
Mathematical Models and Methods in Applied Sciences
Vol. 17, Suppl. (2007) 1773–1798
c© World Scientific Publishing Company

A HYBRID MODEL FOR TUMOR SPHEROID GROWTH

IN VITRO I: THEORETICAL DEVELOPMENT

AND EARLY RESULTS

YANGJIN KIM∗ and MAGDALENA A. STOLARSKA

School of Mathematics, University of Minnesota

Minneapolis, MN 55455, USA

HANS G. OTHMER

School of Mathematics and Digital Technology Center

University of Minnesota, Minneapolis, MN 55455, USA

othmer@math.umn.edu

Received 15 March 2007
Revised 13 April 2007

Communicated by N. Bellomo and P. K. Maini

Tumor spheroids grown in vitro have been widely used as models of in vivo tumor growth
because they display many of the characteristics of in vivo growth, including the effects
of nutrient limitations and perhaps the effect of stress on growth. In either case there are
numerous biochemical and biophysical processes involved whose interactions can only
be understood via a detailed mathematical model. Previous models have focused on
either a continuum description or a cell-based description, but both have limitations. In
this paper we propose a new mathematical model of tumor spheroid growth that incor-
porates both continuum and cell-level descriptions, and thereby retains the advantages
of each while circumventing some of their disadvantages. In this model the cell-based
description is used in the region where the majority of growth and cell division occurs,
at the periphery of a tumor, while a continuum description is used for the quiescent and
necrotic zones of the tumor and for the extracellular matrix. Reaction-diffusion equa-
tions describe the transport and consumption of two important nutrients, oxygen and
glucose, throughout the entire domain. The cell-based component of this hybrid model
allows us to examine the effects of cell–cell adhesion and variable growth rates at the
cellular level rather than at the continuum level. We show that the model can predict a
number of cellular behaviors that have been observed experimentally.
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1. Introduction

Avascular tumor growth in vivo is a complicated process that involves transport of

nutrients from the surrounding tissue to the tumor, uptake of nutrients and release

of waste products by the tumor, growth and division of individual cells, and cell–cell

and cell-extracellular matrix (ECM) interactions via adhesion molecules. While it

is possible to experimentally investigate individual biochemical and biomechanical

processes involved in vitro, a complete understanding of tumor growth will only

emerge when an integrated description of the in vivo processes can be formulated.

This requires a mathematical model to weave the insights gained from experimen-

tal observations of individual steps into a coherent description of tumor growth.

Existing mathematical models treat a tumor either as a continuum or as a discrete

set of individual cells. Both of these approaches have their advantages and draw-

backs. The former is easier to analyze both analytically and computationally, but

suffers from the fact that it is difficult to incorporate details of cell-level behavior

into the continuum description. In a cell-based model one can incorporate much

more detail, but this leads to severe limitations on the number of cells that can

be treated computationally. For instance, a tumor spheroid of 2mm diameter con-

tains ∼ 2 × 106 cells of 15µm diameter, and it is computationally prohibitive to

treat these cells if each has a significant number of internal variables and interacts

mechanically with its neighbors. Moreover, it is unnecessary to describe the qui-

escent and necrotic regions of a tumor with such detail, since it is primarily their

mechanical and rheological properties that are important, and a similar statement

applies to the medium surrounding a tumor. For these reasons we have developed

a hybrid model that retains the cell-based description in the rapidly-proliferating

regions at the tumor boundary, where it is advantageous to do so, and describes the

remainder of the tumor and the ECM or surrounding gel as continua with possibly

variable properties.

In this paper we focus on multicellular tumor spheroids (MCTSs), which are

tumor cell aggregates grown in vitro that are used as a model of in vivo tumors

because they closely mimic morphological and functional features of the latter.

In an MCTS individual cells nucleate in a culture medium, and cells continue to

proliferate until growth is arrested in the center of the spheroid, whereupon cells

at the center may die and form a necrotic core (cf. Fig. 1(a)). Usually MCTS

growth is avascular, and the necessary nutrients are supplied by diffusion from

the surrounding tissue. Growth arrest and subsequent cell death typically occurs

when the tumor diameter exceeds a critical value, and this is usually explained

as resulting from diffusion limitations at the center, although other mechanisms

may be involved.39 When there is a necrotic core, there is also usually another

layer of quiescent cells, i.e. cells that are alive but not actively proliferating, around

the necrotic core, and active proliferation is restricted to cells near the surface of

the spheroid. In the hybrid model that is described later we model cells in the

proliferating region of the MCTS as deformable ellipses, as was done earlier for the

slug stage of the cellular slime mold Dictyostelium discoidium.42,18 The quiescent
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Fig. 1. (a) A typical multicellular tumor spheroid. The gray interior represents the necrotic core,
the dark outer region the viable cells. From Sutherland et al.53 (b) A schematic of the model
geometry.

and necrotic regions internal to the proliferating region and the extracellular matrix

surrounding the spheroid are all modeled as viscoelastic continua (cf. Fig. 1(b)).

In the hybrid model only a few hundred actively-proliferating cells on the outer

layer of spheroids are treated individually, and as a result, one can incorporate

a great deal of detail about individual cells in the model. For instance, one can

allow variations in the cell cycle time and in the effect of stress on growth of these

cells, and one can incorporate variations in cell size, metabolic state and intra-

and intercellular mechanics. Since cells in the outer layers are discrete one can

study the effect of changes in the balances between adhesion, chemotaxis and other

effects on the rate of detachment of individual cells or small groups of cells from the

tumor. This is important for predicting the spread of highly invasive tumors such

as gliomas, for which the leading edge is diffuse and difficult to define precisely in a

continuum description.27 In addition, the model can shed light on the question of

whether there must be significant phenotypic differences between these invasive cells

and other proliferating cells not at the leading edge, and whether cell-cycle-specific

changes are involved. In one example, Landry33 showed (i) that rapidly-growing

EMT6/Ro mammary tumor spheroids shed up to 1.5% of the total cells per hour,

(ii) there is a positive correlation between the spheroid size and the rate of shedding,

and (iii) cell shedding and the immediately following re-aggregation occur near the

time of mitosis.

