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Abstract

Gene family evolution is determined by microevolutionarggesses (e.g., point mutations) and macroevo-
lutionary processes (e.g., gene duplication and lossyngeroevolutionary considerations are rarely incor-
porated into gene phylogeny reconstruction methods. Weeptea dynamic program to find the most parsi-
monious gene family tree with respect to a macroevolutipoatimization criterion, the weighted sum of the
number of gene duplications and losses. The existence diyagmial delay algorithm for duplication/loss
phylogeny reconstruction stands in contrast to most foatmts of phylogeny reconstruction, which are
NP-complete.

We next extend this result to obtain a two-phase method foe deee reconstruction that takes both
micro- and macroevolution into account. In the first phasge@e tree is constructed from sequence data,
using any of the previously known algorithms for gene phglog construction. In the second phase, the
tree is refined by rearranging regions of the tree that do mweé Istrong support in the sequence data to
minimize the duplication/lost cost. Components of the tréth strong support are left intact. This hybrid
approach incorporates both micro- and macroevolutionamgiderations, yet its computational requirements
are modest in practice because the two phase approachasnasire search space. Our hybrid algorithm can
also be used to resolve non-binary nodes in a multifurcagene tree.

We have implemented these algorithms in a software toaiTOWG 2.0, that can be used as a unified
framework for gene tree reconstruction or as an exploraaolysis tool that can be appligbst hocto
any rooted tree with bootstrap values. Them™NG 2.0 graphical user interface can be used to visualize
alternate duplication/loss histories, root trees acegrdo duplication and loss parsimony, manipulate and
annotate gene trees and estimate gene duplication timatsolbffers a command line option that enables

high-throughput analysis of a large number of trees.



1 Introduction

The evolutionary history of a gene family is determined byoabination of microevolutionary events (se-
guence evolution) and macroevolutionary events. The neaotationary events considered here are speciation,
gene duplication and gene loss. Gene tree reconstructmrdhbe based on a model that incorporates both
micro- and macroevolutionary events (Goodneaal., 1979), yet few phylogeny reconstruction tools based on
such a unified model are available. Furthermore, recoticifiaof a gene tree and a species tree can be used
to investigate a variety of questions related to macrodigiysuch as inferring gene duplications and losses,
estimating upper and lower bounds on times these eventsredcand determining whether a given pair of
homologs is orthologous or paralogous. Algorithmic andvgaffe support for both these tasks is needed.

In the current work, we present a dynamic programming aflgorito find all most parsimonious phyloge-
nies with respect to a macroevolutionary model of gene dapéin and loss. Given a species tree and the num-
ber of gene family members found in each species as inpuglgarithm will construct a tree with the fewest
duplications and losses required to explain the data. Aensidn of this algorithm can also be applied to non-
binary species trees. In contrast to most phylogeny renactiin problems, which are NP-complete (Chor and
Tuller, 2005; Dayet al., 1986; Day, 1987), our results show that macroevolatipmparsimony can be solved
in polynomial time per output tree.

Using this result, we develop a two-phase approach to geredconstruction that incorporates sequence
evolution, gene duplication and gene loss in the evaluaifasiternate phylogenies. In phase one, a tree is
constructed based on a microevolutionary model only. Irsph@o, regions of the tree that are not strongly
supported by the sequence data are refined with respect toraewalutionary parsimony model, while regions
with strong support are left intact. By reserving consitiereof macroevolutionary events until phase two and
focusing only on those areas where the sequence data casobte the topology, this hybrid approach reduces
the search space, leading to a method that incorporatestygmh of events, yet has modest computational
requirements. This hybrid approach can also be used toseesoh-binary nodes in a multifurcating tree.

We have implemented these algorithms in a software toa@d&bTuNG 2.0, which can be used as a uni-
fied framework for gene tree reconstruction or as an exployatnalysis tool. MTUNG 2.0 has the following

features:

¢ a polynomial delay algorithm for generatiati most parsimonious trees with respect to a weighted gene

duplication and loss cost.



e agraphical interface, with features especially desigoedmalysis of gene duplications, including visu-
alization of duplicated nodes, lost leaves and/or subttéesability to browse the space of all optimal
hybrid trees, annotation of subfamilies, color highligigtiof rootable edges and generating of Portable

Network Graphics image files for publication purposes.
e acommand line interface for high-throughput analysis aféanumbers of trees.

NOTUNG 2.0 I/O uses Newick Taxonomy tree format. The command linsiga will also generate text
summaries of duplication histories, which can then be phlsescripts. The MTUNG 2.0 executable is
available for free, public distributiom{tp://www.cs.cmu.edsdurand/Notungy.

The rest of this paper is organized as follows: In Section@gdigcuss related work and review reconcili-
ation of a gene tree with a species tree. A taxonomy of maer@-aicroevolutionary models is presented in
Section 3. We state our gene tree reconstruction problemmefty in Section 4 and present algorithms to solve
these problems in Section 5. In Section 6, we summarize thabilties of our software tool, NTUNG 2.0,
and discuss the application ofd¥UNG 2.0 to two large data sets to investigate the role of gendchtn in

genetic adaptation to environmental change.

