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Abstract

Gene family evolution is determined by microevolutionary processes (e.g., point mutations) and macroevo-

lutionary processes (e.g., gene duplication and loss), yetmacroevolutionary considerations are rarely incor-

porated into gene phylogeny reconstruction methods. We present a dynamic program to find the most parsi-

monious gene family tree with respect to a macroevolutionary optimization criterion, the weighted sum of the

number of gene duplications and losses. The existence of a polynomial delay algorithm for duplication/loss

phylogeny reconstruction stands in contrast to most formulations of phylogeny reconstruction, which are

NP-complete.

We next extend this result to obtain a two-phase method for gene tree reconstruction that takes both

micro- and macroevolution into account. In the first phase, agene tree is constructed from sequence data,

using any of the previously known algorithms for gene phylogeny construction. In the second phase, the

tree is refined by rearranging regions of the tree that do not have strong support in the sequence data to

minimize the duplication/lost cost. Components of the treewith strong support are left intact. This hybrid

approach incorporates both micro- and macroevolutionary considerations, yet its computational requirements

are modest in practice because the two phase approach constrains the search space. Our hybrid algorithm can

also be used to resolve non-binary nodes in a multifurcatinggene tree.

We have implemented these algorithms in a software tool, NOTUNG 2.0, that can be used as a unified

framework for gene tree reconstruction or as an exploratoryanalysis tool that can be appliedpost hocto

any rooted tree with bootstrap values. The NOTUNG 2.0 graphical user interface can be used to visualize

alternate duplication/loss histories, root trees according to duplication and loss parsimony, manipulate and

annotate gene trees and estimate gene duplication times. Italso offers a command line option that enables

high-throughput analysis of a large number of trees.
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1 Introduction

The evolutionary history of a gene family is determined by a combination of microevolutionary events (se-

quence evolution) and macroevolutionary events. The macroevolutionary events considered here are speciation,

gene duplication and gene loss. Gene tree reconstruction should be based on a model that incorporates both

micro- and macroevolutionary events (Goodmanetal., 1979), yet few phylogeny reconstruction tools based on

such a unified model are available. Furthermore, reconciliation of a gene tree and a species tree can be used

to investigate a variety of questions related to macroevolution, such as inferring gene duplications and losses,

estimating upper and lower bounds on times these events occurred and determining whether a given pair of

homologs is orthologous or paralogous. Algorithmic and software support for both these tasks is needed.

In the current work, we present a dynamic programming algorithm to find all most parsimonious phyloge-

nies with respect to a macroevolutionary model of gene duplication and loss. Given a species tree and the num-

ber of gene family members found in each species as input, ouralgorithm will construct a tree with the fewest

duplications and losses required to explain the data. An extension of this algorithm can also be applied to non-

binary species trees. In contrast to most phylogeny reconstruction problems, which are NP-complete (Chor and

Tuller, 2005; Dayet al., 1986; Day, 1987), our results show that macroevolutionary parsimony can be solved

in polynomial time per output tree.

Using this result, we develop a two-phase approach to gene tree reconstruction that incorporates sequence

evolution, gene duplication and gene loss in the evaluationof alternate phylogenies. In phase one, a tree is

constructed based on a microevolutionary model only. In phase two, regions of the tree that are not strongly

supported by the sequence data are refined with respect to a macroevolutionary parsimony model, while regions

with strong support are left intact. By reserving consideration of macroevolutionary events until phase two and

focusing only on those areas where the sequence data cannot resolve the topology, this hybrid approach reduces

the search space, leading to a method that incorporates bothtypes of events, yet has modest computational

requirements. This hybrid approach can also be used to resolve non-binary nodes in a multifurcating tree.

We have implemented these algorithms in a software tool called NOTUNG 2.0, which can be used as a uni-

fied framework for gene tree reconstruction or as an exploratory analysis tool. NOTUNG 2.0 has the following

features:

• a polynomial delay algorithm for generatingall most parsimonious trees with respect to a weighted gene

duplication and loss cost.
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• a graphical interface, with features especially designed for analysis of gene duplications, including visu-

alization of duplicated nodes, lost leaves and/or subtrees, the ability to browse the space of all optimal

hybrid trees, annotation of subfamilies, color highlighting of rootable edges and generating of Portable

Network Graphics image files for publication purposes.

• a command line interface for high-throughput analysis of large numbers of trees.

NOTUNG 2.0 I/O uses Newick Taxonomy tree format. The command line version will also generate text

summaries of duplication histories, which can then be parsed by scripts. The NOTUNG 2.0 executable is

available for free, public distribution (http://www.cs.cmu.edu/∼durand/Notung/).

The rest of this paper is organized as follows: In Section 2, we discuss related work and review reconcili-

ation of a gene tree with a species tree. A taxonomy of macro- and microevolutionary models is presented in

Section 3. We state our gene tree reconstruction problems formally in Section 4 and present algorithms to solve

these problems in Section 5. In Section 6, we summarize the capabilities of our software tool, NOTUNG 2.0,

and discuss the application of NOTUNG 2.0 to two large data sets to investigate the role of gene duplication in

genetic adaptation to environmental change.

2 Previous Work on Reconciliation

The problem of disagreement between gene trees and species trees was first raised in the context of inferring

a species tree from a gene tree that may contain paralogies (Goodmanet al., 1979). This concept was further

developed and formalized by Guigoet al. (1996); Hallett and Lagergren (2000); Maet al. (2000); Mirkinet al.