One of our objectives here is to understand how mechanics affects tumor growth.

Recent experiments17,50 indicate that stress feedback from the mechanical processes

can influence biochemical interactions and, therefore, growth in tissues. Two types

of experiments of Helmlinger et al.29 further illustrate this effect. The first shows

that when an MCTS is grown in an agarose gel the spheroid reaches an equilibrium

size that depends on the stiffness of the gel. In the second type, an MCTS grown

in an agarose-filled capillary tube adopts an ellipsoidal shape with the primary

growth in the direction of the capillary axis because the stresses are anisotropic.
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These authors ruled out any effect of anisotropic diffusion of nutrients on growth

and concluded that the spherical symmetry breaking is due to mechanical stresses.

Here we use their experimental results to test the validity of our approach.

In the following section we briefly review existing models of avascular tumor

growth, in Sec. 3 we introduce the new model and describe the computational

algorithm, and in Sec. 4 we present some computational results.

2. Previous Models of Growing Tumors

The existing mathematical models of tumor growth are either pure cell-based mod-

els or pure continuum models. The former class can be further divided into single-

or partial-cell lattice models or cell-based off-lattice models. In lattice models, the

domain is subdivided into a lattice or grid of elements, and depending on the model,

each “volume” element or node represents a single cell or a portion of a single cell.

The interaction between these units is dictated by a fixed set of rules, typically pre-

scribed in the form of a cellular automaton. Examples of this approach are given

in Moreira and Deutsch38 and Drasdo et al.20 A particular example is the cellular

Potts model, the defining characteristic of which is the set of rules that govern

whether empty lattice cells will be occupied or not. These are based on a combina-

tion of cellular automaton rules and a local minimization of energy.54 Lattice-based

models have been used to investigate various aspects of brain tumor growth, such

as the shedding of cellular clusters from the primary tumor.35,7,34,60 This is a phe-

nomenon that can be studied in more detail using the hybrid model developed later

because the mechanical properties of the surrounding tissue can be incorporated.

This is particularly important in the context of invasive brain tumors.33,28,52

In continuum models the cellular material in a tumor is described by a continu-

ous density function, and continuum equations are used to model inter- and intracel-

lular mechanical interactions and growth. Because the hybrid model described later

can be viewed as a combination of an off-lattice model and a continuum model, we

review previous mathematical applications of both types of models to tumor growth

in more detail. Related descriptions are used in the context of models for angio-

genesis, a process that often follows avascular growth, and these are reviewed in

Mantzaris et al.36

2.1. Off-lattice single-cell models

In off-lattice models each cell is treated as a unit of finite volume whose motion is

not restricted to lattice points. In most models of this type the cell shapes have been

restricted to spheres, ellipsoids, or Delaunay-decomposition-based shapes, with one

exception mentioned later, in which arbitrary shapes in 2D are admitted. Mechan-

ical interactions between the cells and between a cell and the surrounding matrix

are governed by Newton’s law, but the nature of the forces included varies widely

between models.
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Off-lattice, cell-based models have been applied to a number of growing19,21

or actively-migrating42 tissues, and specific application to tumor growth have

appeared.22,26,25 Drasdo and Höhme22 compare the growth of MCTSs and tumor

monolayers using a model based on spherical cells for which the interactions between

cells and between cells and substrate are modeled by interaction potentials, and

the motion and growth of cells is simulated using a Metropolis algorithm. From the

results of their numerical simulations they suggest that the shift from exponential

to linear growth in monolayers with access to abundant nutrient can be attributed

to cell–cell contact-mediated growth inhibition; cells in the interior of the monolayer

are sufficiently compressed that their growth is inhibited.

Using a similar model, Galle et al.26 investigate the effects of (i) cell–cell contact-

mediated growth inhibition, (ii) cell-substrate contact-dependent cell cycle arrest,

and (iii) cell-substrate-dependent programmed cell death (anoikis) on monolayer

cell growth. They find that all three mechanisms must be “on” in order for the

monolayer to persist, and conclude that the inactivation of any one of these mecha-

nisms in an epithelial sheet may lead to uncontrolled growth and epithelial tumors.

The results of both investigations22,26 shed light on tumor growth, but in both

cases the cell population sizes are restricted to about 105 cells, and the effect of the

surrounding extracellular space is not considered.

The model of Schaller and Meyer-Hermann49 is similar to that of Galle et al.26

but employs a Voronoi tessellation based on a cell’s center and radius to deter-

mine cellular deformation and contact area. Their model incorporates a detailed

description of the cell cycle, and they assume that necrosis is due only to nutrient

depletion and that quiescence is due only to cellular tension. The model reproduces

the transition from exponential growth to polynomial growth that is seen in exper-

iments, and for different nutrient concentrations it predicts the number of cells in

each phase of the cell cycle.

In a novel 2D model Rejniak46 uses the immersed boundary method to model

cells within a growing tumor. Cells are described by a set of discrete points con-

nected by elastic springs, and the ensemble of points and springs is immersed in a

viscous fluid that accounts for the material properties of the cells and the intercel-

lular space. Cell-cell interactions are also represented by linear springs connecting

boundary points on two distinct cells. This model describes the individual cell mor-

phology very well, but because the immersed boundary method is computationally

expensive, the model is restricted to around 103 tumor cells in 2D, and would be

prohibitively expensive in 3D.

2.2. Continuum models

When viewed as a continuum, a growing tumor can be thought of as a hetero-

geneous, multiphase, multicomponent mixture of growing, deformable material

wherein the growth of one phase results from the uptake of mass from another.