2 Previous Work on Reconciliation

The problem of disagreement between gene trees and spe@esias first raised in the context of inferring
a species tree from a gene tree that may contain paralogexi(@anet al., 1979). This concept was further
developed and formalized by Guigoal. (1996); Hallett and Lagergren (2000); Mgal. (2000); Mirkinetal.
(1995); Page (1994); Page and Charleston (1996); Steg®)188%ang (1997). Formally, given a set of rooted
gene trees, the problem is to find the species tree that g@ign evaluation criterion. Several parsimony-
based optimality criteria have been proposed (see Eularetia. (1996, 1998) for a comparative survey). The
problem of finding an optimal species tree is NP-hard @#al., 2000) for the optimality criteria considered
so far. Several authors have pointed out that it is difficuitlistinguish true gene loss from genes that have
not yet been sequenced and discuss approaches to distimguisie losses from apparent losses in the cost
function (Goodmaret al., 1979; Mirkinet al., 1995; Dufayarcet al., 2005). More recently, reconciliation
algorithms that also take horizontal gene transfer int@anthave been presented (Gorecki, 2004; Hallett and
Lagergren, 2001; Halle#tal., 2004).

A related body of work deals with algorithms and softwardsdo analyze the history of duplications and



losses in the evolution of a gene familyo@PoONENTand GENETREEare software packages that will compute
and display duplication histories for rooted gene treedtafied species trees (Page and Charleston, 1997; Page,
1998). The Forester package (Zmasek and Eddy, 2001b,ayper§ome reconciliation functions and provides

a tree visualization tool. FamFetch (Dufayatdal., 2005) provides a graphical interface for specifyingge
tree templates which can be used to search a database ofiteddrees.

All of these approaches are based on reconciliation of a yeeewith a species tree, a procedure that can
be used to infer duplications and losses and estimate tles ttnwhich they occurred. We review reconciliation
here. Letls be a gene tree ar} be a species tree of taxa from which the gene sequences weapkesh (1f7s
contains additional species, these must be pruned fronptwes tree before proceeding.) The identification
of duplication nodes requires constructing a mappivig,from every nodey, in T to a target node)M (v),
in Ts. Each leaf node iffg is mapped to the node ifis representing the species from which the sequence
was obtained. (Leaf nodes if; represent sequences, whereas leaf nodds irepresent species.) Each
internal node il is mapped to the least common ancesltca)( of the target nodes of its children; that is,
M(v) =leca(M(I(v)), M(r(v))). In Fig. 1(a), for example, the leaf nodes in the rightmobtee are mapped
to MOUSE andHUMAN. The root of this subtree is mappedéat (eutherian), since tHea of MOUSE and
HUMAN in the species tree isut.

Under the mapping, a node i; is aspeciatiomode if its children are mapped to independent lineages in
Ts. If the children ofv are mapped to the same lineage (eithgr(v)) = M (I(v)) or M (r(v)) is an ancestor
of M (I(v)) or vice versa), then is aduplicationnode. In the gene tree in Fig. 1(a), both nodes labelgdre
speciation nodes since rodents and primates are separeagdis irfl's. The root of the tree is a duplication
node because it has the same label as both of its children.

The number of duplications is obtained by simply countirgydiuplication nodes determined in the above
procedure. The total number of losses, can be computed byjnswgithe gene losses over all edge§in The
loss associated with the edge= (p(v), v) is given by(§(v) — §(p(v)) — 1) + ISDUP(p(v)), wherep(v) is the
parent ofv, 4(v) returns the depth of the target nodd(v), in the pruned species tree argDiup(v) = 1, if
v is a duplication node, and zero, otherwise. The first terrhi;eéquation counts gene losses associated with
speciation nodes. The labels of a speciation node and it gtuld differ by one if no loss has occurred and
will increase by one with each gene loss. In contrast, if neegess has occurred on the edge immediately
below a duplication node, the labels of a duplication nodgitmnchild should be identical. Thus,z{v) is a
duplication node, the first term will be off by one. The sectemin corrects for this case. Note that if a set

of lost genes forms a monophyletic clade, we assume thagéedoss occurred in their common ancestor and



rather than many losses at the leaves. For example, Figsi2¢a)s one loss, iaut, rather than two losses, one
in MOUSE and one irHUMAN.

The cost of duplications and losses can be expressed byltbwiftg optimization function:

Definition 2.1. TheD/L Score of a gene tree is) L + c5 D, the weighted sum of the number of duplications,

D, and the number of lossek, in the tree.

3 A Taxonomy of Models

The goal of phylogeny reconstruction is to determine theollygsis, expressed as an evolutionary tree, that
best explains the data with respect to a model of evolutiopnhange. Given a set of sequences from a gene
family, which may include both paralogous sequences frarstime species and orthologous sequences from

different species, a gene tree can be reconstructed angdaodvarious evolutionary models.

Microevolutionary model: Find the tree that best explains the data with respect to aehoflsequence
evolution only. In practice, most gene trees are constructed based on a wiosieduence evolution alone,
as this approach requires a less complex model, is less datignally intensive, and may be achieved with
one of the many tools currently available for sequence#bpbhglogeny reconstruction. However, information
about macroevolutionary events is not incorporated ingphjgroach. In many cases, workers subsequently infer
the macroevolutionary history implied by the sequencesbaee, either by inspection or by using a software
tool for exploratory analysis (e.g. Chenal., 2000; Page and Charleston, 1998; Zmasek and Eddy, 2001b
thereby treating the gene tree as though it were data rdthara hypothesis. If bootstrap values (Efron and
Gong, 1983) indicate weak support for some edges in thedomee practitioners discuss alternate hypotheses

motivated bypost hoamacroevolutionary considerations, partially mitigatthgs problem.

