, b2, c2). The angles represent the flexion-extension (FE), 

the abduction-adduction (AA) and the longitudinal rotation (LR) of the hip joint. The 

dashed lines represent the 95% confidence intervals of the means. 
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On the other hand, the vehicle configurations seem not to influence 
as strongly the remaining two hip DoFs, as the CIs of the mean profiles 
tend to overlap (Figure 4.12b2, c2). Both the AA and the LR DoFs present 
a smaller effect on the motion in the sagittal plane, and therefore may move 
more freely without compromising the task fulfilment. In fact, their values 
seem to depend more on the subject group performing the motion, in 
accordance with Wang et al. (2000): males tend to abduct the hip more 
(Figure 4.12b1) and rotate it less (Figure 4.12c1) respect to female subjects, 
who tend to keep the hip more adducted and rotated inwards, possibly due 
to cultural upbringing. 

The knee joint (Figure 4.13) is described by the following rotations: 
flexion-extension (FE) and longitudinal rotation (LR). Along with the hip 
FE, the knee FE plays a relevant role in clutch pedal depression motions 
and presents a very similar shape in all data sets. 

 
Figure 4.13: Mean joint angle profiles for the knee joint in the various groups (a1, b1) 

and vehicle configurations (a2, b2). The angles represent the flexion-extension (FE) and 

the longitudinal rotation (LR) of the knee joint. The dashed lines represent the 95% 

confidence intervals of the means. 

Female subjects however seem to carry out the motion with a more 
extended knee respect to males (Figure 4.13a1), probably due to their 
shorter stature. Differences may be noticed also considering the vehicle 
configurations, as both BMW1 and BMW4 seem to require slightly more 
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extended knee joints. The clutch pedals in these two vehicles are among 
those placed further along the longitudinal x axis (Table 4.2), which would 
explain a more extended knee. Nevertheless, subjects tend to flex the knee 
in BMW2 as much as in the remaining vehicles, although BMW2 presents 
the furthest clutch pedal. However, the actual longitudinal position of the 
seat must be taken into account (as reported in Table 4.6): in fact, the seat is 
placed closer to the pedals in BMW2, reducing the actual distance between 
the seat and the clutch pedal, and allowing greater knee flexions. 
Additionally, it may be noticed that only 25% of the motions in BMW2 
were performed by females (Table 4.3). This leads to a larger average stature 
in BMW2 respect to the remaining vehicles, which may account for a more 
flexed knee. 

As in the hip joint, the LR DoF, which does not strongly affect the 
motion, depends more on the subject groups than the vehicle 
configurations (Figure 4.13b1), and apparently females twist the knee 
outwards more than males, compensating the inwards hip rotation 
mentioned earlier. 

The ankle joint is represented, as the knee, by a flexion-extension 
(FE) and a longitudinal rotation (LR) DoF. Once more, the FE DoF, which 
acts mainly in the sagittal plane, presents a similar shape in all data sets 
(Figure 4.14a1, a2). For what concerns the group-related differences, 
females do not compensate the more extended knee (Figure 4.13a1) with a 
more flexed ankle. In fact, also the ankle in females is more extended than 
in males (Figure 4.14a1), reflecting the need for female subjects to extend 
the leg more in order to reach the pedal, due to their shorter stature. On the 
other hand, the vehicles do not seem to influence the ankle FE strongly, 
although at the end of the depression BMW2 presents a more flexed ankle 
than the rest. This may seem surprising, as Table 4.2 reports that BMW2 is 
the vehicle with the furthest pedal rest position and of the largest travel 
lengths. However, this information must be combined once again with the 
seat longitudinal position chosen by the subjects (as reported in Table 4.6), 
and the flexion of the ankle may also be explained, as for the knee, with the 
reduced contribution of female subjects to the BMW2 means. 

Similarly to the hip and knee joints, the DoF which less affects the 
ankle motion in the sagittal plane depends more on the subject group than 
on the vehicle (Figure 4.14b1, b2): however in this case a gender- or age-
related trend is not evident. 
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Figure 4.14: Mean joint angle profiles for the ankle joint in the various groups (a1, b1) 

and vehicle configurations (a2, b2). The angles represent the flexion-extension (FE) and 

the longitudinal rotation (LR) of the ankle joint. The dashed lines represent the 95% 

confidence intervals of the means. 

Considering the global rotations associated to the root joint (Figure 
4.15), these are expressed with Euler angles in the following order and with 
the following sign criterion: longitudinal rotation about the global z axis, 
positive for clockwise rotations; lateral tilt, positive for tilts towards the 
right of the DHM; forward tilt, positive for tilts towards the front of the 
DHM. The pelvis longitudinal rotation (Figure 4.15a1, a2) is modest and the 
average profiles differ of about 2º both group-wise and vehicle-wise. Such 
small differences are comparable to the accuracy of the reconstruction, and 
may be a result of the reconstruction or anthropometric characterisation 
processes rather than actual group- or vehicle-related issues. Nevertheless, 
what may be noticed is that all profiles are close to the null rotation, in 
agreement with a seated posture facing forwards. 

Analysing the lateral tilt mean profiles (Figure 4.15b1, b2), the shapes 
reveal the subjects’ tendency to lean to the left while the left foot is 
travelling from the foot rest to the pedal. In fact, during the reach phase the 
weight of the left leg is no longer balanced by the floor reaction and 
generates a torque at the root joint which tilts the pelvis towards the left. 
On the other hand, during the pedal depression the pelvis returns to a more 
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symmetric pose respect to the sagittal plane as the pedal reaction increases. 
In this case neither the subject group nor the vehicle configuration seem to 
influence the DoF profile, as the mean profiles tend to fall within all the 
CIs. 

 
Figure 4.15: Mean joint angle profiles for the root joint in the various groups (a1, b1, 

c1) and vehicle configurations (a2, b2, c2). The angles represent the longitudinal 

rotation (L-Rot), the lateral tilt (L-Tilt) and the forward tilt (F-Tilt) of the root joint. The 

dashed lines represent the 95% confidence intervals of the means. 

As for the forward tilt, group-related differences may be noticed 
(Figure 4.15c1): both male groups (YM, EM) are seated with the pelvis 
more tilted backwards than the female groups (YF, EF). Given that in the 
adopted DHM (see Section 4.2) the upper-body is considered to be rigidly 
connected to the pelvis, the above-mentioned difference in the forward tilt 
results in female DHMs being seated more upright than male DHMs. 
However, such differences in seated postures may not be as evident in the 
actual male and female subjects, as a person’s seated posture also depends 
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on the spinal pose. For what concerns the vehicle configurations, they do 
not seem to affect the forward tilt as much as the subject group (Figure 
4.15c2): in fact, the profiles present less variability among the means than in 
the group-related comparison. 

Finally, the effect of subject groups and vehicle configurations on the 
translational DoFs is presented (Figure 4.16). These are expressed in the 
global coordinate system shown in Figure 4.2 and Figure 4.4. For what 
concerns the position of the pelvis along the x axis (Figure 4.16a1, a2), it is 
strongly related to the subjects’ choice in the position of the seat (Table 
4.6), which could slide forwards or backwards. This DoF seems to be 
greatly influenced by the subject group: female subjects (especially EF) tend 
to slide the seat closer to the front of the vehicle, probably to reach the 
pedal more easily given their shorter stature. On average, EF subjects tend 
to sit 5cm closer to the front respect to male subjects. 

 
Figure 4.16: Mean trajectory followed by the root joint along the 3 axes in the various 

groups (a1, b1, c1) and vehicle configurations (a2, b2, c2). The dashed lines represent 

the 95% confidence intervals of the means. 
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Also the vehicle configuration seems to affect the position of the seat: 
in BMW2 and PCA1 subjects tend to sit about 3cm closer to the pedals 
than in the other vehicles, as confirmed by the seat longitudinal position 
reported in Table 4.6. In the case of BMW2, the reason seems to be the 
position of the clutch pedal, which is furthest from the seat than in the 
other vehicle configurations (Table 4.2). Instead, in the case of PCA1 the 
reason seems to be related to the initial orientation of the clutch pedal 
(Table 4.6), which presents a much smaller inclination respect to the 
horizontal axis: subjects may tend to move closer to the pedal, preparing for 
a more vertical pedal depression. Finally, it may be noticed that during the 
motion subjects seem not to change their horizontal position significantly. 

For what concerns the vertical position (Figure 4.16c1, c2), the shape 
of the profiles are all very similar: the pelvis lifts during the depression as 
the force exerted on the pedal increases. However, the range of vertical 
movement of the pelvis is in the order of 1cm, which again is comparable to 
the accuracy of the reconstruction: although the tendency to lift during the 
pedal depression appears in all sets of data and is physically reasonable, 
further analyses into the differences between the mean and CI profiles 
would not be reliable. The same applies to the lateral position of the pelvis 
(Figure 4.16b1, b2): elderly males (EM) seem to have chosen to sit more 
towards the left of the seat. Nevertheless it is not possible to ascertain 
whether this characteristic actually depends on the subject group or on 
causes related to the definition of the subjects’ anthropometric parameters 
or to the reconstruction process. 

4.4.5 COORDINATION LAW 

From the analysis of the DoF profiles, it was noticed that the flexion-
extension (FE) DoFs, which play the most relevant roles in the motion, 
present a very similar shape, which does not seem to depend on either the 
subject group or the vehicle configuration (Figure 4.12a, d; Figure 4.13a, c; 
Figure 4.14a, c). Hence, the shape of the FE DoF profiles seems 
determined by the task itself. 

Therefore, we analysed the FE profiles of all the motions, normalised 
considering the minimum and maximum value possessed by the DoFs in 
each motion, to assess the similarity in profiles. The mean normalised 
profiles among all motions are shown in Figure 4.17. 

The normalised profiles are very similar one another. First of all, they 
all reach their maximum flexion at around 30% of the motion. Moreover, 
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the means are almost always included in the each other’s CIs. Actually, the 
hip and knee means always fall inside each other’s CIs. The ankle instead is 
relatively more extended most of the time. However, during the majority of 
the reach phase, the ankle mean falls within the hip and knee CIs, and 
although it exceeds their CI range during the depression, it still presents 
similar values and a strong resemblance to their shape. 

 
Figure 4.17: Mean normalised flexion-extension (FE) DoF profiles at the hip, knee and 

ankle joints. The dashed lines represent the 95% confidence intervals of the means. The 

vertical black lines mark the average StartDepression and EndDepression key-frames. 

Such a close relationship between FE profiles led to the definition of 
a coordination law for the clutch pedal depression, according to which the 
FE DoFs move following some kind of synchronicity. This synchronicity is 
expressed in terms of the normalised FE DoF profiles 

nq , which must be 
similar to one another during the motion: 

     FEHipqFEKneeqFEAnkleqt nnn   (4.1) 

4.4.6 JOINT EFFORT PROFILES 

In this section we analyse the efforts in the DHM at the joints (obtained 
through ID as mentioned in Section 4.3), defined as the efforts exerted by 
each segment on the following distal segment, expressed in the local 
coordinate system of the distal segment. Of the three components for each 
effort, we present only those which produce work, given the DoFs which 
characterise each joint. The components are measured along the following 
axes, shown in Figure 4.11: medio-lateral (ML), antero-posterior (AP), and 
infero-superior (IS). The same sign criterion defined for the DoFs in 
Section 4.4.4 is used for the efforts: an effort presents positive values if it is 
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directed so as to produce motion in the positive direction of the 
corresponding DoF. 

First of all, the torques at the joints in the left leg are analysed. These 
torques are equivalent to the actual muscular effort required to perform the 
motions. The components which present greater values are those along the 
medio-lateral (ML) axes: in fact, they are mainly associated to the motion in 
the sagittal plane, in which most of the clutch pedal depression is carried 
out. Figure 4.18 reports the forces which mainly contribute to the ML joint 
torques during the reach and depression phases: during the former phase, 
the main contribution to the torques is given by the gravitational forces 
(Figure 4.18a); whereas during the latter, also the pedal reaction force to its 
depression plays a front stage role in determining the joint ML torques 
(Figure 4.18b), and it may be orientated in different directions, as will be 
explained later (Section 4.4.9). 

 
Figure 4.18: Sagittal forces and ML torques acting at the leg joints during the reach 

phase (a) and sagittal forces acting on the leg segments during the pedal depression (b). 

Each joint torque in (a) is considered due to the weight of its distal segments, both 

marked in the same colour. The pedal reaction force (b) can be oriented in different 

directions. The subscripts F, S and T correspond to the foot, shank and thigh, 

respectively. 

As may be noticed in the following diagrams (Figure 4.19, Figure 4.20 
and Figure 4.21), the reach phases all present similar ML torque values, as 
the gravitational forces acting on the leg are similar in all motions. The 
pedal depression phase, on the other hand, presents a larger variety of 
dynamic behaviours, due to the different directions of the pedal reaction 
force. 

For what concerns the hip joint (Figure 4.19), the vehicle 
configuration seems to affect the ML torque (Figure 4.19a2): the torque 
required in BMW4 and PCA1 during the pedal depression is smaller and 
applied in the opposite direction than in the other vehicles (i.e. directed in 
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the hip extension rather than flexion). In fact, in BMW4 and PCA1 the hip 
participates actively in the depression, with a torque than seeks to extend 
the thigh, whereas in the other vehicles, the torque at the hip seeks to 
maintain the thigh flexed, balancing the leg weight. This difference is related 
to the direction of the pedal reaction force, discussed later in Section 4.4.9. 
Clear group-related differences may also be identified (Figure 4.19a1): 
elderly subjects (EF, EM) tend to load the hip joint more than younger 
subjects (YF, YM), who end the pedal depression with an almost null ML 
hip torque (see Section 4.4.9). 

 
Figure 4.19: Mean joint torque profiles at the hip joint in the various groups (a1, b1, c1) 

and vehicle configurations (a2, b2, c2). The torques are expressed in the medio-lateral 

(ML), antero-posterior (AP) and infero-superior (IS) axes. The dashed lines represent 

the 95% confidence intervals of the means. The vertical black lines mark the average 

StartDepression and EndDepression key-frames. 

The remaining AP and IS torques at the hip (Figure 4.19b1, b2 and 
c1, c2, respectively) are smaller and do not seem to be strongly influenced 
by either the subject or the environment. The only consistent variations 
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across sets may be observed in the AP torque during the reach phase for the 
different subject groups (Figure 4.19b1). The differences among sets, 
however, are small and given the reduced impact of the AP torque on the 
motion, no further analysis is carried out to assess the group-related 
influence. What may be noticed is that the inter-group variability is smaller 
than the inter-vehicle variability in all components, suggesting that the hip 
torque patterns depend more on the subjects performing the clutch pedal 
depression than the environmental conditions it is performed in. 

The analysis of the knee joint torques (Figure 4.20) reveals 
dependencies which are similar to those encountered at the hip joint. For 
what concerns the influence of the vehicle configuration on the medio-
lateral (ML) torque (Figure 4.20a2), once again BMW4 and PCA1 present a 
smaller torque, applied in the opposite direction respect to the other 
vehicles. In these two vehicle configurations, the hip seems in charge of 
extending the leg to depress the pedal while the knee maintains its flexion; 
whereas, in the other vehicles, the hip maintains its flexion while the knee 
tends to extend during the pedal depression. As for the hip, these 
differences are related to the direction of the pedal reaction force (Section 
4.4.9). 

 
Figure 4.20: Mean joint torque profiles at the knee joint in the various groups (a1, b1) 

and vehicle configurations (a2, b2). The torques are expressed in the medio-lateral 

(ML), and infero-superior (IS) axes. The dashed lines represent the 95% confidence 

intervals of the means. 
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Once again, group-related differences in the ML torque component 
are also identifiable (Figure 4.20a1): both elderly groups (EF, EM) tend to 
load the knee more than the young groups (YF, YM respectively). This 
difference is clear for male subjects and remains a speculation for females 
(EF provided fewer motions, hence presenting wider CIs). 

Regarding the infero-superior (IS) torque (Figure 4.20b1, b2), it 
appears during the pedal depression (subjects tend to twist the leg to 
depress the pedal) and is smaller than the ML torque. As for the hip, it 
presents smaller variability group-wise, suggesting a group-specific pattern. 

Similar considerations apply also for the torque at the ankle joint 
(Figure 4.21). The inter-group variability is smaller than the inter-vehicle 
variability, confirming that subject groups tend to behave consistently 
torque-wise. An inverse trend respect to the hip and knee medio-lateral 
(ML) torque may be noticed: young subjects (YF, YM) tend to load the 
ankle more than elderly subjects (EF, EM). 

 
Figure 4.21: Mean joint torque profiles at the ankle joint in the various groups (a1, b1) 

and vehicle configurations (a2, b2). The torques are expressed in the medio-lateral (ML) 

and antero-posterior (AP) axes. The dashed lines represent the 95% confidence intervals 

of the means. 

The vehicle configuration also influences the ankle torque, ranging 
from the reduced torques required in PCA2 and REN3, to the greatest 
torques of BMW4. These differences seem related to the height of the pedal 
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rest position from the floor (Table 4.6), which may affect the manner in 
which subjects perform the depression. For what concerns the antero-
posterior (AP) torque, it appears at the ankle during the pedal depression, as 
subjects tend to twist the foot while depressing the pedal. 

For what concerns the efforts acting at the root joint, these are 
obtained through ID and balanced by the seat reaction. Hence, as opposed 
to the previous efforts, the forces and torques at the root joint are 
expressed in the global coordinate system in order to identify more easily 
the external forces which contribute to each component. 

The greatest part of the seat reaction force (Figure 4.22) is applied 
along the vertical z axis to balance the weight of the upper part of the 
subjects’ body. During the reach phase, also the weight of the left leg is 
unloaded on the seat, whereas during the pedal depression, part of its 
weight is balanced by the pedal reaction force: the vertical force on the seat 
is reduced during the depression (Figure 4.22c1, c2). 

On the one hand, no significant vehicle-related differences may be 
encountered (Figure 4.22c2). On the other, however, a very clear trend 
characterises the group-related seat reaction force profiles (Figure 4.22c1): 
as expected, the average vertical seat reaction forces follow the average 
weights of the subject groups, reported in Table 4.5. Regarding the force 
along the longitudinal x axis, it appears during the pedal depression, due to 
the pedal reaction force (see Section 4.4.7). No group-related differences are 
noticed (Figure 4.22a1). However, concerning the vehicle configuration 
(Figure 4.22a2), PCA1 seems to require a more reduced longitudinal seat 
reaction. This seems directly linked to the pedal travel length and angle 
(Table 4.1), which are respectively smaller and larger in PCA1 than in the 
remaining vehicle configurations. On the one hand, a smaller travel length 
implies a reduced pedal reaction (see Section 4.4.7), and on the other a 
larger travel angle implies a more vertical reaction (see Section 4.4.9). 
Finally, the transversal force along the y axis (Figure 4.22b1, b2) is smaller 
and presents no significant group-related or vehicle-related differences. 

The torques acting at the root joint are not applied external torques, 
but the effect of the application point of the seat reaction on the subjects’ 
pelvis and back. It may be seen in fact that the greatest moment values are 
about the transversal y axis (Figure 4.23b1, b2), due to the force 
components along the longitudinal x and vertical z axes (Figure 4.22a1, a2 
and c1, c2, respectively) and their application point. 
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Figure 4.22: Mean forces acting at the root joint in the various groups (a1, b1, c1) and 

vehicle configurations (a2, b2, c2). The forces are expressed in the global coordinate 

system. The dashed lines represent the 95% confidence intervals of the means. 

During the reach phase, the group-related differences (Figure 4.23b1) 
follow the same trends encountered in the vertical force component (Figure 
4.22c1): male subjects (YM, EM) present a larger torque than females (YF, 
EF). During the depression, however, age is the most relevant factor and 
the torque values follow an inverse trend respect to the hip and knee ML 
torques (Figure 4.19a1 and Figure 4.20a1, respectively): elderly subjects (EF, 
EM) tend to reduce the torque at the root, as opposed to young subjects 
(YF, YM). Young subjects, in fact, present a larger torque at the root, which 
is caused by pushing on the backrest of the seat with the upper part of the 
back, further away from the pelvis. Apparently young subjects prefer to load 
their back rather than exerting more effort at the hip and knee joints. On 
the contrary, elderly subjects tend to avoid back loads, probably because 
they suffer from back pain is more easily, and prefer loading the hip and 
knee joints more (see Section 4.4.9). For what concerns the different vehicle 
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configurations (Figure 4.23b2), during the pedal depression BMW4 and 
PCA1 seem to require a greater transversal torque at the root, transmitted 
by the hip joint (Figure 4.19a2). 

