
 Open access Book Chapter DOI:10.1007/978-3-7091-4009-3_12

A Hybrid Monitor Assisted Fault Injection Environment — Source link

Luke T. Young, Carlos Alonso, Ravi Iyer, Kumar K. Goswami

Institutions: University of Illinois at Urbana–Champaign

Published on: 01 Jan 1993

Topics: Fault injection, Fault detection and isolation, Dependability, Cache and Fault tolerance

Related papers:

 FIAT-fault injection based automated testing environment

 Understanding large system failures-a fault injection experiment

 Fault injection for dependability validation: a methodology and some applications

 Evaluation of error detection schemes using fault injection by heavy-ion radiation

 FERRARI: a tool for the validation of system dependability properties

Share this paper:

View more about this paper here: https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-
sh8esnmtb0

https://typeset.io/
https://www.doi.org/10.1007/978-3-7091-4009-3_12
https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-sh8esnmtb0
https://typeset.io/authors/luke-t-young-26d45w8cmk
https://typeset.io/authors/carlos-alonso-14rtimoqro
https://typeset.io/authors/ravi-iyer-45tkcvi6fs
https://typeset.io/authors/kumar-k-goswami-nrwmrtgyao
https://typeset.io/institutions/university-of-illinois-at-urbana-champaign-1mpdu76r
https://typeset.io/topics/fault-injection-fe2nxgxf
https://typeset.io/topics/fault-detection-and-isolation-kg05mkoj
https://typeset.io/topics/dependability-23csuu5f
https://typeset.io/topics/cache-1i1l9v6x
https://typeset.io/topics/fault-tolerance-2dix0nz6
https://typeset.io/papers/fiat-fault-injection-based-automated-testing-environment-26z7q3jra7
https://typeset.io/papers/understanding-large-system-failures-a-fault-injection-4rdj8noo3q
https://typeset.io/papers/fault-injection-for-dependability-validation-a-methodology-2anc51qv9h
https://typeset.io/papers/evaluation-of-error-detection-schemes-using-fault-injection-2qvpsry9i9
https://typeset.io/papers/ferrari-a-tool-for-the-validation-of-system-dependability-4lasf0h5ts
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-sh8esnmtb0
https://twitter.com/intent/tweet?text=A%20Hybrid%20Monitor%20Assisted%20Fault%20Injection%20Environment&url=https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-sh8esnmtb0
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-sh8esnmtb0
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-sh8esnmtb0
https://typeset.io/papers/a-hybrid-monitor-assisted-fault-injection-environment-sh8esnmtb0

February 1992 U IL U -E N G -92-2207

C R H C -92-04

Center for Reliable and High-Performance Computing

O QoT" ’-

A H Y B R ID M O N IT O R

A S S IS T E D

F A U L T IN J E C T IO N

E N V IR O N M E N T

L u k e T . Y o u n g a n d R a v i K . Iy e r

Coordinated Science Laboratory

College of Engineering

U N I V E R S I T Y O F IL L IN O IS A T U R B A N A -C H A M P A I G N

Approved for Public Release. Distribution Unlimited.

UNCLASSIFIED

SECURITY CLASSIRCATIÓN OF THIS PAGE

R E P O R T D O C U M E N T A T I O N P A G E

1 a . R E P O R T S E C U R IT Y C L A S S IF IC A T IO N

Unclassified

1 b . R E S T R IC T IV E M A R K I N G S

None

2 a . S E C U R IT Y C L A S S IF IC A T IO N A U T H O R I T Y

2 b . D E C L A S S I F I C A T I O N / D O W N G R A D I N G S C H E D U L E

3 . D IS T R IB U T IO N / A V A I L A 8 I L I T Y O F R E P O R T

Approved for public release;

distribution unlimited

4 . P E R F O R M I N G O R G A N I Z A T I O N R E P O R T N U M B E R (S)

CRHC-92-04

5 . M O N I T O R I N G O R G A N I Z A T I O N R E P O R T N U M B E R (S)

UILU-ENG-92-2207

6 a . N A M E O F P E R F O R M IN G O R G A N I Z A T I O N

Coordinated Science Lab
University of Illinois

6 b . O F F IC E S Y M B O L

(If applicable)

N/A

7 a . N A M E O F M O N I T O R I N G O R G A N I Z A T I O N

Office of Naval Research & Tandem Corp

6 c A D D R E S S (Gty, State, and ZIP Code)

1101 W. Springfield Ave.
Urbana, IL 61801

7 b . A D D R E S S (C / t y , State, and ZIP Code)

800 N. Quincy St.

Arlington, VA 22217

19333 Valico Pkvc /

Cupertino, CA 9501!»

8 a . N A M E O F F U N D I N G / S P O N S O R I N G

O R G A N I Z A T I O N J o i n t S e r v i c e s

Electronics Program 7a

8 b . O F F IC E S Y M B O L

(If applicable)

9 . P R O C U R E M E N T I N S T R U M E N T I D E N T I F I C A T I O N N U M B E R

N00014-91-J-1116

8 c A D D R E S S (City, State, and ZIP Code)

800 N. Quincy St.

Arlington, VA 22217

1 0 . S O U R C E O F F U N D I N G N U M B E R S

P R O G R A M P R O J E C T T A S K W O R K U N I T

7b E L E M E N T N O . N O . N O . A C C E S S I O N N O .