Mixture and multiphase theories have a long history in continuum mechanics,8,41,10
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and in the last decade various models of tumor growth have been based on either a

multiphase or a multicomponent description.43,44,32,55–57,11,12 Despite the fact that

such models are biologically more realistic, there are serious technical difficulties

in experimentally measuring quantities such as the partial displacements, relative

velocities and the partial stresses necessary to develop suitable constitutive relations

for multicomponent and/or multiphase systems. The problem is somewhat easier in

multiphase models if one adopts a Darcy-like law for the cell-fluid interactions, but

this simply postulates away some of the difficulties without solving them. Single-

phase models, while not as realistic in many respects, capture many important

characteristics of tumor growth without the complications of a multi-component or

multiphase model. Here we briefly describe some single-phase models that involve

mechanical aspects of tumor growth and multiphase models that address the exper-

iments of Helmlinger et al.29; a more extensive review can be found in Araujo and

McElwain.3

A number of models are based on the work of Jones et al.,31 wherein the tumor is

comprised entirely of proliferating cells. These authors assumed that both growth

and the material response are isotropic and that the material response is hypo-

elastic, i.e. the strain rate is directly proportional to the stress rate. The model

predicts that the tumor reaches a nutrient-controlled steady-state size, but the

stress does not, which is physically unrealistic. This problem arises from the fact

that the stress depends on the velocity of tumor evolution, and even when the

velocity is zero at the tumor boundary, thereby leading to a tumor of equilibrium

size, the velocities are not necessarily zero in the interior of the tumor.

Araujo and McElwain4 modified this model by introducing anisotropic growth,

albeit in a spherically symmetric framework. In this model, if the circumferential

stress σθ is less than the radial stress σr , then growth in the radical direction,

dominates, while if σr < σθ, growth in the circumferential direction increases. This

criterion is introduced into the constitutive equation and mass balance equation

through the introduction of strain-multiplier functions. These modifications of the

constitutive equation and the growth assumptions lead to the prediction that the

stress reaches a steady state when the tumor reaches an equilibrium size. This

modified model was applied to a vascularized tumor growing nonhomogeneously

in free suspension in order to explain blood vessel collapse due to residual stress.5

They find that once the vessel collapse front reaches the tumor boundary, the tumor

regresses. In more recent work6 the authors consider the effect of residual stresses

on vessel collapse for a nonhomogeneously growing spherical tumor embedded in

an extracellular matrix. In this case, the tumor does not regress, but rather reaches

a quasi-steady size. The comparison of these two models illustrates the effect that

residual stresses have on growth, and indicates the importance of understanding

mechanical effects on tumor growth.

Ambrosi and Mollica1 incorporate growth by a multiplicative decomposition of

the deformation gradient tensor into elastic and growth factors, a decomposition

used earlier by Hoger30 in the context of growing tissues. The material properties

of the tumor are described by an elastic Blatz-Ko strain energy function, and
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this description is later used2 to simulate the radially symmetric experiment of

Helmlinger et al.29 While the simulations capture the general qualitative behavior

of tumor growth in agarose gel of increasing stiffness, the model does not predict

the experimentally observed difference in equilibrium sizes for different agarose

concentrations.

Chen et al.16 extend earlier work of Landman and Please32 in the form of a one-

dimensional version of the spherically symmetric experiment of Helmlinger et al.

Their model correctly reproduces the experimental observation29 that the steady-

state tumor size decreases in a stiffer medium. Once the tumor is removed from the

elastic medium and is allowed to grow in a free suspension, linear growth resumes,

as is observed experimentally. A novel aspect of the model by Landman and Please,

and therefore also of that of Chen et al., is that necrosis is assumed to be caused by

mechanical stresses. The model also predicts that the stress from the surrounding

medium delays the onset of necrosis, but neither of these predictions has been

observed experimentally.

In Roose et al.47 a poroelastic model is used to explain the effect of stress

on a growing tumor that is embedded in an agarose matrix. Mass exchange from

the fluid phase to the cellular phase depends on the oxygen concentration in the

fluid phase and the stress in the cell phase. Specifically, the stress dependence is

included via the function 1 − βσ̄, where σ̄ is the average of the bulk stresses. In a

one-dimensional, spherically symmetric reduction of their full model, Roose et al.

show that the equilibrium size of the spherically symmetric tumor decreases as

the stiffness of the matrix increases. In addition, their experiments show that the

change in equilibrium size of the spheroid is partially due to a decrease in size of

individual cells as the stiffness of the matrix increases.

While the models described above have been used to investigate various impor-

tant aspects regarding tumor growth, there still are many issues to address. Most

previous models deal with tumor growth in the absence of a mechanically-resistant

extracellular matrix. Those that incorporate the extracellular matrix into the model

are continuum models and cannot address how the material properties of the extra-

cellular matrix affects the active motion of cells and the morphology of the tumor.

The novel combination of continuum and discrete approaches incorporated in the

hybrid model allows one to investigate this effect and others.

3. The Hybrid Model

There are up to four geometrically-distinct regions in the hybrid model, the extra-

cellular matrix or agarose gel surrounding the tumor, a shell of actively-proliferating

cells at the outer edge of the tumor, a quiescent zone bordering the actively-

proliferating region, and a necrotic core (cf. Fig. 2). We denote these G,P ,Q, and

N , respectively. The latter two are only present in a sufficiently large tumor, but

for generality we describe the situation in which all four regions are present. The

actively proliferating region comprises a layer 3–5 cells thick in the radial direction,

and therefore contains a few hundred cells. We assume that the quiescent layer has
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Fig. 2. A schematic showing the notation used for the subdomains, the representation of cells
in the proliferating zone as ellipsoids, and the representation of the Kelvin and growth elements
that characterize the internal rheology of each cell in P.

constant thickness, as has been observed experimentally.24 Therefore, the computa-

tional domain Ω consists of the union of the four disjoint sub-domains G,P ,Q,N ,

the latter two of which may be empty. We assume that the outer gel, the quiescent

region, and the necrotic region are homogeneous materials as others have proposed

(cf. Refs. 9, 48, 45 and 59 and therein for more details), but different material

parameters are used in G,Q and N . There is no computational difficulty in treat-

ing different material properties in adjacent regions such as Q and N ; one simply

has to match forces and displacements across the moving boundary. However, the

boundaries between the cell-based region P and the continuum regions G and Q

are very irregular, and rather than attempting to describe them in full detail in this

model we create two artificial boundaries across which the forces are transmitted,

as shown in Fig. 3. This will be described in detail later.

