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A hybrid model integrating artificial neural networks and support vector regression was

developed for daily rainfall prediction. In the modeling process, singular spectrum analysis was

first adopted to decompose the raw rainfall data. Fuzzy C-means clustering was then used to

split the training set into three crisp subsets which may be associated with low-, medium- and

high-intensity rainfall. Two local artificial neural network models were involved in training and

predicting low- and medium-intensity subsets whereas a local support vector regression model

was applied to the high-intensity subset. A conventional artificial neural network model was

selected as the benchmark. The artificial neural network with the singular spectrum analysis was

developed for the purpose of examining the singular spectrum analysis technique. The models

were applied to two daily rainfall series from China at 1-day-, 2-day- and 3-day-ahead forecasting

horizons. Results showed that the hybrid support vector regression model performed the best.

The singular spectrum analysis model also exhibited considerable accuracy in rainfall forecasting.

Also, two methods to filter reconstructed components of singular spectrum analysis, supervised

and unsupervised approaches, were compared. The unsupervised method appeared more

effective where nonlinear dependence between model inputs and output can be considered.

Key words | artificial neural network, daily rainfall prediction, fuzzy C-means, hybrid models,
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NOMENCLATURE

Acronyms

ACF Auto-correlation function

AMI Average mutual information

ANN Artificial neural networks

CE Coefficient of efficiency

FCM Fuzzy C-means

FNN False nearest neighbors

LM Levernberg–Marquardt

MLP Multilayer perceptron

MOGA Multi-objective genetic algorithm

NNM Nearest-neighbor method

PACF Partial auto-correlation function

PMI Partial mutual information

RCs Reconstructed components

RMSE Root mean square error

SRM Structural risk minimization

SSA Singular spectrum analysis

SVD Singular value decomposition

SVM Support vector machine

SVR Support vector regression

Symbols

{xi}i¼1;…N Raw rainfall time series

N Length size of raw rainfall time series

y Observed (or target) value

ŷ Forecasted value

�y Average of observed value
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X Trajectory matrix

S Lagged-covariance matrix

D Left singular vectors of X

E Right singular vectors of X

L Diagonal matrix of singular values

l Eigenvalues of S

a k Principal component vector k

e k Eigenvector k of S

n The length size of principle component

vector

t Delay (or lagged) time

L The window length (or singular number)

p Number of selected RCs

Y Model input vector consisting of

{xi}i¼1;…N

m Dimension of input vector Y

h Number of nodes in the hidden layer of

ANN

T Prediction lead time

w Weight in ANN

u Bias in ANN

v Weight in the SVR equation

b Bias in the SVR equation

C Positive constant in the SVR equation

s Standard deviation of the rainfall data

e Error tolerance

j,j p Slack variables

s Number of support vectors

n Cluster center

U Matrix consisting of membership grade

c Number of clusters

INTRODUCTION

An accurate and timely rainfall forecast is crucial for

reservoir operation and flooding prevention because it can

provide an extension of lead-time of the flow forecast. Many

studies have employed soft computing methods, including

artificial neural networks (ANN), support vector regression

(SVR) and fuzzy logic (FL), for quantitative precipitation

(or rainfall) forecast (QPF) (Venkatesan et al. 1997;

Silverman & Dracup 2000; Toth et al. 2000; Pongracz

et al. 2001; Sivapragasam et al. 2001; Brath et al. 2002;

Bray & Han 2004; Hettiarachchi et al. 2005; Han et al. 2007;

Chattopadhyay & Chattopadhyay 2007, 2008; Chen et al.

2008; Guhathakurta 2008). For example, Venkatesan et al.

(1997) employed the ANN to predict the all-India summer

monsoon rainfall with different meteorological parameters

as model inputs. Toth et al. (2000) found that the ANN

performed the best for short-term rainfall prediction

compared with the auto-regressive moving average and

the nearest-neighbors method (NNM). Fuzzy logic theory

was applied to monthly rainfall prediction by Pongracz et al.

(2001). Depending on the rainfall series alone, Chattopad-

hyay & Chattopadhyay (2008) constructed an ANN model

to predict monsoon rainfall in India.

Physical processes in rainfall and/or runoff are gener-

ally composed of a number of sub-processes. For example,

base flow mainly contributes to low-flow events whereas

intense storm rainfall gives rise to high-flow events. Their

accurate modeling by the building of a single global model

is sometimes not possible (Solomatine & Ostfeld 2008).

Modular (or hybrid) models are therefore developed where

sub-processes are first of all identified and then separate

models (also called local or expert models) are established

for each of them. A comprehensive review of modular

models can be found in Solomatine & Ostfeld (2008).

Several examples of modular models can be mentioned

herein. See & Openshaw (2000) built different neural

networks based on different types of hydrological events.