Macroevolutionary model: Find the tree that best explains the data with respect to aghaictuplications
and losses with no consideration of sequence evolutidrile it is hard to imagine a case in which optimizing
duplication and loss alone would produce a biologically niegful tree, models based solely on duplication
and loss can be important intermediate steps toward a cérapsa&’e model. In the current work, we present
a dynamic programming algorithm for finding the most parsiioas duplication and loss tree, which can be
usefully applied in the solution of several other, more @gitally important problems. In addition, the fact that
this problem admits a polynomial delay solution is of thé¢ioed interest, since most formulations of phylogeny

reconstruction are NP-complete (Chor and Tuller, 2005;,0887; Dayet al., 1986). In a Bayesian context,



such models have also been used to investigate relatedangestich as estimating rates of duplication and
loss, determining the posterior probability of a tree witspect to a reconciliation and probabilistic ortholog

identification (Arvesta@tal., 2003; Felsenstein, 2003, p. 514).

Unified model: Find the tree that best explains the data with respect to aeghthtat takes both sequence
evolution and duplication and loss into accou a 1979 landmark paper, Goodmetal. (1979) pointed
out the importance of using a model of both micro- and ma@h#onary events for constructing gene trees
and introduced the term “reconciliation” to describe fiftim gene tree to a species tree. They implemented a
heuristic search procedure for obtaining parsimony treasaptimize a cost function based on both nucleotide
replacement and gene duplication and tostowever, it is difficult to determine how to incorporate at&oc-
curring on very different spatial and temporal scales imglsimodel, and most gene tree reconstruction in the
intervening 25 years has been based on sequence evoludita &lery recently, some Bayesian approaches to
a unified model have appeared. Arvestadl. (2004) have presented a maximum likelihood method tredte
ates a set of sequences with respect to a model that incluelgehe tree and the reconciliation, parameterized
by birth, death and substitution rates.

The Bayesian framework permits a unified model of macro- armlaavolution facilitating an approach
that uses both types of information in the reconstructiatess. It also has the advantage that it allows us to
test evolutionary models and infer parameters of those moden the down side, Bayesian approaches are
notoriously computationally intensive and require suffitidata to obtain reasonable estimates of the parame-
ters. Furthermore, a unified, Bayesian model is a strengdnvaloth sequence evolution and gene duplication
and loss can be modeled by a neutral, stochastic procesgsisutatural for data sets under strong selective
pressure. Evolutionary change in this latter regime is tamttgstic and parsimony may be a more appropriate

model. With these considerations in mind, we propose theviiihg approach:

Hybrid model: Obtain an initial tree using a microevolutionary model amdine it with respect to macroevo-
lutionary considerationsMore specifically, an initial tree is constructed based ajusace data alone, with
edge weights representing the support for each taxon Hiparin the tree. Subsequently, edges with weak
support in the sequence data (i.e., with edge weights belspesified threshold) are rearranged to optimize
the number of duplications and losses needed to explaingkewhile the structure of the tree at edges with

strong support is preserved. Note that the removal of ang,ed@ a tree bipartitions the set of leaf nodes. If

1Goodmaret al. (1979) actually refer to gene duplication and gerpression events. In 1979, they were working with amind aci
sequences and had to consider the possibility that missipgesices might be encoded by genes that were present innbengédut not

expressed.



the support foe is low, it suggests that the evidence in the data for thatrbtfwa is weak. It does not reflect
on the certainty of the structure of any other part of the. t@eantitative measures for assessing support for
taxon bipartitions include bootstrap values (Efron and §3d®83), posterior probabilities (e.g., Ronquist and
Huelsenbeck, 2003) or edge lengths.

This hybrid approach incorporates both micro- and macro¢iemary considerations in phylogeny recon-
struction. Although in pathological cases an exponentiahber of trees must be considered, in practice its
computational and data requirements are modest becausediphase approach constrains the search space.
Furthermore, the hybrid approach makes it possible to ddedhe micro- and macroevolutionary models.
Since duplication and loss occur rarely relative to seqeenatation, parsimony may be a more appropriate
macroevolutionary model than maximum likelihood for mamyadsets. In this paper, we present a particular
implementation of this approach where the initial sequdrased tree is constructed using any standard phy-
logeny reconstruction method and, hence, any microewslaty model. The refinement step is based on a
parsimony model of duplication and loss.

This hybrid approachis illustrated by the hypotheticalgy&ee in Fig. 2(a), which shows a gene family with
two members in frog, two in human and one in mouse. The toyabthe tree indicates that two duplications
occurred in this gene family. The first occurred in the comranoestor of all three species. One copy was
retained in all three species, while the second was retamiedg and lost in mouse and human. We represent
this as a single loss in their common ancesgut), since this is the most parsimonious explanation f@to
missing genes. A second duplication occurred within the drufimeage. The total score for this tree is two
duplications and one loss. However, the edge grougérge2rFRrRoOGwith the mouse and human genes is weak,
suggesting that the sequence evidence does not, in famgstrsupport this topology. Rearranging the tree

around the weak edge to plagene2rFrRoOGin the left subtree witlygenelFrRoOG (Fig. 2(b)) results in a tree that

requires two duplications and no losses to explain.