 
Figure 4.23: Mean torques acting at the root joint in the various groups (a1, b1, c1) and 

vehicle configurations (a2, b2, c2). The torques are expressed in the global coordinate 

system. The dashed lines represent the 95% confidence intervals of the means. 

The torque about the vertical z axis appears during the pedal 
depression, due to the asymmetric longitudinal load on the feet, and does 
not seem to present significant group-related or vehicle-related differences. 
The torque about the x axis (Figure 4.23a1) instead is mainly due to the 
vertical force (the effect of transversal force is negligible) which, given the 
reduced value of the torque, seems to be applied very close to the root joint 
in the transversal direction. 

Finally, as for all the torques considered in this section, the inter-
group variability seems smaller than the inter-vehicle variability, once again 
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suggesting the existence of a dynamic pattern, which mostly depends on the 
subject performing the task (their gender, age and weight). 

The analysis of the motion dynamics carried out in this section has 
revealed differences among groups and vehicle configurations that 
otherwise, with a purely kinematic analysis, would have remained hidden. 
The most notable group-related result is that elderly people prefer loading 
the leg joints rather than pushing with their back against the seat (opposed 
to young subjects). For what concerns the vehicle configuration, two 
vehicles (BMW4 and PCA1) which did not yield significantly different DoF 
profiles, tend to require greater torques at the hip and root joints. 

4.4.7 PEDAL STIFFNESS 

During the pedal depression, the pedal reacts with a force which is tangent 
to the pedal trajectory (n  vector in Figure 4.24). 

 
Figure 4.24: Geometric characteristics of the pedal: normal (n) and radial (r) directions, 

initial orientation (θ 0), depression angle (θ), travel length (L) and travel angle (α). 

To characterise this reaction force, a stiffness curve for the pedal in 
each vehicle configuration was obtained by relating the experimental values 
of the pedal reaction force along the n  direction to the pedal depression 
angle θ, as shown in Figure 4.25. It may be seen that the value of the 
maximum rotation changes in the vehicle configurations, in accordance with 
their travel length L, reported in Table 4.2. Moreover, during the central 
part of the depression, the slope of the curves is very similar in all vehicle 
configurations: in fact, the stiffness characteristics of the pedal in the vehicle 
mock-up were not modified in the various vehicle configurations. The last 
part of the stiffness curves almost present a vertical asymptote, representing 
the fact that once the pedal has reached its full depression, the depression 
force may increase but no further rotation is allowed. 
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Figure 4.25: Mean pedal stiffness curves in the various vehicle configurations. The 

dashed lines represent the 95% confidence intervals of the means. 

4.4.8 PEDAL FRICTION  

Although only the force exerted along the normal direction of the pedal (n  
in Figure 4.24) produces the motion of the pedal, the component of the 
force along the radial direction r  may not be null due to friction. In fact, 
Wang et al. (2000) found that the force exerted on the pedal during its 
depression presents both normal and radial components. The relationship 
between the experimental values of the radial and normal forces is discussed 
in this section. 

The relationship between the experimental values of the radial and 
normal forces is reported in Figure 4.26. The most notable characteristics of 
the curves in Figure 4.26a1 and a2 is their tendency towards linearity. This 
implies a constant ratio between the radial and the normal force (Figure 
4.26b1, b2). 

The subject group seems to affect the radial/normal force ratio: 
elderly subjects present the lowest ratios whereas young subjects tend to 
increase the radial force. This group-related characteristic is discussed in 
detail in the following section, in which the direction of the force exerted on 
the pedal is analysed. 

For what concerns the vehicle configuration, it seems to affect the 
radial force less than the subject group. However, it may be seen that PCA1 
presents the greatest radial/normal force ratio. This characteristic is also 
discussed in the following section. 
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Figure 4.26: Mean values of the radial component of the pedal reaction force respect to 

its normal component in the various groups (a1, b1) and vehicle configurations (a2, b2). 

On the left the radial force is plotted against the normal force (a1, a2), whereas on the 

right the ratio between the radial and normal forces is shown during the pedal 

depression phase (b1, b2). The dashed lines represent the 95% confidence intervals of 

the means. 

4.4.9 PEDAL FORCE DIRECTION 

As discussed in the previous section, the force exerted on the pedal presents 
a radial component. This component is unnecessary for what concerns the 
motion of the pedal, but it is nevertheless applied. The effect of the radial 
force is that of modifying the direction of pedal reaction force, albeit 
increasing its magnitude. Apparently subjects apply a radial force in order to 
distribute the torques across the joints in the most convenient manner for 
them. 

To analyse the effect of the radial force, we consider two directions: 
the direction of the pedal reaction force and the direction of the line which 
connects the hip joint and the end-effector (called leg direction). Moreover, 
we define two angles (Figure 4.27): αF is the angle formed by the pedal force 
and the horizontal directions, and αFL is the angle which the pedal force 
forms with the above-mentioned leg direction. 
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Figure 4.27: Orientation of the main forces acting on the leg during the pedal 

depression. The angle formed by the pedal force and the horizontal axis is marked as αF, 

whereas αFL is the angle formed by the pedal force and the leg direction (i.e. line 

connecting the hip joint and the end-effector). The subscripts F, S and T correspond to 

the foot, shank and thigh, respectively. 

Since both angles depend on the pedal force direction, we have 
assessed their dependency on the pedal force magnitude, in order to gain 
insight into motion patterns. Hence, we have considered the weighted 
average of the αF and αFL angles during the depression phase, selecting the 
magnitudes of the pedal force as weighting factors. 

Figure 4.28 reports the weighted mean αF and αFL angles according to 
the subject groups and vehicle configurations. Regarding the value of αF, 
elderly males (EM) tend to apply a more horizontal force than the 
remaining groups (Figure 4.28a1). The greater differences, however, seem to 
be vehicle-related (Figure 4.28b1) and seem to follow the clutch pedal travel 
angle distribution reported in Table 4.2. The reason is that the travel angle is 
a measure of the average normal vector n  to the pedal: the greater the 
angle, the more vertical is the direction of the normal component of the 
pedal force. Additionally, given the relationship between the radial and 
normal components of the pedal force (Figure 4.26a2, b2), the radial 
component contributes to an even greater vertical component of the pedal 
force. The combination of both the clutch pedal travel angle and the radial 
pedal force component account for the large mean value of αF in PCA1 
(Figure 4.28b1). 

For what concerns the relative pedal force direction respect to the leg 
direction measured by αFL (Figure 4.28a2, b2), it is considered relevant as it 
contributes significantly to the ML torque at the hip and root joints. In fact, 
it may be noticed that elderly subjects (EF, EM) tend to align the pedal 
force with their leg direction: such behaviour reduces the torque at the hip 
due to the pedal reaction force, leaving the hip to balance the leg weight as 
in the reach phase (Figure 4.19a1). On the other hand, low values of αFL 
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imply a reduced root torque about the y transversal axis (Figure 4.23), hence 
requiring a lower seat reaction torque for balance (i.e. a closer application 
point to the pelvis in the backrest). On the contrary, young subjects (YF, 
YM) tend to choose the value of αFL which reduces the hip and knee ML 
torques, balancing the torque due to the weight of the distal segments 
(Figure 4.27). According to Wang et al. (2000), the pedal reaction is almost 
aligned with the leg direction, with an average distance of about 5º. 
Although all subject groups tend not to strongly misalign the pedal force 
with their leg direction, the behaviour reported by Wang et al. seems to 
match the pattern followed only by the elderly people in our database. 

 
Figure 4.28: Box plots of the mean force orientation respect to the horizontal direction 

(a1, b1) and to the leg direction (a2, b2), organised according to the subject groups (a1, 

a2) and the vehicle configurations (b1, b2). The red line represents the median, the blue 

box contains the inter-quartile range (from the 25th to the 75th percentile), and the black 

whiskers extend from the minimum to the maximum values (outliers are marked with 

red crosses). The red triangles mark the 95% confidence intervals of the medians. 

Finally, the vehicle-related differences in αFL match the differences in 
ML torques across the joints, described in Section 4.4.6 The highest αFL 
angles correspond to the PCA1 and BMW4 vehicle configurations, which 
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present smaller ML torques at the hip and knee (applied in the opposite 
direction than in the other vehicles) and larger ML torques at the ankle 
respect to the other vehicles. It must be noticed that most of the behaviours 
exhibited in the PCA1 configuration seem to be associated to its large 
clutch pedal travel angle. However, the similar behaviour exhibited in 
BMW4 does not seem to be related to the same cause, given the reduced 
travel angle in BMW4. Nevertheless, the number of motions performed in 
BMW4 is the smallest among vehicle configurations (Table 4.3), leaving its 
mean profiles and CIs to be less reliable than the rest. 

4.4.10 FOOT-PEDAL CONTACT POINT 

For what concerns the point in the foot which reaches the clutch pedal, its 
position has been analysed to assess how far from the heel it is located 
along the sole of the shoe. Figure 4.29 reports the mean distance between 
the end-effector and the heel respect to the foot length, according to the 
subject groups and vehicle configurations. 

 
Figure 4.29: Box plots of the position of the end-effector along the foot respect to the 

foot length, organised according to the subject groups (a) and the vehicle configurations 

(b). 

In the clutch pedal analysis performed by Wang et al. (2000), the 
contact point was located from the heel at approximately 72% of the shoe 
length. This value of relative distance along the sole is in agreement with the 
information obtained from our database (Figure 4.29a), since the CIs of 
each group contain the mean value encountered by Wang et al. 

Considering the vehicle-configurations (Figure 4.29b), significant 
differences may be seen among the vehicles. Such differences do not seem 
directly associated to the parameters reported in Table 4.2. However, if we 
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consider the height of the clutch pedal rest position above the ground 
(Table 4.6), the relative distance of the end-effector along the sole seems to 
follow that same distribution. It may be seen that the end-effector is closer 
to the heel when the pedal is located closer to the ground, probably to avoid 
collisions between the heel and the ground during the depression. 

 
Figure 4.30: Mean local position in the foot during the depression phase of the point in 

contact with the pedal centre. The positions are reported along the foot antero-posterior 

(a1, a2), infero-superior (b1, b2) and medio-lateral (c1, c2) axes in the various groups 

(a1, b1, c1) and vehicle configurations (a2, b2, c2). The dashed lines represent the 95% 

confidence intervals of the means. 

Moreover, it was noted that the foot slides on the pedal during the 
depression (Figure 4.30). The geometric point in the foot which matches 
the centre of the pedal slides towards the toes and penetrates into the sole 
during the pedal depression. Both the displacements along the antero-
posterior (Figure 4.30a1, a2) and the infero-superior (Figure 4.30b1, b2) 
axes depend strongly on the accuracy of the reconstruction as their mean 
values are limited to about 2 or 3cm. However, both displacements present 
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clear trends, suggesting a consistency which should not be evident were the 
displacements due to measurement errors. Nevertheless, the displacement 
along the medio-lateral (ML) (Figure 4.30c1, c2) axis is even smaller and 
lacks the general trends observed along the other two axes: hence, the ML 
displacement is not further investigated. 

For what concerns the antero-posterior direction (Figure 4.30a1, a2), 
the variation of the position of the pedal centre in the foot local coordinate 
system is explained by the foot sliding along the pedal radial direction. This 
movement is directly related to the frictional force recorded by the pedal 
force sensor and analysed in Section 4.4.8. 

On the other hand, the position of the pedal centre in the foot local 
coordinate system along the infero-superior axis (Figure 4.30b1, b2) 
presents smaller, but nevertheless consistent, displacements. One of the 
reasons which may explain an infero-superior (IS) displacement is the 
deformation of the sole in the shoe due to the pressure exerted on the 
pedal. However, although the sole deformation may account for a part of 
the IS displacement, it does not seem the only cause. Specifically, the 
human foot presents a metatarsophalangeal joint which connects the 
metatarsal bones with the digital rays and mostly allows rotation about the 
medio-lateral axes. However, in the DHM we adopted, the foot is modelled 
as a rigid segment, hence metatarsophalangeal rotations are not allowed. 
Since the point in contact with the pedal centre moves towards the toes, the 
observed IS displacements (Figure 4.30b1, b2) could be also due to the lack 
of modelling of the metatarsophalangeal rotations. 

4.4.11 SEAT STIFFNESS 

The human-environment interaction in clutch pedal depressions is not 
limited to the pedal element, but involves the seat as well. The geometric 
and dynamic interaction between the DHM and the pedal allowed to obtain 
a stiffness curve (Section 4.4.7) and a friction coefficient (Section 4.4.8) to 
characterise the foot-pedal interaction. For what concerns the pelvis-seat 
interaction, however, the characterisation is less evident. 

In fact, on the one hand, the forces exerted in the sagittal plane by the 
seat on the pelvis vary significantly across the motion (Figure 4.22). 
However, on the other, the pelvis does not move enough on the seat in 
order to determine a stiffness curve as for the pedal. In fact, the variations 
in position of the pelvis during the motion (Figure 4.16) present the same 
order of magnitude as the accuracy in the reconstruction. 
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Therefore, from the analysis of the kinematic and dynamic profiles of 
the motion database, we are not able to gain sufficient information so as to 
characterise the interaction between the pelvis and the seat. 

4.4.12 BEHAVIOURS 

As mentioned earlier, the behaviours exhibited during the motions may be 
classified into strategies and styles. Strategies are evident differences in the 
motion which may be identified simply watching the motion being 
performed (or a video recording). The clutch pedal depression is a 
straightforward task, which leads to the definition of only one strategy, the 
one adopted by all the subjects. 

Styles, on the other hand, are defined as more subtle differences in 
the motion, generally identified through the motion analysis. For what 
concerns the DoF profiles (Section 4.4.4), slight differences associated to 
the values of the experimental parameters were identified, but generally the 
kinematic profiles of all motions are very similar to each other. However, 
the dynamic analysis (Section 4.4.6) revealed two different trends which may 
be considered as dynamic motion styles: 

 Back Load style: 
This style is characterised by a more vertical pedal reaction, which 
mainly produces two effects. On the one hand, the torques at the 
hip and knee joint are reduced, as the moment due to the pedal 
reaction balances the moment due to the leg weight. On the other, 
to balance the moment at the root joint due to the pedal reaction, 
the seat reaction at the backrest is applied on the upper part of the 
subject’s back, loading their back. 

 Leg Load style: 
This style is characterised by a pedal reaction which is more aligned 
to the leg direction, i.e. the direction connecting the hip joint with 
the end-effector. A pedal reaction thus directed generates a small 
moment about the joints. Therefore, the torques at the hip and knee 
joints are high, due to the muscular activity required to balance the 
moment produced by the leg weight. However, the seat reaction 
must not balance a large torque at the root, hence the seat reaction 
at the backrest is applied closer to the pelvis, leading to a smaller 
load on the back. 
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As mentioned above, the two styles are determined by the pedal 
reaction direction. This may change due to vehicle-related or group-related 
causes. On the one hand, the vehicle affects the style selection (Figure 4.28) 
through the clutch pedal travel angle: a higher travel angle implies a more 
vertical reaction, hence a tendency towards the Back Load style; a lower 
travel angle implies a more horizontal reaction, hence a tendency towards 
the Leg Load style. However, it must be considered that the influence of the 
vehicle must be combined with the group-related differences in pedal 
reaction directions (Figure 4.28), which are modified by changing the radial 
component of the pedal force (Figure 4.26). Young subjects tend to choose 
the Back Load style, as they prefer to reduce the torque at the joints by 
loading their back. Elderly subjects instead tend to reduce the load on their 
back and would rather apply a greater effort across the leg. 

Within the same subject group and vehicle configuration, however, 
no different behaviours were observed, suggesting that the characteristics of 
the subject and the environment alone establish which of the two styles are 
adopted. 

4.5 STRUCTURED DATABASE 

As mentioned in the introduction to this chapter, one of the aims of the 
database motion analysis is to provide the necessary information to carry 
out the database structuring. In fact, a structured database is required as 
input in the motion prediction method described in Chapter 3. 

The database structuring consists in characterising the motions with 
the values of their most relevant features, which are to be taken into 
account during the prediction process. These features can either be used to 
select the reference motion (as the features characterising the motion 
scenario) or they can be passed on from the reference to the predicted 
motion (as the temporal feature), as described earlier in Section 3.3. 

For what concerns the temporal features, each motion is characterised 
by the values of the key-frames identified in Section 4.4.1. On the other 
hand, the characterisation of the motion scenarios is carried out through the 
values of the subject-related and environment-related features which proved 
to influence the motion, according to the analysis performed in Section 4.4. 

Therefore, each motion in the database is characterised by the value 
of the parameters reported in the following tables. The subject-related 
features which mostly seem to influence the clutch pedal depression motion 
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(Table 4.5) are the subjects’ gender and age groups, as well as their stature 
and weight. For what concerns the environment-related features (listed in 
Table 4.6 and depicted in Figure 4.31), more features than those which were 
initially employed to characterise the vehicle configurations (Table 4.2) 
appear to affect the clutch pedal depression motion. In addition to the seat 
height (Sh), the pedal travel length (L) and angle (α) and the pedal rest 
position (CP), also the longitudinal position of the seat H-point (Hx), the 
initial height of the clutch pedal from the vehicle floor (CPh) and its initial 
orientation (θ) seem to be relevant features which influence the motion. 

Group Gender Age 
Stature Weight 

[cm] [kg] 

YF Females Young 167±3 61±3 

YM Males Young 176±5 68±13 

EF Females Elderly 161±25 50±14 

EM Males Elderly 171±18 78±1 

Table 4.5: Subject-related features included in the database structuring. The value 

following the ± symbol represents the standard deviation σ. 

 

Vehicle 
Sh Hx CPh L α θ0 CPx CPy CPz 

[mm] [mm] [mm] [mm] [deg] [deg] [mm] [mm] [mm] 

BMW1 256 -5±35 187 140 0 75.7 -814 -60 -69 

BMW2 247 -30±32 183 150 0 70.9 -831 -110 -64 

BMW4 174 -3±38 191 138 0 69.3 -816 -120 17 

PCA1 355 -34±28 156 132 23 47.3 -770 -70 -199 

PCA2 272 1±34 142 158 8 64.8 -766 -80 -130 

REN3 360 -1±33 142 139 15 59.2 -761 -70 -218 

Table 4.6: Environment-related features included in the database structuring. The value 

following the ± symbol represents the standard deviation σ. 

The features reported in Table 4.5 and Table 4.6 are those which are 
considered in the reference motion selection criterion, described by 
Equation (3.3). Therefore, in order to select the reference motion, the 
values of the aforementioned features are required not only for the motions 
composing the database, but must be specified also for the motion to be 
predicted (Section 3.2.2). 
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Figure 4.31: Environmental features used in the structuring of the database. 

A final remark concerns the two different styles defined in Section 
4.4.12, which are not included explicitly in the structuring of the database. 
The reason is that the choice of the most similar subject and the most 
similar environment automatically select the adopted style. In fact, as 
mentioned earlier, the style seems determined by the subject group and the 
vehicle configuration alone: the same group of subjects in the same 
environment all carry out the task adopting the same behaviour. 
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CHAPTER 5 

CHAPTER 5: TEST CASE DEFINITION 

This chapter describes how the prediction method presented in Chapter 3 is 
applied to the clutch pedal depression motion, analysed in Chapter 4. First 
we define the prediction scenarios (Section 5.1), composed by the subjects 
and the environments employed in the predictions. Subsequently, we detail 
the optimisation problem to be solved in the prediction of clutch pedal 
depressions, in terms of the employed design variables (Section 5.2), 
constraints (Section 5.3) and objectives (Section 5.4). Finally, the description 
of the contact models, used to evaluate the external forces due to the 
human-environment interaction, complete the characterisation of the 
prediction scenarios (Section 5.5). 

5.1 PREDICTION SCENARIOS 

The definition of the prediction scenarios describes the characteristics of 
the subjects and the environments employed in the predictions, which are 
called prediction subjects and prediction environments, respectively. In the 
context of product design, the prediction subjects represent generic 
specimens of the target populations for which a product is being designed, 
and the prediction environments correspond to the new designs which are 
to be evaluated ergonomically. 