Zhang & Govindaraju (2000) examined the performance

of modular networks in predicting monthly discharges

based on the Bayesian concept. Hu et al. (2001) developed

a range-(threshold-) dependent network which employs a

number of MLPNNs to model the river flow in different

flow bands of magnitude (e.g. high, medium and low).

Their results indicated that the range-dependent network

performed better than the conventional global ANN.

Solomatine & Xue (2004) applied M5 model trees

and neural networks to a flood-forecasting problem.

Sivapragasam & Liong (2005) divided the flow range into

three regions and employed different SVR models to predict

daily flows in high, medium and low regions. Wang et al.

(2006) used a combination of ANNs for flow prediction

where different networks were trained on the data subsets

determined by applying either a threshold discharge value
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or clustering in the space of inputs. Wu et al. (2008)

employed a distributed SVR for daily river stage prediction.

Apart from the adoption of the modular model, a

suitable signal filter technique, removing noises in the

original hydrologic time series, can be effective in impro-

ving forecasts. As such important techniques, singular

spectrum analysis (SSA) and wavelet analysis were recently

introduced to the hydrology field by some researchers

(Sivapragasam et al. 2001; Marques et al. 2006; Partal &

Kişi 2007). Sivapragasam et al. (2001) established a hybrid

model of support vector machine (SVM) and the SSA for

predictions of rainfall and runoff. A great improvement

was achieved by the hybrid model in comparison with the

original SVM model. The application of wavelet analysis

to precipitation was conducted by Partal & Kişi (2007).

Their results indicated that the wavelet analysis was

highly promising.

The hybrid of ANN and SVR is less studied in

hydrology. ANN and SVR are mathematically similar

when they are used as approximators to map input/output

pairs (Vapnik & Chervonenkis 1971; Vapnik 1995; Haykin

1999). Compared with SVR, ANN is very efficient in

processing large-sized training samples when a local

optimization technique, such as the Levernberg–Marquardt

algorithm, is adopted for optimization of weights. In

contrast, SVR has a good ability for generalization due to

the adoption of structural risk minimization (SRM) for

objective functions. As inspired by SVM, the structural

risk minimization was also introduced to the training of

ANN for the purpose of improving the model’s genera-

lization by Giustolisi & Laucelli (2004). Therefore, a hybrid

method from ANN and SVR may be expected to provide

a pronounced improvement in rainfall forecasting.

The scope of this study was to examine the joint

effect of the hybrid model and the SSA on daily rainfall

estimates. A conventional ANN was first of all combined

with SSA to remove noises hidden in the original rainfall

data. Filtered inputs were then accommodated into the

hybrid model which consisted of three local models

associated respectively with three crisp subsets (low-,

medium- and high-intensity rainfall) clustered by the fuzzy

C-means (FCM) method. To ensure wider applications, two

different sizes of data from different regions of China

were explored.

METHODOLOGY

Singular spectrum analysis (SSA)

SSA is able to decompose daily rainfall series into several

additive components that typically can be interpreted as

‘trend’ components (which may not exist), various ‘oscil-

latory’ components, and ‘noise’ components (Golyandina

et al. 2001). The noise and/or high-frequency oscillatory

component may be filtered out when the SSA is used as the

signal filter technique. The algorithm of the basic SSA can

be referred to Vautard et al. (1992) and Golyandina et al.

(2001). Following the methodology in Vautard et al. (1992),

four steps are performed for the explanation of the SSA

algorithm, depending on a univariate rainfall time series

{x1,x2,… ,xN}. The first step is to construct the ‘trajectory

matrix’. The ‘trajectory matrix’ results from the method of

delays. In the method of delays, the coordinates of the phase

space will approximate the dynamic of the system by using

lagged copies of the time series. The ‘trajectory matrix’,

denoted by X, therefore reflects the evolution of the time

series with a suitable choice of t (delay or lagged time) and

the window length L (also called the singular number).

The ‘trajectory matrix’ is denoted by

X ¼
1ffiffiffi
N

p

x1 x1þt x1þ2t … x1þðL21Þt

x2 x2þt x2þ2t … x2þðL21Þt

x3 x3þt x3þ2t … x3þðL21Þt

..

. ..
. ..

. ..
. ..

.

xN2ðL21Þt xN2ðL22Þt xN2ðL23Þt … xN

0
BBBBBBBBBB@

1
CCCCCCCCCCA
ð1Þ

The next step is the singular value decomposition (SVD)

of X. Let S ¼ X TX (called the lagged-covariance matrix).

With SVD, X can be written as X ¼ DLE T where D and E

are left and right singular vectors of X, and L is a diagonal

matrix of singular values. E consists of orthonormal

columns and is also called the ‘empirical orthonormal

functions’ (EOFs). Substituting X into the definition of S

yields the formula S ¼ EL 2E T. Further, S ¼ E ^ ET since

L2 ¼ ^ where ^ is a diagonal matrix consisting of ordered

values 0 # l1 # l2 # …lL. Therefore, the right singular

vectors of X are the eigenvectors of S. In other words,

the singular vectors E and singular values of X can be
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respectively attained by calculating the eigenvectors and the

square roots of the eigenvalues of S.

