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Pavement performance prediction is a crucial issue in big data maintenance. .is paper develops a hybrid grey relation analysis
(GRA) and support vector machine regression (SVR) technique to predict pavement performance..e predictionmodel can solve
the shortcomings of the traditional model including a single consideration factor, a short prediction period, and easy overfitting.
GAR is employed in selecting themain factors affecting the performance of asphalt pavement..e SVR is performed to predict the
performance. Finally, the data collected from the weather station installed on Guangyun Expressway were adopted to verify the
validity of the GRA-SVR model. Meanwhile, the contrast with the grey model (GM (1, 1)), genetic algorithm optimization BP
[[parms resize(1),pos(50,50),size(200,200),bgcol(156)]]081%, − 0.823%, 1.270%, and − 4.569%, respectively. .e study concluded
that the nonlinear and multivariate prediction model established by GRA-SVR has higher precision and operability, which can be
used in long-period pavement performance prediction.

1. Introduction

Big data maintenance is a central issue in highway man-
agement. Highway maintenance mileage accounted for
97.7% of the mileage of traffic in China by the end of 2018.
Notably, the expressway has been transferred from the
construction to the maintenance period.With the popularity
of big data technology, roads have entered the era of big data
maintenance. However, the reason why the performance of
asphalt pavement is a vital component of maintenance
management and operation is that the rational allocation of
maintenance decision-making and maintenance funds are
determined by an accurate prediction model in the later
period. .erefore, the scientific establishment of the pave-
ment performance predictionmodel is significant for asphalt
pavement maintenance and can provide a model for big data
maintenance.

.e pavement management system (PMS) is applied for
road life cycle management. However, it generally uses
analytical tools and statistical methods to predict pavement

performance [1]. Predicting of pavement performance is
critical, but it is very complex, because the performance of
asphalt pavement is affected by the combination of structural
design, material properties, construction quality traffic load
natural factors, and maintenance [2]. .e pavement per-
formance prediction model is a relationship that charac-
terizes the variation of pavement performance with time,
material, and traffic load [3].

.ere are different methods available for the determina-
tion of pavement performance; many scholars have attempted
to develop a scientifically derived accurate model. .ere are
four types of prediction models: uncertainty model, certainty
model, dynamic model, and bionic model [4].

(i) Uncertainty model: the commonly used model is
the grey theoretical model that has the character-
istics of a small amount of data, high prediction
accuracy, and a simple calculation method. .ere-
fore, it is widely used in pavement performance
prediction. For example, Zhang et al. [5], Shen and

Hindawi
Journal of Advanced Transportation
Volume 2020, Article ID 7534970, 14 pages
https://doi.org/10.1155/2020/7534970

mailto:zhaojingzi0203@163.com
https://orcid.org/0000-0002-3439-5691
https://orcid.org/0000-0001-5551-2642
https://orcid.org/0000-0001-7869-109X
https://orcid.org/0000-0001-9590-5969
https://orcid.org/0000-0002-3306-1665
https://orcid.org/0000-0003-2448-070X
https://orcid.org/0000-0001-6825-200X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2020/7534970


Du [6], Wang and Li [7], and Zhang and Ji [8] used
this model to predict pavement smoothness and
rutting. Peng et al. [9] applied Weibull distribution
to pavement performance prediction and obtained
ideal results.

(ii) Certainty model: it is an empirical method; it takes
advantage of using traditional regression as a tool to
fit the data that come from experiments and finite
element mechanics to get the form and parameters
of the model. For example, Sun and Liu [10] pro-
posed the decay equation of asphalt pavement
performance which was obtained through engi-
neering experiment. Abed et al. [11] investigated the
variability effect of thickness and stiffness of
pavement layers; they used theMonte Carlo method
to obtain the probability distribution function of
pavement performance by using the parameters.
Gong et al. [12] proposed a regularized regression
method to estimate the asphalt concrete moduli
with data available from the long-term pavement
performance (LTPP) database.

(iii) Bionic model: this model has high prediction ac-
curacy.  ang et al. [13] used the genetic neural
network model to estimate rutting and driving
quality. Bianchini and Bandini [1] proposed the
neuro-fuzzy hybrid model to predict the present
serviceability index (PSI). Ferreira and Lima Cav-
alcante [14] and Beltran and Romo [15] presented
the application of artificial neural networks (ANN)
in pavement performance.

