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Abstract. Cervical Cancer (CC) is the result of the infection of high risk
Human Papilloma Viruses. mRNA microarray expression data provides
biologists with evidences of cellular compensatory gene expression mech-
anisms in the CC progression. Pattern recognition of signalling pathways
through expression data can reveal interesting insights for the under-
standing of CC. Consequently, gene expression data should be submitted
to different pre-processing tasks. In this paper we propose a methodology
based on the integration of expression data and signalling pathways as a
needed phase for the pattern recognition within signaling CC pathways.
Our results provide a top-down interpretation approach where biologists
interact with the recognized patterns inside signalling pathways.

1 Introduction

Cervical Cancer (CC) is one of the most widespread cancers in women world-
wide [1]. Cervical carcinogenesis is caused by an infection of high-risk Human
Papilloma Viruses (hrHPV) [2]. After hrHPV infection and CC progression other
transformation events occur within the cell, for instance, deregulation of genes
expression levels and alteration of cellular processes either metabolic or signaling
cascades [3].

Based on the integration of signaling pathways and high-throughput gene ex-
pression data, biologists seek to find modified or unchanged cellular processes re-
lated with cervical carcinogenesis or CC progression. Signaling pathways regulate
the reception of external biochemical information, that will affect processes in-
side the cell, or intracellular interchange information; assemble of cascade events
within the cell and finally, activate of cellular response to internal or external
stimuli. Meanwhile, thousands of genes transcription levels can be measured
using a single microarray [4], either to prove or propose novel hypothesis of
complex diseases, as CC, by providing gene expression profiles. Gene expression
profiles allow individual comparison of genes expression between populations or
extrapolation of genes state [5]. Expression profiles integrated with signaling
pathways eases the process for inferring the inner state of the cellular mecha-
nisms by providing biologists with a big picture of expression compensation of
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genes, probably related with CC progression. Microarray data should be nor-
malized before subsequent analysis could be accomplished. Normalization is the
removal of technical noise, generated by experimental protocol, leaving expres-
sion profiles intact [6]. Once expression data is normalized, different workflows
to infer internal cellular behavior could be followed.

Clustering of gene expression data is a common workflow to infer unknown
genes function, find new disease subclasses, and primarily, data reduction and
visualization. Clustering approaches group genes with similar expression level
by measuring closeness in a quantitative way [7]. Clustering methods focus on
quantitative data are considered ’unsupervised’ methods [8], meaning that no
gene functionality or previous phenotypic is considered for gene classification.
Clustering approaches provide an overall picture of data variation. Classified ex-
pression profiles can be enriched with ontology data or cellular context, i.e. Gene
Ontology [9]. An alternative method that has acquired an increased attention
from genomic and computational scientists is to use pathway contexts to infer
cellular processes alterations [10]. The pathway context provides biologists with
a functional perspective, visualization of cellular processes and the impact of
genes expression variations in such processes [11]. Furthermore, pathway analy-
sis goes beyond the genes list interpretation of expression levels by considering
cellular interactions associated with a phenotype [12]. Pathways could also be
stored and enriched by biologists’ expertise interactions or inserting new data
provided by metabolomics or proteomics experimentation [13]. Based on the im-
plementation of the methodology of data integration proposed in this work, the
results will contribute to facilitate the interpretation of CC gene expression data
and the inference of hypothesis formulation made by biologist interactions. The
integration of recognized patterns into signaling pathways, represented by Petri
nets, simplifies as well the interaction with biologists for the enrichment process
of signaling pathways.

In this work an introduction is presented in section1. The remainder of the
paper is organized as follow; section 2 exposes relevant works related with data
bases of signaling pathways and gene expression data; section 3 provides an in-
troduction of computational models and signaling pathways; section 4 describes
our methodology and in section 5 we expose our conclusion and future work.