The third step is to calculate the principal components

ðak
i Þ by projecting the original time record onto the

eigenvectors as follows:

ak
i ¼

XL
j¼1

xiþðj21Þte
k
j ; for i ¼ 1;2; … ;N 2 L þ 1 ð2Þ

where ek
j represents the jth component of the kth

eigenvector. Each principal component is a filtered process

of the original series with length N 2 L þ 1.

The last step is to generate reconstruction components

(RCs) with the length size being the same as the original

series. The generation of each RC depends on a convolution

of one principal component with the corresponding

singular vector (Vautard et al. 1992). Therefore, the L RCs

can be achieved if all L principal components and their

associated eigenvectors are employed in the process of

signal reconstruction. Certainly, the original record can be

filtered by choosing p(,L) RCs from all L RCs.

Hybrid model

Artificial neural networks

The feed-forward multilayer perceptron (MLP) is by far the

most popular among many ANN paradigms, which usually

uses the technique of error back-propagation to train the

network configuration. The architecture of the ANN

consists of a number of hidden layers and the number of

neurons in the input layer, hidden layers and output layer.

ANNs with one hidden layer are commonly used in

hydrologic modeling (Dawson & Wilby 2001; De Vos &

Rientjes 2005) since these networks are considered to

provide enough complexity to accurately simulate the

nonlinear properties of the hydrologic process. A three-

layer ANN is chosen for the current study, which comprises

the input layer with m nodes (i.e. m past daily rainfall),

the hidden layer with h nodes (neurons) and the output

layer with one node. The hyperbolic tangent functions

are used as transfer functions in the hidden layer and the

output layer. In terms of a rainfall time series {x1,x2,… ,xN},

it can be reconstructed into a series of delay vectors

of the type Y t ¼ {xt; xtþt; xtþ2t; … ; xtþðm21Þt}, t ¼ 1;2; … ;n

ðn ¼ N 2 ðm 2 1ÞtÞ, where Y t [ Rm, and t was already

mentioned above (the value of 1 was taken in the current

study). The model architecture is described by the equation

xF
tþT ¼ fðYt;w; u;m;hÞ

¼ u0 þ
Xh
j¼1

wout
j tanh

Xm
i¼1

wjixt2iþ1 þ uj

 !
ð3Þ

where xt2i þ 1, i ¼ 1,… ,m are the m elements in the input

vector Yt; xF
tþT is the single output which stands for the

forecasted rainfall at the lead time T. wji are the weights

defining the link between the ith node of the input layer and

the jth of the hidden layer; uj are biases associated with the

jth node of the hidden layer; wout
j are the weights associated

with the connection between the jth node of the hidden

layer and the node of the output layer and u0 is the bias at

the output node. The Levernberg–Marquardt (LM) training

algorithm is used to adjust the w and u because it is faster

and less easily trapped in local minima compared with

other local optimization methods such as gradient descent

(Toth et al. 2000).

Support vector regression (SVR)

SVR performs structural risk minimization (SRM) that

aims at minimizing a bound on the generalization error

(Gunn 1998; Kecman 2001). It creates a model with good

generalization. The SVR can be divided into linear and

nonlinear, depending on the kernel function being linear

or nonlinear. A nonlinear SVR was used in this study.

The underlying function f(Yi) in the context of the nonlinear

SVR is given by

xF
tþT ¼ fðY t;vÞ ¼ v·fðY tÞ þ b ð4Þ

where the input vector Yt in the input space is mapped to a

high-dimensional feature space via a nonlinear mapping

function f(Yt). The objective of the SVR is to find optimal v,

b and some parameters in the kernel function fðY tÞ so as to

construct an approximation function of the f(Yi).

When introducing Vapnik’s 1-insensitivity error (or loss

function) and slack variables of ji and j*i (which are

respectively measurements ‘above’ and ‘below’ the 1 tube),

the nonlinear SVR optimization problem becomes a dual

problem and can be solved in a dual space (Kecman 2001).
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Therefore, by introducing a dual set of Lagrange multipliers,

ai and a*
i , the objective function in dual form can be

represented as (Gunn 1998)

maximizeLdða;a
*Þ ¼ 21

Xn
i¼1

a*
i þ ai

� �

þ
Xn
i¼1

a*
i 2 ai

� �
yi 2

1

2

Xn
i;j¼1

ða*
i 2 aiÞða

*
j 2 ajÞðfðYiÞ·fðYjÞÞ

subject to

Xn
i¼1

ðai 2 a*
i Þ ¼ 0

0 # a*
i # C; i ¼ 1; … ;n ð5Þ

0 # ai # C; i ¼ 1; … ;n

8>>>>>><
>>>>>>:

where yi represents the observed value, Yi is the Yt for

simplicity and C is a positive constant that determines the

degree of penalized loss when a training error occurs. By

using a ‘kernel’ function KðY i;Y jÞ ¼ ðfðY iÞ·fðY jÞÞ to yield

inner products in feature space, the computation in input

space can be performed. In the present study, a Gaussian

radial basis function (RBF) was adopted in the form of

KðY i;Y jÞ ¼ expð2kYi 2 Yjk
2
=2s2Þ. Once parameters ai, a*

i

and b0 are obtained, the final approximation function of the

f(Yi) becomes

fðY iÞ ¼
Xn
i¼1

ak 2 a*
k

� �
KðYk·YiÞ þ b0; k ¼ 1; … ; s ð6Þ

where Yk stands for the support vector, ak and a*
k are

parameters associated with support vector Yk, and n and s

represent the number of training samples and support

vectors, respectively. Three parameters (C, 1, s) need to be

optimized in order to identify the optimal f(Yi) in Equation

(5). In the current study, a two-step genetic algorithm

method was used for their optimizations (Wu et al. 2008).

Fuzzy C-means (FCM)

The FCM method (Bezdek 1981) partitions a set of N vector

Yj, j ¼ 1,… ,n, into c fuzzy clusters, and each data point

belongs to a cluster to a degree specified by a membership

grade uij between 0 and 1. We define a matrix U comprising

the elements uij and assume that the summation of the

degrees of belonging for a data point is equal to 1, i.e.Pc
i¼1uij ¼ 1;j ¼ 1; … ;n. The goal of the FCM algorithm is

to find c cluster centers so that the cost function of the

dissimilarity measure is minimized. The cost function can be

defined by

JðU ; n1;…; ncÞ ¼
Xc
i¼1

Ji ¼
Xc
i¼1

Xn
j¼1

ul
ijd

2
ij ð7Þ

where ni is the cluster center of the fuzzy subset i; dij ¼

kni 2 Y jk is the Euclidean distance between the ith cluster

center and jth data point; and l $ 1 is a weighting exponent,

taken as 2 here so as to match the square Euclidean

distance. The necessary conditions for Equation (7) to reach

its minimum are

ni ¼

Pn
j¼1 ul

ijYjPn
j¼1 ul

ij

ð8Þ

uij ¼
Xc
k¼1

dij

dkj

 !2=ðl21Þ
2
4

3
521

ð9Þ

The FCM algorithm is an iterative procedure that

satisfies Equations (8) and (9) to minimize Equation (7).

Implementation of the algorithm can be referred to Bezdek

(1981) and Wang et al. (2006) for details.

The number c of clusters was taken to be 3 in this study.

Three crisp sets were therefore obtained when only the

biggest weight was taken for each subset, although FCM

inherently conducts a fuzzy division. The three subsets may

represent three types of rainfalls, i.e. low-intensity (or zero)

rainfall, medium-intensity rainfall and high-intensity rainfall

(storm events).

Hybrid model

The hybrid model was based on the crisp data split. A basic

idea behind the hybrid model was that the training set was

first split into three subsets by the fuzzy c-means (FCM)

technique, and then each subset was approximated by ANN

(or SVR). They were associated with subset 1, subset 2 and

subset 3 in Figure 1. The final output of the hybrid model

was obtained directly from the output of one of the three

local models.
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Combination with the SSA

The ANN and the hybrid model were coupled with the

SSA (depicted in Figure 1). They were hereafter referred to

as ANN-SSA and ANN-SVR-SSA. The methodological

procedures of this combination were summarized into

three steps: SSA decomposition, correlation coefficients

sort and reconstructed components filter. The operation in

each step is bounded by the dashed box in Figure 2.

Evaluation of model performances

As suggested by Legates & McCabe (1999), a comprehen-

sive assessment of model performance at least includes

absolute error measure and relative error measure. There-

fore, the measures of model performance evaluation

comprise the Root Mean Square Error (RMSE) and the

Nash–Sutcliffe Coefficient of Efficiency (CE). They are

respectively formulated as

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i¼1
ðyi 2 ŷiÞ

2

s
ð10Þ

CE ¼ 12

Pn
i¼1 ðyi 2 ŷiÞ

2Pn
i¼1 ðyi 2 �yÞ2

ð11Þ

where n is the number of observations; ŷi stands for the

forecasted rainfall; yi is the observed rainfall; �y denotes the

average observed rainfall and yi2T is the rainfall estimate

from the persistence model. The value of 1 for CE stands for

a perfect fit.

CASE STUDY

Daily rainfall series of two watersheds, Zhenshui and

Da’ninghe, were analyzed in this study.