(iv) Dynamicmodel: it is based on the traditional model.
For instance, Shen et al. [16] improved the tradi-
tional grey model and proposed a dynamic grey
model. Chen et al. [17] combined the US PME
model with grey prediction theory and mechanical
experience method, proposed a dynamic grey pre-
diction model, and established a DGM-PME
combination model to forecast the rutting. Chu and
Durango-Cohen [18] used the autoregressive
moving average time series state space method to
predict the structural strength of the pavement. El-
Badawy et al. [19] developed a comprehensive
bottom-up fatigue cracking distress dynamic pre-
diction model integrating the Mechanistic-Empir-
ical Pavement Design Guide (MEPDG) and
performance test methodology.

To date, various pavement performance prediction
models have been proposed by scholars, but the models still
have defects. For example, the grey model just adopts the
time factor and does not take into account other factors such
as natural environment and traffic load which may have
maximum impact. And, as the forecast period increases, the
stability and accuracy of the prediction are decreased.
Weibull distribution model is only suitable for small sample
data prediction. .e certainty model is mainly determined
by factors like the initial performance index of asphalt
pavement and the road age. It is simple and convenient to

use for it does not consider the reasonable dynamic data. It
only can predict short period performance. .e genetic
neural network and ANN model are prone to overfitting
when data are insufficient. .e dynamic prediction model
can make full use of the later data to predict longer periods.
Simultaneously, the reason why the model can only consider
the impact of time on pavement performance is that the
model is based on time series. Hence, a new model is needed
to be devised to be applied to pavement performance
prediction.

Recently, support vector machines have been applied in
various fields. Zhao et al. [20] proposed a k-means and SVM
hybrid model for the development of an electric vehicle
urban driving cycle. Hoang et al. [21] used it to recognize the
pavement crack. Wang et al. [22] proposed a support vector
machine online model for predicting metro ridership.
Karballaeezadeh et al. [23] applied this model to the pre-
diction of road residual life and compared the model with an
artificial neural network (ANN) and multilayer perceptron
(MLP) models. .e results show that the support vector
machine model has the highest accuracy.

.e factors affecting the performance of asphalt pave-
ment were processed firstly by GRA. .e SVR with ad-
vantages of minimizing structural risk and strong
generalization performance was then used to establish a
hyperplane as a decision surface. Finally, the asphalt
pavement performance prediction model was established to
provide a model that can be applied to maintenance deci-
sion-making, maintenance fund investment, and big data of
pavement maintenance.

.e structure of this paper is as follows. Section 2 mainly
introduces the main principles of GRA-SVR. Section 3
contains the modeling process of the whole model. Section 4
mainly uses the model to verify the example. Finally, the
results are analyzed.

2. Methodology

2.1. Basic Principles of GRA-SVR

2.1.1. Basic Principle of Grey Relation Analysis. .e grey
system theory holds that the complex objective systems
which are all ordered and discrete data must contain in-
herent laws [24]. .ere are many factors affecting the
performance of asphalt pavement, but the effects of various
factors are not very clear, so that we can call the factors grey.
.erefore, GRA is used to quantitatively reflect the corre-
lation between asphalt pavement performance and various
factors. .is method can find the main factors from many
factors that affect pavement performance. .e corre-
sponding statistical data of the influencing factors in the
system are converted into geometric curves by the method,
and the closer the curve geometry is to the dependent
variable, the greater the degree of association is [25].

2.1.2. Basic Principle of Support Vector Machine Regression.
SVR is a model derived from the support vector machine
(SVM) proposed by VAPNIK [26]. .e SVM model is a
machine learning method that mainly solves the
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classification problems of small samples, nonlinearities, and
high-dimensional data [27, 28]. Its principle is based on the
VC theory of statistical principle and structural risk mini-
mization, and the optimal solution in data mining is sought
by establishing an optimal hyperplane [29]. Usually, we
reduce the dimension of the sample to simplify the problem,
while the SVM method is the opposite. It uses the kernel
function to map the sample points to high-dimensional and
even infinite-dimensional space to deal with linear problems
as shown in Figure 1.

Regression is essentially similar to classification. .e
SVM classification model is to manage a plane so that the
support vectors of the two classification sets or all the data
are farthest from the classification plane, and the SVR
model is to find a regression plane so that all data of a
collection could be closest to the plane, as shown in
Figure 2. .e SVR can predict the prediction vector of the
test data by establishing a nonlinear relationship between
the data tested in the training data and the support vector.
Most of the various influencing factors of asphalt pave-
ment performance are nonlinear. .e specific method is as
follows.