2 Databases of Signaling Pathways and Gene Expression
Data

Nowadays, available pathway databases contain organized gene regulation re-
lationships mapped into metabolic or signaling pathways, for instance, KEGG
[16], BioCarta [14] and MetaCyc [15]. Signaling pathway databases are mostly
used as inert diagrams of signaling pathways, as KEGG or Biocarta. Neverthe-
less, some databases also provide XML or SQL interfaces of pathways data, as
KGML which provides an XML abstraction of the KEGG pathway database
[16]. Other efforts to collect gene regulation data, on a large scale, are based on
using text mining approaches, iHOP [17].
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KEGG provides a curated reference to study and analyze metabolic and
signaling pathways, including different cellular processes [16]. KEGG offers
metabolic and non-metabolic pathways. KGML data lacks of the details provided
by pathways diagrams, for instance, some relations between proteins are not in-
cluded in the KGML data. The KEGG pathway database is widely used and
different approaches have been proposed to integrate the KEGG knowledge base
into pathway modeling. Heiner and Koch [18], modeled apoptosis, from KEGG
apoptosis diagrams, and provided a qualitative Petri Net model, enabling the
confirmation of known properties as well as new insights of intrinsic and extrin-
sic apoptotic pathways. Other tools, as KEGGraph [19] converts KGML data
into graphs, capturing the topology of KEGG diagrams; KEGGanim [20] is a
visualization tool that integrates pathways and microarray expression data but
lacks of interaction with biologists to enrich the signaling pathways. Cell Illus-
trator [21] has a connection to the KGML repository; however it is limited to
the metabolism pathway acquisition. Alternatively, KEGG converter [22] is an
online tool that emphasizes the conversion of KGML data into executable SBML
models. In this work, we work with EIP and CP non-metabolic pathways from
the KEGG database; we complement and integrate KGML data and gene ex-
pression data for pattern recognition within signaling transduction cascades. We
emphasize the interaction and enrichment of results through biologists’ expertise.

3 Computational Models and Developments

Different computational models could be frameworks for experimental interpre-
tation, as expression microarrays. Notice that, acquired models could be vali-
dated, improved and enriched with accurate interpretation made by biologists.
To achieve this goal several computational and formal models have been pro-
posed, for instance, Boolean networks [23], Bayesian networks [24], graph inter-
action networks [25] and Petri nets [26].

Petri nets (PNs), proposed by Carl Petri, are bipartite graph representation
of processes useful both for visualization and computational analysis of dynamic
systems. PNs are a directed-bipartite graph with two types of nodes: places and
transitions. Reddy et al. apply PNs to represent biochemical reactions networks
[27]. PNs graph-structure enables biologist to track processes and the interac-
tions among their elements. Places represent static elements of the system and
transitions correspond to interactions between elements of the system. Transi-
tions are a powerful tool representing interactions that could result in relevant
semantic significances of the processes involved in the system. A formal overview
of PNs related with biological systems is exposed in [28].

Different extensions of standard PNs have been proposed to model signaling
pathways: coloured petri nets have been applied for modelling EGF signaling
pathway [29]; stochastic petri nets captures uncertainty related within pathways
[30]; finally, Matsuno et al proposed an extension of PNs to model continuous
and discrete behaviours in a system [31]. In this work, we use PNs as a tool that
facilitates the interaction of biologists with the modeled system.
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4 Methodology

In this section, we describe the proposed methodology to integrate cervical cancer
expression data and KGML data; recognition of patterns in signaling pathways,
and lastly, recognized patterns to be enriched with biologists’ interactions by
modifying Petri net models. Fig. 1 synthesizes the tasks we propose.

Fig. 1. This figure shows the methodology we propose. Rounded rectangles stand for
input or output data, initial data is a list of normalized gene expression data and
through methodology is transformed into a Petri net model. Normal rectangles repre-
sent a task or process that transforms input data.

4.1 Hierarchical Clustering

In this paper, we applied our methodology to a dataset of thirty nine cases
and twelve controls. A case represents a sample of CC tissue; a control repre-
sents normal tissue. All samples were analyzed with the Affymetrix HG-Focus
gene expression microarray. Each microarray represents over 8,500 genes from
the NCBI RefSeq [32]. The dataset was obtained by the Unidad de Medicina
Genómica team of the Hospital General de México.