(1995); Page (1994); Page and Charleston (1996); Stege (1999); Zhang (1997). Formally, given a set of rooted

gene trees, the problem is to find the species tree that optimizes an evaluation criterion. Several parsimony-

based optimality criteria have been proposed (see Eulenstein etal. (1996, 1998) for a comparative survey). The

problem of finding an optimal species tree is NP-hard (Maet al., 2000) for the optimality criteria considered

so far. Several authors have pointed out that it is difficult to distinguish true gene loss from genes that have

not yet been sequenced and discuss approaches to distinguishing true losses from apparent losses in the cost

function (Goodmanet al., 1979; Mirkinet al., 1995; Dufayardet al., 2005). More recently, reconciliation

algorithms that also take horizontal gene transfer into account have been presented (Gorecki, 2004; Hallett and

Lagergren, 2001; Hallettet al., 2004).

A related body of work deals with algorithms and software tools to analyze the history of duplications and
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losses in the evolution of a gene family. COMPONENTand GENETREEare software packages that will compute

and display duplication histories for rooted gene trees andinfer species trees (Page and Charleston, 1997; Page,

1998). The Forester package (Zmasek and Eddy, 2001b,a) performs some reconciliation functions and provides

a tree visualization tool. FamFetch (Dufayardet al., 2005) provides a graphical interface for specifying gene

tree templates which can be used to search a database of reconciled trees.

All of these approaches are based on reconciliation of a genetree with a species tree, a procedure that can

be used to infer duplications and losses and estimate the times at which they occurred. We review reconciliation

here. LetTG be a gene tree andTS be a species tree of taxa from which the gene sequences were sampled. (IfTS

contains additional species, these must be pruned from the species tree before proceeding.) The identification

of duplication nodes requires constructing a mapping,M , from every node,v, in TG to a target node,M(v),

in TS. Each leaf node inTG is mapped to the node inTS representing the species from which the sequence

was obtained. (Leaf nodes inTG represent sequences, whereas leaf nodes inTS represent species.) Each

internal node inTG is mapped to the least common ancestor (lca) of the target nodes of its children; that is,

M(v) = lca(M(l(v)), M(r(v))). In Fig. 1(a), for example, the leaf nodes in the rightmost subtree are mapped

to MOUSE and HUMAN . The root of this subtree is mapped toeut (eutherian), since thelca of MOUSE and

HUMAN in the species tree iseut. Figure 1

Under the mapping, a node inTG is aspeciationnode if its children are mapped to independent lineages in

TS. If the children ofv are mapped to the same lineage (eitherM(r(v)) = M(l(v)) or M(r(v)) is an ancestor

of M(l(v)) or vice versa), thenv is aduplicationnode. In the gene tree in Fig. 1(a), both nodes labeledeut are

speciation nodes since rodents and primates are separate lineages inTS . The root of the tree is a duplication

node because it has the same label as both of its children.

The number of duplications is obtained by simply counting the duplication nodes determined in the above

procedure. The total number of losses, can be computed by summing the gene losses over all edges inTG. The

loss associated with the edgee = (p(v), v) is given by(δ(v)− δ(p(v))− 1)+ ISDUP(p(v)), wherep(v) is the

parent ofv, δ(v) returns the depth of the target node,M(v), in the pruned species tree and ISDUP(v) = 1, if

v is a duplication node, and zero, otherwise. The first term in this equation counts gene losses associated with

speciation nodes. The labels of a speciation node and its child should differ by one if no loss has occurred and

will increase by one with each gene loss. In contrast, if no gene loss has occurred on the edge immediately

below a duplication node, the labels of a duplication node and its child should be identical. Thus, ifp(v) is a

duplication node, the first term will be off by one. The secondterm corrects for this case. Note that if a set

of lost genes forms a monophyletic clade, we assume that a single loss occurred in their common ancestor and
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rather than many losses at the leaves. For example, Fig. 2(a)shows one loss, ineut, rather than two losses, one

in MOUSE and one inHUMAN .

The cost of duplications and losses can be expressed by the following optimization function:

Definition 2.1. TheD/L Score of a gene tree iscλL + cδD, the weighted sum of the number of duplications,

D, and the number of losses,L, in the tree.

3 A Taxonomy of Models

The goal of phylogeny reconstruction is to determine the hypothesis, expressed as an evolutionary tree, that

best explains the data with respect to a model of evolutionary change. Given a set of sequences from a gene

family, which may include both paralogous sequences from the same species and orthologous sequences from

different species, a gene tree can be reconstructed according to various evolutionary models.

Microevolutionary model: Find the tree that best explains the data with respect to a model of sequence

evolution only. In practice, most gene trees are constructed based on a modelof sequence evolution alone,

as this approach requires a less complex model, is less computationally intensive, and may be achieved with

one of the many tools currently available for sequence-based phylogeny reconstruction. However, information

about macroevolutionary events is not incorporated in thisapproach. In many cases, workers subsequently infer

the macroevolutionary history implied by the sequence-based tree, either by inspection or by using a software

tool for exploratory analysis (e.g. Chenet al., 2000; Page and Charleston, 1998; Zmasek and Eddy, 2001b,a),

thereby treating the gene tree as though it were data rather than a hypothesis. If bootstrap values (Efron and

Gong, 1983) indicate weak support for some edges in the tree,some practitioners discuss alternate hypotheses

motivated bypost hocmacroevolutionary considerations, partially mitigatingthis problem.