Assume the sample set (x1, y1), (x2, y2), . . . , (xl, yl),
x ∈ Rn, y ∈ R, x ∈ Rn, y ∈ R,.en, y and x in the sample set
can be expressed as follows [2]:

f(x) � w · x + b, (1)

where w and b are the coefficients of the hyperplane.
If the original data fit well with the support vector

machine regression, then min 1/2‖w2‖ is as follows [2]:

s.t.

w · xi + b − yi ≤ ε,

yi − w · xi − b≤ ε,

i � 1, 2, . . . , l,

 (2)

where ε is a positive number.
Equation (1) is transformed into (3) by introducing the

Lagrangian logarithm [2]:

f(x) � w · x + b �∑1
i�1

ai − a
∗
i( ) xi · x( ) + b, (3)

where aI and a
∗
i are the sample support vectors, which take a

value of zero in most cases.
.e above process is the linear regression principle of

SVR, but the effects of the factors including rainfall, traffic
volume, maximum temperature, and minimum temperature
for the pavement performance are nonlinear. When dealing
with the nonlinear problem of the SVR, the sample xi is
mapped to a high-dimensional space by ψ: x⟶ H. An
optimal hyperplane should be constructed to solve the
“dimensionality disaster”; the inner space operation is
implemented using the original spatial parameters when ψ is
unknown. .e internal kernel function K(xi, xj) � ψ(xi) ×
ψ(xj) can be obtained when the kernel function satisfies the
condition of Mercer [30]. At the same time, Lagrange
changes are introduced to get equation (4) [31]:

L(w, ξ, b, a, β) �∑1
i�1

ai −
1

2
∑1
i�1

yiyjaiajK xixj( ). (4)

Finally, the transformed regression function [31] is as
follows:

f(x) � w · x + b �∑1
i�1

ai − a
∗
i( )K xi · x( ) + b. (5)

.is method can avoid overfitting caused by traditional
methods. SVR nonlinear regression fitting could control the
fitting process by increasing the dimension. .e high gen-
eralization performance that is closely related to the choice
of kernel function is a big advantage of SVR.

Commonly used kernel functions are listed as follows
[32]:

(1) Linear kernel function: K(x, xi) � x
Txi;

(2) Polynomial kernel function: K(x, xi) � (μx
Txi +

r )p, μ> 0;
(3) RBF kernel function: K(x, xi) � exp(− g‖x

− xi‖
2), g> 0;

(4) Sigmoid kernel function: K(x, xi) � tanh(μx
Txi

+ r), μ> 0.
μ, r, and p are parameters of the kernel function.
However, each type of kernel function has different

advantages and disadvantages:

① Linear kernel functions are used to generalize linear
samples.

② Polynomial kernel functions are mostly used to
process text data.

③ Although Sigmoid kernel function has higher ac-
curacy, it is complicated, which increases the com-
plexity of the whole model.

.erefore, in this paper, the RBF kernel function is used
for support vector machine regression prediction.

2.2. Construction of GRA-SVR Asphalt Pavement
Performance Model

2.2.1. Selection of the Best Parameters. It is important to
select the appropriate penalty parameter c and kernel

K(X, X1)

K(X, X2)

K(X, Xn)

Bias b

Output Y

X(1)

X(2)Input X

X(n)

Figure 1: Architecture diagram of support vector machine.
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function parameter g to ensure the accuracy of the entire
model when using SVR for prediction. .erefore, the CV
method is generally adopted to solve this problem, which is a
statistical analysis method for verifying the performance of
the model. .e principle is to group the original data and
divide them into verification and training sets. In this way, it
is possible to effectively avoid the states of underlearning and
overlearning and ultimately obtain the accuracy. Common
CV methods are as follows:

(1) Hold-Out Method: the method randomly divides the
data into two categories: one is the training set used
to train the model, and the other is the verification
set used to verify the model [20]..e final accuracy is
the performance metric of the model.

(2) LOO-CV: assuming there are N samples in the
original data, that is why the model is called N-CV,
so each sample is an independent verification set,
and the remaining N-1 samples are training sets;
thus, N models were obtained. .e average accuracy
of the final validation set is used as a performance
indicator for the model. However, due to the high
computational cost, the model has difficulties in
practical operation.

(3) K-CV: the original data are equally divided into K
groups. .e data of each group are used as verifi-
cation set once, and the remaining data of other K-1
groups are used as a training set; therefore, Kmodels
are obtained. .en, the average of the classification
accuracy calculated from the final verification set of
those K models is used as the performance index of
this model [33]. .is method is more accurate due to
the fact that it can effectively avoid the states of
underlearning and overlearning.