1 1 . T IT L E (Include Security Classification)

A hybrid monitor assisted fault injection environment

1 2 . P E R S O N A L A U T H O R (S)

YOUNG, L. T. and R. K. Iyer

1 3 a . T Y P E O F R E P O R T 1 3 b . T I M E C O V E R E D 1 4 . D A T E O F R E P O R T (Year, Month, Day) 1 5 . P A G E C O U N T

Technical F R O M T O 1992 March 04 31

1 6 . S U P P L E M E N T A R Y N O T A T I O N

1 7 . C O S A T I C O D E S

F IE L D G R O U P S U B - G R O U P

1 8 . S U B J E C T T E R M S (Continue on reverse if necessary and identify by block number)

error latency, error propagation, application dependability

hybrid monitor, fault injection, TMR, RISC

1 9 . A B S T R A C T (Continue on reverse i f necessary and identify by block number)

(continued)

T h is p a p e r d e sc r ib e s a h y b r id fa u lt in je c tio n e n v iro n m e n t th a t c a n b e u se d to e v a lu a te th e d e p e n ­

d a b il i ty o f c o m p u tin g sy s te m s . I t c o n s is ts o f a fa u lt in je c tio n sy s te m , a h y b rid m o n ito r , a n d a

su p e rv iso ry s y s te m to a u to m a te th e m e a su re m e n ts . T h e h y b rid e n v iro n m e n t c o m b in e s th e v e rs a ­

t ility o f s o f tw a re in je c tio n an d th e a c c u ra c y o f h a rd w a re m o n ito r in g . It is u se fu l fo r o b ta in in g

d e p e n d a b ili ty s ta tis tic s a n d fa ilu re c h a ra c te r is tic s fo r a ra n g e o f sy s te m c o m p o n e n ts . I t is a ls o

w e ll su ite d fo r m e a su rin g e x tre m e ly sh o rt e rro r la te n c ie s , a n d th e in tro d u c e d o v e rh e a d is

m in im a l so th a t e r ro r p ro p a g a tio n an d c o n tro l flow are n o t s ig n ific a n tly a ffe c te d b y th e p re s e n c e

o f in s tru m e n ta tio n . T h e h y b rid e n v iro n m e n t can be u sed to o b ta in p re c ise m e a s u re m e n ts o f

in s tru c tio n - le v e l a c tiv ity th a t w o u ld o th e rw ise b e im p o ss ib le to p e rfo rm w ith a h a rd w a re m o n ito r

a lo n e .

2 0 . D I S T R I B U T I O N / A V A I L A B I L I T Y O F A B S T R A C T

E U N C L A S S I F I E D / U N L I M I T E D □ S A M E A S R P T . □ D T IC U S E R S

2 1 . A B S T R A C T S E C U R IT Y C L A S S IF IC A T IO N

Unclassified

2 2 a . N A M E O F R E S P O N S IB L E I N D I V I D U A L 2 2 b . T E L E P H O N E (Include Area Code) 2 2 c . O F F IC E S Y M B O L

DD FORM 1473,8 4 M A R 8 3 A P R e d i t i o n m a y b e u s e d u n t i l e x h a u s t e d .

A l l o t h e r e d i t i o n s a r e o b s o l e t e .

S E C U R IT Y C L A S S IF IC A T IO N O F T H IS P A G E

UNCLASSIFIED

UNCLASSIFIED_____________

S E C U R I T Y C L A S S IF IC A T IO N O F T H I S P A O C

T he utility o f the fau lt injection environm ent is dem onstrated by applying it to the study o f a Tandem
Integrity S2 system . Faults are injected into C PU registers, cache, and local m em ory. T he effects o f faults on
individual user app lications are studied by obtaining subsystem dependability m easurem ents such as detec ­

tion and latency statistics for cache and local m em ory subsystem s. Instruction-level fault sensitivity and error
propagation effects are also m easured.

keywords:

RISC.
error latency, error propagation , application dependability, hybrid m onitor, fault injection , TM R,

. 1 9 c o n t i n u e d

I
I

!
I

UNCLASSIFIED

S E C U R I T Y C L A S S I F I C A T I O N O F T H I S P A G E

A Hybrid Monitor Assisted Fault Injection Environment

L.T. Young and R.K. Iyer

Center for Reliable and High Performance Computing

Coordinated Science Laboratory

University of Illinois at Urbana-Champaign, Urbana, IL 61801

A B S T R A C T

T h is p a p e r d e sc r ib e s a h y b r id fa u lt in je c t io n e n v ir o n m e n t th a t c a n b e u se d to e v a lu a te th e

d e p e n d a b ility o f c o m p u tin g sy ste m s . I t c o n s is ts o f a fa u lt in je c t io n sy ste m , a h y b r id m o n ito r , a n d

a su p e r v iso r y sy ste m to a u to m a te th e m e a su r e m e n ts . T h e h y b r id e n v ir o n m e n t c o m b in e s th e v e r ­