4 Formal Macroevolutionary Reconstruction Problems

The problem of finding all most parsimonious trees with respe duplications and losses alone, ignoring

sequence information, can be formally stated as follows:

Macroevolutionary phylogeny



Input: A rooted, binary species tre€g, with [ leaves; a list of multiplicitiesn; . . . m;, wherem is the

number of gene family members found in specipweightscy andc;.

Output: The set of all rooted, binary gene tregk;} with mg leaves drawn from each specieand

such that thé/L Score of Tg is minimal.

In Section 5.1 we provide a dynamic program to solve this jgrob showing that, unlike most formulations
of phylogeny reconstruction, which are NP-complete (Chat &uller, 2005; Day, 1987; Dagt al., 1986),
an optimal solution to th#acrophylogeny problem can be obtained in polynomial time per output tree. A
extension to this algorithm for non-binary species treggvsn in Section 5.2.

Next, we extend this result to obtain an algorithm to refineea built from sequence data. L&t =
(V1, Eq) andTy = (V;, E») be trees with the same leaf set; thatli$T ) = L(T5), whereL(T) is the leaf set
of T'. We sayT, agrees withl; atey, if there is some edge; € Es, that generates the same taxon bipartition

ases.

Definition 4.1. Let T = (V, E) be a rooted tree and leR C E be a set of robust edges. A tr8eis a

rearrangementree of T if L(T) = L(Ts) and T agrees withTs at every edge irR. Further, we define

7¢. r to be the set of all rooted, binary rearrangement tree§@aind denote b;Z'G*_’R the subset dfz, g with

minimumb/L Score.
We now state the reconstruction problem for the more geneyhtid parsimony model.

Hybrid Micro-Macrophylogeny

Input: A rooted gene tre€ls with robust edge® C F; a rooted species tre&g; weightscy andcs.
Output: 77 p

Note that in the case whefe = ), 75 r is simply the set of all trees witlL(7c)| leaves, and the
Hybrid Micro-Macrophylogeny problem reduces to thdacrophylogeny problem.

An algorithm to solve thélybrid Micro-Macrophylogeny problem can be used to incorporate macroevo-
lutionary information in phylogeny reconstruction whee fequence data does not strongly support a single
topology. In this caseR is the set of edges with weights above some thresltbldhe same approach can
also be used to resolve a multifurcating gene tree, wheretipgece data is not sufficient to obtain a complete

binary resolution of the historical relationships betwabaxa. This is achieved by replacing every k-ary node



with an embedded binary tree with k leaves, such thabitheScore of the embedded subtree is minimal with
respect to a given species tree.

Let Ty = (Vu,Enm) andTp = (Vp, Ep) be trees, wherd, is multifurcating, Tz is binary and
L(Ty) = L(Tg). We sayTs agrees withly, if every taxon bipartition ifl, is also found inTs. This
relationship is not symmetric sinég,; must have fewer edges thdn. There will always be at least one
bipartition inTs that is not present iffy;. Let Ts = (V, E) be a multifurcating gene tree in which all edges
are robust g = E). Then,7 , defined above is exactly the set of binary trees that oplymesdolveTs.

In both binary and multifurcating tree refinement, therertentially a large number of equally parsimo-

nious trees ir7; , due to several types of degeneracy.

Definition 4.2. An eventhistory is a set of (event, edge) pairs, where an event is $igiujn or a loss and

the associated edge if; specifies when the event occurred.

There may be more than one event history with the sBfheScore. For example, ik, = ¢s = 1, then the
gene trees in Fig. 1(a) and Fig. 2(b) both hav@/a Score of two, although they have different histories (one
duplication and one loss versus two duplications).

Additional degeneracy arises because the same eventhistyr correspond to more than one tree. This
occurs when labels in the gene tree can be permuted withauigalg the score. For example, in Fig. 1(a),
exchanginggenelHUMAN andgene2HUMAN results in a different tree for the same event history. Nbidti
trees for the same event history can also occur when subtitedifferent topologies within a single species
have the same number of duplication nodes. This is illustréit Fig. 3.  Finally, wher, = 0, additional
degeneracy can arise because multiple optimal event lgistoray correspond to the same tree.

NOTUNG 2.0 generates one tree for each distinct event history. \&gept all other trees for each event
history to the user through®runG 2.0’s graphical user interface. Nodes that may be swappthdutichang-
ing theD/L Score are highlighted, allowing the user to generate alternatérmim cost permutations using a

point and click interface.

5 Reconstruction algorithms

In this section, we first present a dynamic program for rettan8ng a binary gene tree based on macroevo-
lutionary considerations only. Since sequence evolusami taken into account, the only information about

the gene family required is the number of gene family membéserved in each species. Given a binary

10



species tree, species multiplicities and positive weightsndcs as inputs, our algorithm determines the mini-
mumD/L Score and generates all most parsimonious histories. We extésdlgorithm to handle non-binary
species trees in Section 5.2.