The reaction-diffusion equations for oxygen and glucose, the primary nutrients

considered here, are solved on the entire domain Ω. It is also assumed that the con-

centrations of nutrients are fixed at the outer boundary, and thus Dirichlet bound-

ary conditions are imposed there. The necrotic region N is defined as a subdomain

of the tumor interior in which the appropriate nutrient levels are below specified

thresholds. This is a simplification of the real situation, in which the geometry of

the interface between Q and N is not precisely defined. Different diffusion coeffi-

cients are used on each region and the uptake function is taken into consideration

only in tumor regions.

The proliferating zone P comprises a few hundred cells that grow and divide

as dictated by nutrient conditions, and whose shape changes are governed by their

internal rheology and the forces acting on them. We assume that cells grow as long

as they are within the threshold of stress and have adequate nutrients. Some of the

cells in P become quiescent when the level of nutrients drops below the threshold,

and since the quiescent region Q is represented as a continuum, this requires that
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Fig. 3. A schematic showing how forces are transmitted from individual cells in the proliferating
region to the quiescent region, which is treated as a continuum. A similar schematic applies to
the interface between the proliferating region and the surrounding gel. When we transform the
part of proliferating region to the quiescent region, we interpolate the data from the old mesh to
the new mesh using information stored at nodal points of the old mesh and at the center of the
transformed cells (i.e. quiescent cells) in the cell-based model. This data transfer is done using a
least squares projection.

those cells be transformed into the continuum region Q. The displacements of these

transformed cells and the forces acting on them are converted into displacements

and stress fields in this newly formed continuum material in Q. We also assume

that the ECM between cells that are converted into continuum is converted as well

so as to preserve mass during the transformation.

3.1. The cell-based component

There are three major constituents that are needed to describe individual cells:

(i) their mechanical interaction with the surroundings, (ii) how an individual cell

reacts to forces on it, and (iii) how growth and division are described, and how

stress affects growth. These are described in the following two subsections.

3.1.1. The forces acting on individual cells

The mechanical behavior of individual cells in the proliferating zone is based on

the model developed by Dallon and Othmer18 (hereafter the paper and model is

denoted DO), which is the extension to 3D of an earlier model.42 The new aspect

that is needed in the present context is the growth and division of cells.

The forces on a cell in the DO model are (i) the active forces exerted on neigh-

boring cells or the substrate, (ii) a reactive force due to forces exerted by other cells

on it, (iii) the dynamic drag forces that arise as a moving cell forms and breaks

adhesive bonds with neighboring cells, and (iv) a static frictional force that exists

when cells are rigidly attached to each other or to the substrate. The active force

on cell i is denoted Ti,j , wherein j = 0 denotes the substrate, and the reaction

force to this is denoted Mj,i. The static force, which is denoted Sji , is the binding
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force on the ith cell when bound to the jth. Since Sji = −Sij , the cell–cell forces

cancel on all but those cells attached to the substrate (a more detailed discussion

of all forces involved is given in DO).

The total force on the ith cell is then given by

Fi =
∑

j∈Na

i

Mj,i +
∑

j∈Na

i

Tj,i +
∑

j∈Nd

i

µij(vj − vi) +
∑

j∈N s

i

Sji, (3.1)

where N a
i denotes the neighbors of i, including the substrate, upon which it can

exert traction, N d
i is the set of “cells” (which includes substrate and extracellular

matrix) that interact with i via a frictional force, and N s
i denotes the set of cells

that statically bind to cell i.

3.1.2. The rheology of the cytoplasm and the effect of stress on growth

The intracellular reaction to these forces is treated as in the DO model, i.e. the cells

are treated as oriented ellipsoids whose cytoplasm is described as an incompressible

viscoelastic solid. In the present context we must add growth and division to the

passive response. In this paper we do not include chemotaxis driven by active motive

forces, and these terms are henceforth omitted from (3.1). Certainly some cells may

detach from the tumor and migrate through the surrounding tissue, and this will

be investigated in the future.

As in the DO model, when cells do not grow their volume is constant under all

deformations, but when there is growth this constraint does not apply. We define

V0 as the volume cells attain immediately after division, and we assume here that

this is the same for all cells. It will be clear later that this is easily relaxed. We also

suppose that stress and nutrient levels affect the growth rate, and that the effect

of stress is isotropic. The latter implies that in the absence of external forces all

cells relax to a spherical shape whatever their initial shape, whether or not there

is growth. In the absence of nutrient or stress limitations cells grow to the volume

2V0 and then instantly divide into equal two daughter cells. The minimal cell-cycle

time τc is the doubling time under these conditions. In the presence of extracellular

forces the orientation of cell division is determined by the direction of the net force

exerted on the cell, as others have assumed.26

In the context of a tumor or other tissue, cells interact with neighboring cells and

deplete the nutrients, and this may lead to nonuniform growth in the population and

an increased cell-cycle time. Stress and nutrient levels can affect the growth of cells

differently because the former effect need not be isotropic while the latter always is.

Without adequate nutrients (here oxygen and glucose) cells enter the quiescent

phase. If the nutrient level drops too low they die or undergo apoptosis, and in a

tumor this leads to the necrotic core. Of course apoptosis may occur throughout

the proliferating and quiescent zones as well, but this is not included here.

We assume that growth stops if the stress is too large in magnitude, as has been

suggested by others, and this effect is directional in nature. Without the growth
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component, the governing equations for the length of an axis of a cell reduce to

those in the DO model. In this case the response of the Kelvin element to a step

change in force is creep to the viscous limit after the initial elastic jump, followed

by return to the resting length after removal of the external force. If the applied

force is too compressive or tensile in the current model, the response to the applied

force is the same as in the DO model, but if the magnitude is small enough the

displacement of the solid-growth element increases and asymptotes to the linear

growth profile that results from the growth component (Fig. 4(b)). Release of the

external force leads to the resting length of the spring-dashpot component but the

nontrivial growth component leads to an increase in the length.