sa tility o f so f tw a r e in jec t io n a n d th e a c c u r a c y o f h a r d w a r e m o n ito r in g . I t is u se fu l fo r o b ta in in g

d e p e n d a b ility s ta t is t ic s a n d fa ilu r e c h a r a c te r is t ic s fo r a r a n g e o f sy s te m c o m p o n e n ts . I t is a lso

w ell su ite d fo r m e a su r in g e x tr e m e ly sh o r t e r r o r la te n c ie s , a n d th e in tr o d u c e d o v e r h e a d is m in im a l

so th a t e r r o r p r o p a g a t io n a n d c o n tr o l f lo w a r e n o t s ig n ific a n tly a f fec te d b y th e p r e se n c e o f in s tr u ­

m e n ta t io n . T h e h y b r id e n v ir o n m e n t c a n b e u se d to o b ta in p r e c is e m e a su r e m e n t s o f in s tr u c tio n -

le v e l a c t iv ity th a t w o u ld o th er w ise b e im p o ss ib le to p e r fo r m w ith a h a r d w a r e m o n ito r a lo n e .

T h e u t il ity o f th e fa u lt in jec t io n e n v ir o n m e n t is d e m o n s tr a te d b y a p p ly in g it to th e s tu d y o f a

T a n d e m Integrity S 2 sy s te m . F a u lts a r e in jec te d in to C P U r e g is te r s , c a c h e , a n d lo c a l m e m o r y .

T h e e ffe c ts o f fa u lts o n in d iv id u a l u se r a p p lic a t io n s a r e s tu d ie d b y o b t a in in g su b sy s te m d e p e n d a ­

b il ity m e a su r e m e n ts su c h a s d e te c t io n a n d la te n c y s ta t is t ic s fo r c a c h e a n d lo c a l m e m o r y su b sy s ­

te m s . In s tr u c t io n - le v e l fault sensitivity a n d e r r o r p r o p a g a t io n e ffe c ts a r e a lso m e a su r e d .

k e y w o rd s: e r r o r la te n c y , e r r o r p r o p a g a t io n , a p p lic a t io n d e p e n d a b ility , h y b r id m o n ito r , fa u lt

in je c t io n , T M R , R IS C .

I . IN T R O D U C T IO N

D esigners o f h ighly reliable com puter system s need realistic m easurem ents in o rd er to com plete

evaluations based on sim ulation o r analytical m ethods. Fault injection is w ell know n fo r its successful

use in system validation and in the extraction o f dependability statistics such as latency and fau lt de tec ­

tion ratio. It is difficult, how ever, to realistically m easure the effects o f faults w ithout depend ing on a

passive m onitor. L ikew ise, it is difficult to m easure the effects o f faults on softw are-defined com -

2

ponents (e.g., sections o f a g iven application) w ithout significantly d isturbing the system under test.

T his paper describes a hybrid fault in jection environm ent, w herein faults are in jec ted v ia softw are

and the im pact is m easured by both softw are and hardw are. T he env ironm ent is useful fo r evaluating

system dependability , and it has the advantage in that it in troduces m inim al perturbation, and provides a

h igh degree o f con trol o ver the location o f faults to be injected. Faults can be in jec ted into any location

that has a physical address, e .g., C PU registers, cache, local m em ory, m ass storage, ne tw ork controllers,

etc.... Faults can also be in jected into locations allocated to a single, executing u ser program o r even

into the kernel, and propagation can be characterized dow n to the instruction level. T he environm ent is

w ell suited fo r m easuring extrem ely short e rro r latencies, and the introduced overhead is m inim al so that

e rro r propagation and control flow are no t significantly affected by the presence o f instrum entation.

W e illustrate the env ironm ent by applying it to the study o f the U nix-based, Tandem Integrity S2

com puting system . D etection statistics and prec ise latency m easurem ents fo r cache and local m em ory

subsystem s are obtained. W e also exam ine instruction-level erro r propagation effects and m easure fault

iso lation tim es.

Several key results are presented in th is paper. O ur findings support the design decision to

preserve e rro r correction coding in cache but no t in local m em ory. T he faults in jected in the local

m em ory subsystem o f the S2 causes a C PU divergence/shutdow n only 3.6% o f the tim e. B ut in the

cache, CPU divergence/shutdow n occurs 95.0% o f the tim e (in only the first m inute). E arly fault rem o ­

vals are due m ostly to overw rites by the application; la te r rem ovals are due m ostly to page deallocation.

T his inform ation characterizes a natural fault rem oval processes and could assist in the design o f

efficient scrubbing techniques. In cache, m ost detected faults are found in less than 493 m icroseconds

and m ost in jected faults are found in less than 501 m icroseconds. By com parison, it takes 51.2 seconds

to scrub all o f cache at the rate local m em ory uses. T his finding supports the design decision to not p e r ­

form m em ory scrubbing in cache. W e characterize im m ediate error propagation effects caused by

© 1992 L .T . Y oung and R .K . Iyer

3

in jection faults in to the instruction stream o f a M ips R ISC processor. T he im pact o f faults on instruc ­

tion code during runtim e is significant — we find that single-bit errors propagate additional errors 85.9

percent o f the tim e. W e observe that instructions d iffer substantially in the degree to w hich they are

fault sensitive and affect error propagation. Since la tency and detection statistics can be obtained for

m any applications and opcodes, this tool provides a w ay to charac terize the dependab ility o f an entire

instruction set.