The target populations and the prediction environment considered in 
this work are those reported in Table 5.1: the predictions seek to represent 
the behaviour of average young females (YF), young males (YM) and elderly 
males (EM) performing a clutch pedal depression in a specific vehicle 
configuration (PCA2). 
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Target 

Population 
Gender Age 

Stature Weight 

[cm] [kg] 

YF Female Young 163±3 61±3 

YM Male Young 176±5 68±13 

EM Male Elderly 171±18 78±1 

 

Vehicle 
Sh Hx CPh L α θ0 CPx CPy CPz 

[mm] [mm] [mm] [mm] [deg] [deg] [mm] [mm] [mm] 

PCA2 272 1±34 142 158 8 64.8 -766 -80 -130 

Table 5.1: Characteristics of the target populations and the prediction environment 

employed in the predictions presented in this work. 

The reason, for which we specifically consider the vehicle 
configuration and the populations of Table 5.1, is for validation purposes. 
In fact, in order to assess the goodness of the predictions obtained with our 
method, we seek to compare the predicted motions to actually performed 
motions, carried out in similar conditions to the ones being predicted. 

Given the number of available motions performed by each subject 
group in each vehicle configuration (Table 4.3), we selected PCA2 as 
prediction environment and the YF, YM and EM groups as target 
populations, as the greatest number of motions are available in these 
conditions, leading to a more reliable comparison between predicted and 
actually performed motions. The group of elderly females (EF) was not 
selected as target population due to the reduced number of valid motions 
performed by EF in the PCA2 vehicle, and therefore does not appear in 
Table 5.1. 

For what concerns the specific subjects employed in the predictions, 
as mentioned earlier, they should represent a generic specimen of the target 
population. The prediction subjects, therefore, are chosen to represent the 
average subject of each target population. Rather than averaging the 
anthropometric measures of each target population sample, the DHMs of 
the prediction subjects are tailored to represent the experimental subjects 
which most resemble the average of the target populations. 

The characteristics of the prediction scenarios (i.e. the prediction 
subjects and the prediction environment) considered in this work are 
reported in Table 5.2. 
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Subject 

ID 
Gender Age 

Stature Weight 

[cm] [kg] 

YF_1 Female 30 168.4 58.6 

YM_4 Male 21 177.5 79.3 

EM_1 Male 72 170.8 76.8 

 

Vehicle 
Sh Hx CPh L α θ0 CPx CPy CPz 

[mm] [mm] [mm] [mm] [deg] [deg] [mm] [mm] [mm] 

PCA2 272 1±34 142 158 8 64.8 -766 -80 -130 

Table 5.2: Characteristics of the prediction scenarios. 

5.2 DESIGN VARIABLES 

As described in Section 3.5.1, our motion prediction method adopts a       
B-spline parameterisation, which consists in representing the DoF profiles 
in the motion as a linear combination of a set of linearly independent 
functions (called basis functions), through a set of coefficients (called 
control points). The number of control points (and of basis functions) to be 
employed in the parameterisation depends on the accuracy with which the 
DoF profiles are to be approximated: the finer the approximation is, the 
more control points are needed. 

Section 5.2.1 hereafter describes the process which was followed to 
select the number of control points for the parameterisation of clutch pedal 
depressions, and Section 5.2.2 discusses the tolerances ensured by the 
selected number of control points. 

5.2.1 NUMBER OF CONTROL POINTS 

The number of control points, which is required to represent each DoF 
profile )(tq  within a specified tolerance ε , is given by the minimum 

number of control points which yields parameterised DoF profiles )(tqBS  
that satisfy the following condition: 
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where )(tqi  represents the i
th original DoF profile of the motion; )(tqBSi  

represents the i
th DoF profile approximated through the B-splines 

parameterisation employing a specific number of control points; and 
Maxiq  

and 
Miniq  are respectively the maximum and minimum values of the original 

DoF profile. The difference between 
Maxiq  and 

Miniq  represents the range 
of values (RoV) of each DoF profile during the motion. 

For what specifically concerns the clutch pedal depression motion, 
the DoFs which characterise the DHM, employed both in the motion 
reconstruction and prediction processes (Section 4.2), are 13: 10 rotational 
and 3 translational. 

The 13 DoF profiles of each motion in the database have been 
approximated with a B-spline curve in order to assess the minimum number 
of control points required by each DoF in each motion. Three different 
tolerances for the B-spline approximation have been considered, 
corresponding to 5%, 2% and 1% of the RoV of each DoF in each motion. 
The resulting number of control points obtained by applying Equation (5.1) 
in all the motions composing the database, for each DoF and each tolerance 
ε , is reported in Figure 5.1. 

It may be noticed that, as expected, the required number of control 
points of all DoFs increases when the approximation tolerance is decreased. 
Moreover, not all DoFs require the same number of control points to 
achieve the same tolerance. It may be noticed that a greater number of 
control points is associated to the DoFs that do not play a relevant role in 
the motion (mostly, the longitudinal rotation DoFs and the translation of 
the pelvis in the transversal direction). The reason is that the DoFs which 
are not very relevant to the task accomplishment generally present more 
irregular profiles, as they are less controlled during the motion and 
additionally tend to present a more reduced range of values (RoV) respect 
to more relevant DoFs: hence, any irregularity in the profile shape accounts 
for a larger percentage of the RoV. Such irregularities are not reflected 
directly in the figures of Section 4.4.4, as the figures represent the average 
profiles of the DoFs, and the irregularities in each motion are likely to be 
compensated in the averaging process by the irregularities in another 
motion. 
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Figure 5.1: Number of control points required to approximate the DoF profiles within a 

5%, 2% and 1% tolerance (represented in red, green and blue, respectively). The black 

dot represents the median, the coloured box contains the inter-quartile range (from the 

25th to the 75th percentile), and the whiskers extend from the minimum to the maximum 

values (outliers are marked with coloured circles). The black triangles mark the 95% 

confidence intervals of the medians. 

To select the number of control points with which to carry out the 
predictions, we consider the median number of control points which ensure 
a 2% tolerance in the DoF profiles. To adopt the same number of control 
points among the rotational DoFs and the same number among the 
translational DoFs, we select the maximum median value among the 
rotational and translational DoFs, respectively. Consequently, we consider 
17 control points to represent the 10 rotational DoFs in our DHM and 16 
for the 3 translational DoFs, which leads to a total of 218 control points. 

5.2.2 ENSURED TOLERANCES 

The abovementioned number of control points leads to a maximum error 
of 2% in the B-spline approximation of the DoF profiles in the majority of 
the motions. However, the average error committed across each motion 
(employing 17 control points for the rotational DoFs and 16 for the 
translational DoFs) also seems an interesting quantity to assess how closely 
the approximation resembles the original DoF profiles. 
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The average tolerances with which the DoF profiles are approximated 
by using the selected number of control points are shown in Figure 5.2. It 
may be noticed that the median values of the tolerances are significantly 
below 2% and that the selected number of control points actually ensure an 
even finer approximation for the DoFs which play a more relevant role in 
the motion (namely, the flexion-extension DoFs at the hip, knee and ankle 
joints), as they correspond to less than a 0.5% average tolerance in the 
greatest majority of the motions. 

 
Figure 5.2: Average tolerances with which the DoF profiles in the database are 

approximated by adopting 17 control points for the rotational DoFs and 16 for the 

translational DoFs. The red line represents the median, the blue box contains the inter-

quartile range (from the 25th to the 75th percentile), and the black whiskers extend from 

the minimum to the maximum values (outliers are marked with red crosses). The red 

triangles mark the 95% confidence intervals of the medians. 

As mentioned in Section 3.5.1, both the kinematics and dynamics of 
the predicted motions are represented through the B-spline control points. 
Therefore, we consider that the tolerance with which the B-spline 
parameterisation approximates the joint torque profiles should also be 
assessed. To evaluate the degree of approximation that the selected control 
points allow for the torques at the joints, a dynamic reconstruction was 
performed, considering the actually measured external forces and the        
B-spline approximation of the DoF profiles. The obtained torques are 
compared to the torques in the original motions, and the average tolerances 
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with which the B-spline parameterisation approximates the joint torques are 
shown in Figure 5.3. 

 
Figure 5.3: Average tolerances with which the joint torque profiles in the database are 

approximated by adopting 17 control points for the rotational DoFs and 16 for the 

translational DoFs. 

It may be noticed that although the tolerances are greater in the 
torques than in the DoF profiles, the tolerances in the joint torques 
achieved through the B-spline approximation are still reduced (the median 
values are smaller than 3%). Therefore, we consider that the selected 
number of control points is adequate to represent both the kinematics and 
dynamics of the clutch pedal depression motions composing the database 
and thus we employ the above-mentioned 218 control points as design 
variables for the optimisation problem. 

5.3 CONSTRAINTS 

In Section 3.5.2 we presented the equality and inequality constraints 
included in our motion prediction method. The constraints we consider, in 
the prediction of clutch pedal depression motions, are detailed hereafter. 

5.3.1 GOAL FULFILMENT 

This equality constraint ensures the fulfilment of the goal in the motion by 
guiding the motion of the end-effector. In clutch pedal depressions, the 
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end-effector is considered to be the point in the left foot which reaches the 
centre of the clutch pedal at the key-frame StartDepression (as mentioned in 
Section 4.4.1). 

We consider the trajectory of the end-effector to be constrained to 
the foot rest at the key-frame StartMotion ( 0tt  ) and to the clutch pedal 
throughout the pedal depression, from key-frame StartDepression (

Dtt  ) to 
key-frame EndMotion (

Ttt  ). It must be noticed that we do not guide the 
motion of the end-effector during the reach phase (we impose the 
constraint only at 0t  and 

Dt ), allowing any trajectory which starts at the 
foot rest and ends at the rest position of the clutch pedal in the prediction 
environment. Thus, the trajectory of the end-effector in the predicted 
motion during the reach phase is determined by the objective function of 
the optimisation problem, described later in Section 5.4. 

Therefore, the trajectory of the end-effector is guided by: 

       0,,0

*  tttttt ModTrajEffEndTD xqxΦ  (5.2) 

where Modx  is the trajectory that must be followed by the end-effector in 
order to fulfil the goals in the prediction scenario (see Section 3.4). During 
the reach phase, the modified trajectory Modx  is obtained considering a free 
end-effector (Section 3.4.2.1), by imposing the position of the end-effector 
on the foot rest at 0t  and on the clutch pedal at 

Dt  in the prediction 

environment. For what concerns the depression phase, Modx  is obtained 
considering a constrained end-effector (Section 3.4.2.2) since the motion of 
the foot is determined by the geometry of the pedal. Details on the 
evaluation of the trajectory Modx  to be followed during the clutch pedal 
depression phase are given later, when defining the contact model between 
the foot and the pedal (Section 5.5.1). 

As mentioned earlier (Section 3.5.2.1), the constraint is enforced only 
at specific frames *t  during the depression phase [

TD tt , ], to avoid 
excessively reducing the number of free control points. Considering the 
adopted number of control points (Section 5.2), we found that a good 
compromise between the number of free control points and the task 
achievement is given by imposing the goal fulfilment constraint at evenly 
spaced intervals of N frames, where   5DT ttN  . A goal fulfilment 
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objective is defined to ensure that a smooth trajectory is followed 
throughout the pedal depression (Section 5.4.1). 

5.3.2 INITIAL AND FINAL CONDITIONS 

We consider the clutch pedal depression motions to start and end in states 
of rest, therefore we impose: 

0)(

0)(,0





t

ttttt

AccDoF

VelDoFT

qΦ
qΦ



 (5.3) 

As mentioned earlier (Section 3.5.2.2), these constraints reduce by 4 
the number of free control points which describe each DoF. However, the 
number of control points adopted for clutch pedal depressions to 
approximate each DoF is sufficiently large to allow the aforementioned 
constraints to be set while ensuring a sufficient number of free control 
points for the optimisation. In fact, 13 and 12 control points for the 
rotational and translational DoFs respectively, ensure an approximation of 
the DoF profiles with a tolerance less than or equal to 5% (see Figure 5.1). 

5.3.3 JOINT LIMITS 

As described in Section 3.5.2.3, our method allows to define limits to the 
DoF values and to the joint torque values, to take into account the RoMs of 
the articulations and the maximum muscular effort of the human body. 

For the prediction of clutch pedal depressions, however, we chose to 
control only the limit values of the DoFs and not the limit values of the 
torques. The reason is that the torques exerted in the motion are far from 
their limits and Equation (3.17) appears to be automatically satisfied. On the 
other hand, the RoM inequalities seem to be required, as otherwise their 
limits may be exceeded in the prediction. 

Therefore, we restrict the values of the DoFs q  to a range delimited 

by lower and upper limits (
Lq  and Uq ) throughout the motion, in order not 

to exceed the RoM of the articulations: 

 
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 (5.4) 

The RoM values considered in this work are constant and are those 
provided in the specifications of the adopted RAMSIS DHM (Section 4.2). 
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Since each inequality corresponds to two KKT conditions (Arora, 
2004), we impose these constraints at evenly spaced intervals of N frames in 
order not to overload the computation. Currently, considering the adopted 
number of control points (Section 5.2) and the inequalities included in the 

optimisation problem, we employ   100ttN T   for all inequality 
constraints. 

5.3.4 COLLISION AVOIDANCE 

Of the collisions which may arise in clutch pedal depression, we only 
consider the one between the left heel and the vehicle floor, which we 
consider is the most likely collision to occur. 

Denoting with n  the vector normal to the horizontal plane 
representing the vehicle floor (directed upwards), and whose origin 0x  is 
located on the surface of the vehicle floor, the trajectory x  followed by the 
left heel of the DHM must fulfil the following constraint throughout the 
motion in order to avoid the heel-floor collision: 

       0, 00  nxqxΦ tttt Collision
IN

T  (5.5) 

As mentioned earlier (Section 5.3.3), inequalities are currently set at 

evenly spaced intervals of N frames, where   100ttN T  . 

5.3.5 DYNAMIC BALANCE 

As described in Section 3.5.2.5, the dynamic balance of the DHM is ensured 
through an inequality constraint to take into account the approximate 
nature of the contact models representing the human-environment 
interaction (the contact models employed to predict clutch pedal depression 
motions are detailed in Section 5.5). 

Therefore, we impose the following condition throughout the 

motion, at evenly spaced intervals of   100ttN T   frames (see Section 
5.3.3): 

   
  0,,

0,,,0
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   
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As the clutch pedal motion is carried out mainly in the sagittal plane, 
we enforce the dynamic balance only along the directions of greatest effort: 
the x and z axes for the forces and the y axis for the torques. 

The tolerances 
Fε  and τε  specify the range within which the dynamic 

balance is considered as fulfilled. In the prediction of clutch pedal 
depressions, adopting the contact models described later, we set 

Fε  to 10% 

of the weight of the upper part of the body (approximately 40 N), and τε  as 
the moment produced by 

Fε  at a distance equal to the hip width 
(approximately 15 Nm).  

5.4 OBJECTIVES 

In Section 3.5.3 we presented the type of objectives included in our motion 
prediction method. The objectives we consider, in the case of clutch pedal 
depression motions, are detailed hereafter. 

In Section 3.5.4.1, the minimum number of frames at which the 
objective function must be evaluated has been defined. Ideally, evaluating 
the objective function at each frame leads the control points to be 
controlled best; however, the smoothness ensured by the B-spline 
parameterisation makes a frame-by-frame evaluation unnecessary. 
Considering the adopted number of control points (Section 5.2), we found 
that a good compromise between computational cost and accuracy is given 
by evaluating the objective function at evenly spaced intervals of N frames, 
where   500ttN T   (i.e. every 3-7 frames). 

5.4.1 GOAL FULFILMENT 

As mentioned earlier (Section 5.3.1), the goal fulfilment constraint is applied 
throughout the clutch pedal depression, but is enforced only at specific 
frames, to avoid excessively reducing the number of free control points. To 
ensure that the desired trajectory is followed throughout the depression 
phase (from 

Dt  to 
Tt ), the following condition is included in the objective 

function: 
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     tttt ModTrajEffEndTD xqqxΨ   ,,  (5.8) 

where x  is the velocity of the end-effector and Modx  is the time derivative 
of the modified end-effector trajectory (specified later, in Section 5.5.1.1, 
for the clutch pedal depression). 

The condition is set on the end-effector velocity rather than its 
position to ensure a smoother trajectory by resembling the shape of the 
modified trajectory in between the goal fulfilment constraints. 

5.4.2 DATA-BASED CONDITIONS 

To maintain the realism of the reference motion, a condition is set 
throughout the motion to resemble the reference DoF velocities Refq  

(hence, the shape of the DoF profiles): 

     ttttt RefVelDoFT qqΨ   ,0  (5.9) 

The condition is set on the DoF velocities rather than on the DoF 
values as different scenarios may involve different DoF values, whereas the 
shape of the DoF profiles is generally maintained (Park et al., 2004). 

5.4.3 KNOWLEDGE-BASED CONDITIONS 

From the dynamic analysis of the database (Section 4.4.6), it emerged that 
young and elderly people tend to depress the pedal differently: the former 
tend to reduce the torques at the joints; whereas the latter tend to reduce 
the load on their back. It was also noticed that the differences arise from the 
direction of the force exerted on the clutch pedal, due to the different radial 
forces exerted on the pedal (Sections 4.4.8 and 4.4.9). 

In this work, the different contact behaviours exhibited by young and 
elderly subjects are represented through the pedal contact model (as 
described in detail in Section 5.5.1). Therefore, the radial force exerted by 
the DHM on the pedal is determined by the behaviour expected by the 
DHM: a greater radial force is imposed by the pedal contact model on 
young people, producing lower joint torques, whereas a lower radial force is 
imposed on elderly people, yielding lower back loads. 

As the age-related behaviours are taken into account by the 
abovementioned contact model, the aim of the knowledge-based condition 
is to represent the common goal guiding the motion of all subjects. Energy-
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related criteria seems reasonable candidates for clutch pedal depressions, 
considering the dynamic motion analyses presented in (Wang et al., 2000) 
and in Chapter 4 of this thesis. According to Wang (2000), the motions 
appear to be consistent with a minimum energy principle and our findings 
are that all subjects seem concerned with effort minimisation (joint torques 
for young subjects and back loads for the elderly). 

In order to assess the most adequate energy-related criterion, Section 
6.3 of the next chapter presents a comparison between two of the most 
commonly employed energy-related performance measures (see Section 
2.1.2.2): minimum dynamic effort and minimum mechanical energy. 

5.5 CONTACT MODELS 

To evaluate the efforts exerted by the environmental elements with which 
the DHM interacts, contact models must be defined. In the case of the 
clutch pedal depression, the elements with which the DHM interacts are the 
clutch pedal (described hereafter) and the seat (described in Section 5.5.2). 

5.5.1 FOOT-PEDAL CONTACT MODEL 

For what concerns the clutch pedal, the information gathered in the 
motion database analysis (Chapter 4) is taken into account to characterise 
both the geometric and dynamic interaction between the left foot and the 
pedal. The following sections describe the geometric (Section 5.5.1.1) and 
the dynamic characteristics (Sections 5.5.1.2 and 5.5.1.3) of the foot-pedal 
contact model. 

5.5.1.1 Contact Point 

As mentioned earlier (Section 5.3.1), the point considered as end-effector 
for the clutch pedal depression is the point in the left foot which reaches 
the centre of the clutch pedal at the beginning of the depression. In order to 
carry out a prediction, the position of the end-effector in the foot local 
coordinate system must be provided in both the reference and the 
prediction subject. If no local coordinates are specified, the positions are 
estimated for each subject group as the point located at the average distance 
from the heel reported in Figure 4.29, along the line connecting the heel to 
the toes. 

As observed in the motion database analysis, the end-effector does 
not exactly follow the trajectory of the pedal centre, but slides during the 
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depression (Section 4.4.10). Therefore, the trajectory Modx  to be followed 
by the end-effector during the pedal depression is given by the combination 
of the trajectory followed by the pedal centre and the sliding of the foot on 
the pedal. 

The clutch pedal is modelled as a rigid body connected to the vehicle 
by a revolute joint, with its rotation axis aligned to the global y axis (Figure 
5.4), hence the trajectory of the pedal centre is represented by a 
circumference arc in the sagittal plane (marked as PCx  in the figure). The 

trajectory PCx  of the pedal centre is obtained by applying forward 
kinematics to the clutch pedal: 

  PCR

PC

Pedal

ModPedalPCRPC θ xRxx   (5.10) 

where PCRx  is the global position of the pedal centre of rotation; PedalR  is 
the matrix describing the rotation of the pedal coordinate system respect to 
the global coordinate system; )(tθMod  is the modified profile of the clutch 
pedal depression angle, obtained by applying Equations (3.7) and (3.8) to 

the motion of the clutch pedal; and PCR

PC

Pedalx  is the position of the centre of 
the pedal (at which the end-effector comes into contact with the pedal) 
respect to the pedal centre of rotation, measured in the pedal coordinate 
system. 