Macroevolutionary model: Find the tree that best explains the data with respect to a model of duplications

and losses with no consideration of sequence evolution.While it is hard to imagine a case in which optimizing

duplication and loss alone would produce a biologically meaningful tree, models based solely on duplication

and loss can be important intermediate steps toward a comprehensive model. In the current work, we present

a dynamic programming algorithm for finding the most parsimonious duplication and loss tree, which can be

usefully applied in the solution of several other, more biologically important problems. In addition, the fact that

this problem admits a polynomial delay solution is of theoretical interest, since most formulations of phylogeny

reconstruction are NP-complete (Chor and Tuller, 2005; Day, 1987; Dayet al., 1986). In a Bayesian context,
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such models have also been used to investigate related questions such as estimating rates of duplication and

loss, determining the posterior probability of a tree with respect to a reconciliation and probabilistic ortholog

identification (Arvestadet al., 2003; Felsenstein, 2003, p. 514).

Unified model: Find the tree that best explains the data with respect to a model that takes both sequence

evolution and duplication and loss into account.In a 1979 landmark paper, Goodmanet al. (1979) pointed

out the importance of using a model of both micro- and macroevolutionary events for constructing gene trees

and introduced the term “reconciliation” to describe fitting a gene tree to a species tree. They implemented a

heuristic search procedure for obtaining parsimony trees that optimize a cost function based on both nucleotide

replacement and gene duplication and loss1. However, it is difficult to determine how to incorporate events oc-

curring on very different spatial and temporal scales in a single model, and most gene tree reconstruction in the

intervening 25 years has been based on sequence evolution alone. Very recently, some Bayesian approaches to

a unified model have appeared. Arvestadetal. (2004) have presented a maximum likelihood method that evalu-

ates a set of sequences with respect to a model that includes the gene tree and the reconciliation, parameterized

by birth, death and substitution rates.

The Bayesian framework permits a unified model of macro- and microevolution facilitating an approach

that uses both types of information in the reconstruction process. It also has the advantage that it allows us to

test evolutionary models and infer parameters of those models. On the down side, Bayesian approaches are

notoriously computationally intensive and require sufficient data to obtain reasonable estimates of the parame-

ters. Furthermore, a unified, Bayesian model is a strength when both sequence evolution and gene duplication

and loss can be modeled by a neutral, stochastic process, butless natural for data sets under strong selective

pressure. Evolutionary change in this latter regime is not stochastic and parsimony may be a more appropriate

model. With these considerations in mind, we propose the following approach:

Hybrid model: Obtain an initial tree using a microevolutionary model and refine it with respect to macroevo-

lutionary considerations.More specifically, an initial tree is constructed based on sequence data alone, with

edge weights representing the support for each taxon bipartition in the tree. Subsequently, edges with weak

support in the sequence data (i.e., with edge weights below aspecified threshold) are rearranged to optimize

the number of duplications and losses needed to explain the tree, while the structure of the tree at edges with

strong support is preserved. Note that the removal of any edge,e, in a tree bipartitions the set of leaf nodes. If

1Goodmanet al. (1979) actually refer to gene duplication and geneexpression events. In 1979, they were working with amino acid

sequences and had to consider the possibility that missing sequences might be encoded by genes that were present in the genome but not

expressed.
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the support fore is low, it suggests that the evidence in the data for that bipartition is weak. It does not reflect

on the certainty of the structure of any other part of the tree. Quantitative measures for assessing support for

taxon bipartitions include bootstrap values (Efron and Gong, 1983), posterior probabilities (e.g., Ronquist and

Huelsenbeck, 2003) or edge lengths.

This hybrid approach incorporates both micro- and macroevolutionary considerations in phylogeny recon-

struction. Although in pathological cases an exponential number of trees must be considered, in practice its

computational and data requirements are modest because thetwo-phase approach constrains the search space.

Furthermore, the hybrid approach makes it possible to decouple the micro- and macroevolutionary models.

Since duplication and loss occur rarely relative to sequence mutation, parsimony may be a more appropriate

macroevolutionary model than maximum likelihood for many data sets. In this paper, we present a particular

implementation of this approach where the initial sequence-based tree is constructed using any standard phy-

logeny reconstruction method and, hence, any microevolutionary model. The refinement step is based on a

parsimony model of duplication and loss.

This hybrid approach is illustrated by the hypothetical gene tree in Fig. 2(a), which shows a gene family with

two members in frog, two in human and one in mouse. The topology of the tree indicates that two duplications

occurred in this gene family. The first occurred in the commonancestor of all three species. One copy was

retained in all three species, while the second was retainedin frog and lost in mouse and human. We represent

this as a single loss in their common ancestor (eut), since this is the most parsimonious explanation for the two

missing genes. A second duplication occurred within the human lineage. The total score for this tree is two

duplications and one loss. However, the edge groupinggene2FROGwith the mouse and human genes is weak,

suggesting that the sequence evidence does not, in fact, strongly support this topology. Rearranging the tree

around the weak edge to placegene2FROG in the left subtree withgene1FROG(Fig. 2(b)) results in a tree that

requires two duplications and no losses to explain. Figure 2

4 Formal Macroevolutionary Reconstruction Problems

The problem of finding all most parsimonious trees with respect to duplications and losses alone, ignoring

sequence information, can be formally stated as follows:

Macroevolutionary phylogeny
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Input: A rooted, binary species tree,TS, with l leaves; a list of multiplicitiesm1 . . . ml, wherems is the

number of gene family members found in speciess; weightscλ andcδ.