In Section 5.3, we discuss how to incorporate these resudts algorithm for optimizing the reconciliation
of a binary gene tree with weak edges. Each connected compoheeak edges@(CW) in this tree is a
binary, rooted tree whose leaves are strong subtrees irrifieal tree. An extension of the dynamic program
presented in Section 5.1 is used to obtain all minimum c@staagements of the embedded rooted tree asso-
ciated with eaclC’C'W. We then reinsert the rearranged components in the treg aghlreorem of Cheatal.
(2000) that proves that for cost functions with certain gies, includingd/L Score used here, eachCW

may be optimized independently.

5.1 Macrophylogeny

We now describe our algorithm for reconstructing all mossjmaonious event histories, where only macroevo-
lutionary events are considered. Each event history caefresented as a species tree, where each node is
annotated with the number of paralogs found at that nodeeihitory under consideration. This number must
be one at the root. The number of gene family members in eaflspecies is specified in the input. We refer
to these as multiplicities. Fig. 1(b) shows a species trdle Maves annotated with multiplicities.

Our dynamic program considers all possible histories byramating all possible assignments of gene
copies to internal nodes in the species tree. For a given notlee variable; is the number of paralogous
copies extant in its parent(v), andj is the number of copies in. If i # j, then one or more duplications
or losses occured on the edge fraifv) to v. We also definé(v) andr(v) as the two children of. These
relationships are shown in Fig. 4. For each nodéhe dynamic program computes the minim0Owh. Score
of the subtree rooted atfor all possible values of andj. It is sufficient to consider only values ofand j
in the range from one t6: «— max,,, 7y, {mu}?. These values are stored in the cost tablet, [i, j]. The
arraycost™m[i] « miny;{cost,|i, j]} is also stored to enable quick lookup of the minimum costryiatv
inheritsi genes from its parent.

Pseudocode for this algorithm is shown in Algorithm EGONSTRUCT, the main loop, calls the procedure

2To see this, note that if the number of gene copies in anyxesteof Ts is larger thani, then additional losses will be required in
the subtree rooted atin order to reduce the gene count to the multiplicities onlélages ofl's. As we requirecs andc), to be positive
this will increase théD/L Score of the resulting gene tree. Therefore, it is never necessacgnsider more thar gene copies in any

vertex ofTg.
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ASCEND, which annotates the minimum cost tables for all nodeg®f To generate all alternate histories
from these tables, REONSTRUCTrepeatedly calls BSCEND followed by CONSTRUCT. In each iteration,
DESCENDselects a new annotation that corresponds to a distinanaptiistory. @NSTRUCTthen builds a
gene tree to represent the history marked BSDEND This gene tree is output andEBCENDis called again
to find the next history. The procedure terminates wh&s©eNDreturnsfalse to indicate that all histories
have been generated.

To generate all optimal histories, each node must keep whthose lowest cost entries in its cost table
that have already been selected for alternate histories#scBND This is done by considering all possible
values ofi at each node that could result in an optimal score. Each n@iletams state variables including
v.dups, the optimal number of duplicated genes in this specidg;sses, the optimal number of lost genes
in this species; and.out, the optimal number of genes forto pass to its children. Each call toEBCEND
attempts to set these state variables to obtain a new ogtistaty, and returnsrue if it was succesfull. This
success is also recorded in the state variableanged. Additional bookkeeping information is stored on each
node for use by the NTUNG 2.0 user interface, to enable the user to generate altemiateium cost gene

trees, if they exist, for each history displayed.
Algorithm 1.

RECONSTRUCT Ts, {my...m,}]

ASCEND root(Ts)] ;

reset <« true;

while (true) {
root(Ts).changed «— DESCENO root(Ts), reset, 1];
i f( !root(Ts).changed )

br eak;

Tc < CONsTRUCT root(Ts)] ;
out put (Tg) ;
reset «— false;

** reset construction counters **

12



ASCENQ v]

1

2

i f

i f

vis a leaf
Vi sit. 1<i<m
cost™m[i] « cs * max (my, — 4,0) + cx * max (i — my, 0);
v is not a leaf
AscCeNO I(v)]; AsceNO r(v)];
Vi,j st. 1<i<im, 1<j<im
costyli, j] — cs *x max (j —4,0) + cx * max (i — 5,0) + costﬁi}") [4] + cost;l(ig) nk
Vi sit. 1<i<m

cost"™ [i] «— miny;{costy[i, j]};

DESCENO Vv, reset, i]

1

2

10

11

12

13

14

15

16

17

18

if

vis a leaf:
v.out +— 0;
v.losses «— max ((i —my,),0);
v.dups — max ((m, —1),0);
return reset,
(! reset)
** check each child - if either has another solution, return
I(v).changed — DESCENDI(v), false,v.out]
if ( l(v).changed )
return true,
r(v).changed «— DESCENDr(v), false, v.out]
if ( r(v).changed )
l(v).changed « DESCENOI(v), true, v.out]
return true,
** neither child has another solution, go on to next optinal
repeat { wv.out++ } until ( cost,[i,v.out] == cost™"[i] OR v.out >1m );
if( vout>m)

return false;

13

true **

val ue of wv.out **



19

20

21

22

23

24

25

26

27

el se ** reset to first optimal value of v.out **

v.out «— 0;

repeat { v.out++; } until ( cost,i,v.out] == cost™"[i] );
** we are conputing values for a new v.out **
l(v).changed «— DESCENDI(v), true, v.out];
r(v).changed «— DESCENDr(v), true, v.out];
v.losses «— max ((¢ — v.out),0);
v.dups < max ((v.out — 7),0);

return true,

CoONSTRUCT S]