According to the comparable selection of the three
methods, theK-CVmodel is finally adopted to cross-validate
and select the best penalty parameter c and function pa-
rameter g. .e specific method is as follows. Firstly, the
parameters c and g are limited to a specific range, and then
the K-CV model is used for the training set in the range to
obtain the accuracy. Finally, the parameters c and g which
make the training set with the highest accuracy are selected
as the optimal parameters..e concrete implementation can
be implemented using the libsvm3.20 tool.

2.2.2. Construction of Asphalt Pavement Performance Model.
.e pavement performance is affected by many factors.
.e factors, acting on performance, are uncertain and non-
linear. Hence, the performance and factors integrate a grey
system. .erefore, the grey correlation analysis can be used as
an attribute processor to select several important influencing
factors, and then the SVR is used to perform the regression
prediction. .rough the establishment of the comprehensive
model GRA-SVR to predict the trend of pavement perfor-
mance under the influence of various factors, the specific
modeling process is shown in Figure 3.

Specific steps are as follows:

(1) Select dependent and independent variables.

(2) Establish a raw data matrix: Xi � xi(k), k � 1,{
2, . . . , n}, i � 1, 2, 3, 4. xi(k) represents a certain level
of the first influencing factor.

(3) Data normalization.

(4) Calculating the difference sequence [34]is as follows:

Δi(k) � x0′(k) − xi′(k)
∣∣∣∣ ∣∣∣∣,

Δi � Δi(1),Δi(2), . . . ,Δi(n)( ),
i � 1, 2, . . . , m.

(6)

(5) Achieving the largest and smallest difference of the
sequence [34] is as equation (7). Write the maximum
value as M and the minimum value as N:

M � max
i
max
k
Δi(k),

N � min
i
min
k
Δi(k).

(7)

(6) Calculating the correlation coefficient of each sample
[35] is as follows:

c0i(k) �
m + ξM

Δi(k) + ξM
, ξ ∈ (0, 1), k � 1, 2, . . . , n;

i � 1, 2, . . . , m.

(8)

ξ is called the resolution coefficient. When
ξ ≤ 0.5463, the resolution is the best. Usually, the
value of ξ is 0.5, which is also taken in this paper.

wx + b = 0
2/||w||

2/||w||

wx + b = 1

wx + b = 0

wx + b = –ε

wx + b = ε

wx + b = –1

Figure 2: Difference of SVM and SVR diagram.
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(7) Calculating the correlation between each influencing
factor and the system [35] is as follows:

c0i �
1

n
∑n
i�1

c0i(k); i � 1, 2, . . . , m. (9)

(8) Choose the factors that have a greater influence on
pavement performance.

(9) To improve the accuracy and training speed of the
model and prevent big numbers of consuming dec-
imals during the calculation process, the data should
be normalized and processed to the interval [0, 1].

(10) RBF which is researched has a high precision
[36, 37], and this paper selects the RBF kernel
function to predict the performance.

(11) K-CV model is used to cross-validate and select the
best penalty parameter c and function parameter g.

(12) Using the optimal parameters for SVR fitting, the
prediction data are obtained.

3. Case Verification

3.1. Data Acquisition. .is paper is based on the highway
from Guangzhou to  unfu (Guangyun highway) and the
installed weather station in 2010, and it can collect the
climate data including road temperature, humidity, wind
speed, and solar radiation. .e installation details and
pavement structure are shown in Figures 4 and 5. Among
them, the pavement temperature detection uses the ZDR-41
temperature sensor, subgrade temperature, and humidity
testing to use a 5TE sensor (see Figure 6). .e climate of
Guangdong province is humid and the temperature is ex-
tremely high, rising to 41°C. Under the influence of large
traffic volume, the rutting is serious as shown in Figure 7.
.e RDI predictionmodels GRA-SVR, PPI, GA-BP, and GM

(1, 1) were established to analyze the accuracy of each model,
which were based on the RDI, maintenance funds, traffic
volume, and data collected by the weather station from 2011
to 2018 (see Table 1 for the survey results).