Output: The set of all rooted, binary gene trees{TG} with ms leaves drawn from each speciess and

such that theD/L Scoreof TG is minimal.

In Section 5.1 we provide a dynamic program to solve this problem, showing that, unlike most formulations

of phylogeny reconstruction, which are NP-complete (Chor and Tuller, 2005; Day, 1987; Dayet al., 1986),

an optimal solution to theMacrophylogenyproblem can be obtained in polynomial time per output tree. An

extension to this algorithm for non-binary species trees isgiven in Section 5.2.

Next, we extend this result to obtain an algorithm to refine a tree built from sequence data. LetT1 =

(V1, E1) andT2 = (V2, E2) be trees with the same leaf set; that is,L(T1) = L(T2), whereL(T ) is the leaf set

of T . We sayT2 agrees withT1 at e1, if there is some edge,e2 ∈ E2, that generates the same taxon bipartition

ase1.

Definition 4.1. Let TG = (V, E) be a rooted tree and letR ⊆ E be a set of robust edges. A treeT is a

rearrangementtree ofTG if L(T ) = L(TG) and T agrees withTG at every edge inR. Further, we define

TG,R to be the set of all rooted, binary rearrangement trees ofTG and denote byT ∗
G,R the subset ofTG,R with

minimumD/L Score.

We now state the reconstruction problem for the more general, hybrid parsimony model.

Hybrid Micro-Macrophylogeny

Input: A rooted gene tree,TG with robust edgesR⊆E; a rooted species tree,TS; weightscλ andcδ.

Output: T ∗
G,R

Note that in the case whereR = ∅, TG,R is simply the set of all trees with|L(TG)| leaves, and the

Hybrid Micro-Macrophylogeny problem reduces to theMacrophylogenyproblem.

An algorithm to solve theHybrid Micro-Macrophylogeny problem can be used to incorporate macroevo-

lutionary information in phylogeny reconstruction when the sequence data does not strongly support a single

topology. In this case,R is the set of edges with weights above some threshold,θ. The same approach can

also be used to resolve a multifurcating gene tree, when the sequence data is not sufficient to obtain a complete

binary resolution of the historical relationships betweenall taxa. This is achieved by replacing every k-ary node
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with an embedded binary tree with k leaves, such that theD/L Scoreof the embedded subtree is minimal with

respect to a given species tree.

Let TM = (VM , EM ) and TB = (VB , EB) be trees, whereTM is multifurcating,TB is binary and

L(TM ) = L(TB). We sayTB agrees withTM if every taxon bipartition inTM is also found inTB. This

relationship is not symmetric sinceTM must have fewer edges thanTB. There will always be at least one

bipartition inTB that is not present inTM . Let TG = (V, E) be a multifurcating gene tree in which all edges

are robust (R = E). Then,T ∗
G,R, defined above is exactly the set of binary trees that optimally resolveTG.

In both binary and multifurcating tree refinement, there arepotentially a large number of equally parsimo-

nious trees inT ∗
G,R due to several types of degeneracy.

Definition 4.2. An eventhistory is a set of (event, edge) pairs, where an event is a duplication or a loss and

the associated edge inTS specifies when the event occurred.

There may be more than one event history with the sameD/L Score. For example, ifcλ = cδ = 1, then the

gene trees in Fig. 1(a) and Fig. 2(b) both have aD/L Score of two, although they have different histories (one

duplication and one loss versus two duplications).

Additional degeneracy arises because the same event history may correspond to more than one tree. This

occurs when labels in the gene tree can be permuted without changing the score. For example, in Fig. 1(a),

exchanginggene1HUMAN andgene2HUMAN results in a different tree for the same event history. Multiple

trees for the same event history can also occur when subtreeswith different topologies within a single species

have the same number of duplication nodes. This is illustrated in Fig. 3. Finally, whencλ = 0, additional Figure 3

degeneracy can arise because multiple optimal event histories may correspond to the same tree.

NOTUNG 2.0 generates one tree for each distinct event history. We present all other trees for each event

history to the user through NOTUNG 2.0’s graphical user interface. Nodes that may be swapped without chang-

ing theD/L Score are highlighted, allowing the user to generate alternate minimum cost permutations using a

point and click interface.

5 Reconstruction algorithms

In this section, we first present a dynamic program for reconstructing a binary gene tree based on macroevo-

lutionary considerations only. Since sequence evolution is not taken into account, the only information about

the gene family required is the number of gene family membersobserved in each species. Given a binary
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species tree, species multiplicities and positive weightscλ andcδ as inputs, our algorithm determines the mini-

mumD/L Scoreand generates all most parsimonious histories. We extend this algorithm to handle non-binary

species trees in Section 5.2.

In Section 5.3, we discuss how to incorporate these results in an algorithm for optimizing the reconciliation

of a binary gene tree with weak edges. Each connected component of weak edges (CCW ) in this tree is a

binary, rooted tree whose leaves are strong subtrees in the original tree. An extension of the dynamic program

presented in Section 5.1 is used to obtain all minimum cost rearrangements of the embedded rooted tree asso-

ciated with eachCCW . We then reinsert the rearranged components in the tree using a theorem of Chenet al.

(2000) that proves that for cost functions with certain properties, includingD/L Score used here, eachCCW

may be optimized independently.