1

2

10

11

12

13

g < newgenenode; g.species < s,
i f (s.currDup < s.dups)
s.currDup + +;
I(g) — ConsTRUCT s]; r(g) «— CONSTRUCT s];
** mark ¢g as a duplication node **
el se if (s.currLoss < s.losses)
s.currLoss + +;
** mark g as a | oss node **
el se if (s.currSpec < s.out)
s.currSpec + +;
I(g) < CoNsTRUCT I(s)]; r(g) «— CoONSTRUCT 7(s)] ;
** mark ¢g as a speciation node **

return g;

Lemma 5.1. The time required foRECONSTRUCTto find a single optimal history i©(nm?), wheren is

the number of nodes in the species tree @nd the maximum number of paralogous copies drawn from any

species. The time complexity for reporting@ptimal histories iSO (nm(k + 1m)).

Proof. RECONSTRUCTCcalls AsCENDonce. The leaves of the species tree can be annotated witiplicities

in O(n) time. The main computational cost insS&ENDis calculating the cost matrix in the internal species

nodes, and the minimum cost vector in the leaf nodes. Eadimaisix is of sizen(m+1), and each minimum
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cost vector is of sizéh. Thus, the time complexity of ACENDis O(n1?).

DesceNDand GNSTRUCTare called once per optimal history. The time required feasDeENDto find
the value ofj that minimizes the cost at given a node for a given valuetakes timeO(s2). Each node in the
species tree will be visited at most two times, so the totaiexity for DESCENDis O(n7i). CONSTRUCT
inserts duplication and loss nodes in the new tree, whichhcamber in total no more thafy per node inTs.
Hence, the total complexity for @STRUCTIS O(nm).

In order to repork optimal histories, ACENDmust be called once, whileEsCENDand GONSTRUCTare

calledk times each. Therefore, the time complexity for reporfimgptimal histories i€ (nri(k +m)). O
Lemma 5.2. RECONSTRUCTIinds all histories with minimur®/L Score.

Proof. RECONSTRUCTrepeatedly calls BSCENDto get all optimal histories with minimdD/L Score. Re-
member that for a given node the valuei is the number of copies passedudrom its parent, and is the
number of copies present inafter duplication or loss eventsahave occurred. The cost tables generated by
AscCENDare used in BSCEND, and guarantee that only optimal values @ind; are considered. ESCEND

is first called in REcONSTRUCTWiIth ¢+ = 1. We prove by induction on the structure’tf that repeated calls to
DesceNDwith v andi will generate all optimal histories rooted@tgiven that receives paralogous copies
from its parent. Subsequent calls t& &ceENDwill report that no more histories exist. We show that thisus
for the base case, a leaf nodelef We then show that if this is true for the left and right chddrof an internal
nodeuw, it is also true fomw.

Base casefFor a leaf node, there is a single optimal history for every valueiofThe first call to DESCEND
will return that optimal history. Subsequent calls ta €zENDwill report that no more histories exist.
Inductive step:Let v be an internal node. In repeated calls tad2ENDwith v andi, DESCEND examines
all values ofj that will result in optimal histories. For each valuejofit repeatedly calls BSCENDwith I(v)
andj and DescenDwith r(v) andj, using an enumeration scheme that ensures all combinatfaytimal
histories rooted at(v) andi(v) will be generated. When all optimal values;jofiave been exhausted, and all

optimal histories have been generateéSRENDreports that it is done faof, 7).

5.2 The Macro Algorithm for Non-Binary Species Trees

The Macrophylogeny reconstruction algorithm describeavalassumes a binary species tree and generates

one or more binary gene trees. There are a number of reasonsyér, why a species tree might not be
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binary. There may not be enough data to determine a uniqaeybiiistory for a set of species, or a non-binary
speciation event may have actually occurred. Algorithmrilmamodified to handle non-binary species trees,
where any non-binary nodes in the species tree are conditiel® actual non-binary speciation events. This
new algorithm will generate non-binary gene trees.

Let n(v) be the number of children af, andc(v) be thekth child of v. In order to accommodate non-
binary species trees, we must modifis@END to visit all n(v) children ofwv, and change the computation
of the D/L Score to include the score of all subtrees of In addition, for each node, DESCEND must
search through alk(v) children for a new solution, and reset all previous childvdren a new solution is
found. Algorithm 2 shows the modifications tcssAENDand DESCEND The RECONSTRUCTroutine remains

unchanged. 6NSTRUCTIS modified to visit all children by replacing Lines 4 and 1 Xtwi
Vk=1...n(v) cx(g) < CONSTRUCTck(s)]
Algorithm 2.