I I . R E L A T E D R E S E A R C H

2.1 L a te n cy S tu d ies

T he term error detection latency is defined as the tim e tha t elapses betw een the activation o f an

error and its d iscovery. S im ilarly , fault latency is the tim e delay betw een w hen a fau lt com es into

existence and w hen it becom es active by producing an error. In com puter system s, failure rates can be

elevated during a bu rs t o f system activity because errors m ay rem ain und iscovered until then. F o r th is

reason, it is generally believed that long fault and erro r latencies are undesirable and can have a

significant im pact on a com puting system ’s reliability.

M ost fault latency experim ents have taken an em ulator-based approach. S tudies o f CPU fault

latency using a gate-level em ulation o f an avionic m inip rocessor are described in [N A SA 81],[N A SA 83].

S im ilar experim ents are reported in [L ala83],[M cG o83]. A m ethodology fo r on-line testing o f

m icroprocessors and the distribution o f failure detection tim es for those affecting the M 6800 C PU die

are reported in [Cour81]. In [Shin86], an indirect technique is used to estim ate fau lt latency at the p ins

o f the chips in the C PU o f the Fault T olerant M ultiprocesso r (FTM P). B ecause the exac t m om ent w hen

a fault becom es an e rro r is not know n, the technique gives only an upper bound fo r fault latency.

© 1992 L .T. Y oung and R .K . Iyer

4

C hillarege has developed a m ethodology fo r studying e rro r latency characteristics o f m edium to

large com puter system s in a full p roduction environm ent [Chil87]. T he technique is applied to the

m em ory subsystem and em ploys periodic sam pling by a hardw are m onitor. In [M itr88], this technique

w as ex tended to a shared-m em ory m ultiprocessing system and used to calculate the risk o f encountering

m ultip le la tent errors. A fa ilure acceleration m ethod fo r de term ining fault detection characteristics is

d iscussed in [Chil89]. B ecause this study used periodic sam pling, the d iscovery tim es o f only p e r ­

m a n en t fa u lts could be m easured. In [Y oun91], a hybrid m onito r approach to m easuring erro r latency

was applied to a T I E xp lo rer II L isp m achine. T he m ethod is based on sim ulation o f the erro r discovery

process taken from a continuous trace o f softw are-selected locations.

22 S o ftw a r e F a u lt In je c t io n S tu d ie s

A nu m ber o f studies perform ed at Carnegie M ellon U niversity have centered around FIAT, an

autom ated env ironm ent fo r in jecting faults in a d is tributed system [Sega88]. T he FIA T environm ent

u tilizes software implemented fault injection (SW IFI) to em ulate various hardw are faults [Czec91]. The

em ulation o f hardw are failure m anifestations by autom atic instruction substitu tions is described in

[Y oun92]. A nother autom ated fau lt in jection environm ent, FE R R A R I, w as able to em ulate faults in

hardw are com ponents such as opcode decoding circuitry, program control units, da ta registers, ALU,

and address and data buses [K ana92]. I t gave a u ser control over the location and duration o f an in jec ­

tion by inserting trap instructions that rem ove them selves after recreating the sam e effects tha t a g iven

hardw are fault w ould have.

S im ulation based approaches have been taken in studying the effects o f fau lt injection. In

[Lom e86], a sim ulation env ironm ent was used to study erro r propagation from the gate to chip level.

FO C U S, a sim ulation env ironm ent to conduct fault sensitiv ity analysis o f ch ip-level designs, is

described in [Choi89]. A nother sim ulation environm ent, D EPE N D , studies the effects o f faults at the

system level [G osw 91]. Instruction-level sim ulations are used to supplem ent SW IFI in [Czec91]. Such

© 1992 L .T. Y oung and R .K . Iyer

5 -

m ethods are useful at the design stage, but they fail to provide a com plete env ironm ent for fault p ropa ­

gation. T hey cannot, fo r exam ple, include the effects o f paging, various in terrupts, scheduling, I/O ,

etc....

T his paper describes a hybrid fault in jection environm ent th a t can be used to evaluate the dependa ­

b ility o f com puting system s. T he env ironm ent com bines the versatility o f so ftw are in jec tion and m on i­

toring w ith the accuracy o f hardw are m onitoring. T rad itional SW IFI m ethods are used to in ject faults

into C PU registers, cache, and local m em ory o f a test system . T he env ironm ent consists o f a fault

in jection system , a hybrid m onitor, and a supervisory system to autom ate the m easu rem ents. T he

hybrid m on ito r is fu rther divided into hardw are and softw are m onitors. D etails o f the hybrid environ ­

m ent provided in the follow ing section.

m . E X P E R IM E N T A L E N V IR O N M E N T

3.1 T h e H y b r id F a u lt In je c tio n E n v ir o n m e n t

Figure 1 illustrates the subsystem s that m ake up the hybrid fault in jection environm ent. It consists

o f a fault in jection system , a hybrid m onito r system to m easure the effects o f in jec ted faults, and a