Several algorithms to normalize expression data have been developed. In this
work, initial input data was normalized with FlexaArray, which is a statistical
program for expression microarray processing [33]. We applied a robust multi-
array average (RMA) algorithm [34]. A matrix of expression data is the output
of the RMA accomplishment.

With initial input data, our first question to answer is weather controls and
cases have different expression profiles. Therefore, we performed an unsupervised
clustering; using the R hierarchical clustering tools [35]. First, a Pearson test to
measure the correlation and dependence between samples, and secondly, we use
the Spearman correlation to group genes, dendogram with genes clustering not
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shown.The first clustering aims to express the certainty that gene expression pro-
files are well-differentiated between cases and controls. In fact, four clusters of
CC cases expression profiles are close in distance. Nevertheless, our first cluster-
ing is focus on quantitative data and provides biologists with a global reference
of data and no evidence of cellular processes if provided. In the following sec-
tion, we try to answer our next question, which genes with an expression level
are important to each CC case in comparison with controls.

4.2 Statistical Discrimination of Genes

So far, hierarchical clustering delivers a differentiation between cases and con-
trols; and four clusters of CC cases. In order to assign a significant over or sub
expression level to each gene we use a z-score. Z-scores are assigned to each gene
by grouping a CC cluster with the control group, using the matrix shown in
figure 2. Then, z-score is calculated for each gene to assign them over, normal
or sub expression values [36]. Z-scores are calculated by subtracting the total
average gene intensity, within a cervical cancer group and control group, from
the raw intensity data for each gene, and dividing that result by the standard
deviation (SD) of all of the measured intensities, according to the formula:

z − score = (gx − meang1 . . . gn)/SDg1 . . . gn (1)

Then, z-score is calculated for each gene to assign them over, normal or sub
expression values. Genes with a z-score value under -1.96 are considered to be
under expressed with respect to the media and genes with a z-score over 1.96 are
considered to be over expressed with respect to the media. Z-score provides a
discriminant by assigning an expression level to each gene per CC case within a
cluster obtained in hierarchical clustering. A z-score with a value of 1.96, either
negative or positive, represents a significant value of 0.05 for a gene to be up or
down regulated. The statistical discrimination outputs a list of over and under
expressed genes, which now will be integrated with KGML data to identify a
signaling pathway context for each gene involved in a signal transduction process.

Fig. 2. In matrix A will be represented the first cluster obtained in hierarchical clus-
tering, where, each row, gm , represent a gene; each column represent a cervical cancer
case, CCcn; and each cell is gene expression value, em,n. In matrix C, each row gm

represents a gene; each column, Cn, represents a control sample; and each cell is gene
expression value, em,n.
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4.3 Integration of Relevant Genes and KEGG Signaling Pathways

In this section, we describe the integration of over and sub expression genes and
KGML data to find each gene context within signaling pathways. As mentioned
before, we work with environmental information processing (EIP) and cellular
processes (CP) signaling pathways from the KEGG database.

At this point of the methodology, two subtasks must be achieved to integrate
expression data and signaling pathways. First, the KGML data files are down-
loaded, directly from the KEGG ftp, subsequently; each KGML file is parsed
to extract information. A local database, named KGMLD, is created to store
information of pathways, genes of each pathway and relations between genes.

And secondly, each gene, from the microarray, with an over or sub express
z-score is associated with a gene expression level by gene name matching from
the KGMLD. Context for genes, with an expression level, is accomplished by
searching genes that interact directly to the gene with a significant expression
level.

Integration of signaling pathways and expression data is presented to biolo-
gists as shown in figure 3. Figure 3 depicts the process of integration of significant
genes and a signaling pathway context, it is exemplified using a segment from the
MAPK signaling pathway: 3A) first, a set of genes G, with a significant expres-
sion level, is presented to biologists; 3B) then, a set of adjacent genes N, where
each gene gi from G is adjacent to one or more genes from N; 3C) finally, a set
of relations, R. Relations associates each gene gi with adjacent genes belonging
to the set N. Each gene, gi, could be connected with one or more genes of N.