ASCEND v]
if vis aleaf
Vi st. 1<i<m
cost™"[i] « c5 * max (m, — i,0) + ¢y * max (i —m,,0);
if vis not a leaf
Vk=1...n(v) ASCENDck(v)]
Vi,j st 1<i<m, 1<j<m
costyi, j] < cs * max (j —4,0) + ¢y * max (i — 5,0) + ZZ:(Y) costgzi(’;) [4]
Vi st. 1<t<m

cost™"[i] « miny,;{cost,[i, j]};

DESCENO Vv, reset, i]
if vis aleaf:
v.out «— 0;
v.losses «— max ((i —my),0);
v.dups — max ((m, —1),0);
return reset;

if (!reset)
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** i f any child has another solution, reset previous children and return true **
VE=1...n(v)
ck(v).changed +— DESCENDcg(v), false, v.out]
if ( cgp(v).changed && k>1)
Vi=1...k—1
¢;(v).changed — DESCENDc;(v), true, v.out]
return true,
** no child has another solution, go on to next optinmal value of v.out **
repeat { v.out++ } until ( cost,[i,v.out] == cost™"[i] OR v.out > 1 );
if( vout>m)
return false;
el se ** reset to first optimal value of v.out **
v.out «— 0;
repeat { v.out++; } until ( costy|i,v.out] == cost™™[i] );
** we are conputing values for a new v.out **
Vk=1...n(v) l(v).changed «— DESCENDck(v), true, v.out]
v.losses «— max ((i — v.out),0);
v.dups «+— max ((v.out — i),0);

return true,

5.3 Hybrid Micro-Macrophylogeny

TheMacrophylogenyalgorithm presented in Section 5.1 can be used with minoiifications as a subroutine

in a solution for thedybrid Micro-Macrophylogeny problem set forth in Section 4. Théybrid Micro-Macrophylogeny
algorithm starts by applying a wrapper functiors A/RRANGE, to the root of the input treds. REARRANGE
descenddgvisiting eachC’CW in preorder, rearranging it to minimize tB¥L Score before reinserting it into

Ts. REARRANGE can be found in Algorithm 3.
Algorithm 3.
REARRANGH ¢]

i f (robust(g) AND (weak(l(g)) OR weak(r(g))))
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PREPROCESE g, M(g)] ;
g — RECONSTRUCTCCWI[ M(g)] ;
l(g) — REARRANGH I(g)] ;

r(g) «— REARRANGE 7(g)];

The function REPROCESswhich is not shown, extracts the rooted tree correspondirgchCCW and

records its multiplicities in the species tree. Note that lBaves of & CTW may be strong subtrees .

Thus, unlike the algorithm in Algorithm 1, both the intermaldes and leaves of the species tree are annotated

with multiplicities. An example of a gene tree with a strondpsee and the corresponding annotated species

tree can be seen in Fig. 5.
The RecoNnsTRucTroutine from Algorithm 1 is modified to save a list of reconsted optimal event

histories for eacl’CW, along with additional bookkeeping required to generatpeimutations of optimal

histories from this list. These modifications are also noigh
The routines ACEND, DESCEND and GONSTRUCT given in Algorithm 1 must be modified in order to

account for multiplicities on internal nodes of the speties. Line 7 in ACENDmust be replaced with
costyli, j] «— cs *x max (§ — i + my,0) + cx * max (1 — j —m,,0) + costﬁ% [4] + cost;”(lg) [71;
Additionally, Lines 25 & 26 in ESCENDMuSst be replaced with

v.losses «— max ((¢ — v.out —m,),0);

v.dups «— max ((v.out — i +my),0);

These changes address the need to count losses and dapBdiifferently when internal nodes in the species
tree are annotated with multiplicities. Finally, theo€sTRuUCTroutine must be modified to reinsert the op-
timized CCW into the original gene tree. To allowdBSTRUCTtO reconnect strong subtrees to the recon-

structedCC'W, the following lines are added between Lines 8 & 9:

el se if (s.copiesHere < my)
s.copiesHere + +;

g« a strong subtree with Ica s

Algorithm 3 can also be used to refine multifurcating genedrén this case, all edges in the multifurcating
tree are marked as robust edges. The non-binary nodes intledrge must then be expanded to an arbitrary bi-

nary subtree, and any edges added in that process markedlasages. Thelybrid Micro-Macrophylogeny
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algorithm can then be run on this gene tree to produce a bgearg tree refined with respect to duplication and

loss.

6 Experimental Results

The algorithms described in the previous sections haveibggdemented in a Java program called™NNG 2.0.
Given a rooted gene family tree, a rooted species tree, aneeight thresholdj, and positive costgs andc,,,
NOTUNG 2.0 computes all optimal rearrangement histories usindgytaid Micro-Macrophylogeny algo-
rithm and presents one tree for each optimal history. Aleothees for the same history can be generated using
a point and click interface that allows the user to swap ned#sn the same species; i.e., that can be inter-
changed without changing ti&L Score. The NOTUNG 2.0 graphical user interface was constructed, in part,
using the tree visualization library provided by ATV (vensil.92) (Zmasek and Eddy, 2001a)o™NUNG 2.0

can also be executed from the command line, allowing forraated analysis of a large number of trees.

In a previous study (Cheet al., 2000), we developed a test set of thirteen trees diedlissthree recent
articles on large scale duplication (Hughes, 1998; Pelristal., 1998; Ruvinsky and Silver, 1997). For each
rooted tree in the test set, we compared the results autmatiptijenerated by NTUNG 2.0 with those of the
original authors. The duplication histories generatedewsmsistent with the analyses of the authors of the
original papers for all trees considered.