The governing equations of the length of the ith axis, i = a, b, c, of a cell are

ui = u0
i + u

g
i , (3.2)

(u0
i )

′ =

(

ki

µi

[fi(t) + p̄ − f2(u
0
i )] + f ′

i(t)

)

×

(

df2(u
0
i )

du0
i

+ ki

)−1

, (3.3)

(ug
i )

′ = f(fi(t) + p̄), (3.4)

where ui is the change in the length of the ith axis, u0
i (ug

i ) is the change in the

length of the ith axis due to a change in the passive (growth) element, f2 is the

nonlinear spring force from the spring in parallel, fi is the magnitude of the force

applied at each end, µi is the viscous coefficient of the dash-pot, ki is the spring

constant for the spring in the Maxwell element, p̄ is the force due to pressure, and

f is the growth function (cf. Fig. 4(a)). The specific form of the function f2 and

details of how these equations are established are given in DO.
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Fig. 4. (a) The growth rate function f(σ). (b) The creep function for the rheological model in
Fig. 2, using the parameters given in Table 1. A force of magnitude 400 nN is applied at time
zero and removed at 12 min. The dashed-dotted line shows the response of the Kelvin element,
the dotted line shows the response due to growth, and the solid line shows the combined effect.
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It is assumed that the passive response is incompressible, and therefore the three

equations for u0
a, u0

b, and u0
c are solved with the volume constraint

(u0
a)′(u0

b + b∗0)(u
0
c + c∗0) + (u0

a + a∗
0)(u

0
b)

′(u0
c + c∗0) + (u0

a + a∗
0)(u

0
b + b∗0)(u

0
c)

′ = 0,

(3.5)

where a∗
0, b

∗
0 and c∗0 are the lengths of three axes a,b, c after growth (a∗

0 = a0 + ug
a,

b∗0 = b0 + u
g
b , c∗0 = c0 + ug

c where a0, b0 and c0 are the initial lengths of three axes).

This means that the viscoelastic components on the three axes must satisfy the

volume constraint after growth.

The effect of stress on growth is described by the relation u̇
g
i = f(σi), for

i = a, b, c, where σi is the axial component of the force applied along the ith axis.

The form of f is based on previous experimental observations. For example, Roose

et al.47 showed that increased gel concentration induced decreased cell volume and

postulated the relation

u̇g
a = 1 − βσ̄. (3.6)

Here we use a piecewise linear function and include the effect of tensile as well as

compressive stresses (cf. Fig. 4). Thus we define f(·) as follows:

f(σ) =



















c−(σ − σ−) if σ− ≤ σ ≤ −α,

−c+(α − σ+) if −α ≤ σ ≤ α,

−c+(σ − σ+) if α ≤ σ ≤ σ+,

0 if σ > σ+, σ < σ−,

where c+, c− are positive constants, σ+ > 0, σ− < 0, [σ−, σ+] is the interval of

positive growth, c+(α − σ+) = −c−(−α − σ−). In the simulations discussed later

we use α = 0.

3.1.3. The equations of motion

As stated earlier, in this paper we do not consider an active force Ti,j and the

reactive force Mj,i. We further restrict attention to a two-dimensional system, and

therefore Newton’s law for the ith cell reduces to

Aifµfvi + Aisµsvi + µcell

∑

j �=i

Aij(vi − vj)

+
A

6πrib



R∗
0,i +

∑

j �=i

Ai,j +
∑

j �=i

Rj,i +
∑

j �=i

R∗
j,i



 = 0. (3.7)

Here A = A(t) is the total area of an undeformed cell, Aij = Aij(t), Aif = Aif (t),

Ais = Ais(t) are the lengths of contact regions between cell i and cell j, cell i and

the interstitial fluid or matrix, and cell i and the substrate at time t respectively,

µcell (resp., µs, µf ) is the degree of adhesiveness between the cells (resp., between the

substrate and the cells, and the fluid viscosity), rib = ub + b0, and vi is the velocity
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Table 1. Parameters for the cell-based component of the model.

Parameter Description Value Refs.

Adhesion parameters

µcell Cell–cell adhesiveness 27.0 dyn s/cm 18

µs Cell-substrate adhesiveness 27.0 dyn s/cm 18

µf The fluid viscosity 2.7 dyn s/cm 18

Rheological parameters

c+ Growth function parameter 5.16089×10−9 mm/(min.nN)
σ+ Growth function parameter 800 nN
σ− Growth function parameter −4 nN
α Growth function parameter 0.0 nN
ka Standard solid parameter 163.8 dyn/cm 18

k2 Standard solid parameter 147.5 dyn/cm, 18

µa Standard solid parameter 123 dyn min/cm 18

of cell i. The base parameters that characterize the cells are given in Table 1; those

that are changed later will be noted. Details as to how the various terms in (3.7)

are computed can be found in DO. Of course here the total number of cells changes

due to cell division and the incorporation of cells into the quiescent region.

3.2. The continuum components for mechanics and nutrients

As was indicated in the Introduction, we use a continuum description for the

mechanical response of the gel outside the tumor, and for the quiescent and

necrotic regions of the tumor. The outer gel Ω0 and the interior regions Ωm, m =

1, 2, are treated as linear viscoelastic materials with different material properties

Cm,Dm, m = 0, 1, 2. Therefore the constitutive equations are

σ = Cǫ + Dǫ̇ on Ω × (0, T ), (3.8)

where the strain is defined as

ǫ =
1

2
(∇u + (∇u)T),

u is the displacement field, and “˙” is the partial derivative with respect to time.

C and D are defined implicitly by the relations

(Cǫ)αβ =
E

1 + ν
ǫαβ +

Eν

1 − ν2
(ǫ11 + ǫ22)δαβ , 1 ≤ α, β ≤ 2,

(Dǫ̇)αβ = µ1ǫ̇αβ + µ2(ǫ̇11 + ǫ̇22)δαβ , 1 ≤ α, β ≤ 2.