Fig. 3. This figure shows the steps to be accomplished in the integration of significant
gene expression data into signaling pathway context. Vertices or genes with a name
in red represent genes with a significant expression level, 3A. Genes with a name in
black represent adjacent genes, 3B. Finally, relationships between both sets of genes
take place by linking them, 3C.

In the subsequent task, the set of recognized graphs, GG, is integrated with
the complete signaling pathway. In this example, only three graphs are displayed
nonetheless the Petri net model will incorporate the complete set of graphs. Prob-
ably, not all these genes are biologically interesting. Nevertheless, we recognized
a substructure inside the signaling pathway and are presented to be interpreted.
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4.4 Semi-automatic Petri Net Modeling

The full context of the integration of expression data and signaling pathways is
achieved in this step. As previous steps, the following subtasks are essential to
achieve the final model. Firstly, a petri net model is created from KGML data,
stored in the KGMLD; secondly, as mentioned, KGML data contains broken
relations or missing elements, we manually incorporated missing elements based
on KEGG diagram of the signaling pathway and saved in the KGMLD; finally,
the set of gene graphs obtained are displayed in the proper signaling pathway
petri net model. Figure 4 shows a segment of the MAPK signaling pathway
with recognized expression graphs, for lack of space we present a representative
segment of the MAPK signalling pathway.

As shown in Figure 4, blue places represent adjacent genes of those denoting a
significant expression level and whose variation in expression could impact part
of the process and genes that interact directly with them, in this particular case,
a sub module of the MAPK signaling pathway. The Petri net model provides
a framework for the interaction with biologists who will be able to validate or
enrich the recognized patterns; in the following section we describe in detail such
interaction.

Fig. 4. This figure represents the integration of a segment of the MAPK signaling
pathway and recognized genes graphs. Places in blue are genes or compounds that
interact with genes with a significant expression level. Places in red denoted genes
with a sub expression value, while places in green have an over expression level.
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4.5 Interaction of Biologist with the Framework

The signaling pathway model represented by visual Petri nets provides biologists
with an intuitive abstraction to interact. The Petri net model could be refined
by incorporating personal knowledge, new data or by modifying the structure
of the pathway. Operations of addition, deletion or modification of places and
transitions are provided by the Petri net tool. Thus, recognized patterns require
proper operations to be manipulated.

Sub-graphs or building blocks provide biologists with the capacity to manip-
ulate patterns recognized within a signaling pathway for a better interpretation
of expression microarray data. Interactions with the final output could be end-
less according with the interpretation or biological pursue. As demonstrated, an
integrative perspective of data requires the coordination of different algorithms
and computational models.

5 Conclusion

In this work, we have proposed a methodology to facilitate the interpretation of
CC gene expression data and the inference of hypothesis by providing a signal-
ing pathway context. Clustering methods, statistical discrimination, data pre-
processing and systems modeling are integrated tasks to aid biologist to clarify
the inner compensatory gene expression mechanisms of cervical cancer cells.
The steps proposed by the methodology achieve the following: data reduction of
expression profiles, selection of significantly altered genes and a visual represen-
tation of signaling pathways probably involved in the CC progression.

The facility to interrogate expression levels of thousands of genes in one ex-
periment gives biologists a fresh look of cellular machinery compensatory events.
The integration of cellular context and high-throughput expression microarray
data increases the understanding of cellular systems, by providing a more in-
terpretative model for cancer biology. At the same time the hybrid approach
provides a framework to validate hypothesis.

Finally, a pattern within a signalling pathway might be represented by repet-
itive mutated substructure within the cascade, for instance a motif. A possible
limitation of this methodology is the constant validation by biologists. In this
methodology, we proposed a Petri net representation to visualize and, more sig-
nificantly, to interact with identified patterns within a signalling pathway for
interpretation of CC progression rather than automatization of pattern analysis.
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