5.1 Macrophylogeny

We now describe our algorithm for reconstructing all most parsimonious event histories, where only macroevo-

lutionary events are considered. Each event history can be represented as a species tree, where each node is

annotated with the number of paralogs found at that node in the history under consideration. This number must

be one at the root. The number of gene family members in each leaf species is specified in the input. We refer

to these as multiplicities. Fig. 1(b) shows a species tree with leaves annotated with multiplicities.

Our dynamic program considers all possible histories by enumerating all possible assignments of gene

copies to internal nodes in the species tree. For a given nodev, the variablei is the number of paralogous

copies extant in its parent,p(v), andj is the number of copies inv. If i 6= j, then one or more duplications

or losses occured on the edge fromp(v) to v. We also definel(v) andr(v) as the two children ofv. These

relationships are shown in Fig. 4. For each nodev, the dynamic program computes the minimumD/L Score Figure 4

of the subtree rooted atv for all possible values ofi andj. It is sufficient to consider only values ofi andj

in the range from one tôm← max
∀l∈L(TS){ml}2. These values are stored in the cost table,costv[i, j]. The

arraycostmin
v [i]← min∀j{costv[i, j]} is also stored to enable quick lookup of the minimum cost given thatv

inheritsi genes from its parent.

Pseudocode for this algorithm is shown in Algorithm 1. RECONSTRUCT, the main loop, calls the procedure

2To see this, note that if the number of gene copies in any vertex, v, of TS is larger thanm̂, then additional losses will be required in

the subtree rooted atv in order to reduce the gene count to the multiplicities on theleaves ofTS. As we requirecδ andcλ to be positive

this will increase theD/L Score of the resulting gene tree. Therefore, it is never necessaryto consider more than̂m gene copies in any

vertex ofTS.
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ASCEND, which annotates the minimum cost tables for all nodes ofTS. To generate all alternate histories

from these tables, RECONSTRUCTrepeatedly calls DESCEND followed by CONSTRUCT. In each iteration,

DESCENDselects a new annotation that corresponds to a distinct optimal history. CONSTRUCT then builds a

gene tree to represent the history marked by DESCEND. This gene tree is output and DESCENDis called again

to find the next history. The procedure terminates when DESCEND returnsfalse to indicate that all histories

have been generated.

To generate all optimal histories, each node must keep trackof those lowest cost entries in its cost table

that have already been selected for alternate histories by DESCEND. This is done by considering all possible

values ofi at each node that could result in an optimal score. Each node maintains state variables including

v.dups, the optimal number of duplicated genes in this species;v.losses, the optimal number of lost genes

in this species; andv.out, the optimal number of genes forv to pass to its children. Each call to DESCEND

attempts to set these state variables to obtain a new optimalhistory, and returnstrue if it was succesfull. This

success is also recorded in the state variablev.changed. Additional bookkeeping information is stored on each

node for use by the NOTUNG 2.0 user interface, to enable the user to generate alternateminimum cost gene

trees, if they exist, for each history displayed.

Algorithm 1.

RECONSTRUCT[TS, {m1 . . . ms}]

ASCEND[root(TS)];

reset ← true;

while (true) {

root(TS).changed ← DESCEND[root(TS), reset, 1];

if( !root(TS).changed )

break;

TG ← CONSTRUCT[root(TS)];

output(TG);

reset ← false;

** reset construction counters **

}
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ASCEND[v]

1 if v is a leaf

2 ∀i s.t. 1 ≤ i ≤ m̂

3 costmin
v [i]← cδ ∗max (mv − i, 0) + cλ ∗max (i−mv, 0);

4 if v is not a leaf

5 ASCEND[l(v)]; ASCEND[r(v)];

6 ∀i, j s.t. 1 ≤ i ≤ m̂, 1 ≤ j ≤ m̂

7 costv[i, j]← cδ ∗max (j − i, 0) + cλ ∗max (i− j, 0) + costmin

l(v)
[j] + costmin

r(v)
[j];

8 ∀i s.t. 1 ≤ i ≤ m̂

9 costmin
v [i]← min∀j{costv[i, j]};

DESCEND[v, reset, i]

1 if v is a leaf:

2 v.out← 0;

3 v.losses← max ((i−mv), 0);

4 v.dups← max ((mv − i), 0);

5 return reset;

6 if (!reset)

7 ** check each child - if either has another solution, return true **

8 l(v).changed← DESCEND[l(v), false, v.out]

9 if ( l(v).changed )

10 return true;

11 r(v).changed← DESCEND[r(v), false, v.out]

12 if ( r(v).changed )

13 l(v).changed← DESCEND[l(v), true, v.out]

14 return true;

15 ** neither child has another solution, go on to next optimal value of v.out **

16 repeat { v.out + + } until ( costv[i, v.out] == costmin
v [i] OR v.out > m̂ );

17 if( v.out > m̂ )

18 return false;
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19 else ** reset to first optimal value of v.out **

20 v.out← 0;

21 repeat { v.out + +; } until ( costv[i, v.out] == costmin
v [i] );

22 ** we are computing values for a new v.out **

23 l(v).changed← DESCEND[l(v), true, v.out];

24 r(v).changed← DESCEND[r(v), true, v.out];

25 v.losses← max ((i− v.out), 0);

26 v.dups← max ((v.out− i), 0);

27 return true;

CONSTRUCT[s]

1 g ← newgenenode; g.species← s;