Hybrid Fault Injection Environment

Fault

Injector

Hybrid Monitor

Hardware

Monitor

Software

Monitor

Supervisor

Figure 1: H ybrid Fault Injection E nv ironm ent

© 1992 L .T. Y oung and R .K . Iyer

6

supervisory system to autom ate the m easurem ents. T he hybrid m onito r system is fu rther divided into a

hardw are m on ito r and a softw are m onitor. F igure 2 illustrates how these system s are physically

situated. T he fault injector and software monitor execute on the test system, w hile the supervisor pro­

gram executes on the control host. Probes attach the hardw are m onito r to the address/data backplane o f

the te st system so that the m onito r can analyze and record the signals generated. C om m unication

betw een the superv iso r and the hardw are m onito r takes place over an RS-232 or GPIB connection.

T he func tion o f the env ironm ent is to perform experim ents tha t repeatedly in ject faults and record

observations. T he env ironm ent in troduces faults into the te st system during the execution o f a target

program, m easures the effects o f that fault, and returns the test system to conditions p resen t prior to

fault in jection. T hese operations form a single observation loop. Figure 3 illustrates the con trol flow o f

an experim ent.

To use the hybrid fau lt in jec tion environm ent, one m ust specify the target program to run (w ith

data), the num ber o f tim es to repeat an observation loop, the num ber o f faults to generate per

Figure 2: Physical L ayout o f H ybrid Fault In jection System

© 1992 L .T. Y oung and R .K . Iyer

7

observation, and term ina tion conditions (typically a tim e lim it o r C PU fail). T he target program can be

any user program desired. A fte r the targe t program has been started , physical addresses o f locations to

fault are random ly generated by the supervisor and presented to the hardw are m onitor. W hile the

hardw are m o n ito r is reconfiguring, the softw are m onito r determ ines w hich virtual addresses have been

allocated to the ta rget program . T he softw are m onitor then converts these virtual addresses to physical

addresses and determ ines w hich physical addresses m atch those generated by the supervisor. I f no

m atch is found, the supervisor m ust generate ano ther random set o f physical addresses and restart the

hardw are m onitor. T hus, the supervisor and the software monitor w ork in parallel over the netw ork to

generate random locations in the test system to fault.

T he m atched physica l addresses are then passed to the fault injector. A lthough typical experi ­

m ents constra in fault injections to portions o f m em ory allocated to the target program , the hybrid

environm ent can generate faults w ithin an y location that has a physical address, e .g., locations m ay

include the kernel, C PU registers, cache, m ass storage, netw ork controllers, etc.... T he softw are m onito r

periodically checks th e status o f the test system to determ ine w hether term ination conditions have been

met. W hen term ination conditions such as CPU crash, application com pletion, o r tim eout occur, the

hardw are m on ito r is stopped and the target program is k illed. T he supervisor then obtains m easurem ent

reports from bo th the softw are and hardw are m onitors, m erges the data, and appends a sum m ary o f the

observation to any previous observations w ithin the experim ent. T he observation loop is com plete at

this point.

T he rem ainder o f this section exam ines the com ponent system s o f the hybrid fault in jection

environm ent in g reater detail.

3.2 H y b rid E n v iro n m e n t S u b sy stem s

© 1992 L .T. Young and R .K . Iyer

Figure 3: Fau lt Injection C ontrol F low

T he su p e r v iso r is w ritten in C and runs on the control host, w hich, in o u r case, is a D EC M icro-

V A X II. T he superv isor p lays roles o f com m unication, synchronization, and data analysis in the hybrid

environm ent. In its cu rrent im plem entation, the superv isor com m unicates w ith the softw are m onitor v ia

N FS sockets and w ith the hardw are m onitor over an R S-232 connection tha t uses a software-

reconfigured T T Y port. A t the beginning o f an observation loop, it com m unicates physica l addresses to

both the softw are and hardw are m onitors. A t the end o f an observation loop, it receives virtual

addresses back from the softw are m onito r and acquisition data back from the hardw are m onitor. Fo r

synchronization purposes, the supervisor controls w hen to start and stop both the target program and the

© 1992 L .T. Y oung and R .K . Iyer

9

hardw are m onitor. T he uploading o f m easurem ents from the hardw are and softw are m onitors is also

controlled by the supervisor. T he analysis role o f the supervisor involves tak ing hardw are m onitor

m easurem ents in the form o f a tim estam ped trace and parsing it according to m easurem ents taken by the

softw are m onitor. F urther details o f the analysis are g iven in section 3.3.

T he h y b r id m o n ito r consists o f bo th a hardw are m on ito r and a softw are m onitor. T he hardw are

m onitor can record and tim estam p any activity, addresses, o r da ta presen t on the address/data backplane

o f the system under te s t In o u r hybrid environm ent, the hardw are m onito r is a T ek tron ix DAS 9200 —

a program m able, digital analysis tool. T ransfers o f acquisition data and instrum ent setup data betw een

the hardw are m onitor and supervisor are supported through a Program m atic C om m and L anguage (PCL)

[Tek88]. T he PC L com m ands allow the supervisor to reprogram the D A S, start and stop acquisitions,

and upload acquisition files. T hrough its 92A 90 data acquisition m odule, the D A S 9200 can perform

general-purpose state analysis for up to 90 channels. T he 20 M H z buffer probe accom panying the

92A 90 is retargetable and can store up to 32,768 sam ples, w here each sam ple is tim e-stam ped w ith a

resolution o f 20 ns.