.e factors, pavement structure, and materials should be
considered in performance prediction. Usually, the pave-
ment structure needs to be calculated as a numerical value.
To address this issue, the structures number [12, 38–40] is
usually adopted. However, it needs to be calculated in two
cases as follows:

(i) Different structures: in this case, the thickness and
material of each layer of the road are different. .e
structural number [41] (SN) is adopted according to the
AASHTO guide for design of pavement structures. .e
road network level performance prediction can apply
this case. .e specific calculation method is as follows:

SN � a1D1 + a2D2m2 + a3D3m3, (10)

where ai is i
th layer coefficient; this parameter needs

to be obtained through experiments, Di is i
th layer

thickness, and mi is the i
th layer drainage coefficient.

(ii) Same structure: the performance of the pavement
material can be affected by the environment, and the
structural bearing capacity is changed..e pavement
structural bearing capacity can be expressed by the
pavement structure strength ratio (SSR) [42]. .e
specific calculation method is

SSR �
l0
l
, (11)

where l0 is pavement deflection standard value
(0.01mm), where l is pavement measurement

Multifunction
vehicle

Start

End

Data
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data matrix

Normalize
the data
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difference
sequence
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and
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difference
sequence
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Figure 3: Flowchart of the GRA-SVR modeling process.
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4cm upper surface of antiskid-modified asphalt concrete

6cm middle surface of coarse-graded asphalt concrete

8cm lower surface of coarse-graded asphalt concrete

20cm upper base of cement-stabilized crushed stones (4%-5%)

20cm lower base of cement-stabilized crushed stones (4%-5%)

20cm subbase of cement-stabilized crushed stones (4%-5%)

Soil subgrade
A B

Bracket

B: temperature of pavement structure

C: humidity of subbase

2

Median
strip

Marginal
strip

Passing lane Hard shoulder Soil shoulderLane

0.75 3.75 2 × 3.75 3 0.5

C

B

A: temperature of surface

Temperature and humidity sensor

Figure 4: Sensor layout.

(a) (b)

(c) (d)

Figure 5: Weather station layout. (a) Drilling cores of asphalt pavement, (b) installation of temperature sensor in a pavement structure, (c)
installation of temperature sensor on road surface, and (d) bracket mounting.
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representing deflection (0.01mm); this parameter
needs to be obtained through multifunction vehicle.

.is paper relies on engineering only one pavement
structure, so the calculation of SSR represents the influence
of pavement structure on pavement performance.

3.2. Grey Relation Analysis. .e correlation of the data can
be analyzed in Table 2; the correlation degree of each
influencing factor can be obtained, as shown in Table 2.

.e effects of various factors on rutting are sorted as
follows:

c2 < c9 < c18 < c7 < c12 < c10 < c8 < c17 < c14 < c13 < c16
< c5 < c19 < c11 < c15 < c6 < c1 < c4 < c3.

(12)
Generally, the greater the degree of relevance, the better

the correlation of factors to the main direction of system
development, that is, the greater the influence of this factor on
the evaluation index. When c> 0.8 is well correlated, when
c� 0.6∼0.8, the correlation is good. We can see that c of these
18 factors is greater than 0.6, indicating that these factors have
an impact on the rutting. Among the 19 factors, c of 12 factors
is greater than 0.8, indicating that these 12 factors have a
strong influence on the formation of rutting.

So, the better relevant factors that have the greatest
impact were selected to establish the model, and the other
factors were removed. .e selected results are as follows:

Equivalent single axle loads>maintenance funds>pave-
ment structure strength ratio>mean value of soil mois-
ture>highest temperature in the middle surface>highest
temperature in the road surface> annual cumulative total
radiation> annual average rainfall> lowest temperature in
middle surface>highest temperature in the upper sur-
face> lowest temperature of upper surface>highest
temperature in lower surface.

.e following can be observed from the above analysis:

(1) .e primary factor, the formation of rutting, is the
equivalent single axle loads. .e greater equivalent
single axle loads are, themore serious the rutting is..e
reason is that, under the action of traffic load, large
shear stress will be generated in the asphalt pavement,
whichwill cause irreversible cumulative deformation in
the surface layer.

(2) .e maintenance funds have a significant repairing
effect on the rutting. For example, in this section of the
highway, the maintenance funds were RMB 81,500 in
2013..e traffic volume and rainfall increased, but the
rutting disease was significantly improved in 2014.

Temperature

indicator

Temperature

sensor

(a)

Temperature
sensor

Humidity
sensor

(b)

Figure 6: (a) Pavement sensor and (b) subgrade sensor.

(a) (b)

Figure 7: Rutting of Guangyun Expressway.
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(3) .e degree of relevance SSN is 0.9301. It shows that
SSN has a greater impact on the rutting. .e specific
reason is that water, solar radiation, and temperature
have an impact on the pavement material, and the
structural bearing capacity is insufficient, resulting in
the occurrence of rutting.