In addition, we used NTUNG 2.0 to analyze two large trees. Phylogenetic analysis sigdfeat gene du-
plication followed by functional differentiation is an gatave response to environmental change in both of these
families. The first data set includes ATP-binding CasseieQ) transporter sequences frddictyostelium
discoideum Arabidopsis thalianaand Saccharomyces cerevisiamd a number oPlasmodiaspecies, pro-
vided by Roxana Cintron, Dr. Adelfa Serrano and colleagUedsersity of Puerto Rico). Several ABC trans-
porter subfamilies are associated with malarial drug t@see inPlasmodiaand pesticide resistance A
thaliana The second tree, provided by Dr. Hugh Nicholas (Pittsb&gibercomputing Center) is derived from
the Glutathione-S Transferases (Sheegtat., 2001), a superfamily of detoxification enzymes.

Sequence trees for both data sets were constructed usiggdeiJoining (Saitou and Nei, 1987). Boot-
strap replicates were obtained using the SEQBOOT program fielsenstein’s Phylip package (v. 3.6.1) avail-
able at the Pittsburgh Supercomputing Center. Detailsigemdn the appendix. The divergence in both fami-
lies was substantial, resulting in a large number of edgés lawv bootstrap values. dirunNG 2.0 was used to

determine the number of duplications and losses in thetiegudequence trees and then to rearrange the trees.
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The results given in Table 1 show that macroevolutionaryraagement substantially reduces the number of
duplications and losses needed to explain the data. Iniadgdihacroevolutionary rearrangement reduces the
number of hypotheses that must be considered to a drama¢ioteXxVhencs = 1.5, ¢s = 1 andf = 50%,
there is only one most parsimonious history for each test the cutoff of 90% for the GST tree resulted in
only two most parsimonious histories.
The trees analyzed here provide a concrete example of Netutilgy in functional as well as evolutionary
applications. Gene duplication followed by functionaféi€ntiation is a mode of adaptation to environmental
change. Visualization of a tree before and after rearraegeneveals the temporal organization of the duplica-
tions in the history of the family and their distribution Wiih lineages and subfamilies. For example, analysis
and visualization of the ABC tree (Cintratal., 2004) with NoTUNG 2.0 revealed a large number of recently
duplicated genes in the Multi-Drug Resistance subfamilggesting a pattern of recent, lineage-specific adap-
tation. When combined with ecological and biochemical d#te type of information can be used to plan
additional experimental studies, suggest strategiesfaumventing drug and pesticide resistance in parasites,
identify potential detoxification enzymes for use in biossiation and design breeding programs to enhance

pest resistance in cash crops.
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A Data set preparation

ATP-binding cassette transporters: Multiple alignments of 350 ABC transporter sequences weregted
with CLUSTALW (Thompsoret al., 1994) and TCOFFEE (Notredaragal., 2000) and manually edited us-
ing the GeneDoc (version 2.6.002) Multiple Sequence AligntrEditor and Shading Utility (K.B. Nicholas
and Deerfield, 1997). A phylogenetic tree was built using Phglip package from Felsenstein (v. 3.6.1)
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available at the Pittsburgh Supercomputing Center, whictiains several programs to construct a bootstrap
phylogeny (Efron and Gong, 1983). Briefly, the SEQBOOT pamgmas run and the output file used as input

to run the PROTDIST program in order to calculate the distamatrices from each of the replicate data sets.
SEQBOOT generated 432 replicate data sets. PROTDIST pedde@0 distance matrices for the phylogeny

using the PAM model for amino acid substitutions. The outguhe distance program was used as input for

NEIGHBOR in order to create phylogenetic trees using thehaor-joining method.

Glutathione S-Transferases: An initial set of 153 GST sequences were aligned using theéOFEEE
program (Notredamet al., 2000). The same sequences were analyzed by the MEMEapno@ailey and
Elkan, 1994) using the ZOOPS (Zero Or One Per Sequence) wétigimed 20 motifs found in the sequences.
The GeneDoc program (K.B. Nicholas and Deerfield, 1997) was to highlight the MEME moatifs within the
global multiple sequence alignment produced by T-COFFHEtes€& motifs were used to guide manual editing
and refinement of the alignment. This refined alignment wasl i create a position specific scoring matrix
and used to search the NBRF/PIR sequence database fooadti®ST sequences using the PSSMSearch
program (Ropelewskét al., 2000). The additional sequences were aligned to thialimefined alignment
using the profile alignment routine in ClustalW (Thompstal., 1994). Duplicate and incomplete sequences
were removed and the final set of 247 complete sequences wknaitted for analysis by MEME, again
using the ZOOPS model. This final set of 20 motifs was used tegadditional refinement of the complete
alignment in GeneDoc. From this alignment, a subset of 131 &enotated sequences was selected for this
study. A Neighbor Joining tree was built using PROTDIST (R}with pam distances. Five hundred bootstrap
replicates were obtained using Phylip's SEQBOOT program.
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leaves D L 0 D L

ABC 350 304 165 50% 271 61
GST 121 67 250 90% 51 58
GST 90% 49 61
GST 50% 55 164

Table 1:Duplications and losses in the ABC and GST trees before ardr@farrangement by d&runc 2.0, with bootstrap thresholds

of 50% and 90% (GST tree only) and weightsegf= 1.5 andcs = 1. Note that two distinct histories were obtained fioe= 90% for the
GST tree.
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