 
Figure 5.4: Geometric contact between the left foot and the clutch pedal. 
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The sliding of the foot on the pedal is modelled for each subject 
group as the average sliding δLoc  along the antero-posterior and infero-
superior axes, as reported in Figure 5.5 for the various target populations in 
the prediction environment (see Table 5.1). 

 
Figure 5.5: Mean local position in the foot during the depression phase of the point in 

contact with the pedal centre, along the foot antero-posterior (a) and infero-superior (b) 

axes for young females (YF), young males (YM) and elderly males (EM) in the PCA2 

vehicle configuration. The dashed lines represent the 95% confidence intervals of the 

means. 

Since δLoc  depends on the depression angle θ , the final trajectory to 
be followed by the end-effector is given by: 

     θθ Loc

LocPCMod δqRxx   (5.11) 

where Modx  is the trajectory which must be followed by the end-effector in 

the predicted motion; PCx  is the trajectory of the pedal centre, obtained 

through Equation (5.10); and LocR  is the rotation matrix between the global 
coordinate system and the local coordinate system of the foot, in which 
δLoc  is expressed. 

It must be noticed that including the sliding of the foot on the pedal 
not only changes the trajectory that the end-effector must follow (Equation 
(5.11)), but also modifies the application point of the pedal reaction on the 
foot. In fact, the pedal reaction force is considered to be applied at the 
centre of the pedal, which corresponds to a different point in the foot 
during the depression due to the sliding. Since the application point of the 
pedal reaction varies in the foot, also the corresponding moment at the 
ankle joint varies due to the different lever arm. 
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5.5.1.2 Stiffness 

The reaction force 
nF , with which the pedal opposes resistance to its 

depression, is assumed to be directed as the n  vector in Figure 5.4, tangent 
to the trajectory followed by the centre of the pedal, and its value is 
determined by the angular position of the pedal (θ  in Figure 5.4) through 
the pedal stiffness curve )(θkPedal . 

From the database analysis we obtained the stiffness curves of the 
pedals in each of the six experimental vehicle configurations (Section 4.4.7, 
Figure 4.25). Since the prediction environment is chosen to match the 
PCA2 configuration, its mean stiffness curve is employed to relate the pedal 
reaction force 

nF  to the pedal depression angle θ . 

The angular position of the pedal θ  depends on the position of the 
left foot, which in turn depends on the DoF values q  of the DHM. 
Therefore, the relationship between the pedal reaction force 

nF  and the 
variables describing the motion of the DHM is expressed by the following 
equation: 

   qFn θθkPedal  (5.12) 

5.5.1.3 Friction 

From the analysis of the motion database, it was noticed that the force 
which subjects apply on the pedal is not directed as the pedal reaction force 

nF  described in the previous section. Additionally, a radial force 
rF  is 

exerted on the pedal, directed as the r  vector in Figure 5.4, although its 
application does not affect the motion of the pedal. In fact, its aim is that of 
directing the external force exerted by the pedal so as to reduce the torques 
at the joints (in young subjects) or the seat reaction torque (in elderly 
subjects). 

The analysis of the relationship between the radial force 
rF  and the 

normal force 
nF  (Section 4.4.8), revealed almost a constant ratio between 

the two (Figure 4.26). Therefore, we consider that the radial force is 
proportional to the normal force: 

nFF Fr c  (5.13) 
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The value of the coefficient 
Fc  is estimated through the curves 

reported in Figure 5.6, which represent the mean values of the coefficient 

Fc  during the pedal depression for the various target populations in the 
prediction environment (see Table 5.1). 

 
Figure 5.6: Mean values of the coefficient relating the radial and the normal forces at 

the pedal for young females (YF), young males (YM) and elderly males (EM) in the 

PCA2 vehicle configuration. The dashed lines represent the 95% confidence intervals of 

the means. 

The value of the coefficient employed in Equation (5.13) is obtained 
as the approximated median value of the curves reported in Figure 5.6. 
Therefore, we consider 6.0Fc  for young subjects and 3.0Fc  for 
elderly males. 

5.5.2 PELVIS-SEAT CONTACT MODEL 

Contrarily to the foot-pedal interaction, the database analysis did not allow a 
clear characterisation of the pelvis-seat interaction. In fact, a stiffness curve 
relating the seat reaction force and the pelvis position was not possible to 
be determined (Section 4.4.11). Therefore, a different contact model is 
considered, based on the interference between geometric models 
representing the seat and the pelvis, respectively. In this work the geometry 
of the pelvis and the seat are simplified as shown in Figure 5.7. 

The geometry of the seat is described by two orthogonal lines in the 
sagittal plane, which are tilted respect to the global axes. The tilt angles of 
64º and 26º were evaluated through the CAD model of the vehicle seat 
employed in the clutch pedal experiments. 

The geometric model of the pelvis is approximated to a rectangle in 
the sagittal plane and its interference with the seat geometry is represented 
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by two contacts in the backrest (B1 and B2) and two in the seat cushion (C1 
and C2). The contacts are modelled as spring-damper combinations, whose 
characteristics are described in the following sections. 

 
Figure 5.7: Geometry of the pelvis-seat interaction in the sagittal plane. 

It may be noticed that only the contacts in the sagittal plane are 
considered in the characterisation of the pelvis-seat interaction. This 
simplification is adopted since the clutch pedal depression motion is carried 
out mainly in the sagittal plane and the balance condition reported in 
Section 5.3.5 is also limited to the above-mentioned plane. The forces acting 
in the transversal direction y are very small in comparison (Figure 4.22), and 
are considered to be automatically balanced by the seat. 

5.5.2.1 Stiffness 

In order to relate the seat reaction force with the interference between the 
pelvis and seat geometric models, a stiffness curve has to be defined. In 
general, the pelvis-seat contact is non-linear, due to the different 
composition of the layers forming the seat and to the combination of soft 
tissues and bones which compose the human pelvis. However, in clutch 
pedal operations the position of the pelvis does not present great variability 
(Figure 4.16). Therefore we assume that in the neighbourhood of the seated 
pelvis position a linear stiffness curve may be adequate to represent the 
pelvis-seat coupling. 

To determine the stiffness coefficients of the springs reported in 
Figure 5.7 and the position of the four contacts in the pelvis, we assume 
that the interference at the beginning of the motion is such as to generate 
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seat reaction forces which balance the weight of the DHM. As detailed in 
Section 4.2, the inertial properties of the upper body and of half the right 
thigh are included in the pelvis segment (the weight of the rest of the right 
leg is considered to be unloaded directly on the ground). Therefore the 
weight to be balanced by the seat at the beginning of the motion is given by 
the weight of the pelvis segment (which accounts for the passive part of the 
model as well) combined to the weight of the left leg, which is assumed to 
have just left the ground. 

 
Figure 5.8: Forces acting on the pelvis at the beginning of the motion. The point MHP 

represents the mid hip point. The point CoM represents the centre of mass of the whole 

upper body and left leg combined, which together weigh mg. 

Some assumptions are required to evaluate the stiffness at each of the 
four contact points and their position in the pelvis segment. First of all, we 
consider that the rectangle representing the pelvis is aligned to the seat at 
the beginning of the motion, as shown in Figure 5.8. Hence, both contacts 
with the backrest present the same interference (lp) and both contacts with 
the cushion also present the same interference (hp). Additionally, we 
consider that the stiffness coefficients of the cushion (kC) and of the 
backrest (kB) do not change depending on the position of the contact. 
Therefore, at the beginning of the motion, the forces exerted at the cushion 
are the same at both contacts C1 and C2 and that the forces exerted at the 
backrest are also the same at both contacts B1 and B2. Moreover, we 
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consider that at the beginning of the motion two seat reaction forces do not 
produce moment about the mid hip point (MHP). 

Under these assumptions, the equations of force and moment balance 
in the sagittal plane may be written as: 
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From the first two equations the values of the forces FC1 and FB1 are 
obtained. The forces are related to the backrest kB and cushion stiffness kC 
through the interferences lp and hp. To determine the values of these 
quantities, we set the value of the cushion interference and consider that the 
backrest is 50% stiffer than the cushion, as reported in Equation (5.15): 
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The values of the kC and kB stiffness coefficients thus obtained are in 
the order of 5 and 7.5 N/mm respectively. Actual seats seem to be slightly 
stiffer (Burnett et al., 2004; Wirsching et al., 2011) but a greater stiffness 
would imply selecting a smaller hp interference, which would more easily 
lead to losing contact with the seat during the iterations of the optimisation 
algorithm. 

The third equation in (5.14) imposes the balance of the moments 
about the mid hip point (MHP) and determines the relationship between 
the backrest reactions distance and the cushion reactions distance. To 
determine the position of the contacts B1 and C1 we set the value of the 
distance between backrest reactions and therefore determine the distance 
between cushion reactions. We consider B1 to be located in the lower 
thoracic region, and quantify the distance between MHP and B1 as 40% of 
the subject back length for young subjects and 30% for elderly males (as 
they present lower seat torques, see Section 4.4.12). 

5.5.2.2 Damping 

The damping elements of Figure 5.7 are introduced to include energy 
dissipation in the contact model, in order to resemble the actual pelvis-seat 
interaction more closely. 
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To determine the damping coefficients for the backrest and the 
cushion, a battery of motion predictions was performed, in which different 
damping ratios were employed. By choosing the reference scenario to 
match the prediction scenario, we were able to identify the damping ratio 
which yielded the closest approximation to the actually performed motion. 
Specifically, we selected as reference a motion performed by the average 
male subject (YM_4 in Table 5.2) in the prediction environment. 

As the motion to be predicted matches the reference motion, purely 
data-based predictions were carried out. The optimisation problem to be 
solved in each prediction is the same: all the constraints detailed in Section 
5.3 are imposed and the objective function is composed by the goal 
fulfilment and the data-based conditions, as reported in Table 5.3. A unit 
weight is associated to both objectives. 
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         

Table 5.3: Characteristics of the optimisation problems defined to determine the 

damping coefficients for the pelvis-seat contact model. 

The battery of predictions is composed of eleven trials in which the 
value of the damping ratio ξ  was varied progressively. On account of the 
slight oscillations which are generally perceived when seated in a vehicle, the 
pelvis-seat damping is assumed to be subcritical. Hence, the damping ratio 
was varied from 0 (undamped) to 1 (critically damped) with a 0.1 step. 

Additionally, we considered that the damping coefficient for the cushion Cc  
is the same at both contacts C1 and C2 and that the damping coefficient for 
the backrest 

Bc  is also the same at both contacts B1 and B2. 

The damping coefficients Cc  and 
Bc  are obtained through the 

definition of the damping ratio ξ : 
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where Cm  is the portion of the DHM mass which is balanced by the 
cushion at the beginning of the motion; 

Bm  is the portion balanced by the 

backrest; and Ck  and 
Bk  are the cushion and backrest stiffness coefficients 

obtained in the previous section. 

In order to compare the results obtained with different damping 
ratios, we employ time-averaged distances (TDs) to quantify the 
resemblance between the predictions and the reference motion. Therefore, 
the damping ratio which yields the closest approximation to the reference 
motion is determined as the value which gives the smallest TD between the 
predicted and the reference motion. 

TDs were introduced in Section 2.2 and are defined in the literature as 
the Euclidean norm of the difference between the predicted and the 
experimental motion, as reported in Equation (2.27). As mentioned earlier 
(Section 2.2), such TDs have been used for validation purposes in kinematic 
data-based motion prediction methods, comparing the predicted and 
experimental positions of the end-effectors and relevant joint centres across 
the motion. However, since our predictions include dynamics in the 
formulation, we define a time-averaged distance between motions which 
takes into account both kinematic and dynamic magnitudes. For this 

purpose, we consider a global TD ( TOTTD ) which is defined as a 
combination of four TDs, representing respectively the time-averaged 
distance between the predicted and the reference motion in terms of end-

effector trajectories ( TTD ), DoF values ( qTD ), DoF velocities ( qTD ) and 

dynamic efforts ( ETD ). 

As the clutch pedal depression is carried out mainly in the sagittal 
plane (and the seat contact model is defined only in this plane), the TDs 
focus on the nq most relevant DoFs (nq=6: three flexion-extensions, root 
forward tilt and x and z translations), the nE most relevant efforts (nE=6: 
three medio-lateral joint torques and three external efforts acting on the 
root segment in the sagittal plane) and the two components of the end-
effector trajectory in the sagittal plane (along the x and z axes). 
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In order to deal with comparable TDs and to combine them in the 

global measure TOTTD , the four aforementioned time-average distances are 
normalised. The quantities employed to yield dimensionless TDs are the 
standard deviations TRefσ , qRefσ , qRefσ   and ERefσ , which respectively 

represent the dispersion from the mean values in the reference motion of 
the end-effector trajectories, DoF values, DoF velocities and efforts. 
Equation (5.17) details how each of the above-mentioned TDs is calculated. 
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where x  and z  represent the components of the end-effector trajectory in 
the predicted motion along the corresponding axes, and Refx  and Refz  

represent the same components of the end-effector trajectory in the 
reference motion; 

iq , 
iq  and 

iE  represent the ith DoF value, DoF velocity 
and effort (either a force or a torque) in the predicted motion, respectively, 
and iRefq , iRefq  and iRefE  represent the same quantities in the reference 

motion; xRefσ , zRefσ , qiRefσ , iqRefσ   and EiRefσ  respectively represent the 

standard deviation of the end-effector trajectory along the x and z axes and 
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of the i
th DoF value, DoF velocity and effort across the reference motion 

(from t0 to tT); qn  is the number of considered DoFs, En  is the number of 

considered efforts and tn  is the number of frames in the motion. 

Figure 5.9 reports the TDs thus obtained in the battery of predictions. 
It may be noticed how the small values of qTD  hardly vary across the trials, 

due to the data-based objective concerning DoF velocities (Equation (5.9)). 

Also TTD  presents small values and reduced variability on account of the 
goal fulfilment constraint (Equation (5.2)) and objective (Equation (5.8)). 
On the other hand, the TDs concerning the DoF values and the joint 
torques seem to be reduced for low damping ratios ( 4.0ξ ) and increase 
for higher damping ratios ( 7.0ξ ). The lowest values of the total TD are 
obtained in the optimum range of 4.02.0  ξ . Hence, the value 0.3 is 
selected to represent the pelvis-seat damping ratio in the contact model, as 
it is the central value in the optimum range. 

 
Figure 5.9: Time-averaged distances (TDs) between the predicted motions and the 

actually performed motion in the prediction scenario that they seek to resemble. The 

damping ratio is varied from 0 to 1 with a 0.1 step. 

Therefore, considering the characterisation of the springs and 
dampers presented in these sections to represent the seat-pelvis interaction, 
the seat reaction forces exerted on the pelvis are evaluated throughout the 
motion as: 
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where 
ip  is the interference between the pelvis and the seat at the i

th 
contact; 

iv  is the i
th interference velocity; 

ik  and 
ic  are the stiffness and 

damping coefficients at the i
th contact, which present different values 

depending on whether the contact is between the pelvis and the cushion or 
the pelvis and the backrest; and 

id  is the lever arm of the ith force respect to 
the root joint (at which the dynamic balance of Equation (5.7) is imposed). 

5.6 CONCLUSIONS 

In this chapter we have presented the application of the motion prediction 
method described in Chapter 3 to the task of clutch pedal depressions. Both 
the definition of the prediction scenarios and the characteristics of the 
optimisation problem have been described. 

It must be noticed the application of our method to the defined test 
case always follows a hybrid approach: on the one hand, all predictions rely 
on the data-based contribution of the reference motion, which determines 
the temporal features of the predicted motion (Section 3.3) and provides the 
initial approximation for the optimisation (Section 3.5.1); on the other, 
knowledge is included in the pedal contact model to reflect the behaviours 
identified in the database analysis of Chapter 4, imposing a larger or smaller 
radial force depending on whether a young or elderly subject is being 
predicted. 

The following chapter presents the results of the predictions carried 
out employing this test case and proceeds to the validation of our motion 
prediction method. 
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CHAPTER 6 

CHAPTER 6: RESULTS AND VALIDATION 

This chapter presents the results of our motion prediction method applied 
to the test case presented in Chapter 5. First of all, the characteristics of the 
reference motions employed for each prediction scenario are described 
(Section 6.1). Subsequently the results of the predictions are presented and 
discussed in order to compare kinematic and dynamic predictions (Section 
6.2), to assess the most adequate motion control law for clutch pedal 
depressions (Section 6.3), and to compare a data-based, knowledge-based 
and hybrid objective function (Section 6.4). Throughout these sections, the 
results of the predictions are compared against the mean profiles of the 
target populations, which the predictions seek to represent, and their 
variability. 

Finally, a quantitative validation is carried out to verify the realism and 
the representativeness of our motion prediction method (Section 6.5). 

6.1 REFERENCE MOTION SCENARIOS 

In order to resemble the conditions in which motion prediction methods 
are generally applied, we consider that the scenario of the reference motion 
is constituted by an environment that differs from the prediction 
environment and by a subject that differs from the prediction subject. 
Therefore, for each of the prediction scenarios described in Section 5.1, the 
reference motions are selected among the motions in the database, once the 
motions performed by the prediction subject and the motions performed by 
the remaining subjects in the prediction environment are set aside. Hence, 
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the scenarios selected as reference differ from the prediction scenarios in 
terms of both subject anthropometry and environment characteristics. 

Considering for instance the group of young females, the YF subject 
whose anthropometry most resembles the average values of the YF group 
is, as mentioned in Section 5.1, identified by the ID 1 and is therefore 
employed as prediction subject (see Table 5.2). Consequently, the motions 
performed by YF_1 are not eligible as reference. Additionally, since PCA2 
is the prediction environment, the motions performed in PCA2 are not 
eligible as reference either. Thus, the reference motion for the prediction of 
young females must be selected among the motions reported in Table 6.1, 
excluding the shaded ones, in order to consider as reference a motion 
performed by a different subject and in a different environment than those 
defined in the prediction scenario. 

YF ID BMW1 BMW2 BMW4 PCA1 PCA2 REN3 

1 • •  • ••• • 
2 •    •• • 
3 •  • • ••• • 
4 •  • • •• • 
5  •  • •••  

Table 6.1: Number of motions performed by each subject in the young female (YF) 

group in each vehicle configuration. The shaded cells are those corresponding to the 

prediction subject or the prediction environment. 

All the predictions presented in this chapter were carried out twice, 
adopting two different reference motions. The first reference motion was 
selected from the database as the motion performed in the most similar 
scenario to the one to be predicted, thus representing the ideal conditions 
for a data-based prediction. This reference motion was identified employing 
the criterion described in Section 3.3: for the reference subject 
identification, a similar stature to the prediction subject was valued more 
than a similar weight; for what concerns the reference environment, the 
initial height of the clutch pedal from the floor, its initial orientation and its 
travel angle (see Section 4.5) were considered the most relevant features to 
assess environment similarity. 

On the other hand, the second reference motion was selected as the 
motion performed by each subject group in the most dissimilar scenario, 
thus representing the extrapolation which may be required from a motion 
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prediction method. The characteristics of the reference scenarios employed 
in the predictions are reported in Table 6.2 and Table 6.3. 

 
Subject 

ID 
Gender Age 

Stature Weight 

[cm] [kg] 

YF_4 Female 21 168.2 57.2 

YM_5 Male 34 182.3 78.7 

EM_2 Male 78 173.0 77.0 

 

Vehicle 
Sh Hx CPh L α θ0 CPx CPy CPz 

[mm] [mm] [mm] [mm] [deg] [deg] [mm] [mm] [mm] 

REN3 360 -1±33 142 139 15 59.2 -761 -70 -218 

Table 6.2: Characteristics of the reference motion scenarios identified as the most 

similar to the prediction scenarios. 

 
Subject 

ID 
Gender Age 

Stature Weight 

[cm] [kg] 

YF_5 Female 22 163.2 62.4 

YM_3 Male 24 170.0 55.6 

EM_3 Male 76 169.5 79.0 

 

Vehicle 
Sh Hx CPh L α θ0 CPx CPy CPz 

[mm] [mm] [mm] [mm] [deg] [deg] [mm] [mm] [mm] 

PCA1 355 -34±28 156 132 23 47.3 -770 -70 -199 

Table 6.3: Characteristics of the reference motion scenarios identified as the most 

dissimilar to the prediction scenarios. 