(4) .e annual cumulative radiation ages the asphalt and
accelerates the formation of the rutting. After the
aging of the asphalt, the overall shear resistance of
the asphalt surface layer is reduced, resulting in a
decrease in the rutting resistance. For example, the
annual cumulative radiation was the largest in 2015,
and the rutting in 2016 was more serious.

(5) .e maximum shear stress generally occurs in the
midsurface, and the rainfall and wind speed accel-
erate the heat dissipation of the highest temperature
of the environment and road surface. Based on the
above factors, the influence of the highest temper-
ature of the middle layer on the formation of the
rutting is greater than the highest temperature of the
road surface and the upper layer.

(6) Under the action of traffic load, the water infiltrated
into the asphalt surface layer by soil and rainfall will
become high-pressure water, which will reduce the
bond behavior between asphalt and aggregate,
resulting in lower pavement strength and lower
resistance to rutting.

(7) .e lowest temperature of the road surface would
cause other diseases on the asphalt pavement, which
indirectly lead to the occurrence of rutting.

.e dimensionally reduced data are normalized by
software, and the processing results are shown in Table 3.

3.3. Penalty Parameter Selection. In this paper, the optimal
penalty parameter c and function parameter g are solved by
K-CV cross-validation model to select the best penalty
parameter c and function parameter g (see Figure 8). .e
axis of abscissa indicates the value of c after taking the base 2
logarithm. .e ordinate axis represents the value of g after
taking the base 2 logarithm. Contour lines indicate errors in
the range of c and g. When the error is the smallest, the
corresponding c and g are the best. First, c and g are initially
selected..e range of c is within 2∧(− 6)∼2∧(6) and that of g
is within 2∧(− 8)∼2∧(8). When the error is 0.0572, the
optimal penalty parameter is c� 64.0 and g� 0.0039.

By primary election, the range of values for c can be
reduced to 2∧(− 3)∼2∧(2) and g can be reduced to
2∧(− 4)∼2∧(4)(see Figure 9). At the same time, reduce the
interval between the contour and the three-dimensional
view. When the error is 0.0605, the optimal penalty pa-
rameter is c� 4.0 and g� 0.0884.

4. Results and Discussion

.e GRA-SVR, GM (1, 1) [43], GA-BP [44], and PPI model
were applied and compared to predict the RDI of 2018
which was based on the training set consisting of various
factors and RDI from 2011 to 2017. .e PPI [10]model is as
follows:

PPI � PPI0 1 − exp −
a

y
( )β  , (13)

where PPI is the performance index; PPI0 is the initial
performance index; y is the road age; α and β are mode
parameters. In this paper PPI0 � 94; y � 8; α� 13.2;
β� 1.409.

Table 1: Datasheet of RDI and various influencing factors of Guangyun Expressway (2011–2018).

 ear 2011 2012 2013 2014 2015 2016 2017 2018

RDI 94 90.2 90.1 91.4 89.8 86.4 84.6 85.5
PCI 99.7 97.9 97.1 95.1 92.5 91.4 88.7 87.5
SRI 98 95.5 89.5 80.8 86.9 84.2 84.4 85.6
SSR 2.61 1.63 1.58 1.92 1.36 1.27 1.35 1.15
Service life 2 3 4 5 6 7 8 9
Equivalent single axle loads (103) 1214 1504 1600 1860.15 1984.46 2173.91 2386.93 2023.45
Maintenance funds (/million yuan) 3.23 0.875 8.15 6.34 7.64 8.54 8.0 6.57
Annual average rainfall (/mm) 1667.7 1490.5 1647.6 2224.5 1752.5 1645.6 2321 2013.1
Mean value of soil moisture 17.4 17.8 19.5 22.1 18.6 17.5 22.4 19.1
Mean value of environment humidity (%RH) 75.3 74.5 83.8 77.3 76 73.7 72.1 88.8
Annual maximum wind speed (m/s) 7.4 6.2 6.1 5.8 5.3 6.3 5.6 7.9
Highest temperature of environment (/°C) 37.6 37.8 38.9 39.2 39.6 39 40.4 38.2
Lowest temperature of environment (/°C) 3.4 2.5 2.5 2.7 0.1 3.8 3.7 4.2
Highest temperature of road surface (/°C) 65.1 61.8 60.3 62.4 68.5 62.5 65.1 65.2
Lowest temperature of road surface (/°C) 4.2 6.3 5.9 4.3 5.9 6 6.4 5.8
Highest temperature of upper surface (/°C) 55.1 56.2 57.1 60.2 58.6 58.8 57.9 63.1
Lowest temperature of upper surface (/°C) 7.5 7.9 6.9 7.8 6.5 7.5 8 8.1
Highest temperature in middle surface (/°C) 56.7 60.3 59.4 58.5 60.5 59.4 61.2 42.8
Lowest temperature in middle surface (/°C) 6.3 5.4 5.8 6.5 6.8 6.9 6 6.1
Highest temperature in lower surface (/°C) 46.7 47.6 46.9 45.5 44.2 46.7 43.2 44.9
Lowest temperature in lower surface (/°C) 9.1 8.5 8.9 9.3 9.5 10.2 9.8 10.4
Annual cumulative total radiation 1014 1085 1045 1054 1240 1093 1105 1166
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Table 3: Standardized data after normalization.