T he softw are m onito r is also w ritten in C and designed to function w ithin a U nix operating sys ­

tem. It assists the supervisor by determ ining w hich virtual addresses can be used fo r fault injection dur ­

ing an experim ent. V irtual-to-physical address translations are perform ed by accessing the system page

table. I f no m atch can be found, the softw are m onito r notifies the supervisor. O therw ise, it provides the

fault in jec tor w ith the m atching physical addresses and a generated b it vecto r th a t specifies where,

w ith in the w ord, to inject a fault. A fte r a fault has been injected, the so ftw are m onito r perform s

periodic, unobtrusive checks o f the system status to determ ine w he ther term ina tion conditions have been

reached. A t the end o f an observation cycle, the softw are m onito r reports inform ation such as v irtual

page fram e num bers and cause o f term ination to the supervisor.

© 1992 L .T. Y oung and R .K . Iyer

10

T he fa u lt in je c to r is a psuedo-device d river w ritten in C and was partia lly im plem ented through

the addition o f a sm all, special-purpose kernel routine. D uring a fault in jection, the content o f the phy ­

sical address is read and then w ritten back to a dum m y reg is ter w ith a fixed, physical address. The o ri ­

g inal va lue is then X O R ed w ith the bit vector provided by the softw are m onitor, and the new value is

w ritten back to the orig inal address. By th is schem e, every fau lt in jec tion is im m ediately preceded by a

w rite to a fixed, physical address. Thus, by program m ing the hardw are m onito r to detect and record all

w rite activ ity to th is address, we can ob tain a record o f the prec ise m om ent o f fau lt injection.

3.3 A n aly sis

O ne o f the ro les o f the superv iso r is to analyze and m erge the data it obtains from the hardware

and softw are m onitors. F igure 4 show s the inform ation reported by both the softw are and hardware

m onitors. F o r each fault injected, the softw are m onito r reports a v irtual address, an X O R bit vector, and

H a r d w a r e M o n i t o r

HkAU

T im e s ta m p
D a ta V alu e

In te r r u p ts

E r r o r S ig n a ls

R eq u es ts

.W H lI t .

DMA

T im e o f In je c tio n

P h y sica l A d d ress

O ld V alu e

N ew V alu e

S o f t w a r e M o n i t o r

S u p e r v i s o r

ANALYSIS(yirtual Addres^

pattern^)

(Manifestation^ \
_ _ _ x : (F a u l t P r o p a g a t i o n)

.L a t e n c y ; (C o v e r a g e)

Figure 4: A nalysis o f H ardw are and Softw are M onitor Reports

© 1992 L .T . Y oung and R .K . Iyer

11

the effect o f the fau lt a t te rm ination tim e. F o r that sam e fault, the hardw are m on ito r reports the tim e o f

fault injection, a physical address, and the contents o f that address before and afte r that fault. T his

inform ation is fo llow ed by a tim estam ped lis t o f all reads, w rites, and D M A accesses to the physical

address (com plete w ith data values and signals such as interrupts, bus errors, and in terrupt requests).

T here are tw o prim ary functions that the supervisor perform s w hen m erging the separate hardw are

and softw are m onito r reports. O ne function is to prune ou t im pertinen t inform ation, and the o th er func ­

tion is to perform fo rm at conversions. T he hardw are and softw are m onitors use d ifferent form ats in

uploading m easurem ents to the supervisor. T he supervisor m ust translate and m erge the inform ation it

receives so that hardw are-level activity and tim ing can be connected to softw are specific inform ation.

T he result o f the m erge is a trace file that can be analyzed at m any levels.

A nalysis o f a trace file can yield a num ber o f dependability statistics. L atency m easurem ents can

be derived from the difference betw een tw o tim estam ps, w here the first tim estam p corresponds to the

m om ent o f fault in jection and the second tim estam p corresponds to the m om ent o f fault detec tion (as

indicated by the appropriate read o r in terrupt signal). T he fault de tec tion ratio can be gathered from

w hether o r no t the softw are m onito r reports that a failure occurred. O ther statistics such as instruction

fault sensitivity (d iscussed in section 5.2) can be derived by observation o f the v irtual add ress .1 By exa ­

m ining the app lication task im age, it is possible to de term ine w hich instruc tion is be ing faulted, and

w hat im m ediate erro r propagation effect that fault w ill have. A n exam ple o f a typical trace file and its

in terpretation is provided in section 4.2.

3 .4 T a r g e t P r o g r a m s T e s te d

1 In a U n ix s y s t e m , t h e c o n t e n t s o f v ir t u a l m e m o r y a re a lr e a d y c a t e g o r iz e d : K e r n e l c o d e b e g in s a t v ir t u a l a d d r e s s 0 x 8 0 0 0 0 0 0 0 , u s e r

a p p l ic a t io n c o d e b e g in s a t 0 x 4 0 0 0 0 0 (t e x t) , u s e r d a ta b e g in s a t 0 x 1 0 0 0 0 0 0 0 (d a t a) , u s e r s u c k s p a c e b e g in s a t 0 x 7 F F F F 0 0 0 (s u c k) a n d w o r k s

d o w n .