6.2 COMPARING KINEMATIC AND DYNAMIC 
PREDICTIONS 

To compare the results of a kinematic and a dynamic approach, the 
following predictions were carried out. The three prediction scenarios 
reported in Table 5.2 were considered and two predictions were performed 
in each scenario: 
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 the first is a purely kinematic prediction, in which the DHM forces 
and torques are calculated a posteriori through inverse dynamics 
(described in Section 3.1.3), employing the contact models described 
in Section 5.5; 

 the second is a dynamic prediction which is identical to the above-
mentioned kinematic prediction, and additionally includes the 
dynamic balance constraint. 

The conditions included in the optimisation problems defined in both 
the kinematic and dynamic predictions are detailed in Table 6.4 (each 
constraint is described in Section 5.3 and each objective in Section 5.4), and 
unit weights are associated to each objective. 
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Kin           

Dyn           

Table 6.4: Characteristics of the optimisation problems defined in the kinematic and the 

dynamic predictions. 

It may be noticed that the knowledge-based objective is not included 
in the predictions. The reason is that knowledge is generally introduced in 
terms of a dynamic motion control law, which cannot be adopted in a 
kinematic approach. Therefore, the kinematic prediction is purely data-
based. Since the defined dynamic prediction differs only in the presence of 
the balance constraint, its objective function is also purely data-based. 

All three prediction scenarios reported in Table 5.2 were considered 
and each prediction was carried out twice, employing the different reference 
scenarios reported in Table 6.2 and Table 6.3. The results in the various 
prediction scenarios are similar, and therefore we hereafter present only 
those corresponding to the group of young females (YF) as example. The 
considerations that follow are valid also for the young and elderly males. 
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6.2.1 END-EFFECTOR TRAJECTORIES 

The end-effector trajectories followed in the sagittal plane (EEx and EEz) 
in the kinematic and dynamic predictions are shown in Figure 6.1, along 
with the mean trajectory μ followed by the target population, its variability 
(μ±2σ), and the trajectory followed by the end-effector in the reference 
motions. The vertical black lines in Figure 6.1, and in all the following 
figures, mark the average StartDepression and EndDepression key-frames of 
the motions performed by the target population in the prediction 
environment. The difference between the reference and predicted 
trajectories are due to both the different position of the clutch pedal in the 
vehicles and to the different seat height in the reference and predicted 
scenarios (the origin of the global coordinate system is placed in the seat  
H-point, Section 4.2). 

 
Figure 6.1: Trajectories followed by the end-effector in the sagittal plane for young 

females (YF) employing a similar reference motion (a1, a2) and a dissimilar reference 

motion (b1, b2) for the kinematic and dynamic predictions. The trajectories are reported 

along the longitudinal x axis (a1, b1) and the vertical z axis (a2, b2). The blue and red 

curves, respectively, show the results of the kinematic and the dynamic predictions. The 

trajectories followed by the end-effector in the reference motions are reported in black. 

The thin black curves show the mean trajectories μ followed by the end-effector of the 

YF target population and the thin dashed curves represent their variability μ±2σ. The 

vertical black lines mark the average StartDepression and EndDepression key-frames of 

the motions performed by the target population in the prediction environment. 
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It may be seen that the trajectories followed during the pedal 
depression phase in both the kinematic and dynamic predictions tend to 
match, due to the goal fulfilment constraint (Equation (5.2)) and objective 
(Equation (5.8)). Additionally, the predicted trajectories hardly exceed the 
μ±2σ range of variability of the target population during the depression 
phase, on account of the goal fulfilment constraint and the adequacy of the 
modified trajectory to be followed (Equation (5.11)). 

For what concerns the reach phase, a similar reference motion seems 
to yield trajectories that almost match in the kinematic and dynamic 
predictions, and which also tend to fall within the μ±2σ range of the target 
population (Figure 6.1a1, b1). However, a dissimilar reference motion may 
lead to trajectories which differ more in the kinematic and dynamic 
prediction, and which occasionally exceed the μ±2σ range (Figure 6.1a2, b2)  

6.2.2 DOF PROFILES 

The DoF profiles shown and discussed in this section correspond to the nq 
most relevant DoF profiles in clutch pedal depression, which are the DoFs 
that mostly act in the sagittal plane: namely, the flexion-extension DoFs, the 
pelvis forward tilt and its longitudinal and vertical translations. 

The predicted profiles of the nq most relevant DoFs, obtained 
employing a similar and a dissimilar reference motion, are reported in 
Figure 6.2 and Figure 6.3. The results of both the kinematic and dynamic 
predictions are shown, as well as the mean profiles μ in the target 
population, their variability (μ±2σ), and the DoF profiles in the reference 
motions. 

It may be noticed that in terms of DoF values, both the kinematic 
and the dynamic predictions yield similar results, in particular for the 
flexion-extension DoFs (Figure 6.2). Additionally, the predicted profiles are 
mostly contained within the μ±2σ range of variability of the target 
population, especially when a similar reference motion is employed (Figure 
6.2a1-c1 and Figure 6.3a1-c1). When a dissimilar reference motion is 
employed, the predicted profiles occasionally exceed the range of variability 
of the target population (Figure 6.2b2, Figure 6.3c2). 
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Figure 6.2: Flexion-extension profiles for young females (YF) employing a similar 

reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for the 

kinematic and dynamic predictions. The blue and red curves, respectively, show the 

results of the kinematic and the dynamic predictions. The reference DoF profiles are 

reported in black. 

6.2.3 DOF VELOCITY PROFILES 

The shapes of the DoF profiles may be analysed by comparing the values of 
the DoF velocities across the motion. Figure 6.4 and Figure 6.5 show the 
predicted velocity profiles corresponding to the nq most relevant DoFs, 
obtained employing a similar and a dissimilar reference motion. 

The predicted velocity profiles, both in the kinematic and in the 
dynamic prediction, always follow the reference DoF velocity profiles very 
closely, which was to be expected given the data-based condition to 
resemble the reference DoF velocities. 
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Figure 6.3: Forward tilt and translations of the root joint in the sagittal plane for young 

females (YF) employing a similar reference motion (a1, b1, c1) and a dissimilar 

reference motion (a2, b2, c2) for the kinematic and dynamic predictions. The blue and 

red curves, respectively, show the results of the kinematic and the dynamic predictions. 

The reference DoF profiles are reported in black. 

It may be noticed that the predicted profiles occasionally exceed the 
μ±2σ range of the target population (for instance, in Figure 6.5b1). This is 
due to the resemblance of the predicted profiles with the reference profiles, 
which correspond to motions that do not belong to the target population. 

6.2.4 JOINT TORQUE PROFILES 

The torque profiles which mostly affect the motion in the sagittal plane are 
the medio-lateral torques at the joints of the left leg. Their predicted profiles 
are shown in Figure 6.6, obtained employing a similar and a dissimilar 
reference motion. 
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Figure 6.4: Flexion-extension velocity profiles for young females (YF) employing a 

similar reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for 

the kinematic and dynamic predictions. The blue and red curves, respectively, show the 

results of the kinematic and the dynamic predictions. The reference DoF velocity 

profiles are reported in black. 

Once again the results of both the kinematic (with a posteriori inverse 
dynamics) and dynamic predictions are very similar. This is due to both the 
approach followed to carry out the inverse dynamics calculations and to the 
forces acting on the DHM. In fact, the employed recursive Newton-Euler 
approach (Section 3.1.3) evaluates the efforts at the joints from the most 
distal segments towards the root, and the greatest forces acting on the 
DHM’s left leg (the gravitational force and the pedal reaction force, 
obtained through the contact model described in Section 5.5.1) are common 
to both predictions. Given the high similarity in DoF profiles (Figure 6.2), 
such a resemblance in torque profiles was to be expected. 
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Figure 6.5: Forward tilt and translational velocities of the root joint in the sagittal plane 

for young females (YF) employing a similar reference motion (a1, b1, c1) and a 

dissimilar reference motion (a2, b2, c2) for the kinematic and dynamic predictions. The 

blue and red curves, respectively, show the results of the kinematic and the dynamic 

predictions. The reference DoF velocity profiles are reported in black. 

It may be noticed that the joint torque profiles of the similar 
reference motion are contained within the range of variability of the target 
population, on account of the similarities between reference and prediction 
scenarios. On the other hand, when a dissimilar reference motion is 
employed, the reference torques present significantly different profiles from 
the target population. 
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Figure 6.6: Joint torque profiles for young females (YF) employing a similar reference 

motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for the kinematic and 

dynamic predictions. The medio-lateral torque profiles are shown at the hip (a1, a2), 

knee (b1, b2) and ankle (c1, c2) joints. The blue and red curves, respectively, show the 

results of the kinematic and the dynamic predictions. The reference DoF profiles are 

reported in black. 

6.2.5 PELVIS-SEAT EFFORTS 

The greatest difference between the kinematic and dynamic predictions may 
be seen analysing the efforts acting on the seat and, therefore, the dynamic 
balance of the DHM. 

Figure 6.7 shows the forces acting on the seat along the global x and z 
axes and their resulting moment about the root joint centre. The efforts 
shown in the figure correspond both to the efforts that the pelvis exerts on 
the seat according to the inverse dynamics (ID) performed on the predicted 
motions, and to the efforts that the pelvis is expected to exert according to 
the employed pelvis-seat contact model (Section 5.5.2). The difference 
between the two represents the error in the dynamic balance condition. 
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Figure 6.7: Efforts exerted by the pelvis on the seat for young females (YF) employing 

a similar reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for 

the kinematic and dynamic predictions. The efforts in the sagittal plane are reported: 

forces along the x axis (a1, a2) and z axis (b1, b2) and torque about the global y axis 

(c1, c2). The results of the kinematic prediction are shown in blue (efforts evaluated 

through ID) and cyan (efforts expected according to the contact model) whereas the 

results of the dynamic predictions are shown in red (efforts evaluated through ID) and 

magenta (efforts expected according to the contact model). The efforts exerted in the 

reference motion are reported in black. 

It may be noticed that in the dynamic prediction efforts present 
similar values. This is due to the balance condition imposed to the motion, 
which seeks accordance between the efforts obtained through ID and the 
efforts obtained through the pelvis-seat contact model. The efforts do not 
match exactly as the balance is imposed through an inequality constraint 
(Section 5.3.5), but are similar enough to assume that the discrepancy is due 
to the approximate nature of the pelvis-seat contact model. 
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Additionally, in most dynamic predictions, both pelvis efforts on the 
seat (obtained through ID and through the pelvis-seat contact model) 
hardly exceed the μ±2σ range of the target population. The only exception 
we encountered is given by the horizontal forces in young females obtained 
with a dissimilar reference motion (Figure 6.7a2). In this case, the horizontal 
force according to the pelvis-seat contact model exceeds the μ±2σ range in 
the central part of the motion, and seems to have anticipated the force 
values which characterise the depression phase. 

For what concerns the kinematic prediction, instead, the discrepancy 
between the ID efforts and the efforts computed through the pelvis-seat 
contact model may be significantly large (Figure 6.7b2). The efforts 
evaluated through ID are once again similar to the dynamic prediction, but 
the efforts due to the contact model are significantly different. Hence, the 
dynamic balance is far from being fulfilled. 

Such differences may be surprising given the high similarities between 
the kinematic and dynamic predictions in both the DoF profiles and the 
efforts evaluated through ID, but are actually the demonstration of the 
importance of imposing the dynamic balance in the prediction. In fact, if 
the dynamic balance is not enforced, there is no guarantee that the motion 
is actually feasible, regardless of whether the DoF and ID profiles are within 
the μ±2σ range of the target population. For instance, considering the 
forces exerted along the vertical z axis, it may be seen in Figure 6.7b2 that, 
according to the contact model, the seat is reacting to a smaller force than 
the one exerted by the pelvis according to ID. The reason is that in the 
kinematic prediction the DHM’s pelvis is located too high respect to the 
seat (about 1cm higher than the dynamic prediction, Figure 6.3c2) and 
therefore is not interfering with the seat geometry as much as needed to 
balance the weight of the subject. 

The predictions carried out employing a similar reference motion 
(Figure 6.7a1-c1) present a more reduced discrepancy between the forces 
exerted by the pelvis on the seat. However, this result should not lead to the 
conclusion that for similar reference motions a kinematic prediction is 
always sufficient. In fact, in the predictions of both young and elderly males, 
also a similar reference motion has led to a large discrepancy in pelvis 
efforts as shown in Figure 6.8 (which depicts the predictions of young 
males employing a similar and a dissimilar reference motion). 
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Figure 6.8: Efforts exerted by the pelvis on the seat for young males (YM) employing a 

similar reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for 

the kinematic and dynamic predictions. The efforts in the sagittal plane are reported: 

forces along the x axis (a1, a2) and z axis (b1, b2) and torque about the global y axis 

(c1, c2). The results of the kinematic prediction are shown in blue (efforts evaluated 

through ID) and cyan (efforts expected according to the contact model) whereas the 

results of the dynamic predictions are shown in red (efforts evaluated through ID) and 

magenta (efforts expected according to the contact model). The efforts exerted in the 

reference motion are reported in black. 

In this case, when a similar reference motion is employed (Figure 
6.8a1-c1), the pelvis force along the x axis according to the contact model is 
much larger than the force exerted by the pelvis according to ID. As the 
DoF velocity profiles are almost identical in both kinematic and dynamic 
predictions (due to the data-based objective), the reason for the discrepancy 
between the efforts estimated through the pelvis-seat contact models is to 
be found in the differences in DoF profiles. Figure 6.9 shows the DoF 
profiles of the root joint predicted for young males employing both a 
similar and dissimilar reference motion, and following the kinematic and 



6.2 Comparing Kinematic and Dynamic Predictions  

 

171 

dynamic approaches. It may be seen that, for a similar reference motion 
(Figure 6.9a1-c1), the kinematic prediction places the DHM too far back in 
the seat (about 1cm further back respect to the dynamic prediction, Figure 
6.9b1), which is therefore interfering with the seat geometry more than it 
should. 

 
Figure 6.9: Forward tilt and translations of the root joint in the sagittal plane for young 

males (YM) employing a similar reference motion (a1, b1, c1) and a dissimilar 

reference motion (a2, b2, c2) for the kinematic and dynamic predictions. The blue and 

red curves, respectively, show the results of the kinematic and the dynamic predictions. 

The reference DoF profiles are reported in black. 

Additionally, in the predictions of both young and elderly males it has 
occurred that the resulting seat reaction exerted along the x axis, according 
to the contact model, was directed in the opposite direction, pushing the 
DHM further back (Figure 6.8a2). The reason for the seat reaction to be 
directed backwards is that the kinematic prediction yields a pelvis which is 
both tilted and located too forwards. In fact, although the DoF profiles in 
the kinematic prediction are completely contained within the μ±2σ range of 
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variability of the target population, the pelvis is tilted about 8º more and 
located 2cm forward respect to the dynamic prediction (Figure 6.9a2 and 
b2, respectively), and no interference is being generated with the seat 
backrest (the only seat reaction is due to the cushion). Therefore, according 
to the kinematic prediction, the DHM is moving as if it were leaning on the 
seat, but it actually is not. 

6.2.6 CONCLUSIONS 

The results presented in this section prove that a kinematic prediction may 
generate a motion that looks natural, but presents no guarantee on the actual 
feasibility and the physical soundness of the predicted motion. 

On the other hand, not only the dynamic prediction yields DoF and 
joint torque profiles which are mostly contained in the μ±2σ range of the 
target populations, but both pelvis efforts on the seat (obtained through ID 
and through the pelvis-seat contact model) in the dynamic prediction 
generally do not exceed the μ±2σ range of variability. Therefore, we may 
consider that the defined pelvis-seat contact model (Section 5.5.2) and the 
tolerances employed in the balance inequality constraints (Section 5.3.5) are 
sufficiently accurate for the prediction of physically sound clutch pedal 
depressions. 

Finally, some of the predicted profiles are found to occasionally 
exceed the μ±2σ range of variability encountered in the target populations, 
especially if the reference and prediction scenarios are not very similar 
(Figure 6.1a2, b2, Figure 6.2b2 and Figure 6.3c2). This may be due to a 
limitation of purely data-based methods, which can reasonably predict 
motions that do not differ significantly from the reference, but which may 
not be adequate when larger extrapolations are required. Therefore, we seek 
to include knowledge in the prediction in the form of a motion control law 
in order to yield more realistic results, which are not bound to the similarity 
between the reference and prediction scenarios. 

6.3 COMPARING MOTION CONTROL LAWS 

In order to find the most adequate motion control law to represent clutch 
pedal depressions, we have compared two of the most common energy-
related performance measures: minimum dynamic effort (DE) and 
minimum mechanical energy (ME). 
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As mentioned previously (Sections 2.1.2.2 and 3.5.3.3), the DE 
performance measure minimises the squared sum of the joint torques across 
the motion, and its corresponding objective Ψ  is expressed by: 

   qqqτΨ  ,,,0  DETttt  (6.1) 

For what concerns the ME performance measure, approximated through 
the Riemann sum of the instantaneous power at the joints with respect to 
time, the corresponding objective Ψ  is given by: 

      tttt RelT

MET ΔqqωqqqτΨ  ,,,,0   (6.2) 

In order to test both performance measures, purely knowledge-based 
objectives were employed in the predictions. Once again, all three 
prediction scenarios reported in Table 5.2 were considered and each 
prediction was carried out twice, employing different reference motions 
(Table 6.2 and Table 6.3). In fact, although no data-based objective is 
employed, the choice of the reference motion may affect the prediction as it 
determines the temporal features of the predicted motion (Section 3.3) and 
the initial approximation for the optimisation problem (Section 3.5.1). 

By considering only the DE or the ME performance measures, we 
found that the predicted motions failed to resemble the motions performed 
by the target population, especially considering the translational velocities of 
the root segment and the shape of the flexion-extension DoFs (see Figure 
6.11 to Figure 6.14). Therefore, additional conditions were considered along 
with the aforementioned energy-related performance measures. The first 
condition seeks to minimise the translational velocities (TV) of the root in 

order to contain the values Transq  within a more realistic range: 

   tttt TransTVT qΨ  ,0  (6.3) 

This condition is considered reasonable as the clutch pedal depression is an 
operation which is carried out in a seated position and in which the pelvis 
appears to move very slightly (Figure 4.16, Section 4.4.4). 

The second additional condition is based on a characteristic of clutch 
pedal depressions which emerged from the database analysis: the 
coordination which appears to exist among the hip, knee and ankle flexion-
extension DoFs (Section 4.4.5). This coordination law (CL) is set to 
generate more realistic DoF profiles by imposing that normalised flexion-
extension profiles must resemble one another: 
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Four different knowledge-based predictions were defined, according 
to the performance measures considered in each prediction: only DE, only 
ME, and DE and ME (respectively) combined to the aforementioned TV 
and CL conditions. The characteristics of the optimisation problem defined 
in each prediction are detailed in Table 6.5 (the constraints are described in 
Section 5.3 and the goal-fulfilment objective in Section 5.4.1), and unit 
weights are associated to each objective. 
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K-based 

DE              

ME              

DE+TV+CL              

ME+TV+CL              

Table 6.5: Characteristics of the optimisation problems defined in the predictions to 

assess the most adequate motion control law for clutch pedal depressions. 

Although the predictions presented in this section are purely 
knowledge-based, the choice of the reference motion affects the results of 
the prediction. In fact, as mentioned earlier, our motion prediction method 
requires both the temporal features of the motion and the initial 
approximation for the optimisation problem to be provided by the 
reference motion. Nevertheless, analogous results are obtained with either 
reference. Additionally, as similar conclusions may be drawn from the 
predictions of all three subject groups, we hereafter present as example the 
kinematic and dynamic profiles corresponding to the group of young males 
(YM) obtained employing both a similar and a dissimilar reference motion. 
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6.3.1 END-EFFECTOR TRAJECTORIES 

Figure 6.10 reports the end-effector trajectories followed in the sagittal 
plane, obtained through the four knowledge-based predictions described in 
Table 6.5, as well as the mean profiles μ in the target population and their 
variability (μ±2σ). The vertical black lines in Figure 6.10, and in all the 
following figures, mark the average StartDepression and EndDepression key-
frames of the motions performed by the target population in the prediction 
environment. 

 
Figure 6.10: Trajectories followed by the end-effector in the sagittal plane for young 

males (YM) following different control laws, employing a similar reference motion (a1, 

b1) and a dissimilar reference motion (a2, b2). The blue and red curves, respectively, 

show the results of employing the DE and the ME performance measures. The result of 

including the TV and CL conditions are shown in cyan and magenta. The horizontal 

dotted black line (b2) reports the height of the PCA2 vehicle floor. 