The Da’ninghe basin, a first-order tributary of the

Yangtze River, is located in the northwest of Hubei

Province. The daily rainfall data from 1 January 1988 to 31

December 2007 were measured at six rain gauges located

at the upstream of the study basin. The upstream part of

the Da’ninghe basin is controlled by the Wuxi hydrology

station, with a drainage area of around 2,000 km2. The

rainfall was spatially averaged with the Thiessen polygon

FCM
clustering

Subset1- ANN

Subset2- ANN

Subset3- SVR

ANN

ANN xF
t+T

xF
t+T

xF
t+T

Filtering
Signal

decomposition
via the SSA

Raw daily
rainfall
series x

Figure 1 | Implementation framework of forecasting models.

Choose (τ, L) for singular spectrum analysis on raw
rainfall data

SSA
decomposition

Decompose raw rainfall data into L reconstructed
components (RCs)

Obtain correlation coefficient matrix by correlation
analysis between RC and raw rainfall data at various

lags (or called prediction horizons) from 1 to T

Generate T average correlation coefficients by
averaging over L correlation coefficients at each

same lag of T lags

For each specified lag (or prediction horizon) (such
as one-step lead), sort all L correlation coefficients

at this lag in a descending (or ascending) order
depending on the average correlation coefficient is 

negative or positive 

Train and test ANN by grouping sorted RCs, where
the number of p varies from L at the beginning to 1
at the end. The optimal p is associated with the best

model performance

Correlation
coefficients sort

Reconstructed
components filter

Figure 2 | Recommended procedure for prediction models with SSA.

463 K. W. Chau and C. L. Wu | A hybrid model coupled with singular spectrum analysis Journal of Hydroinformatics | 12.4 | 2010

Downloaded from http://iwaponline.com/jh/article-pdf/12/4/458/476733/458.pdf
by guest
on 16 August 2022



method (hereafter the averaged rainfall series was referred

to as Wuxi).

The Zhenshui basin is located in the north of

Guangdong Province and is adjoined by Hunan Province

and Jianxi Province. The basin belongs to a second-order

tributary of the Pearl River and has an area of 7,554 km2.

The daily rainfall time series data of the Zhenwan rain

gauge was collected between 1 January 1989 and 31

December 1998 (hereafter the rainfall series was referred

to as Zhenwan).

Figure 3 shows the original rainfall processes of Wuxi

and Zhenwan. Each of them was partitioned into three

parts as a training set, cross-validation set and testing set.

The training set served for model training and the testing set

was used to evaluate the performances of models. The

cross-validation set functioned for dual purposes: one was

to implement an early stopping approach in order to avoid

overfitting of the training data and another was to select

some best predictions from the many ANN runs. In the

present study, the 10 best predictions were selected from a

total of 20 ANN runs. The same data partition was adopted

in two rainfall series: the first half of the entire data was the

training set and the first half of the remaining data was

cross-validation set with the other half as the testing set.

Table 1 presents related information about watersheds

and some descriptive statistics of the original data and

three data subsets, including mean (m), standard deviation

(Sx), coefficient of variation (Cv), skewness coefficient (Cs),

minimum (Xmin) and maximum (Xmax). As shown in

Table 1, the training set cannot fully include the cross-

validation for Wuxi. Due to the weak extrapolation ability

of ANN, it is suggested that all data are scaled to the

interval [20.9, 0.9] when ANN employs hyperbolic

tangent functions as transfer functions in the hidden

layer and output layer.

APPLICATIONS

Decomposition of rainfall data

The decomposition of the daily average rainfall series

required identifying the window length L (or the singular

number). In principle, the value of L should be able to

clearly resolve different oscillations hidden in the original

signal. The present application did not need to precisely

resolve potential oscillations in the raw rainfall signal.

A rough resolution can be adequate for the separation

of oscillations and noises. Therefore, a small L was
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0

50
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Time (1/1/1988-31/12/2007)

R
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m
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)
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0
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R
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m
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)

Zhenwan
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Figure 3 | Daily rainfall processes: (a) Wuxi and (b) Zhenwan.
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empirically chosen for the two rainfall series. Figure 4

displays the singular spectrum as a function of lag using

various window lengths L for Zhenwan and Wuxi. Results

showed that the L value for Zhenwan was more sensitive

than Wuxi because the small singular values in the former

became indistinguishable when L was larger than 7.

Therefore, L was set to a value of 7 for Zhenwan. For

the convenience of the filtering operation, L was chosen

as a small value of 5 for Wuxi. Finally, 5 RCs and 7 RCs

were respectively employed for Wuxi and Zhenwan in

the SSA.