2 if (s.currDup < s.dups)

3 s.currDup + +;

4 l(g)← CONSTRUCT[s]; r(g)← CONSTRUCT[s];

5 ** mark g as a duplication node **

6 else if (s.currLoss < s.losses)

7 s.currLoss + +;

8 ** mark g as a loss node **

9 else if (s.currSpec < s.out)

10 s.currSpec + +;

11 l(g)← CONSTRUCT[l(s)]; r(g)← CONSTRUCT[r(s)];

12 ** mark g as a speciation node **

13 return g;

Lemma 5.1. The time required forRECONSTRUCTto find a single optimal history isO(nm̂2), wheren is

the number of nodes in the species tree andm̂ is the maximum number of paralogous copies drawn from any

species. The time complexity for reportingk optimal histories isO(nm̂(k + m̂)).

Proof. RECONSTRUCTcalls ASCENDonce. The leaves of the species tree can be annotated with multiplicities

in O(n) time. The main computational cost in ASCEND is calculating the cost matrix in the internal species

nodes, and the minimum cost vector in the leaf nodes. Each cost matrix is of sizem̂(m̂+1), and each minimum
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cost vector is of sizêm. Thus, the time complexity of ASCEND is O(nm̂2).

DESCENDand CONSTRUCTare called once per optimal history. The time required for DESCEND to find

the value ofj that minimizes the cost at given a node for a given value ofi takes timeO(m̂). Each node in the

species tree will be visited at most two times, so the total complexity for DESCEND is O(nm̂). CONSTRUCT

inserts duplication and loss nodes in the new tree, which cannumber in total no more than̂m per node inTS.

Hence, the total complexity for CONSTRUCT is O(nm̂).

In order to reportk optimal histories, ASCENDmust be called once, while DESCENDand CONSTRUCTare

calledk times each. Therefore, the time complexity for reportingk optimal histories isO(nm̂(k + m̂)).

Lemma 5.2. RECONSTRUCTfinds all histories with minimumD/L Score.

Proof. RECONSTRUCTrepeatedly calls DESCEND to get all optimal histories with minimalD/L Score. Re-

member that for a given nodev, the valuei is the number of copies passed tov from its parent, andj is the

number of copies present inv after duplication or loss events atv have occurred. The cost tables generated by

ASCEND are used in DESCEND, and guarantee that only optimal values ofi andj are considered. DESCEND

is first called in RECONSTRUCTwith i = 1. We prove by induction on the structure ofTS that repeated calls to

DESCENDwith v andi will generate all optimal histories rooted atv, given thatv receivesi paralogous copies

from its parent. Subsequent calls to DESCENDwill report that no more histories exist. We show that this istrue

for the base case, a leaf node ofTS. We then show that if this is true for the left and right children of an internal

nodev, it is also true forv.

Base case:For a leaf nodev, there is a single optimal history for every value ofi. The first call to DESCEND

will return that optimal history. Subsequent calls to DESCENDwill report that no more histories exist.

Inductive step:Let v be an internal node. In repeated calls to DESCEND with v andi, DESCENDexamines

all values ofj that will result in optimal histories. For each value ofj, it repeatedly calls DESCENDwith l(v)

andj and DESCENDwith r(v) andj, using an enumeration scheme that ensures all combinationsof optimal

histories rooted atr(v) andl(v) will be generated. When all optimal values ofj have been exhausted, and all

optimal histories have been generated, DESCENDreports that it is done for(v, i).

5.2 The Macro Algorithm for Non-Binary Species Trees

The Macrophylogeny reconstruction algorithm described above assumes a binary species tree and generates

one or more binary gene trees. There are a number of reasons, however, why a species tree might not be
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binary. There may not be enough data to determine a unique binary history for a set of species, or a non-binary

speciation event may have actually occurred. Algorithm 1 can be modified to handle non-binary species trees,

where any non-binary nodes in the species tree are considered to be actual non-binary speciation events. This

new algorithm will generate non-binary gene trees.

Let n(v) be the number of children ofv, andck(v) be thekth child of v. In order to accommodate non-

binary species trees, we must modify ASCEND to visit all n(v) children ofv, and change the computation

of the D/L Score to include the score of all subtrees ofv. In addition, for each nodev, DESCEND must

search through alln(v) children for a new solution, and reset all previous childrenwhen a new solution is

found. Algorithm 2 shows the modifications to ASCENDand DESCEND. The RECONSTRUCTroutine remains

unchanged. CONSTRUCT is modified to visit all children by replacing Lines 4 and 11 with:

∀k = 1 . . . n(v) ck(g)← CONSTRUCT[ck(s)]

Algorithm 2.