Here E and ν are Young’s modulus and the Poisson ratio, respectively, and µ1, µ2

are the shear and bulk viscosities, respectively. These are different in each of the

regions (cf. Table 2), but for simplicity we omit the additional label needed on the

parameters.
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We neglect inertial effects and therefore the momentum equation reduces to

∇ · σ = 0 on Ω × (0, T ) (3.9)

with boundary conditions

u0 = 0 on Γ0 × (0, T ),

σ
0 · n = q0 on Γc0 × (0, T ), (3.10)

σ
1 · n = q1 on Γc1 × (0, T ).

Here Γ0 is the fixed outer boundary, Γc0 is the interface between G and P , Γc1

is the interface between P and Q, u0 and u1 are the displacement fields on G

and P , resp., σ
0 and σ

1 are the stress fields on Ω0 and Ω1, resp. q0 and q1 are

boundary forces acting on Γc0 and Γc1 resp. ; these are calculated from the cell-

based component as indicated in Fig. 3. These equations are solved using the finite

element method based on the triangular mesh shown in Fig. 5(a). The parameters

used in the computations are given in Table 2.

The nutrients considered here are oxygen and glucose, and we assume that their

consumption is described by Michaelis-Menten kinetics. The governing equations

for the evolution of the nutrients, assuming Dirichlet boundary conditions, are

∂cO2

∂t
= Do∇

2cO2
− φO2

(cO2
)

(

AO2
+

BO2

cgl + nO2

)(

cO2

cO2
+ kO2

)

in Ω

∂cgl

∂t
= Dg∇

2cgl − φgl(cgl)

(

Agl +
Bgl

cO2
+ ngl

)(

cgl

cgl + kgl

)

in Ω (3.11)

cO2
= ¯cO2

, cgl = c̄gl on ∂Ω

where cO2
(cgl) is the molar concentration of oxygen (glucose), the second term of

each equation is a function describing the consumption of oxygen (glucose) by the

(a) (b)

Fig. 5. The computational grid for solving the equations of motion on the continuum components
of the tumor (a) and for the reaction-diffusion equations (b).
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Table 2. The rheological parameters for the continuum regions.

Parameter Description Value Refs.

G

Ea Young’s modulus E in G 10–200 MPa
νa Poisson ratio in G 0.5
µa

1 Shear viscosity in G 100.0 (nN·min)/(mm)2

µa
2 Bulk viscosity in G 300.0 (nN·min)/(mm)2

Q

Eq Young’s modulus E in Q 100 MPa
νq Poisson ratio in Q 0.5
µ

q
1 Shear viscosity in Q 100.0 (nN·min)/(mm)2

µ
q
2 Bulk viscosity in Q 300.0 (nN·min)/(mm)2

N

En Young’s modulus E in N 80 MPa
νn Poisson ratio in N 0.5
µn

1 Shear viscosity in N 80.0 (nN·min)/(mm)2

µn
2 Bulk viscosity in N 250.0 (nN·min)/(mm)2

tumor, Do (Dg) is the space-dependent (G,P ,Q,N ) diffusion coefficient of oxygen

(glucose), AO2
, Agl, BO2

, Bgl, kO2
, kg, nO2

, and ngl are empirically determined

parameters, and the cell consumption indicator function is given by

φO2
(cO2

) =

{

1 in P ,Q

0 in G,N
(3.12)

and similarly for φgl(cgl). The parameter values for the reaction-diffusion equations

are given in Table 3.

The reaction-diffusion equations (3.11) are solved on the regular grid using an

alternating-direction implicit (ADI) scheme and the nonlinear solver nksol for alge-

braic systems. A typical spatial grid size used was hx = hy = 0.01 or 0.02. An initial

time step of 0.001, which corresponds to 3.6 seconds, was used, but adaptive time

Table 3. Dimensional parameters used in the reaction-diffusion component of the model. We

use the cell average packing density 2.01× 108 cells/cm3 in Casciari et al.15 to convert uptake
parameters AO2

, Agl, BO2
, Bgl in this table to rates per unit volume.

P Description Value Refs.

Diffusion coefficients of oxygen in each region

Da
o 1% agarose 2.15 × 10−5 cm2/s 37

D
p
o Proliferating region 1.82 × 10−5 cm2/s 40

D
q
o Quiescent region 1.54 × 10−5 cm2/s This work

Dn
o Necrotic region 1.34 × 10−5 cm2/s This work

Diffusion coefficients of glucose in each region

Da
g 1% agarose 6.46 × 10−6 cm2/s 61

D
p
g Proliferating region 1.1 × 10−6 cm2/s 14

D
q
g Quiescent region 0.96 × 10−6 cm2/s This work

Dn
g Necrotic region 0.86 × 10−6 cm2/s This work
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Table 3. (Continued)

P Description Value Refs.

Coefficients in uptake functions

ct
H

H+ concentration in tumor 1 × 10−4 mM 13

AO2
Oxygen uptake parameter 1.0642 × 10−16 mol

cell·s
13, 15

BO2
Oxygen uptake parameter 6.0202 × 10−17 mol·mM

cell·s
13, 15, 23

Agl Glucose uptake parameter 1.0642 × 10−16 mol
cell·s

13, 15, 23

Bgl Glucose uptake parameter 1.7879 × 10−17 mol·mM
cell·s

15, 23

kO2
Critical oxygen concentration 4.640 × 10−3 mM 15

kgl Critical glucose concentration 4.0 × 10−2 mM 15
nO2

Oxygen uptake parameter 0.55mM 23
ngl Glucose uptake parameter 0.04mM 23

Boundary conditions

cO2bc Oxygen concentration in medium 0.2mM 15, 23
cglbc Glucose concentration in medium 25 mM 29

Quiescent region thresholds

thqO2
Critical oxygen concentration 0.0625 mM This work

thqgl Critical glucose concentration 1.17mM This work

Necrosis thresholds

thnO2
Critical oxygen concentration 0.0500 mM 15, this work

thngl Critical glucose concentration 0.0055 mM 15

stepping based on the number of iterations could increase or decrease this. After

convergence of the nutrient solve step, we check the level of nutrients in order to

determine whether cells near the boundary in the proliferating region have to be

transformed to the quiescent region and the P–Q interface has to be updated. For

this purpose the nutrient level at the center of the cell is used, and interpolation to

and from grid to cell is done as described in DO. Knowing the level of nutrients at

the cell sites we have three choices for determining the P–Q interface: either oxygen

or glucose must be below a threshold, or both must be below their thresholds. Here

we use the oxygen level as the critical nutrient that determines the interface. An

outline of the complete computational algorithm is as follows.