The trajectories followed during the pedal depression tend to match, 
due to the goal fulfilment constraint (Equation (5.2)) and objective 
(Equation (5.8)), and hardly exceed the μ±2σ range of variability of the 
target population. During the reach phase, however, the employed motion 
control law strongly affects the end-effector trajectories. 

It may be noticed that the predictions which follows only the DE 
performance measure yield the trajectories which least resemble the ones 
followed by the target population: in fact, the left foot is retracted much 
more (Figure 6.10a1, a2) and is lowered from the foot rest to the vehicle 
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floor (Figure 6.10b1, b2). In the prediction in which the most dissimilar 
reference is employed, the end-effector actually reaches the vehicle floor 
and goes slightly beneath it. The collisions between the end-effector and the 
floor in fact are not controlled, as they do not seem very probable in actual 
clutch pedal depressions. 

The trajectories followed in the ME predictions are more contained 
respect to the DE trajectories, but nevertheless tend to exceed the μ±2σ 
range of variability in the target population. 

On the other hand, including the TV and CL conditions improves the 
results of both the DE and ME predictions as the trajectories resemble 
more the values and the shape of the trajectories followed by the target 
population. The DE+TV+CL combination of objectives, however, tend to 
exceed the μ±2σ range more often than the ME+TV+CL combination. 
However, the ME+TV+CL combination maintains the foot longer at the 
initial position along the longitudinal x axis (Figure 6.10a1, a2), respect to 
the actually performed motions. 

6.3.2 DOF PROFILES 

For what concerns the DoFs in the DHM, the profiles of the nq most 
relevant DoFs (which mostly act in the sagittal plane), obtained with the 
four knowledge-based predictions, are shown in Figure 6.11 and Figure 
6.12, along with the mean profiles μ in the target population and their 
variability (μ±2σ). 

Similar considerations to those presented discussing the end-effector 
trajectories can be made: on the one hand, the DE performance measure 
alone yields the DoF profiles which least resemble actually performed 
motions. Additionally, the ankle flexion-extension DoF predicted with the 
DE performance measure, employing a similar reference motion (Figure 
6.11c1), slightly exceeds its RoM in between two frames at which RoM 
inequalities are enforced (Section 5.3.3), close to the EndDepression key-
frame. The values of the DoF profiles obtained in the ME prediction are 
generally contained within the μ±2σ range of variability of the target 
population but present shapes which seem far from resembling the average 
trend of the target population (see also Section 6.3.3). 
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Figure 6.11: Flexion-extension profiles for young males (YM) following different 

control laws, employing a similar reference motion (a1, b1, c1) and a dissimilar 

reference motion (a2, b2, c2). The blue and red curves, respectively, show the results of 

employing the DE and the ME performance measures. The result of including the TV 

and CL conditions are shown in cyan and magenta. 

On the one hand, once again, including the TV and CL conditions 
improves the results of the predictions, as the predicted profiles are mostly 
contained within the μ±2σ range of the target population and tend to 
resemble the shape of the average DoF profiles of the target population 
more closely, as discussed in detail in the following section. Between the 
DE+TV+CL and the ME+TV+CL combination, it is unclear which yields 
the most realistic results as for some DoFs the DE+TV+CL combination 
seems preferable (e.g. Figure 6.11a2, b2), whereas others seem to be best 
represented through the ME+TV+CL combination (e.g. Figure 6.11c1, 
Figure 6.12a1). 
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Figure 6.12: Forward tilt and translations of the root joint in the sagittal plane for young 

males (YM) following different control laws, employing a similar reference motion (a1, 

b1, c1) and a dissimilar reference motion (a2, b2, c2). The blue and red curves, 

respectively, show the results of employing the DE and the ME performance measures. 

The result of including the TV and CL conditions are shown in cyan and magenta. 

6.3.3 DOF VELOCITY PROFILES 

For what concerns the DoF velocities, and therefore the shape of the DoF 
profiles, Figure 6.13 and Figure 6.14 show the predicted velocity profiles 
corresponding to the nq most relevant DoFs, obtained employing a similar 
and a dissimilar reference motion. Once again, including the TV and CL 
conditions yields predicted profiles which resemble the profiles of the target 
population more closely. 

It may be noticed that both DE and ME performance measures alone 
yield irregular and large translational velocities at the root joint, which are 
strongly reduced by the TV condition (Figure 6.14b1, b2 and c1, c2). The 
DE prediction also presents large oscillations in the velocity profiles of the 
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rotational DoFs, which are also generally reduced through the CL condition 
(Figure 6.13). 

 
Figure 6.13: Flexion-extension velocity profiles for young males (YM) following 

different control laws, employing a similar reference motion (a1, b1, c1) and a 

dissimilar reference motion (a2, b2, c2). The blue and red curves, respectively, show the 

results of employing the DE and the ME performance measures. The result of including 

the TV and CL conditions are shown in cyan and magenta. 

Nevertheless, the results of the DE+TV+CL combination seem to be 
outdone by the ME+TV+CL combination, which yield the most realistic 
DoF velocity profiles, hardly exceeding the μ±2σ variability range of the 
target population (Figure 6.13). 
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Figure 6.14: Forward tilt and translational velocities of the root joint in the sagittal plane 

for young males (YM) following different control laws, employing a similar reference 

motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2). The blue and red 

curves, respectively, show the results of employing the DE and the ME performance 

measures. The result of including the TV and CL conditions are shown in cyan and 

magenta. 

6.3.4 EFFORT PROFILES 

For what concerns the dynamic profiles, Figure 6.15 and Figure 6.16 show 
the efforts which mostly affect the motion in the sagittal plane (medio-
lateral joint torques and efforts exerted by the pelvis on the seat in the 
sagittal plane) along with the mean profiles μ in the target population and 
their variability (μ±2σ). 
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Figure 6.15: Joint torque profiles for young males (YM) following different control 

laws, employing a similar reference motion (a1, b1, c1) and a dissimilar reference 

motion (a2, b2, c2). The medio-lateral torque profiles are shown at the hip (a1, a2), knee 

(b1, b2) and ankle (c1, c2) joints. The blue and red curves, respectively, show the results 

of employing the DE and the ME performance measures. The result of including the TV 

and CL conditions are shown in cyan and magenta. 

The predictions which employ the DE and ME performance 
measures alone present strong oscillations or irregular profiles, reflecting the 
oscillations and irregularities observed in the DoF value and velocity 
profiles, and yield effort profiles which do not resemble the average profiles 
in the target population. The results reported in Figure 6.15 and Figure 6.16 
show that the values of the forces exerted by the pelvis obtained in the ME 
prediction significantly exceed the μ±2σ range of the target population in 
between the frames at which the balance constraint is imposed, leading to 
highly oscillating and unrealistic force profiles (Figure 6.16a1, b1 and a2). 
The DE prediction, on the other hand, yields jerky torque profiles at the 
joints (Figure 6.15a1, c1) and exceeds the μ±2σ range of the torque exerted 
by the pelvis on the seat (Figure 6.16c2). 
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Figure 6.16: Efforts exerted by the pelvis on the seat for young males (YM) following 

different control laws, employing a similar reference motion (a1, b1, c1) and a 

dissimilar reference motion (a2, b2, c2). The efforts in the sagittal plane are the forces 

along the x axis (d1, d2) and z axis (e1, e2) and the torque about the global y axis (f1, 

f2). The blue and red curves, respectively, show the results of employing the DE and the 

ME performance measures. The result of including the TV and CL conditions are shown 

in cyan and magenta. 

On the other hand, including the TV and CL conditions seem to 
improve the realism of both DE and ME performance, yielding effort 
profiles which tend to resemble the average effort profiles μ of the target 
population more closely and hardly exceed the μ±2σ range of variability. 

6.3.5 TIME-AVERAGED DISTANCE DEFINITION 

The results presented above (Figure 6.10-Figure 6.16) show that the DE 
and ME performance measures alone are not adequate to predict clutch 
pedal depressions. However, combined with the TV and CL conditions, the 
predictions yield more satisfactory results, with both kinematic and dynamic 
profiles mostly contained within the variability of the target population. 
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In order to assess which of the two knowledge-based combinations 
(DE+TV+CL and ME+TV+CL) is the most appropriate to represent 
clutch pedal depressions, a time-averaged distance (TD) is defined to 
quantitatively compare the results of both combinations. As mentioned in 
Section 1.2 of the Introduction, the aims of the prediction are to generate a 
motion which is both realistic and representative of the target population. 
Under the assumption that the profiles of the target population resemble a 
normal distribution (no evident reasons have been encountered to suggest a 
different distribution), the realism and representativeness of the predicted 
motion require that the predicted profiles should not stray significantly 
from the target population mean profiles μ. Specifically, realism requires the 
predicted motion to fall within two standard deviations from the mean, as 
95% of actually performed motion are contained within the μ±2σ range. 
On the other hand, the deviations of a motion from the mean are 
compensated by opposite deviations of other motions. Hence, 
representativeness requires the predicted motion to be close to the mean of 
the target population. 

Therefore, we consider that the most desirable prediction is the one 
which maximises the likelihood between the predicted profiles and the 
mean profiles of the target population. As the variability of the target 
population varies across the motion (the μ±2σ curves do not correspond to 
the mean curve μ shifted vertically), the maximum likelihood is achieved by 
minimising the normalised Euclidean distance between the predicted 
profiles and the mean profiles of the target population. The normalised 
Euclidean distance differs from the standard Euclidean distance as it is 
normalised by the standard deviation of the target population: the 
differences between the predicted and mean target profiles, therefore, are 
related to the variability of the target population across the motion. 

As both kinematic and dynamic variables are included in the 

prediction, we consider a time-averaged distance TOTTD  which is given by a 
combination of four TDs, similarly to the time-averaged distances defined 
in Section 5.5.2.2. The four TDs represent respectively the time-averaged 

distance of the predicted end-effector trajectories ( TTD ), DoF profiles        

( qTD ), DoF velocities ( qTD ) and dynamic efforts ( ETD ) from the 

corresponding mean profiles of the target population. 

As the clutch pedal depression is carried out mainly in the sagittal 
plane (and the seat contact model is defined only in this plane), the TDs 



184 Chapter 6: Results and Validation 

 

focus on the nq most relevant DoFs (flexion-extensions, root forward tilt 
and x and z translations), the nE most relevant efforts (medio-lateral joint 
torques and external efforts acting on the root segment in the sagittal 
plane), and the two components of the end-effector trajectory in the sagittal 
plane (along the x and z axes). 

Therefore, the time-averaged distances mentioned above are defined 
by Equation (6.5) as follows: 
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(6.5) 

where x  and z  represent the components of the end-effector trajectory in 
the predicted motion along the corresponding axes, and 

xμ  and 
zμ  

represent the end-effector’s mean trajectory followed by the target 
population along the same axes; 

iq , 
iq  and 

iE  respectively represent the ith 
DoF value, DoF velocity and effort (either a force or a torque) in the 
predicted motion, and iqμ , iqμ   and iEμ  represent the target population’s 

mean profile for the i
th DoF value, DoF velocity and effort; 

xσ , 
zσ , iqσ , 

iqσ   and iEσ  respectively represent the target population’s standard 
deviation of the end-effector trajectory along the x and z axes and of the ith 
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DoF value, DoF velocity and effort; qn  is the number of considered DoFs, 

En  is the number of considered efforts and tn  is the number of frames in 
the motion. 

6.3.6 QUANTITATIVE COMPARISON BETWEEN MOTION CONTROL 

LAWS 

The TDs described above have been employed to quantitatively compare 
the results of the predictions carried out with the two combinations of 
knowledge-based objectives (DE+TV+CL and ME+TV+CL), and assess 
which of the two yields the most desirable results in all three subject groups, 
considering both similar and dissimilar reference motions. 

The values of the TDs evaluated in each prediction are reported in 
Figure 6.17. Specifically, the TDs corresponding to the YM predictions 
presented in the previous sections are represented by the columns above the 
YM labels. The results of the DE+TV+CL combination are shown in blue, 
ME+TV+CL in red, and the predictions employing a similar or a dissimilar 
reference motion are represented with lighter or darker hues, respectively. 

 
Figure 6.17: Time-averaged distances (TDs) for the three subject groups between the 

motions performed by the target population and the motions predicted with the 

minimum dynamic effort (DE) or minimum mechanical energy (ME) performance 

measures, combined to the minimum translational velocity (TV) and the flexion-

extension coordination law (CL), employing both a similar and a dissimilar reference 

motion. 

Analysing the values of the TDs, the following observations may be 
made. The first is that the choice of the reference motion affects the results 
of the prediction (see the differences between the light and dark columns in 
Figure 6.17). In fact, as mentioned earlier, although no data-based 
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conditions are included in the prediction, the reference motion determines 
the temporal features of the predicted motion and the initial approximation 
to the optimisation problem. The choice of the reference motion seems to 

mostly affect the TDs associated to the end-effector trajectory ( TTD ) in the 

YF group, and the TDs associated to the DoF values ( qTD ) in the YM 

group. 

Comparing the two combinations, DE+TV+CL and ME+TV+CL, 
the former appears to be more sensitive to the choice of the reference 
motion, as the difference between the light and dark blue columns is 
generally much larger than the difference between the light and dark red 
ones. Moreover, employing DE+TV+CL, the choice of a similar or a 
dissimilar reference motion does not affect the TDs consistently: in fact, in 
the case of the YF group, a similar reference motion leads to a smaller value 

of TOTTD , whereas the YM group presents a lower value of TOTTD  when a 
dissimilar motion is employed. Additionally, the DE+TV+CL combination 
appears to yield very large values of qTD  in the predictions of the EM 

group. Employing the ME+TV+CL combination, on the other hand, seems 
to strongly reduce qTD , although the values obtained are still larger than in 

the predictions of younger subjects. 

Finally, it can be noticed that, although neither of the two 
combinations always yields the most realistic and representative results (i.e. 
the lowest TDs), the ME+TV+CL combination seems to provide, on 
average, lower TDs than the corresponding DE+TV+CL predictions. 
Additionally, the ME+TV+CL combination appears to be less sensitive to 
the choice of the reference motion, which is one of the desirable features 
we seek in the knowledge-based contribution to our method, as mentioned 
earlier (Section 6.2.6). 

Therefore, we may conclude that the knowledge-based conditions 
which provide the most satisfying predictions of clutch pedal depressions 
are the minimum mechanical energy performance measure (ME), combined 
with the minimisation of the translational DoFs velocity of the root joint 
(TV) and the flexion-extension coordination law (CL). 
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6.4 COMPARING DATA-BASED, KNOWLEDGE-
BASED AND HYBRID OBJECTIVE FUNCTIONS 

As mentioned earlier (Section 5.6), the application of our method to the test 
case defined in Chapter 5 always follows a hybrid approach: all predictions 
in fact rely both on the data-based contribution of the reference motion and 
on the knowledge-based contribution of the different pedal contact models 
employed for the prediction. 

Additionally, data-based and knowledge-based contributions may also 
appear in the composition of the objective function. As mentioned in 
Section 5.4.2, the data-based objective consists in resembling the DoF 
velocities (i.e. the shape of the DoF profiles) of the reference motion. On 
the other hand, the knowledge-based objective which best seems to 
represent the motion control law underlying clutch pedal depressions 
(Section 6.3.6) has been found to be a combination of the mechanical 
energy performance measure with the coordination law (defined in Section 
4.4.5), and the minimisation of the pelvis translational velocity. 

The results presented in the two previous sections correspond to the 
application of either the data-based or the knowledge-based objectives, 
respectively. These objectives, however, may also be combined in a hybrid 
objective function, as presented hereafter. 

In order to compare the results of data-based, knowledge-based or 
hybrid objective functions, a battery of predictions was carried out, in which 
the weights associated to the data-based and knowledge-based objectives 
were varied progressively. 
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 (6.6) 

Therefore, the battery of eleven trials, that employ the weights 
defined in Equation (6.6), ranges from a purely data-based to a purely 
knowledge-based objective function. Table 6.6 reports the characteristics of 
the optimisation problem solved to carry out the prediction following the 
three approaches (the weight associated to the goal fulfilment objective was 
set to 1 in all trials). 
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D-based          

Hybrid          

K-based          

Table 6.6: Characteristics of the optimisation problems defined to compare data-based, 

knowledge-based and hybrid objective functions. 

Once again, all three prediction scenarios reported in Table 5.2 were 
considered and each prediction was carried out twice, employing the 
different reference scenarios reported in Table 6.2 and Table 6.3. As there 
are no significant differences among the results in the various prediction 
scenarios, we hereafter present the kinematic and dynamic profiles 
corresponding to the group of elderly males (EM) as example. 

6.4.1 END-EFFECTOR TRAJECTORIES 

The end-effector trajectories followed in the sagittal plane are shown in 
Figure 6.18, along with the mean trajectory μ followed by the target 
population, its variability (μ±2σ), and the trajectory followed by the end-
effector in the reference motions. The vertical black lines in Figure 6.18, 
and in all the following figures, mark the average StartDepression and 
EndDepression key-frames of the motions performed by the target 
population in the prediction environment. As mentioned in Section 6.2.1, 
the difference between the reference and predicted trajectories are due to 
both the different position of the clutch pedal and the different seat height 
in the reference and prediction environments. 

It may be noticed that during the depression phase all the predicted 
trajectories tend to match, due to the goal fulfilment constraint (Equation 
(5.2)) and objective (Equation (5.8)), and are contained within the μ±2σ 
range of variability of the target population. 

For what concerns the reach phase, the end-effector trajectory is 
determined by the data-based and knowledge-based objectives. It may be 
seen that the trajectory along the vertical axis (Figure 6.18b1, b2) is hardly 
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affected by the different combination of data-based and knowledge-based 
objectives, whereas the trajectory along the longitudinal x axis (Figure 
6.18a1, a2) seems to be more sensitive to the composition of the objective 
function. 

 
Figure 6.18: Trajectories followed by the end-effector in the sagittal plane for elderly 

males (EM) employing a similar reference motion (a1, a2) and a dissimilar reference 

motion (b1, b2) for the battery of hybrid predictions. The red to blue curves show the 

results of the data-based to knowledge-based predictions. The trajectories followed by 

the end-effector in the reference motions are reported in black. The thin black curves 

show the mean trajectories μ followed by the end-effector of the EM target population 

and the thin dashed curves represent their variability μ±2σ. The vertical black lines 

mark the average StartDepression and EndDepression key-frames in the target 

population. 

The trajectories along the x axis followed in the purely data-based 
objective function are contained within the range of variability of the target 
population, whereas the purely knowledge-based objective function tends to 
maintain the foot at the same longitudinal position longer and to retract it 
only enough to reach the clutch pedal (Figure 6.18a1, a2). Nevertheless, the 
average trajectory of the target population shows that subjects actually tend 
to retract their foot more before reaching the pedal: in fact, the maximum 
of the μ curve in Figure 6.18a1 and a2 is reached before the StartDepression 
key-frame. 
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The pencil of longitudinal trajectories generated in the hybrid battery 
of predictions tends to vary progressively from the data-based to the 
knowledge-based trajectory (Figure 6.18a1, a2): a slight knowledge-based 
contribution generates profiles which greatly resemble the average trajectory 
of the target population, whereas greater knowledge-based contributions 
lead to exceeding the target population’s range of variability. 

6.4.2 DOF PROFILES 

The DoF profiles discussed in this section once again correspond to the nq 
most relevant DoF profiles in clutch pedal depression (which mostly act in 
the sagittal plane), and are represented in Figure 6.19, employing both a 
similar and a dissimilar reference motion. 

 
Figure 6.19: Flexion-extension profiles for elderly males (EM) employing a similar 

reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for the 

battery of hybrid predictions. The red to blue curves show the results of the data-based 

to knowledge-based predictions. The reference DoF profiles are reported in black. 



6.4 Comparing Data-based, Knowledge-based and Hybrid Objective Functions  

 

191 

 
Figure 6.20: Forward tilt and translations of the root joint in the sagittal plane for 

elderly males (EM) employing a similar reference motion (a1, b1, c1) and a dissimilar 

reference motion (a2, b2, c2) for the battery of hybrid predictions. The red to blue 

curves show the results of the data-based to knowledge-based predictions. The reference 

DoF profiles are reported in black. 

The results of the hybrid battery of predictions are shown, as well as 
the mean profiles μ in the target population, their variability (μ±2σ), and the 
DoF profiles in the reference motions. 