ASCEND[v]

if v is a leaf

∀i s.t. 1 ≤ i ≤ m̂

costmin
v [i]← cδ ∗max (mv − i, 0) + cλ ∗max (i−mv, 0);

if v is not a leaf

∀k = 1 . . . n(v) ASCEND[ck(v)]

∀i, j s.t. 1 ≤ i ≤ m̂, 1 ≤ j ≤ m̂

costv[i, j]← cδ ∗max (j − i, 0) + cλ ∗max (i− j, 0) +
∑n(v)

k=1 costmin
ck(v)[j]

∀i s.t. 1 ≤ i ≤ m̂

costmin
v [i]← min∀j{costv[i, j]};

DESCEND[v, reset, i]

if v is a leaf:

v.out← 0;

v.losses← max ((i−mv), 0);

v.dups← max ((mv − i), 0);

return reset;

if (!reset)
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** if any child has another solution, reset previous children and return true **

∀k = 1 . . . n(v)

ck(v).changed← DESCEND[ck(v), false, v.out]

if ( ck(v).changed && k > 1 )

∀j = 1 . . . k − 1

cj(v).changed← DESCEND[cj(v), true, v.out]

return true;

** no child has another solution, go on to next optimal value of v.out **

repeat { v.out + + } until ( costv[i, v.out] == costmin
v [i] OR v.out > m̂ );

if( v.out > m̂ )

return false;

else ** reset to first optimal value of v.out **

v.out← 0;

repeat { v.out + +; } until ( costv[i, v.out] == costmin
v [i] );

** we are computing values for a new v.out **

∀k = 1 . . . n(v) l(v).changed← DESCEND[ck(v), true, v.out]

v.losses← max ((i− v.out), 0);

v.dups← max ((v.out− i), 0);

return true;

5.3 Hybrid Micro-Macrophylogeny

TheMacrophylogenyalgorithm presented in Section 5.1 can be used with minor modifications as a subroutine

in a solution for theHybrid Micro-Macrophylogeny problem set forth in Section 4. TheHybrid Micro-Macrophylogeny

algorithm starts by applying a wrapper function, REARRANGE, to the root of the input tree,TG. REARRANGE

descendsTGvisiting eachCCW in preorder, rearranging it to minimize theD/L Scorebefore reinserting it into

TG. REARRANGE can be found in Algorithm 3.

Algorithm 3.

REARRANGE[g]

if (robust(g) AND (weak(l(g)) OR weak(r(g))))
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PREPROCESS[g, M(g)];

g ← RECONSTRUCTCCW[M(g)];

l(g)← REARRANGE[l(g)];

r(g)← REARRANGE[r(g)];

The function PREPROCESS, which is not shown, extracts the rooted tree correspondingto eachCCW and

records its multiplicities in the species tree. Note that the leaves of aCCW may be strong subtrees inTG.

Thus, unlike the algorithm in Algorithm 1, both the internalnodes and leaves of the species tree are annotated

with multiplicities. An example of a gene tree with a strong subtree and the corresponding annotated species

tree can be seen in Fig. 5.

The RECONSTRUCTroutine from Algorithm 1 is modified to save a list of reconstructed optimal event

histories for eachCCW , along with additional bookkeeping required to generate all permutations of optimal

histories from this list. These modifications are also not shown. Figure 5

The routines ASCEND, DESCEND and CONSTRUCT given in Algorithm 1 must be modified in order to

account for multiplicities on internal nodes of the speciestree. Line 7 in ASCENDmust be replaced with

costv[i, j]← cδ ∗max (j − i + mv, 0) + cλ ∗max (i− j −mv, 0) + costmin

l(v)
[j] + costmin

r(v)
[j];

Additionally, Lines 25 & 26 in DESCENDmust be replaced with

v.losses← max ((i− v.out−mv), 0);

v.dups← max ((v.out− i + mv), 0);

These changes address the need to count losses and duplications differently when internal nodes in the species

tree are annotated with multiplicities. Finally, the CONSTRUCT routine must be modified to reinsert the op-

timizedCCW into the original gene tree. To allow CONSTRUCT to reconnect strong subtrees to the recon-

structedCCW , the following lines are added between Lines 8 & 9:

else if (s.copiesHere < mv)

s.copiesHere + +;

g ← a strong subtree with lca s

Algorithm 3 can also be used to refine multifurcating gene trees. In this case, all edges in the multifurcating

tree are marked as robust edges. The non-binary nodes in the gene tree must then be expanded to an arbitrary bi-

nary subtree, and any edges added in that process marked as weak edges. TheHybrid Micro-Macrophylogeny
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algorithm can then be run on this gene tree to produce a binarygene tree refined with respect to duplication and

loss.

6 Experimental Results

The algorithms described in the previous sections have beenimplemented in a Java program called NOTUNG 2.0.

Given a rooted gene family tree, a rooted species tree, an edge weight threshold,θ, and positive costscδ andcλ,

NOTUNG 2.0 computes all optimal rearrangement histories using theHybrid Micro-Macrophylogeny algo-

rithm and presents one tree for each optimal history. All other trees for the same history can be generated using

a point and click interface that allows the user to swap nodeswithin the same species; i.e., that can be inter-

changed without changing theD/L Score. The NOTUNG 2.0 graphical user interface was constructed, in part,

using the tree visualization library provided by ATV (version 1.92) (Zmasek and Eddy, 2001a). NOTUNG 2.0

can also be executed from the command line, allowing for automated analysis of a large number of trees.

In a previous study (Chenet al., 2000), we developed a test set of thirteen trees discussed in three recent

articles on large scale duplication (Hughes, 1998; Pebusqueet al., 1998; Ruvinsky and Silver, 1997). For each

rooted tree in the test set, we compared the results automatically generated by NOTUNG 2.0 with those of the

original authors. The duplication histories generated were consistent with the analyses of the authors of the

original papers for all trees considered.