Time 2011 2012 2013 2014 2015 2016 2017

RDI 1 0.596 0.585 0.723 0.553 0.191 0
Equivalent single axle loads 0 0.247 0.329 0.551 0.657 0.818 1
Maintenance funds 0.307 0 0.949 0.713 0.883 1 0.930
Pavement structure strength ratio 1 0.269 0.231 0.485 0.067 0 0.060
Mean value of soil moisture 0 0.080 0.420 0.940 0.240 0.020 1
Highest temperature in middle surface 0 0.800 0.600 0.400 0.844 0.600 1
Highest temperature of road surface 0.585 0.183 0 0.256 1 0.268 0.585
Annual cumulative total radiation 0 0.314 0.137 0.177 1 0.350 0.403
Average annual rainfall 0.213 0 0.189 0.884 0.315 0.187 1
Lowest temperature in middle surface 0.600 0 0.267 0.733 0.933 1 0.400
Highest temperature of upper surface 0 0.216 0.392 1 0.686 0.725 0.549
Lowest temperature of upper surface 0.667 0.933 0.267 0.867 0 0.667 1.000
Highest temperature in lower surface 0.795 1 0.841 0.523 0.227 0.795 0
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and g versus the accuracy rate in three dimensions.
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.e comparative analysis of the predicted and actual
values of different models is shown in Table 4, the accuracy
comparison was shown in Table 5, sand the corresponding
variation trend and actual value of different models were
shown in Figures 10 and 11.

.e evaluation parameters of the four models obtained
from Table 5 in predicting RDI are as follows:

Correlation coefficient: GM (1, 1) (0.856) <PPI (0.879)
<GA-BP (0.984) <GRA-SVR (0.992)

RMSE: GA-BP (0.298) <GRA-SVR (0.499) <GM (1, 1)
(1.304) <PPI (3.270)

Relative error: GRA-SVR (0.081) <GM (1, 1) (0.823)
<GA-BP (1.270) <PPI (4.569)

.e GRA-SVR and GA-BP models all showed good
performance in terms of the overall correlation and devi-
ation of the predicted value from the true value. However,
with respect to relative error in 2018, GRA-SVR is the best,
followed by GM (1, 1). Figure 11 shows the relative errors of
the predicted and true values for the four models from 2011
to 2018. It can be observed that the relative error of the GA-
BPmodel is the smallest, higher than GRA-SVR in 2016, and
higher than GM (1, 1) in 2018 from 2011 to 2015. .is is

Table 4: Comparison of predicted and actual values of RDI.

Time
Original
value

GRA-SVR GM (1, 1) GA-BP PPI

Predictive
value

Absolute
error

Predictive
value

Absolute
error

Predictive
value

Absolute
error

Predictive
value

Absolute
error

2011 94.0 94.00 — 94.00 — 94.00 — 94.00 − 0
2012 90.2 90.27 − 0.070 91.65 1.447 90.19 0 93.97 3.801
2013 90.1 90.03 0.068 90.47 0.368 90.10 − 0.002 93.57 3.87
2014 91.4 90.63 0.724 89.30 − 2.096 91.41 0.003 92.15 2.166
2015 89.8 89.73 0.070 88.16 − 1.645 89.80 0 89.49 2.348
2016 86.4 86.47 − 0.070 87.02 0.621 86.05 − 0.352 85.84 3.091
2017 84.6 84.67 − 0.066 85.90 1.301 84.26 − 0.341 81.59 1.242
2018 85.5 85.56 − 0.069 84.80 − 0.704 86.58 1.082 79.10 3.907

Table 5: Precision comparison of forecast results for the three models.