It may be noticed that almost all DoF profiles obtained in the battery 
of hybrid predictions are contained within the μ±2σ range of variability of 
the target population. The only exceptions are given at the ankle joint 
(Figure 6.19c1, c2), as the knowledge-based prediction (shown in blue) leads 
to a slightly over-extended ankle during the reach phase and the data-based 
prediction (shown in red) yields a slightly over-extended ankle during the 
pedal depression when a similar reference motion is employed (Figure 
6.19c1). 
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Additionally, the DoF profiles obtained through the purely 
knowledge-based objective function are very similar when either reference 
motion is used, whereas the results of a purely data-based objective function 
can be very sensitive to the reference motion (see for instance the different 
data-based predictions of the ankle, Figure 6.19c1 and c2). As mentioned 
earlier (Section 2.4), data-based predictions employing a dissimilar reference 
motion are somewhat expected not to yield the most satisfactory results. 
However, also employing a similar reference motion does not seem to 
guarantee realistic and representative data-based predictions: a dissimilar 
reference, in fact, has led to a very flexed ankle throughout the motion 
(Figure 6.19c2), and a similar reference has yielded a slightly over-extended 
ankle during the depression phase (Figure 6.19c1). 

The hybrid predictions, on the other hand, tend to resemble the mean 
ankle profile μ of the target population more closely, especially when a 
slight knowledge-based contribution is employed (shown in orange and 
yellow), and seem to improve the results obtained through both the data-
based and knowledge-based objective functions. 

6.4.3 DOF VELOCITY PROFILES 

For what concerns the DoF velocities, Figure 6.21 and Figure 6.22 show the 
predicted profiles corresponding to the nq most relevant DoFs, obtained 
employing a similar and a dissimilar reference motion. 

Although the knowledge-based condition employed in the predictions 
is given by the combination of performance measures which yields the most 
realistic representation of clutch pedal depressions (Section 6.3), the 
rotational DoF velocity profiles, obtained through purely knowledge-based 
objective function, exceed the target population’s range of variability the 
most (blue profiles in Figure 6.21 and Figure 6.22a1, a2). 

The predictions employing the purely data-based objective function, 
on the other hand, tend to follow the DoF velocity profiles of the reference 
motions, due to the objective expressed by Equation (5.9). Since the 
reference motions do not belong to the motions performed by the target 
population, the reference profiles (and the profiles in the data-based 
predictions) may occasionally exceed the μ±2σ range of the target 
population (e.g. Figure 6.22b2). 
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Figure 6.21: Flexion-extension velocity profiles for elderly males (EM) employing a 

similar reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for 

the battery of hybrid predictions. The red to blue curves show the results of the data-

based to knowledge-based predictions. The reference DoF velocity profiles are reported 

in black. 

Once again, the hybrid predictions which consider a larger data-based 
contribution and a slighter knowledge-based contribution (shown in orange 
and yellow) seem to resemble the mean profiles of the target population 
more closely and are generally contained within its range of variability. 
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Figure 6.22: Forward tilt and translational velocities of the root joint in the sagittal plane 

for elderly males (EM) employing a similar reference motion (a1, b1, c1) and a 

dissimilar reference motion (a2, b2, c2) for the battery of hybrid predictions. The red to 

blue curves show the results of the data-based to knowledge-based predictions. The 

reference DoF velocity profiles are reported in black. 

6.4.4 EFFORT PROFILES 

Figure 6.23 and Figure 6.24 show the efforts which mostly affect the 
motion in the sagittal plane (medio-lateral joint torques and efforts exerted 
by the pelvis on the seat in the sagittal plane) obtained in the battery of 
hybrid predictions, along with the mean profiles μ in the target population, 
their variability (μ±2σ) and the profiles of the reference motions. 
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Figure 6.23: Joint torque profiles for elderly males (EM) employing a similar reference 

motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for the battery of 

hybrid predictions. The medio-lateral torque profiles are shown at the hip (a1, a2), knee 

(a1, a2) and ankle (c1, c2) joints. The red to blue curves show the results of the data-

based to knowledge-based predictions. The efforts in the reference motion are reported 

in black. 

It may be noticed that the predicted effort profiles present a much 
more contained variability depending on the objective function: most 
profiles are clustered and strongly resemble the mean profiles of the target 
population (e.g. Figure 6.23a1, b1 and Figure 6.24a2, b2). Occasionally, the 
data-based objective function yields joint torque profiles which stand out 
against the rest (Figure 6.23c1, c2 and b2), corresponding to the DoF 
profiles in which also the data-based prediction is distinct from the 
remaining hybrid predictions (Figure 6.19 c1, c2 and b2). 
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Figure 6.24: Efforts exerted by the pelvis on the seat for elderly males (EM) employing 

a similar reference motion (a1, b1, c1) and a dissimilar reference motion (a2, b2, c2) for 

the battery of hybrid predictions. The efforts in the sagittal plane are the forces along the 

x axis (d1, d2) and z axis (e1, e2) and the torque about the global y axis (f1, f2).The red 

to blue curves show the results of the data-based to knowledge-based predictions. The 

efforts in the reference motion are reported in black. 

The reason for which most predicted effort profiles do not strongly 
depend on the composition of the objective function resides in the kind of 
forces which mainly affect the dynamics of the left leg, which are the 
gravitational force and the clutch pedal reaction force, obtained through the 
contact model described in Section 5.5.1. Both these forces are very similar 
in each predicted motion, and are not linearly dependent on the DoF values 
and velocities. Therefore, the differences in the kinematic profiles, due to 
the different objective functions, are generally not reflected in the dynamic 
profiles. 
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However, due to the greater mass of the pelvis segment (which 
accounts for the whole upper part of the DHM as well), the variations in 
the pelvis forward tilt values (Figure 6.20a1, a2), which modify the position 
of the pelvis’s centre of mass, significantly affect the balance of the pelvis 
segment. Hence, the torque exerted by the pelvis on the seat (Figure 6.24c1, 
c2) presents a greater sensitivity to the composition of the objective 
function. 

6.4.5 QUANTITATIVE COMPARISON OF THE THREE APPROACHES 

FOLLOWED IN THE OBJECTIVE FUNCTION DEFINITION 

In order to quantitatively compare the results of the battery of hybrid 
predictions, and assess the data-based and knowledge-based composition of  
the objective function that yields the most realistic and representative 
results, the time-averaged distances (TDs) defined in Section 6.3.5 have 

been employed. The total time-averaged distance ( TOTTD ) and the four TDs 

which comprise it ( TTD , qTD , qTD  and ETD ) have been calculated for the 

batteries of hybrid predictions involving all three subject groups, 
considering both similar and dissimilar reference motions. 

Figure 6.25 reports the TDs evaluated in the hybrid predictions of 
elderly males (EM), employing a similar and a dissimilar reference motion, 
which correspond to the predicted profiles shown in the previous sections. 
It may be noticed that each TD follows a different trend across the data-

based to knowledge-based predictions: TTD , associated to the end-effector 
trajectories, tends to increase with the knowledge-based contribution to the 
objective function, and its minimum values correspond to large data-based 
contributions; qTD , associated to the DoF values, presents a higher value in 

the data-based prediction (due to the predictions of the ankle DoF, Figure 
6.19c1 and c2) and maintains an almost constant value across the hybrid 
predictions; qTD , associated to the DoF velocities, presents a minimum in 

the hybrid predictions, and increases significantly when a large knowledge-

based contribution is employed; and ETD , associated to the dynamic effort 
profiles, presents a more irregular behaviour depending on whether a 
similar or a dissimilar reference motion is employed. 
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Figure 6.25: Time-averaged distances (TDs) for elderly males (EM) between the 

motions performed by the target population and the motions generated in the battery of 

hybrid predictions employing a similar reference motion (a, above) and a dissimilar 

reference motion (b, below). The weight of the knowledge-based objectives ranges from 

0 to 1, whereas the weight of the data-based objectives from 1 to 0. 

Finally, TOTTD  summarises the contribution of all the above-
mentioned TDs. It may be noticed that, regardless of the reference motion, 
the purely knowledge-based prediction presents the highest values of  

TOTTD , mostly due to the increase in TTD  and qTD . In fact, large 

knowledge-based contributions to the objective function lead to predicted 
profiles which exceed the μ±2σ range of variability of the target population 
especially in the reach phase of the motion, in which the motion of the end-
effector is not controlled (Figure 6.18a1, a2 and Figure 6.21 and Figure 
6.22a1, a2). Therefore, a purely knowledge-based prediction seems to yield 
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the least realistic and representative results, whereas including an increasing 
data-based contribution in the prediction progressively reduces the values of 

TOTTD . 

It may be noticed that a hybrid objective function succeeds in 

reducing the values of TOTTD  not only respect to the purely knowledge-
based, but also respect to the purely data-based objective function. The 
improvement brought by including a slight knowledge-based contribution is 
slighter when a similar reference motion is employed (Figure 6.25a) and 
more significant when a dissimilar reference is selected (Figure 6.25b). 
Therefore a hybrid objective function seems to improve the extrapolation 
capabilities of a purely data-based approach. 

Additionally, it may be noticed that when a similar reference motion 
is employed (Figure 6.25a), the total TD presents an almost constant value 
for knowledge-based and data-based weights that range in between 0.1-0.6 
and 0.9-0.4, respectively. Hence, the optimum sets of weights, which yield 

the lowest values of TOTTD , are contained within [wK-based=0.1, wD-based=0.9] 
and [wK-based =0.6, wD-based =0.4]. On the other hand, when a dissimilar 
reference motion is employed (Figure 6.25b), the optimum range of 
weights, is reduced to approximately [wK-based=0.1, wD-based=0.9] and          
[wK-based =0.4, wD-based =0.6]. 

However, a hybrid objective function does not always yield the most 

realistic results, and sometimes the lowest value of TOTTD  corresponds to a 
data-based objective function. It is the case, for instance, of the predictions 
of young females (YF) carried out employing a dissimilar reference motion 
(Figure 6.26b). While a hybrid approach seems to slightly improve the data-
based results obtained with a similar reference motion (Figure 6.26a), the 

value of TOTTD  corresponding to a dissimilar reference appears to increase 

following the values of TTD , associated to the end-effector trajectory. In 

fact, qTD  and ETD  are almost constant across the battery of hybrid 

predictions, and the decrease in qTD , brought by a slight knowledge-based 

contribution to the objective function, is slighter than the corresponding 

increase in TTD . 
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Figure 6.26: Time-averaged distances (TDs) for young females (YF) between the 

motions performed by the target population and the motions generated in the battery of 

hybrid predictions employing a similar reference motion (a, above) and a dissimilar 

reference motion (b, below). The weight of the knowledge-based objectives ranges from 

0 to 1, whereas the weight of the data-based objectives from 1 to 0. 

The values of TTD  appear to determine the trend of TOTTD  also in 
the case of young males (YM), predicted with a dissimilar reference motion 
(Figure 6.27b). Although when a similar reference motion is employed 
(Figure 6.27a) a slight knowledge-based contribution does not seem to 
deteriorate the goodness of a purely data-based objective function, a 
dissimilar reference motion tends to produce predictions in which the μ±2σ 
range of variability of the target population is once again more easily 
exceeded in terms of end-effector trajectories. 
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Figure 6.27: Time-averaged distances (TDs) for young males (YM) between the 

motions performed by the target population and the motions generated in the battery of 

hybrid predictions employing a similar reference motion (a, above) and a dissimilar 

reference motion (b, below). The weight of the knowledge-based objectives ranges from 

0 to 1, whereas the weight of the data-based objectives from 1 to 0. 

Hence, on the one hand, it appears that the knowledge-based 
contribution may improve the end-effector trajectory of the data-based 
prediction when the predicted trajectory presents low TDs (approximately, 

TTD <1), e.g. Figure 6.25b and Figure 6.26a. However, on the other, when 
the end-effector trajectory obtained with a data-based objective function 
does not seem to resemble the trajectories followed by the target population 
very closely, the knowledge-based contribution is not able to reduce the 

values of TTD  (e.g. Figure 6.26b and Figure 6.27b). 

It must be noticed that applying our prediction method to the clutch 
pedal depression, we deliberately left uncontrolled the end-effector 
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trajectory during the reach phase (Section 5.3.1). The reason is that, as 
mentioned by Wang (2000), the clutch pedal depression is not a motion for 
which the DHM is a highly redundant system. In fact, considering only the 
sagittal plane, in which the motion is mainly carried out, the DHM can be 
simplified to a 3-DoF system, with one rotational DoF at the hip, knee and 
ankle joints. In such a configuration, establishing the position of the end-
effector leaves only one free DoF. 

In order to evaluate the effect of different objective functions, it is 
desirable to consider a larger number of free DoFs, which are to be 
determined through the minimisation of the objective function. Therefore, 
only the most essential features of the motion have been enforced in the 
optimisation problem (Section 5.3), leaving the trajectory followed by the 
end-effector in the reach phase to be determined as a consequence of the 
employed objective function. Probably, guiding the end-effector trajectory 

throughout the motion would lead to smaller values of TTD  (and therefore 

of TOTTD  in the cases in which TTD  appears to determine the global trend 
of the total TD). The redundancy of the DHM, however, would thus be 
reduced, consequently reducing the dependency of the predicted motion on 
the employed objective function. 

Considering the results of all the hybrid battery of predictions 
presented in this section the following conclusions may be drawn. First of 
all, a purely knowledge-based objective function seems to always yield the 

largest values of TOTTD , demonstrating the importance of including a data-
based contribution to the motion prediction method. 

Additionally, a slight knowledge-based contribution to the objective 
function seems to generally improve the results of employing a purely data-
based objective function. The only case in which the smallest value of 

TOTTD  is associated to the purely data-based objective function corresponds 

to a case in which the trend of TOTTD  appears to be determined by the trend 
of the TD associated to the end-effector trajectory. 

Finally, it may be noticed that the improvement provided by a hybrid 
objective function is not limited to a specific data-based and knowledge-
based combination, but rather leads to the identification of an optimum 
range of weights (larger when a similar reference motion is employed, and 
more reduced when a dissimilar reference is selected), generally contained 
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between [wK-based=0.1, wD-based=0.9] and [wK-based =0.4, wD-based =0.6]. Thus, 
our method appears to present a certain robustness to the weights 
employed in the construction of hybrid objective functions. 

6.5 VALIDATION 

A qualitative validation of our motion prediction method has been 
presented in the previous sections (6.2-6.4), discussing the resemblance of 
the predicted profiles to the mean profiles followed by the target population 
and their variability. However, a quantitative validation seems necessary in 
order to thoroughly assess the realism and representativeness of the 
predicted motions. 

The quantitative validation presented in this section was carried out 
by comparing the time-averaged distances (TDs) of the predicted motions 
to the TDs of the motions performed by the target population in the 
prediction environment. For this purpose, the TDs defined in Section 6.3.5 
(Equation (6.5)) have also been employed to quantify the natural variability 
of the actually performed motions. A similar comparison was carried out by 
Park et al. (2004) and Monnier (2004), who employed the TD described in 
Section 2.2 not only to evaluate the predicted motions but also to determine 
the variation of actually performed motions. As mentioned in Section 2.2, 
Park et al. defined two indices, characterising the within-subject inter-trial 
motion variability (WIMV), when the motions were performed by the same 
subject (also employed by Monnier), and the between-subject inter-trial 
motion variability (BIMV), when the motions were performed by different 
subjects of similar characteristics. Similarly to the BIMV index, we define a 
“within population motion variability” (WPMV), employing the TDs 
defined in Section 6.3.5, to represent the inherent variation of the motions 
performed by the target population in the prediction environment. By 
comparing the TDs obtained in the predictions to the WPMVs, we are able 
to verify whether the predicted motions can or cannot be differentiated 
from actually performed motions in similar conditions. 

Therefore, in order to obtain the values of the WPMVs, the TDs of 
each of the 13, 9 and 8 motions performed in the PCA2 vehicle by the YF, 
YM and EM groups, respectively, (see Table 4.3) were evaluated. For what 
concerns the values of the TDs corresponding to predicted motions, 
additional predictions to the ones presented in the previous sections were 
carried out, employing every motion in the database eligible as reference (i.e. 
performed by a different subject of the same subject group as the prediction 



204 Chapter 6: Results and Validation 

 

subject, and in a different environment from the prediction environment, 
see Section 6.1). Hence, 12 different reference motions were employed to 
predict the YF group in the PCA2 vehicle (see Table 6.1), and analogously 9 
and 5 different reference motions were used for the YM and EM groups, 
respectively. 

In the discussion of the results presented in the previous section, it 
was mentioned that occasionally the purely data-based objective function 
seems to yield the most realistic and representative predictions, whereas in 
other cases a slight knowledge-based contribution reduces the value of the 

total time-averaged distance, TOTTD . Therefore, each of the aforementioned 
predictions, were carried out three times:  

 employing a data-based objective function [wK-based=0.0, wD-based=1.0];  

 employing a hybrid objective function, which includes a slight 
knowledge-based contribution [wK-based=0.2, wD-based=0.8], called 
“hybrid 0.2-0.8”;  

 and employing a greater knowledge-based contribution in the hybrid 
objective function [wK-based=0.4, wD-based=0.6], called “hybrid 0.4-0.6”. 

The knowledge-based contribution is not increased further as the results 
presented in Section 6.4 indicate that highly knowledge-based objective 
functions tend to generate the least realistic motions. 

In the following sections, the TDs obtained in the predictions are 
compared to the WPMVs of the actually performed motions by the target 
populations in the prediction environment. 

6.5.1 THE END-EFFECTOR TD 

Figure 6.28 reports the TDs associated to the end-effector trajectory, TTD , 
obtained with a data-based prediction (Figure 6.28a) and the two 
abovementioned hybrid predictions (Figure 6.28b, c), compared to the 
WPMVs of the target populations in the prediction environment. 

It may be noticed that the majority of the predicted motions present 

values of TTD  which fall within the range of WPMVs observed in actually 
performed motions. In the case of a purely data-based objective function 

(Figure 6.28a), the median TTD  of the predictions and the median WPMVs 
fall within each other’s 95% confidence intervals (CIs). Therefore, no 
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significant difference is observed between the predicted and actual end-
effector trajectories. 

On the other hand, when a hybrid objective function is employed 

(Figure 6.28b, c), the differences between the predicted TTD  and the 
WPMVs are more significant, although similar ranges of values are 
observed. The effect of the knowledge-based contribution to the objective 

function appears both in the medians and in the range of values of TTD . 
For what concerns the median TDs, they seem to increase in the 
predictions of young subjects when knowledge is included in the objective 
function, whereas they are hardly affected in the EM group, which 
moreover remaining always contained within the 95% CIs of the median 

WPMV. For what concerns the range of values of TTD , a wider range of 
values is contained between the maximum and minimum TD in the YF and 
EM groups when knowledge is included in the objective function, whereas 
the range is hardly modified in the prediction of YM subjects. However, a 
hybrid objective function yields more contained inter-quartile ranges for the 

TTD  of both YF and YM groups. 

 
Figure 6.28: Box plots comparing the time-averaged distance of the end-effector 

trajectory (TDT) corresponding to the actually performed motions by the target 

populations (YF, YM, EM) and the TDT obtained employing a data-based objective 

function (a) and two hybrid objective functions: hybrid 0.2-0.8 (b) and hybrid 0.4-0.6 

(c). The TDs of the target population are shown in black (a, b, c), the TDs of the data-

based objective function in red (a), the TDs of hybrid 0.2-0.8 in green (b) and the TDs 

of hybrid 0.4-0.6 in blue (c). The boxes contain the inter-quartile range (from the 25th to 

the 75th percentile), the whiskers extend from the minimum to the maximum values 

(outliers are marked with crosses), the horizontal line within the boxes represents the 

median value and the triangles mark the 95% confidence intervals of the median. 

Therefore, for what concerns the end-effector trajectory, we may 
conclude that employing a data-based objective function, no significant 
differences between the predicted TDs and the WMPVs of the target 
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populations can be observed. The knowledge-based contribution to the 
objective function, on the other hand, does not seem to improve the realism 
of the predicted trajectories. However, the range of values of the predicted 
TDs is always similar to the range of WMPVs. 

6.5.2 THE DOF VALUE TD 

For what concerns the TDs corresponding to the DoF profiles, Figure 6.29 
compares the values of qTD  obtained with the data-based and the hybrid 

0.2-0.8 and 0.4-0.6 objective functions against the WPMVs of the target 
populations in the prediction environment. 

It may be noticed once again that the predicted TDs present a similar 
range of values to the WMPVs. For what concerns the YF group, a hybrid 
objective function does not seem to improve the prediction of the DoF 
values, since the median qTD  strays from the median WPMV as the 

knowledge-based contribution to the objective function increases. 