Identification of the ANN architecture

The architecture identification included determining model

inputs and the number of nodes (or neurons) in the hidden

layer when there was one model output. The statistical

approach of examining auto- and partial-auto-correlation

of the observed time series was recognized as a good

and parsimonious method in identifying model inputs

(Sudheer et al. 2002; Kişi 2008). The model input in this

method is mainly determined by the plot of the partial-

auto-correlation function (PACF). The essence of this

method is to examine the linear dependence between the

Table 1 | Related information for two watersheds and the rainfall data

Statistical parameters

Watershed and datasets m (mm) Sx (mm) Cv Cs Xmin (mm) Xmax (mm) Watershed area and data period

Wuxi

Original data 3.67 10.15 0.36 5.68 0.00 154 Area: 2,000 km2

Training 3.81 10.94 0.35 6.27 0.00 147

Cross-validation 3.42 8.87 0.39 4.96 0.00 102 Data period: Jan., 1988–Dec., 2007

Testing 4.03 11.60 0.35 5.46 0.00 154

Zhenwan

Original data 4.3 11.0 0.39 4.94 0.0 159 Area: 7,554 km2

Training 4.3 11.2 0.38 5.60 0.0 159

Cross-validation 4.7 11.2 0.42 4.22 0.0 125 Data period: Jan., 1989–Dec., 1998

Testing 4.0 10.9 0.37 4.97 0.0 133
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Figure 4 | Singular spectrum for (a) Wuxi and (b) Zhenwan as a function of lag using various window lengths L.
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input and output data series. According to this method,

the model inputs were originally considered to take the

previous five daily rainfalls for Wuxi and the previous seven

daily rainfalls for Zhenwan because the PACF value

decayed within the confidence band around at lag 5 for

Wuxi and lag 7 for Wuxi (see Figure 5).

The ensuing task was to optimize the size of the hidden

layer with the determined inputs and one output. The

optimal size h of the hidden layer was found by system-

atically increasing the number of hidden neurons from 1 to

10, where the training data was rescaled to [20.9, 0.9] due

to the use of a hyperbolic tangent function as the transfer

function. The identified ANN architecture was 5-4-1 for

Wuxi and 7-4-1 for Zhenwan.

It is worthwhile mentioning that the standardization of

the training data is a very crucial factor in the improvement

of model performance. Two common standardization

methods of rescaling and normalization can be found in

the literature (Dawson & Wilby 2001; Cannas et al. 2002;

Rajurkar et al. 2002; Campolo et al. 2003; Wang et al. 2006).

The rescaling method, as adopted above, is to rescale the

training data to [21, 1] or [0, 1] or even more narrow

interval, depending on what kinds of transfer functions are

employed in ANN. The normalization method is to rescale

the training data to a Gaussian function with a mean of

0 and unit standard deviation, which is by subtracting the

mean and dividing by the standard deviation. When the

normalization approach was adopted, we used the linear

transfer function (e.g. purelin) instead of the hyperbolic

tangent function in the output layer. In addition, some

studies have indicated that considerations of statistical

principles may improve ANN model performance (Cheng

& Titterington 1994; Sarle 1994). For example, the training

data was recommended to be normally distributed

(Fortin et al. 1997). Sudheer et al. (2002) suggested that

the issue of stationarity should be considered in the ANN

development because the ANN cannot account for trends

and heteroscedasticity in the data. Their results showed

that data transformation to reduce the skewness of data

can significantly improve the model performance. For the

purpose of obtaining better model performance, four

data-transformed schemes were examined:

† Rescaling the raw data (referred to as Resc_raw);

† Normalizing the raw data (referred to as Norm_raw);

† Rescaling the nth root transformed data (referred to as

Resc_nth_root);

† Normalizing the nth root transformed data (referred to

as Norm_nth_root).

Table 2 compares the ANNmodel performance in terms

of RMSE and CE among the four schemes. The normal-

ization to the raw data scheme was more effective than the

–0.2

0.2

0.6

1

–0.2

0.2

0.6

1

A
C

F

Wuxi(a) (b)

(c) (d)

Zhenwan

0 5 10 15 20

0 5 10 15 20

Lag (day)

PA
C

F

–0.2

0.2

0.6

1

–0.2

0.2

0.6

1

A
C

F

0 5 10 15 20

0 5 10 15 20

Lag (day)

PA
C

F
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rescaling method. It can also be seen that using the root of

nth degree (taking 3 by trial and error) as data transform-

ation was ineffective for the improvement of performance.

Therefore, the Norm_raw scheme was adopted for the later

rainfall prediction in the present study.

Main results

Figure 6 shows the results of filtering the RCs at the one-,

two-, and three-day-ahead prediction horizons using the

conventional ANN model. The RMSE associated with the

maximal p showed the performance of the conventional

ANN. The numbers of chosen optimal p RCs in three

forecasting horizons were respectively 3, 2 and 1 for Wuxi

and 4, 3 and 2 for Zhenwan. In terms of the RMSE, the SSA

substantially improved the conventional ANN perform-

ance. A more detailed description is shown in Table 3.