3.3. The computational algorithm

Step 0. Initialization.

Step 0.1 Set rectangular grid for ADI algorithm that determines nutrient

concentrations, and initialize nutrient values.

Step 0.2 Initialize cell-based component by randomly placing cells in the

proliferating domain.

Step 0.3 Use these cells to create boundaries of continuum regions. Cre-

ate mesh in continuum region.

Step 0.4 Let the system relax to mechanical equilibrium, and allow the

nutrient profiles to reach equilibrium given the initial configu-

ration of the tumor.



A Hybrid Model for Tumor Spheroid Growth in vitro 1789

Step 1. Locate all cells and continuum mesh that are within a given distance from

cell i.

Step 2. Deformation and translation of cells.

Step 2.1 Find all the forces that act on the cell, Fnet from each of the

neighbor cells found in [Step 1].

Step 2.2 Deform the three axes of the ellipsoid according to (3.2)–(3.5)

and, based on the nutrient levels and stress magnitude, allow

cells to grow.

Step 2.3 Move the cells according to the force balance equation (3.7).

Step 3. Communicate between continuum and cell-based regions by transferring

data at region boundaries.

Step 3.1 Determine location, magnitude, and direction of force exerted

by cells onto continuum boundary.

Step 3.2 Using the finite element interpolation functions that are valid

on the boundary elements, distribute point forces from cells

onto nodes of elements. This nodal force distribution is used as

a natural boundary condition for the stress distribution in the

continuum regions.

Step 4. Calculate the stress in continuum regions. Remesh continuum regions if

current mesh becomes severely distorted.

Step 5. Divide cells when their volume reaches 2V0. Axis of division is determined

by all forces acting on the cell. Once cell division occurs, we allow the cells

to reach a new mechanical equilibrium that accounts for the newly added

cells.

Step 6. Update the nutrient levels using the ADI method. This does not need to

be done every iteration.

Step 7. Update continuum regions.

Step 7.1 Check the nutrient level for cells near the P–Q interface to

determine if the nutrient levels are below the threshold defining

quiescent region, and if so, find the cells in this region. These

cells will be removed from the cell-based model and will become

represented by the continuum model.

Step 7.2 Update the new interface between the proliferating region and

quiescent region. i.e. generate a new mesh on the interior (Q+

N ) region and interpolate the data from the old mesh to this

new mesh or from the cell-based model to the new mesh, as

appropriate. (See Fig. 3.) A least squares approximation is used

for data interpolation.

Step 7.3 Nutrient threshold values are used to determine new Q–N

boundary.

Step 8. Go to [Step 1].
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4. Computational Results

We first investigate the growth of a tumor in the absence of the outer agarose gel,

which is similar to experiments in which a tumor is grown in suspension. We use an

initial configuration of the tumor in which the proportions of the three regions are

specified, but which are not solutions of the full system, and allow the system to

evolve. The initial regions are circularly symmetric, and both the quiescent region

and the necrotic core are treated as continua. In Fig. 6(a) we show the initial

configuration and three later times, and in Fig. 6(b) we show the corresponding

oxygen and glucose concentrations. In (a) proliferating cells transform to quiescent

cells and quiescent cells to necrotic cells when the oxygen level interpolated to

the cell centroid drops below specified thresholds. It is clear in (a) that the tumor

grows asymmetrically, and this is reflected in the asymmetric nutrient profiles in (b).

This asymmetry arises in part from the dynamics and in part from the numerical

procedures. The former arises from small variations in size and hence in division

time, which in turn biases nutrient profiles and in turn reinforces the differences

(a)

Fig. 6. (a) Evolution of a tumor spheroid in the absence of the outer gel. N is represented by
the inner light blue region; it is enclosed by the continuum quiescent region (Q) and the outer
cell-based region. Here and in the remaining figures the space unit is 10 microns. (b) The time
evolution of the oxygen and glucose levels. Upper panels: t = 1hr, lower panels: t = 43 hr. The
parameters used are: c+ = 1.16089×10−8 mm/(min·nN), σ− = −400 nN, AO2

= 3.08014, BO2
=

6.97 × 10−2, Agl = 8.00038, Bgl = 2.07 × 10−2 (dimensionless values).
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(b)

Fig. 6. (Continued)

in growth. Since there is no restraining force outside the proliferating region there

is no mechanism for reducing this source of asymmetry. The latter arises because

the cell states are updated sequentially, which introduces an asymmetry into the

growth. Further tests to establish the contribution of each source are needed, but

results shown later for growth in the presence of an outer gel suggest that the former

is the primary source of the asymmetry.

Figure 7 shows the growth in time of the diameters of the proliferating, quies-

cent and necrotic regions of the tumor. Here and hereafter the diameters of the Q

and N regions were determined by taking the average distance from the spheroid

center to each node on each contact boundary, i.e. the P–Q and the Q–N interface,

respectively. Similarly the diameter of a tumor is defined as maxi 2.0(di
c+ri

c) where

di
c is the distance from the center of the ith cell in P region to the spheroid center

and ri
c = 0.5 ∗ (rai

c + rbi
c), where rai

c, rb
i
c are the half length of axial lengths in two

major axis a,b. One sees in Fig. 7 that the initial configuration is not a solution of

the governing equations, since there is an initial rapid increase in the diameter of

the quiescent and necrotic regions. Some of the irregularity in the expansion of the

quiescent region is due to the fact that the Q–P interface is advanced one layer of

cells at a time. That is, rather than advancing the interface on a cell-by-cell basis

as cells cross threshold, we wait until all cells within a nominal diameter of the
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Fig. 7. The evolution of the diameter of the tumor, the quiescent region, and the necrotic region,
as well as the thickness of the viable region in the tumor in Fig. 6 as a function of time.

existing interface cross threshold, and then advance the entire layer. This is done

for computational expediency at present, but refinement of this step is possible.