On the other hand, the median value of qTD  for the YM group does 

not seem to be significantly affected by the composition of the objective 
function: nevertheless, the inter-quartile range (i.e. the width of the box) is 
strongly reduced by the knowledge-based contribution, which therefore 
reduces the dependency of the prediction from the choice of the reference 
motion. 

For what concerns the group of elderly males, the predictions benefit 
from the hybrid objective function, as the values of the hybrid qTD  are 

reduced respect to the data-based predictions and the median values of the 
predicted TDs and of the WPMVs fall within each other’s CIs. No 
significant difference is observed between the hybrid 0.2-0.8 and 0.4-0.6 
objective function, therefore combining data-based and knowledge-based 
objectives seems to be more relevant than their actual degree of 
combination. 

Finally, it may be noticed that a hybrid objective function yields 
predictions which closely resemble the actually performed motions by the 
target population in the prediction environment, as the obtained TDs are 
hardly distinguishable from the WMPVs. 
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Figure 6.29: Box plots comparing the time-averaged distance of the DoF profiles (TDq) 

corresponding to the actually performed motions by the target populations (YF, YM, 

EM) and the TDq obtained employing a data-based objective function (a) and two 

hybrid objective functions: hybrid 0.2-0.8 (b) and hybrid 0.4-0.6 (c). The TDs of the 

target population are shown in black (a, b, c), the TDs of the data-based objective 

function in red (a), the TDs of hybrid 0.2-0.8 in green (b) and the TDs of hybrid 0.4-0.6 

in blue (c). 

6.5.3 THE DOF VELOCITY TD  

The TDs associated to the DoF velocities (and therefore to the shape of the 
DoF profiles) obtained with the hybrid objective functions (Figure 6.30b, c) 
tend to resemble the WPMV of the target populations much closer respect 
to the data-based objective (Figure 6.30a). 

As the data-based objective seeks the resemblance between the 
reference and the predicted DoF velocities, the differences between the 
TDs obtained with the data-based objective and the WPMVs (Figure 6.30a) 
represent the differences between the motions in the database and the 
motions which are to be predicted. Such differences, therefore, quantify the 
extrapolation required in the prediction. As the TDs obtained in the hybrid 
predictions resemble the WMPVs more closely, the extrapolation 
capabilities of the method are significantly improved by including 
knowledge-based conditions in the objective function (Figure 6.30b, c). 

The hybrid approach seems to reduce not only the distance between 
the predicted values of qTD  and the WPMV, but also the variability of qTD , 

reflecting a reduced dependency of the predicted profiles from the choice of 
the reference motion. Once again, the differences between employing a 
data-based and a hybrid objective function are greater than between the two 
hybrid objective functions, showing the robustness of our method with 
respect to the weights of the hybrid combination in the objective function. 



208 Chapter 6: Results and Validation 

 

Both YF and YM groups present values of qTD  which strongly 

resemble the values of the WPMVs of the target population employing a 
hybrid objective function. On the other hand, for what concerns the EM 
group, the knowledge-based combination reduces the variability of qTD  and 

limits its greatest values but does not succeed in overlapping the median 
confidence intervals (CIs) of qTD  with the CIs of the WPMV. 

 
Figure 6.30: Box plots comparing the time-averaged distance of the DoF velocity 

profiles (TDq  ) corresponding to the actually performed motions by the target 

populations (YF, YM, EM) and the TDq  obtained employing a data-based objective 

function (a) and two hybrid objective functions: hybrid 0.2-0.8 (b) and hybrid 0.4-0.6 

(c). The TDs of the target population are shown in black (a, b, c), the TDs of the data-

based objective function in red (a), the TDs of hybrid 0.2-0.8 in green (b) and the TDs 

of hybrid 0.4-0.6 in blue (c). 

6.5.4 THE EFFORT TD 

For what concerns the values of ETD , associated to the effort profiles, the 
TDs obtained through a data-based and hybrid objective functions are 
reported along with the WPMVs of the target populations in Figure 6.31. 

In this case, the data-based objective function yields TDs which are 
more similar to the WPMVs respect to the hybrid objective function, which 

corresponds to larger values of ETD . For younger subjects, employing a 
hybrid objective function affects the predicted efforts more than the actual 
degree of combination of the data-based and knowledge-based 
contributions, given their similarities in Figure 6.31b and c, whereas the 
difference between the predicted TD and the WPMV of the EM group 
increases consistently with the weight associated to the knowledge-based 
objective. 

Nevertheless, the predicted ETD  are mostly contained within the 
range of WPMV of the target populations in the prediction environment, 
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especially for what concerns the younger populations. It must be noticed, 
however, that fewer motions constitute the target population sample of the 
EM group (Table 4.3), and therefore its statistical representation is less 
reliable than the YF and YM groups. 

 
Figure 6.31: Box plots comparing the time-averaged distance of the effort profiles 

(TDE) corresponding to the actually performed motions by the target populations (YF, 

YM, EM) and the TDE obtained employing a data-based objective function (a) and two 

hybrid objective functions: hybrid 0.2-0.8 (b) and hybrid 0.4-0.6 (c). The TDs of the 

target population are shown in black (a, b, c), the TDs of the data-based objective 

function in red (a), the TDs of hybrid 0.2-0.8 in green (b) and the TDs of hybrid 0.4-0.6 

in blue (c). 

6.5.5 THE TOTAL TD 

Finally, the total TD corresponding to data-based and hybrid objective 
functions is compared to the total WPMVs of the target population in the 
prediction environment (Figure 6.32). 

For what concerns the YF group, the most realistic predictions are 
obtained with a data-based objective function, which succeeds in yielding 

values of TOTTD  that are mostly contained in the range of values of the 
WPMV. On the other hand, when a knowledge-based contribution is 

employed, the median value of TOTTD  increases, but does not seem to be 
significantly affected by the actual weight associated to the knowledge-based 
objective (Figure 6.32b, c). Nevertheless, including knowledge in the 

objective function reduces the range of values of TOTTD , and succeeds in 
containing its maximum values. 

The prediction of YM subjects yields the most satisfying results. A 
data-based objective function succeeds in generating a median value of 

TOTTD  which almost matches the WMPV, and including a knowledge-based 
contribution hardly increases the median TD while it significantly reduces 
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the variability of the values of TOTTD . Therefore, a hybrid objective function 
succeeds in reducing the dependency of the predicted motion from the 
selected reference motion. 

Finally, for what concerns the EM group, the considered knowledge-
based contribution to the objective function does not seem to reduce the 
dependency of the prediction from the reference motion. However, fewer 
predictions were carried out in the EM group, due to the smaller number of 
motions which could be employed as reference (Table 4.3), yielding a less 

reliable representation of the EM group. Nevertheless, the median TOTTD  
seems to shift towards lower values employing a slight knowledge-based 
contribution, and succeeds in resembling the WPMV of the target 
population more closely than employing a purely data-based objective 
function. 

 
Figure 6.32: Box plots comparing the total time-averaged distance (TDTOT) 

corresponding to the actually performed motions by the target populations (YF, YM, 

EM) and the TDTOT obtained employing a data-based objective function (a) and two 

hybrid objective functions: hybrid 0.2-0.8 (b) and hybrid 0.4-0.6 (c). The TDs of the 

target population are shown in black (a, b, c), the TDs of the data-based objective 

function in red (a), the TDs of hybrid 0.2-0.8 in green (b) and the TDs of hybrid 0.4-0.6 

in blue (c). 

6.5.6 CONCLUSIONS 

The results of the quantitative validation presented in the previous sections 
show that employing both a data-based and a hybrid objective function in 
our motion prediction method leads to TDs which present a similar range 
of values to the inherent variability of the target populations in the 
prediction environment (WPMVs), thus validating the method proposed. 

The median value of the total TD in each group (YF, YM, EM) is not 
significantly affected by the objective function, as the medians in each 
group mostly fall within their 95% confidence intervals in the data-based, 
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hybrid 0.2-0.8 and hybrid 0.4-0.6 objective functions. However, the single 
TDs which compose the total TD do seem to present a stronger 
dependency on the composition of the objective function: for instance,  

qTD , associated to the DoF velocities (and therefore to the shape of the 

DoF profiles), is significantly improved by the knowledge-based objective; 

on the other hand, the TD associated to the effort profiles, ETD , seems to 
resemble the WPMVs closer when a data-based objective function is 
employed. 

Nevertheless, including a knowledge-based contribution to the 
objective function consistently reduces the variability of the predicted TDs, 
especially for what concerns the prediction of young subjects, for which a 
larger number of reference motions was available. Therefore, employing a 
hybrid objective function leads to reducing the dependency of the 
prediction from the reference motion selection, demonstrating a greater 
robustness to the choice of the reference motion respect to purely data-
based objective functions. Additionally, combining data-based and 
knowledge-based objectives has appeared more decisive than their exact 
degree of combination, demonstrating a certain robustness also to the 
weight selection in the composition of the objective function. 
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CHAPTER 7 

CHAPTER 7: CONCLUSIONS AND 

FUTURE WORKS 

The research presented in this thesis has been focused on the development 
of a novel method for the prediction of task-oriented human motion, in 
order to overcome some of the limitations encountered in existing motion 
prediction methods, described in Section 2.4. On the one hand, dynamics is 
included in the formulation in order to yield physically sound predictions 
and to take into account the forces and torques acting on and within the 
human body. On the other hand, a hybrid approach is followed, seeking to 
combine the advantages of both data-based and knowledge-based methods 
for human motion prediction. 

The main contributions of this research work and the conclusions 
deriving therefrom are reported in the following section. Subsequently, the 
future lines of research that may originate from this thesis are presented. 

7.1 CONCLUSIONS 

As a result of the research work carried out in this thesis, several 
conclusions have been obtained concerning the analysis and the prediction 
of human motion, and are presented hereafter. 

 We have developed an optimisation-based method for the dynamic 
prediction of human motion that combines both data-based and 
knowledge-based approaches. 
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o The data-based contributions to the method proposed in this 
thesis lie in the use of a reference motion and in the definition 
of a data-based objective. The former determines the temporal 
features of the predicted motion and provides an initial 
approximation for the optimisation problem, and the latter 
seeks to generate a motion that resembles the kinematics of the 
reference motion. The results obtained have shown that a 
purely data-based objective function may lead to predicted 
motions which occasionally exceed the range of variability 
observed in actually performed motions. 

o The knowledge-based contributions to the method proposed lie 
in the definition of performance measures, which are included 
in the objective function and represent the motion control law 
underlying the motion, and may also appear in the contact 
models employed to describe the dynamic interaction between 
the subject and the environment. The results obtained have 
shown that a purely knowledge-based objective function may 
generate predicted motions which significantly stray from 
actually performed motions, and that purely knowledge-based 
objective functions do not seem able to outperform purely 
data-based objective functions. 

o In this thesis we propose a combination of data-based and 
knowledge based objectives in a hybrid objective function. 
Employing a hybrid objective function has succeeded, especially 
in the prediction of young male subjects, in reducing the 
dependency of the predicted motion from the reference motion 
and in improving the extrapolation capabilities of the data-
based objective function. 

 Additionally, we have assessed the importance of performing a 
dynamic prediction. 

o Kinematic predictions have proven to be able to generate 
apparently realistic motions, but cannot guarantee the actual 
feasibility of the predicted motion. The results obtained in this 
thesis prove that the enforcement of the dynamic balance of the 
DHM is required in order to generate physically sound motions. 
The feasibility also depends on whether the joint limits are 
exceeded in the predicted motion: realistic ranges of motion 
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may be ensured through a kinematic prediction, but in order to 
control the values of the joint torques, a dynamic prediction is 
required. 

o Moreover, a dynamic prediction is important for the ergonomic 
applications of motion prediction methods. In fact, as the 
forces and torques acting on and within the human body play a 
relevant role in discomfort perception, dynamic variables must 
be taken into account in the prediction, in order to then employ 
the predicted motion in ergonomics analysis tools. 

 We have developed a general method, which has proven to be able to 
predict the behaviour of a variety of populations and is applicable to 
the prediction of task-related human motion. The different 
behaviours of the populations can be taken into account both in the 
data-based contribution to the method (i.e. employing different 
reference motions) and in the knowledge-based contribution (i.e. 
employing different performance measures or differently 
characterising the contact between the DHM and the environment). 

 We have applied the motion prediction method presented in this 
thesis to clutch pedal depressions, predicting the motions of three 
different populations: average young females, young males and elderly 
males. The gender-related differences are mostly taken into account in 
the prediction through the reference motion, whereas the age-related 
differences strongly appear also in the model employed in the 
characterisation of the foot-pedal interaction. 

 We have analysed a database of 78 valid clutch pedal depressions in 
order to gain insight into the characteristics of the task-oriented 
motion and to structure the database for the motion selection step 
required by our method. The most relevant features, concerning both 
the subject performing the motion and the environment it is 
performed in, have been identified and have led to the awareness of 
the coordination which appears to exist among the flexion-extension 
DoFs of the left leg. Additionally, two mainly age-related motion 
styles, associated to the pedal force direction, have been identified: 
young subjects tend to reduce the torque at the articulations in the left 
leg, whereas elderly subjects seek to reduce the load on their backs. 

 In this thesis we present the results of knowledge-based predictions, 
performed employing two of the most common energy-related 
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performance measures: minimum effort and minimum mechanical 
energy. The resulting prediction of clutch pedal depressions reveals 
that energy-related performance measures alone do not allow 
adequate representations of actually performed motions. Therefore 
we propose the combination of knowledge-based objectives, given by 
the minimum energy performance measure combined to the 
coordination law determined through the database analysis and to a 
minimum translational velocity condition for the pelvis. This 
combination yields the most realistic knowledge-based predictions. 
Nevertheless, a greater level of realism appears to be always achieved 
when data-based objectives are included in the prediction, which 
demonstrates the difficulty of identifying appropriate motion control 
laws even for a relatively simple task such as clutch pedal depressions. 

 We have performed both a qualitative and a quantitative validation of 
the method proposed, to assess the realism and the representativeness 
of the predicted motions. 

o The qualitative validation consists in comparing the predicted 
kinematic and dynamic profiles to the profiles of real motions, 
performed in similar conditions to those being predicted. The 
results of the qualitative validation show that the predicted 
profiles are generally contained within the natural ranges of 
variability of actually performed motions by the target 
populations in the prediction environment. 

o We have defined a new quantitative index (TDTOT) to assess the 
likelihood between the predicted and the actually performed 
motions. This index takes into account the time-averaged 
distance of the predicted profiles respect to the mean profiles 
of the actually performed motions in terms of end-effector 
trajectory, DoF profiles value and shape, and efforts exerted by 
the DHM throughout the motion 

o The definition of TDTOT has led to a new index to represent the 
inherent variability of actually performed motions, called 
“within population motion variability” (WPMV). 

o The comparison between the TDs obtained in the predictions 
and the WPMV show a good correspondence between the 
range of values of the TDs and the WPMVs, when either a 
data-based or a hybrid objective function is employed in the 
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prediction. Nevertheless, including a knowledge-based 
contribution to the objective function seems to consistently 
reduce the variability of the predicted TDs, therefore reducing 
the dependency of the prediction from the reference motion 
selection. Additionally, combining data-based and knowledge-
based objectives appears to be more decisive than their exact 
degree of combination, demonstrating a certain robustness to 
the weight selection in the composition of the objective 
function. 

In conclusion, the method proposed in this thesis is able to provide realistic 
and physically sound predictions of a variety of populations, which carry out 
the task following different behavioural patterns. The hybrid approach 
allows a greater flexibility in terms of representing the variability in 
behaviour exhibited in actually performed motions: in fact the different 
behaviours can be accounted for both through the data-based condition of 
resembling the reference motion and through knowledge-based conditions, 
which may be included either in the form of motion control laws or 
through the different characterisation of the models describing the human-
environment interaction. 

7.2 FUTURE WORK 

Several lines of research have been identified in this thesis, which can guide 
future studies. 

 By extending the design variables, more features of the motion could 
be determined through the optimisation problem. For instance, 
coefficients that relate the timeline in the predicted motion to the 
timeline in the reference motion could be employed, in order to allow 
the DHM to perform the predicted motion faster or slower. The 
external contact forces could also be included in the design variables, 
in order to determine the efforts exerted by the DHM on the 
environment through the minimisation of the objective function. 

 More accurate RoMs and joint torque limits could be included in the 
method, taking into account their dependency on the values of the 
DoFs in the DHM across the motion. Employing more accurate joint 
limits would allow to generate more realistic predictions when the 
task to be performed involves DoF values and joint torques which are 
close to their limits. 
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 The contact models representing the human-environment interaction 
could be improved, yielding a more thorough characterisation of the 
kinetics involved in the motion. For instance, regarding the pelvis-seat 
interaction, the complexity in the mechanical behaviour of the seat 
and the human pelvis can be taken into account employing non-linear 
stiffness and damping coefficients. Additionally, the shape of the seat 
and human body can be represented more accurately with more 
complex geometries, thus allowing to determine the load distribution 
on the DHM due to its contact with the environment. 

 It would be interesting to predict longer and more complex motions, 
involving the whole body. For this purpose the prediction of the 
motion could be performed one time period at a time, imposing 
continuity conditions at key-frames. More optimisation problems 
would be solved, but each would present a smaller number of design 
variables (i.e. only the control points which affect each specific time 
period at a time). 

 The method could be extended to musculoskeletal DHMs, to analyse 
the distribution of the muscular efforts in the human body, which are 
related both to discomfort and injuries. Including muscles in the 
human model implies that two different redundancies are to be dealt 
with: in addition to the kinematic redundancy of the skeletal system, a 
dynamic redundancy is introduced, as the motion of each joint is 
determined by the interaction of several muscles, which may be 
activated differently to produce the same motion. Therefore, the 
optimisation problem presented in this thesis should be reformulated, 
in order to take into account the dynamic redundancy of the muscular 
system as well. 

 The method could be employed in the ergonomic assessment of new 
product designs not only in terms of usability, but also in terms of 
maintenance and manufacturing. Including DHMs in the design 
process would allow to take human factors into account since the 
earliest stages of the design of large and complex structures, which 
require a human operator for assembly/disassembly operations. 
Therefore, the cost and time of such operations may be reduced while 
increasing the safety of the manufacturing and maintenance of 
vehicles, aircraft and large machinery. 
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APPENDIX A: PUBLICATIONS 

The publications generated so far as a result of the research work carried 
out in this thesis are listed below: 

Pasciuto, I., Ausejo, S., Celigüeta, J.T., Suescun, A., Cazón, A., (in press). A 
comparison between optimisation-based human motion prediction 
methods: data-based, knowledge-based and hybrid approaches. 
Structural and Multidisciplinary Optimization. 

Pasciuto, I., Ausejo, S., Celigüeta, J.T., Suescun, A., Cazón, A., (under 
review). A hybrid dynamic motion prediction method for multibody 
digital human models based on a motion database and motion 
knowledge. Multibody Systems Dynamics. 

Pasciuto, I., Valero, A., Ausejo, S., Celigüeta, J.T., 2011. A hybrid dynamic 
motion prediction method with collision detection. In proceedings of the 
First Symposium on Digital Human Modeling. June 14-16, Lyon, France. 
(Awarded as “Best Oral Presentation”). 

Pasciuto, I., Valero, A., Ausejo, S., Celigüeta, J.T., 2010. A dynamic motion 
prediction method based on a motion database and motion 
knowledge. In proceedings of the 1st International Conference on Applied 
Bionics and Biomechanics. October 14-16, Venice, Italy. 

Pasciuto, I., Valero, A., Ausejo, S., Celigüeta, J.T., 2010. Comparación de 
leyes de control para la predicción dinámica del movimiento humano 
usando bases de datos. In proceedings of the XVIII Spanish National 
Congress on Mechanical Engineering. November 3-5, Ciudad Real, Spain. 
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Ausejo, S., Valero, A., Pasciuto, I., Celigüeta, J.T., Suescun, A., Cazón, A., 
2011. Reconstrucción y predicción del movimiento humano. In 
proceedings of the I Meeting of the Spanish Chapter of the European Society of 
Biomechanics (ESB). November 10, Zaragoza, Spain. 

Valero, A., Pasciuto, I., Ausejo, S., Celigüeta, J.T., 2010. Comparación de 
dos métodos globales de reconstrucción del movimiento basados en 
coordenadas naturales y relativas. In proceedings of the XVIII Spanish 
National Congress on Mechanical Engineering. November 3-5, Ciudad Real, 
Spain. 
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