Model Correlation coefficient RMSE Relative error (%)

GRA-SVR 0.992 0.298 − 0.081
GM (1, 1) 0.856 1.304 − 0.823
GA-BP 0.984 0.448 1.270
PPI 0.879 3.270 − 4.569
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Figure 10: Trend charts of RDI predicted value of different models.
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because the model is prone to overfitting for samples with
small data, resulting in reduced prediction accuracy.

.e trends of the predicted and actual values from
different model RDIs were depicted in Figure 10(a). It can be
seen that the GRA-SVR and GA-BP models display non-
linear trends, which are close to the actual value. .e other
two models show a linear relationship, which is different
from the actual value.

All four models have good accuracy in short period
prediction (see Figure 10(b)), but the accuracy would change
with the prediction period increasing (see Figure 10(c)); the
GRA-SVR model has the highest prediction accuracy be-
cause the old data were replaced by the new prediction data
as the new training set. .e GA-BP takes second place.
.irdly, the GM (1, 1) model just used the data of 7 years,
and the accuracy reduced as the new data are not replenished
in time with the time increases. .e PPI model has the worst
prediction accuracy, which was due to the fact that themodel
only uses the first-year data for prediction. As the prediction
period increases, the controllability of the model decreases.
In order to verify the accuracy of the model, the pavement
surface condition index (PCI) and pavement skidding re-
sistance index (SRI) prediction applied this model. .e
relative error was − 0.115% and 0.111%, respectively.

For the GRA-SVR and GA-BP model modeling process,
more important factors that affect the production of rutting
should be considered, so the modeling process is more

complex than the other two models, but the prediction
results are stable. .e PPI model just considers the age and
regional conditions, and the main factors affecting the
pavement performance were unutilized; therefore, the
prediction accuracy is lower. In the GM (1, 1) model, the
time factor was only considered, whose prediction accuracy
depends greatly on the accuracy of the annual data. If the
data of a certain year are deviated, the whole system trend
will have a large error, and the ease of operation of the model
is between the other models..erefore, the GRA-SVRmodel
is suitable for multivariate, long-period, and nonlinear
prediction of pavement performance.

.e accuracy, prediction period, and operability of the
three models are compared and analyzed. .e results are
shown in Table 6.

Overall, our study establishes the model that has offered
better performance than other models. However, there are
also limitations. In the future study, we want to choose the
best parameters with better methods including genetic al-
gorithm and particle swarm optimization. .ese algorithms
are also widely used in other fields. If we find a better op-
timization method, we can make the prediction accuracy
higher. We will build the database with more road infor-
mation. .en, the GRA-SVR model at the computing ter-
minal is used to predict the performance. Some decision
model is applied to maintenance decision. Finally, the results
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Figure 11: Trend charts of the actual value of different models.

Table 6: Performance comparison of four models.

Model Operability Prediction period Accuracy Consideration of factors

GRA-SVR ★ ★★★ ★★★ ★★★
PPI ★★★ ★ ★ ★★
GM (1, 1) ★★ ★★ ★★ ★
GA-BP ★ ★★ ★ ★★★
★ means performance in general, ★★ means better performance, and ★★★ means the best performance.
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are uploading the pavement management system (see
Figure 12). We firmly believe that this will have far-reaching
implications for road maintenance projects.

5. Conclusion

In this study, a GRA-SVR predictive hybrid model, com-
bining the grey correlation analysis with support vector
machine regression, was proposed for the first time to be
applied to predict the performance of asphalt pavement. .e
main conclusions are drawn as follows:

(1) .e main factors including equivalent single axle loads,
maintenance funds, highest temperature in the middle
surface, pavement structure strength ratio, average
value of soil moisture, highest temperature in the road
surface, lowest temperature in the road surface, highest
temperature in the upper surface, annual average
rainfall, annual cumulative total radiation, highest
temperature in the upper surface, annual average
rainfall, lowest temperature of upper surface, highest
temperature in lower surface, lowest temperature in
lower surface, and annual maximum wind speed are
well correlated in pavement performance.

(2) Compared with other models, the GRA-SVR model
is highly accurate and time-independent, which
makes it suitable for short and long period
predictions.

In conclusion, the GRA-SVR model is applicable for a
multivariate, long period, and nonlinear performance of
pavement prediction and is restricted by the amount of data.
It is reliable for asphalt pavement maintenance decision-
making. At the same time, this model can also be applied to
big data road maintenance prediction.
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