Table 3 demonstrates forecasting results from three

models at various prediction horizons in terms of RMSE

and CE. It can be seen that the benchmark model ANN

Table 2 | Performance comparison of the ANN model with different data-transformed methods

RMSE CE

Watershed Data transformation 1 2 3p 1 2 3

Wuxi

Resc_raw 10.77 11.54 11.62† 0.14 0.02 0.00

Norm_raw 10.57 11.49 11.59 0.17 0.01 0.00

Resc_nth_root 11.00 12.02 12.10 0.10 20.07 20.09

Norm_nth_root 11.15 12.01 12.09 0.08 20.07 20.09

Zhenwan

Resc_raw 11.03 11.11 11.16 0.03 0.02 0.01

Norm_raw 10.72 11.06 11.14 0.09 0.03 0.02

Resc_nth_root 11.25 11.68 11.75 20.01 20.09 20.10

Norm_nth_root 11.34 11.70 11.74 20.02 20.09 20.09

pNumbers ‘1, 2, and 3’ denote one-, two-, and three-day-ahead forecasts.
†Result is average over 10 best runs from total 20 runs.
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presented very poor performances for each watershed. The

performance indices from ANN-SSA and ANN-SVR-SSA

indicate that the SSA gave rise to a considerable improve-

ment in the accuracy of the rainfall forecasting. The hybrid

model among all models performed best for each rainfall

series. It is worthwhile to note that the values of selected p

(the number of effective RCs) were different at the three

forecasting horizons.

One-day-ahead estimates of ANN, ANN-SSA and

ANN-SVR-SSA models are shown in Figures 7 (Wuxi)

and 8 (Zhenwan) in the form of hyetographs and scatter

plots (the former was plotted in a selected range for better

Table 3 | Comparison of three models’ performances at various forecasting horizons

RMSE CE p from L RCs

Watershed Model 1 2 3 1 2 3 1 2 3

Wuxi

ANN 10.59 11.50 11.59 0.17 0.02 0.00

ANN-SSA 4.66 5.41 6.35 0.84 0.78 0.70 3/5p 2/5 1/5

ANN-SVR-SSA 4.18 3.48 4.14 0.87 0.91 0.87 3/5 2/5 1/5

Zhenwan

ANN 10.68 11.05 11.12 0.09 0.03 0.02

ANN-SSA 4.94 5.60 5.89 0.81 0.75 0.71 4/7 3/7 2/7

ANN-SVR-SSA 3.18 3.20 3.31 0.92 0.92 0.91 4/7 3/7 2/7

pDenominator stands for all RCs and numerator represents the number of selected RCs.
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Figure 7 | One-day-ahead estimates of the Wuxi rainfall using models of (a) ANN, (b) ANN-SSA and (c) ANN-SVR-SSA.
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visual inspection). As seen from the hyetograph graphs, the

ANN-SVR-SSA reproduced the corresponding observed

rainfall data better than the other models. It can also be

seen from the scatter plots that the ANN-SVR-SSA

predictions were much closer to the exact fitting line than

those of the ANN and ANN-SSA models. The scatter

plots’ comparison between ANN-SVR-SSA and ANN-SSA

models indicates that the three local models are able to

better approximate different rainfall characteristics than a

global model because the high intensity rainfall was well

simulated by the ANN-SVR-SSA. Compared with the

ANN, the ANN-SSA also exhibited an acceptable ability

to forecast daily rainfall.

The poor forecasts from the ANN imply that the ANN

fed by the original rainfall data is not viable, at least in the

present cases. Actually, the ANN mainly captured the zero

or low-intensity rainfall patterns (dry periods) because the

type of pattern was dominant when using the original

rainfall series to construct model input/output pairs. The

SSA filter on the raw rainfall series eliminated those

patterns so that the ANN was able to capture medium or

large rainfall patterns.

DISCUSSION

Some discussions about ANN architecture and the singular

spectrum analysis are made as follows.

Architecture of ANN

As is known, the development of the ANN fully depends

on the data employed. Subjective factors are unavoidably

involved in almost every aspect of the ANN identification

including determination of model inputs, selection of

network type and so on. In terms of the network type,

the most widely-used network in hydrologic modeling is

the feed-forward three-layer perceptron since this type of

network is considered to provide enough complexity

to accurately simulate the nonlinear properties of the
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hydrologic process (Dawson & Wilby 2001; De Vos &

Rientjes 2005). As mentioned earlier, the identification of a

three-layer ANN requires choosing both the model inputs

and the number of nodes in the hidden layer. Optimal

network geometries have traditionally been found by trial

and error. Other usual approaches include regularization,

pruning, constructive and stopped training (Anders &

Korn 1999). Recently, genetic algorithms have been used

as automatic techniques to determine optimal network

architecture (Abrahart et al. 1999; Giustolisi & Laucelli

2005; Giustolisi & Simeone 2006). To justify the identified

ANN in this study, five trial-and-error methods and one

multi-objective genetic algorithm (referred to as MOGA-

ANN by Giustolisi & Simeone (2006)) were examined.