In addition, we used NOTUNG 2.0 to analyze two large trees. Phylogenetic analysis suggests that gene du-

plication followed by functional differentiation is an adaptive response to environmental change in both of these

families. The first data set includes ATP-binding Cassette (ABC) transporter sequences fromDictyostelium

discoideum, Arabidopsis thalianaand Saccharomyces cerevisiaeand a number ofPlasmodiaspecies, pro-

vided by Roxana Cintron, Dr. Adelfa Serrano and colleagues (University of Puerto Rico). Several ABC trans-

porter subfamilies are associated with malarial drug resistance inPlasmodiaand pesticide resistance inA.

thaliana. The second tree, provided by Dr. Hugh Nicholas (PittsburghSupercomputing Center) is derived from

the Glutathione-S Transferases (Sheehanet al., 2001), a superfamily of detoxification enzymes.

Sequence trees for both data sets were constructed using Neighbor Joining (Saitou and Nei, 1987). Boot-

strap replicates were obtained using the SEQBOOT program from Felsenstein’s Phylip package (v. 3.6.1) avail-

able at the Pittsburgh Supercomputing Center. Details are given in the appendix. The divergence in both fami-

lies was substantial, resulting in a large number of edges with low bootstrap values. NOTUNG 2.0 was used to

determine the number of duplications and losses in the resulting sequence trees and then to rearrange the trees.
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The results given in Table 1 show that macroevolutionary rearrangement substantially reduces the number of

duplications and losses needed to explain the data. In addition, macroevolutionary rearrangement reduces the

number of hypotheses that must be considered to a dramatic extent. Whencδ = 1.5, cδ = 1 andθ = 50%,

there is only one most parsimonious history for each test tree. A cutoff of 90% for the GST tree resulted in

only two most parsimonious histories. Table 1

The trees analyzed here provide a concrete example of Notung’s utility in functional as well as evolutionary

applications. Gene duplication followed by functional differentiation is a mode of adaptation to environmental

change. Visualization of a tree before and after rearrangement reveals the temporal organization of the duplica-

tions in the history of the family and their distribution within lineages and subfamilies. For example, analysis

and visualization of the ABC tree (Cintronetal., 2004) with NOTUNG 2.0 revealed a large number of recently

duplicated genes in the Multi-Drug Resistance subfamily, suggesting a pattern of recent, lineage-specific adap-

tation. When combined with ecological and biochemical data, this type of information can be used to plan

additional experimental studies, suggest strategies for circumventing drug and pesticide resistance in parasites,

identify potential detoxification enzymes for use in bioremediation and design breeding programs to enhance

pest resistance in cash crops.
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A Data set preparation

ATP-binding cassette transporters:Multiple alignments of 350 ABC transporter sequences were generated

with CLUSTALW (Thompsonet al., 1994) and TCOFFEE (Notredameet al., 2000) and manually edited us-

ing the GeneDoc (version 2.6.002) Multiple Sequence Alignment Editor and Shading Utility (K.B. Nicholas

and Deerfield, 1997). A phylogenetic tree was built using thePhylip package from Felsenstein (v. 3.6.1)
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available at the Pittsburgh Supercomputing Center, which contains several programs to construct a bootstrap

phylogeny (Efron and Gong, 1983). Briefly, the SEQBOOT program was run and the output file used as input

to run the PROTDIST program in order to calculate the distance matrices from each of the replicate data sets.

SEQBOOT generated 432 replicate data sets. PROTDIST produced 500 distance matrices for the phylogeny

using the PAM model for amino acid substitutions. The outputof the distance program was used as input for

NEIGHBOR in order to create phylogenetic trees using the Neighbor-joining method.

Glutathione S-Transferases: An initial set of 153 GST sequences were aligned using the T-COFFEE

program (Notredameet al., 2000). The same sequences were analyzed by the MEME program (Bailey and

Elkan, 1994) using the ZOOPS (Zero Or One Per Sequence) whichreturned 20 motifs found in the sequences.

The GeneDoc program (K.B. Nicholas and Deerfield, 1997) was used to highlight the MEME motifs within the

global multiple sequence alignment produced by T-COFFEE. These motifs were used to guide manual editing

and refinement of the alignment. This refined alignment was used to create a position specific scoring matrix

and used to search the NBRF/PIR sequence database for additional GST sequences using the PSSMSearch

program (Ropelewskiet al., 2000). The additional sequences were aligned to the initial refined alignment

using the profile alignment routine in ClustalW (Thompsonet al., 1994). Duplicate and incomplete sequences

were removed and the final set of 247 complete sequences were submitted for analysis by MEME, again

using the ZOOPS model. This final set of 20 motifs was used to guide additional refinement of the complete

alignment in GeneDoc. From this alignment, a subset of 131 best annotated sequences was selected for this

study. A Neighbor Joining tree was built using PROTDIST (Phylip) with pam distances. Five hundred bootstrap

replicates were obtained using Phylip’s SEQBOOT program.
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Figure 4:Schematic showing the meaning of variables in Algorithm 1.
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Figure 5: (a) A gene tree with a weakly connected component, shown hereby dotted edges. (b) Annotated tree for the species in (a).

Note that the internal species nodepri (primate) has a multiplicity, while GORILLA does not.
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leaves D L θ D L

ABC 350 304 165 50% 271 61

GST 121 67 250 90% 51 58

GST 90% 49 61

GST 50% 55 164

Table 1:Duplications and losses in the ABC and GST trees before and after rearrangement by NOTUNG 2.0, with bootstrap thresholds

of 50% and 90% (GST tree only) and weights ofcδ = 1.5 andcδ = 1. Note that two distinct histories were obtained forθ = 90% for the

GST tree.
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