Similarly, the irregularity of the Q–N interface is due to the fact that we do not

re-mesh every time step, and therefore the motion of the interface lags the change

in the nutrient threshold. Again, this can be refined.

One also sees in Fig. 7 that after about 20 hours the system settles into a quasi-

static growth regime in which the diameter of the tumor continues to increase

at a constant rate. It is noteworthy that after this initial transient the thickness

of the viable region, which is defined as the tumor radius minus the radius of

the necrotic region, remains essentially constant at about 100 microns. This linear

growth regime, in which the thickness of the viable region is essentially constant, is

also seen experimentally in many, but not all, tumor spheroids (cf. Fig. 2 in Ref. 40).

As we will see in the following, the thickness of the viable region remains more or

less constant, even when the tumor grows more slowly due to elastic forces on the

tumor from the surrounding medium.

To understand the effect of stress on the growth rate of a tumor, we studied

the growth of spheroids in an agarose gel of four different stiffness, as measured

by the Young’s moduli, using other parameter values as given in the tables, and

initial conditions as in the free suspension. Again this initial configuration is not a

solution of the governing equations, and is first allowed to relax both mechanically

and with respect to the nutrient distribution. One sees in Fig. 8 that the shape of a

tumor spheroid embedded in an agarose gel is relatively symmetric and much more

regular than the shape of a tumor growing in free suspension (cf. Fig. 6).
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Fig. 8. The growth of a tumor embedded in an agarose gel of Young’s modulus Ea = 200mPa.
Note that the thickness of the viable rim has stabilized by about 7 days.

The necrotic region, proliferating region, and overall tumor growth profiles are

governed by nutrient uptake, which is primarily dependent on the proliferating

region. As the tumor grows by expanding the proliferating region, the level of

nutrients at the center decreases. When the oxygen in the interior-most layer of

cells drops below the threshold that determines the transition to quiescence, a layer

of cells is converted to the Q continuum. As the tumor grows further the level

drops below the Q→N threshold and quiescent cells become necrotic. However,

as shown in Fig. 9, after the initial transient the thickness of the viable region

stabilizes at about 100 microns, independent of the stiffness of the gel. However,

the stiffness does have a significant effect on the overall growth rate of the tumor. In

Figs. 9(a)–9(d) the Young’s moduli are 10, 20, 80 and 200 MPa, respectively, and

the corresponding growth rates are 44, 44, 33, and 28 microns/day, respectively.

Thus a relatively compliant gel shows little difference in growth from growth in

suspension, but when the stiffness is large enough that the stress exerted by the gel

exceeds α in Fig. 4, growth slows. Since the computational domain Ω in which the

tumor and gel are contained is bounded, and since the boundary of Ω is fixed, the
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(a) (b)

(c) (d)

Fig. 9. The growth rates of tumors in gels of increasing stiffness. Panels (a)–(d) correspond to
Young’s moduli Ea of the gel of 10, 20, 80, and 200 MPa, respectively, while other parameters are
as in the tables. Despite a twenty-fold difference in stiffness, the thickness (×) of the viable rim
is essentially constant, even though the diameters of the tumor (solid line), the quiescent region,
and necrotic region increase. The steps in the diameters of Q and N region occur for the reasons
given in the text.

stress effect on growth would also be seen at sufficiently large times for the more

compliant gels.

5. Discussion

In the hybrid model described herein we treat the quiescent and necrotic tumor

regions as continua and the region in which tumor cells actively proliferate as ellip-

soidal single cells. As a result this model can be used to address numerous experi-

ments which one may not be able to address by discrete-cell off-lattice or continuum

models alone. We can thereby increase our understanding of tumor growth and the

effect of the tumors micro-environment on that growth. We have only discussed a

2D version of the model here, but it is important to consider a model of the full

3D tumor environment as there can be large differences in intracellular signaling,

intercellular interactions, and drug responses between 2D tumor cell cultures and
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3D cultures.51 We are currently developing a 3D version of the techniques described

herein, and the results from the 3D model will be reported elsewhere.

A major advantage of the approach described here is that details of intracellular

dynamics and cell–cell interactions in the proliferating region are easily included

without compromising the numerical tractability of the method. For example, it is

easy to introduce changes in cell-level parameters such as adhesion, growth rates,

etc and investigate their consequences. One can also include chemotaxis in the

model, which in turn will allow us to consider tumor cell shedding, a phenomenon

of particular importance in the dynamics of highly invasive glioma tumors.27 In

addition, it has been shown that upon disrupting cell–cell adhesion and protease

function in tumor cell lines, the cells can switch modes from collective motility to

single-cell amoeboid motility.58 This plasticity in motility mechanisms depends on

the tumor environment, and the present model is ideally suited to investigate these

highly-localized effects.

Further work on the effect of stress on tumor growth will involve a comparison of

our numerical results with the experiments of Helmlinger et al.29 in detail. Doing so

will allow us to more accurately determine how material properties of the necrotic

region and forms of the nutrient uptake functions affect tumor growth. In addition,

in the numerical results described herein, we assume that the effect of stress on

growth is linear and isotropic and that compressive and tensile stresses have the

same effect. It is unlikely that this is the case, and a detailed comparison of numer-

ical results to experimental findings will allow us to more accurately determine the

functional form for the dependence of growth of spheroids and in vivo tumors on

stress.

In light of the flexibility and applicability of the hybrid model, further math-

ematical analysis and numerical validation of the full hybrid model is warranted,

and the results of this analysis will be reported in a future paper.
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