Each of the five trial-and-error methods consists of two

steps: the first step is to identify model inputs and then to

find the optimal number of hidden neurons. As a matter of

fact, the five methods denote different techniques to

determine model inputs. They are correlation analysis

(as used in this study), false nearest neighbors (FNN)

(Kennel et al. 1992; Abarbanel et al. 1993), stepwise linear

regression, average mutual information (AMI) (De Vos &

Rientjes 2007) and partial mutual information (PMI) (May

et al. 2008). In contrast, the MOGA-ANN is able to

automatically obtain the optimal network geometry by

using genetic algorithms to search appropriate inputs and

the number of hidden neurons simultaneously. For the

purpose of comparison, the maximum number of inputs

and nodes of the hidden layer were respectively 15 and 10

for each ANN model. Table 4 demonstrates performances

of one-step-ahead predictions in terms of RMSE and CE.

There are no significant differences among the perform-

ances of all models. Regarding the five trail-and-error

methods, it can be found that the simple correlation

analysis performed best but marginally. The method of

MOGA was slightly better than the correlation analysis

technique in Zhenwan but worse in Wuxi. Therefore, the

correlation analysis method seems tenable for the current

two rainfall series.

Parameter p in SSA

Filtering is a key step when the raw rainfall series

was decomposed by SSA. In principle, each effective

reconstructed component should be characterized by

significant correlation with the raw data, which underlies

the procedure in Figure 2. For convenience of comparison,

the filtering method in Figure 2 was called supervised

filtering. Potentially, there can be some drawbacks in

supervised filtering. The salient point is that only linear

correlation analysis is considered, which disregards the

existence of nonlinearity in hydrologic processes. In the

meantime, random combinations among all reconstructed

components were not considered. To overcome these

drawbacks, an unsupervised filtering method (also called

enumeration) was recommended where all input combi-

nations were examined. As is known, ANN tends to

generate unstable outputs due to the randomization of

initial weights. The nearest-neighbor method (NNM)

(Yakowitz 1987) was therefore employed as the baseline

model instead of ANN. Effective RCs from the supervised

filtering and unsupervised filtering methods are described

in Table 5. The baseline model’s performance in terms of

RMSE was somewhat improved with the adoption of

unsupervised filtering. Moreover, the effective RCs from

the two filtering methods are also different. It is suggested

that the enumeration method may more suitable in the

search of effective RCs of SSA.

Table 4 | Comparison of methods to identify ANN architecture

Performance

Watershed Methods RMSE CE Structure of ANN

Wuxi

Correlation analysis 10.58 0.17 (5-4-1)

FNN 10.62 0.16 (14-3-1)

Stepwise 10.64 0.16 (6-3-1)

AMI 10.73 0.15 (10-3-1)

PMI 10.74 0.14 (7-8-1)

MOGA 10.63 0.16 (2-6-1)

Zhenwan

Correlation analysis 10.70 0.09 (7-4-1)

FNN 10.76 0.08 (14-3-1)

Stepwise 10.75 0.08 (6-3-1)

AMI 10.77 0.08 (7-5-1)

PMI 10.80 0.07 (10-4-1)

MOGA 10.43 0.14 (5-8-1)
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CONCLUSIONS

The purpose of this study was to investigate the joint effect

of a hybrid ANN-SVR model and the singular spectrum

analysis on improving the accuracy of daily rainfall

forecasting. Two daily rainfall records from different

locations in the People’s Republic of China were used as

testing cases. A conventional ANN was used as the

benchmark.

The poor forecasts from the ANN implied that the

ANN fed by the original rainfall data is not viable in the

present cases. Actually, the ANN mainly captured the zero

or low-intensity rainfall patterns (dry periods) because

the type of pattern was dominant when using the original

rainfall series to construct model input/output pairs.

Comparison between ANN and ANN-SSA showed that

the SSA filtering technique considerably improved the

ANN performance, which mainly was because the SSA

eliminated the zero values in model inputs to strengthen

the mapping relationship between inputs and output.

When the SSA was coupled with the hybrid ANN-SVR

model, the values of the peak of rainfall can better be

estimated than those in the ANN-SSA. The result indicates

that the three local models can better approximate

different rainfall characteristics than a single global model.

In addition, two filtering techniques for determining

effective reconstructed components in SSA, supervised

(correlation analysis) and unsupervised (enumeration),

were evaluated. It was found that enumeration tends to be

more effective than correlation analysis. As a matter of fact,

the former can consider the nonlinear dependence between

model inputs and output whereas the latter only analyzes

the linear dependence between them.

In the present study, the selection of the window length

L is empirical, which unavoidably introduces uncertainty to

rainfall estimates. A future work should, therefore, pursue

more rigorous techniques for the determination of the

window length in SSA.
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