© 1992 L .T . Y oung and R .K . Iyer

1 2

F o r all the experim ents described in th is paper, tw o applications w ere tested under this fault in jec ­

tion environm ent. T hey are PR IM E and A N A G RA M , and are 3,926 and 7,302 instructions long,

respectively . B o th w ere tested under heavy and ligh t m u ltiuser w orkloads and selected because they

w ere bo th able to take o ver h a lf an ho u r to com plete, depending on the w orkload. PR IM E is a CPU and

m em ory in tensive program that generates the first h a lf m illion prim e in tegers. A N A G R A M is a pro ­

g ram tha t finds all three-w ord anagram s o f a string o f letters. S ince it m ust access a local d ictionary, it

m ust perform extensive I/O in the early stages o f execution.

IV . T H E T A N D E M IN T E G R IT Y S 2 S Y S T E M

4 .1 S 2 A r c h ite c tu r e

T he T andem Integrity S2 is a fault-to lerant com puting platform fo r U nix-based applications. F ig ­

u re 5 depicts the architecture o f the S2 system used in these experim ents. T he p rinciple feature o f the

S2 is its R ISC -based, T M R processing core, m aking it a h ighly-available, fault-to lerant system . Each o f

the three C PU boards contains a traditional CPU w ith cache and 8 M B o f local m em ory. T he three

CPU s act as one CPU , perform ing identical operations and accessing the duplexed T riple M odular

R edundant C ontrollers (T M R C s) through the Reliable System Bus (RSB). E ach T M R C provides a 32

M B global m em ory and dual-rail voters. T he R eliable I/O Bus (RIO B) in terconnects the T M R Cs w ith

the I/O Packetizers (IO Ps), w hich handle all system I/O (including m irrored disks, tape drives, ethem et

controllers, term inals, etc...). F urther inform ation on the S2 architecture m ay be found in [Jewe91] and

[Cutt90].

T he voters are the key error detection m echanism s p resent on the S2. W henever a C PU attem pts

to access the duplexed global m em ory and I/O system s, it m ust issue requests through the voters and, if

necessary, w ait fo r voting to com plete and a result to be returned. A n erro r is de tected if two CPUs fail

© 1992 L .T. Y oung and R .K . Iyer

Figure 5. A rchitecture o f the T A N D E M Integrity S2.

to issue the sam e request w ithin a fixed tim e period. Such requests are issued in the form o f address,

data, control, and in terrupt values. F o r instance, i f only tw o C PU s generate an in terrupt, the voters w ill

tim e out and signal th a t an erro r has occurred.

Several facets o f the S2 architecture underscore the need to study fa u lt d e te c t io n r a t io s and e r r o r

p ro p a g a t io n . T he S 2 ’s voters are able to de tect and co rrect all single-bit errors and can detect and

correct m any m ultip le-bit errors. The degree to w hich they are called upon to correct errors can be

found through studies o f error propagation and fault detection. T he natu re o f local m em ories also pro-

© 1992 L .T. Young and R .K . Iyer

14

vides incentive fo r studying detec tion and erro r propagation. In local m em ories, parity checking is not

perform ed, and errors are free to propagate to the CPU and cache w ithout detection. O nce inside the

CPU, errors can propagate to registers and o ther local m em ory locations until the CPU is forced to

access the T M R C s.

T hese system features ju s t d iscussed also po in t ou t the need to exam ine e r r o r la ten cy on the S2.

Such exam inations w ould reveal the degree to w hich the am ount o f tim e spen t by a vo te r in detecting an

erro r affects overall e rro r latency. M easuring erro r la tency w ithin local m em ory w ould tell us how long

errors are free to propagate w ithin a single CPU board before being detected. Forced stalls during C PU

synchronization causes e rro r detection to be delayed on the faster CPU s w hile contributing to error p ro ­

pagation w ithin the slow est CPU s. T he degree to w hich this is so m ay be quantified through studies o f

error latency on the S2.

K now ing the tim e associated w ith isolating a fault is also im portant to the study o f the S2. A n

intricate chain o f in terrupts and tests are perform ed on the S2 in order to isolate faults [Cutt90]. I f a

fault stem s from a voter, the effect is the sam e as i f a fau lt had stem m ed from a CPU. T o isolate the

source o f an error, an excep tion hand ler running on all CPU s uses a co llection o f registers on the CPU

and T M R C to determ ine w he ther the vo te r or one o f the CPU s contains the fault. It w ould be useful to

know how long fau lt iso lation takes, because additional errors could appear during this chain o f tests

and prevent successful isolation.

T he issues o f detection ratio , latency, error propagation, and fault iso lation tim es are addressed by

this study. T o bette r illustrate fau lt in jection and data collection, the follow ing exam ple dem onstrates an

application o f the hybrid fault in jection environm ent to the S2 system .

4.2 E x am p le : F a u lt In je c tio n a n d D a ta C ollection

© 1992 L .T. Y oung and R .K . Iyer

15

P h y s A d d r = 0 0 x x x 9 9 4

t i m e l o c a t i o n d a t a f l a g s comments (added)

0 u s 1 (0 0 7 0 5 9 9 4) => 2 6 2 4 0 0 0 1 F 3 before
1 7 . 4 6 u s 1

1
(0 0 7 0 5 9 9 4) <= 2 6 2 4 4 0 0 1 F 4 after

1 0 8 . 6 2 u s

1

1 (0 0 7 E 6 9 9 4) - > 8 F B F 0 0 2 C F 3 before
1 1 4 . 8 4 u s 1

1
(0 0 7 E 6 9 9 4) <= 8 F B F 0 0 2 4 F 4 after

1 8 9 . 8 4 U S

1
1 (0 0 5 6 7 9 9 4) => 0 0 4 3 C 8 2 1 F 3 <— addu t9,v0,vl (before)

1 9 6 . 4 0 U S 1
1

(0 0 5 6 7 9 9 4) <= 0 0 4 3 C 8 0 1 F 4 « - reserved instruction

2 6 9 . 5 4 U S

1

1 (0 0 4 C 8 9 9 4) => 1 0 0 0 0 0 1 A F 3 before
2 7 6 . 2 4 U S 1

1
(0 0 4 C 8 9 9 4) <= 1 0 0 0 0 0 3 A F 4 after

3 5 0 . 1 4 U S

1

1 (0 0 6 4 B 9 9 4) => 0 0 0 0 0 0 0 0 F 3 before
3 5 6 . 3 4 U S 1

1
(0 0 6 4 B 9 9 4) <= 0 0 4 0 0 0 0 0 F 4 after

5 6 . 0 6 2 2 4 m s

1
1 (0 0 5 6 7 9 9 4) => 0 0 4 3 C 8 0 1 F 3 <— error activated

5 6 . 3 8 8 3 8 m s 1 (0 0 7 E 0 7 C 0) 8 0 1 7 B 3 D 0 B 1 <— error detected
5 7 . 9 9 3 0 4 1 (1 F D 1 0 0 3 0) B 8 4 4 F F 0 E 8 1

1 0 3 . 3 1 6 5 0 m s 1 (1 F C 0 0 0 0 0) = > 0 B F 0 0 0 8 2 F 3 <r- fault isolated

F ig u r e 6 . E x a m p le o f H a r d w a r e M o n ito r T ra c e

T his exam ple is taken from an experim ent in w hich w e m easured error detection latency and fau lt

iso lation tim es associated w ith single b it faults in the instruction-stream o f a g iven application. In this

exam ple, five sing le-bit faults w ere injected into the local m em ory o f a single CPU. T he five faults

w ere selected random ly from physical addresses that m apped back to those virtual addresses allocated to

the code section o f a te st application. T he test application w as A N A G RA M , a program that generates

anagram s from a string o f letters. T he application w as running under a m oderate w orkload w ithin a

m ultiuser environm ent. A fte r the faults were injected, the cache w as selectively flushed to ensure that

faults w ould propagate to the CPU and cache upon a cache m iss.

F igure 6 illustrates a partial trace file from a single observation generated by the supervisor. T he

interpretation o f th is exam ple is as follows: Inform ation recorded includes a tim estam p, a m em ory

address, d irection o f data transfer, data, in terrupt flags, and state analysis values. R eads are denoted by

© 1992 L .T. Young and R .K . Iyer

16

"=>", and w rites are denoted by "<=" in this expansion.

T he th ird fault co rresponds to a flip o f the 5 th bit in the instruction addu t9,v0,vl, w hich turned it

into a reserved instruction. A n attem pt to execute the instruction 56.06 m secs la te r forced a cache m iss

and caused the error to m igrate to the cache. U pon an attem pt to execute th is illegal instruction, the

CPU generated a reserved instruction exception. T his is a low -level excep tion and does no t trigger v o t ­

ing. U pon discovery tha t no instruction in terpretation had been im plem ented, the kernel generated an

illegal instruction fault signal w hich presented a h igh-level excep tion to the voters. T he generation o f

this la st exception indicates the m om ent o f error detection at the system level. T he e rro r detection

latency in this exam ple w as 326.14 psecs. Because the o ther tw o CPU s w ere no t faulted , they did not

report s im ilar activity . A fte r a b rie f signal tim eout, the T M R C perform ed tests and determ ined that

CPU B (the one that w as faulted) needed to be taken offline. T he fault iso la tion tim e in this exam ple

was 46.92812 m secs (± 20 ns).

V . E X P E R IM E N T A L R E S U L T S

5 .1 F a u lt C h r o n o lo g y

Figure 7 depicts the life o f a fau lt in the local m em ory subsystem o f the S2. In this exam ple, an

erro r occurs w hen the CPU obtains incorrect data from the m em ory. T he e rro r is detec ted at the system

level w hen the voters de tect a request m ism atch. T he fault latency is the tim e that elapses betw een the

developm ent o f this fault and its access by the C PU as data. T he error detection latency is the tim e

betw een CPU access o f th is data and system -w ide acknow ledgm ent o f a prob lem (via the voters).

W ithin a fault to lerant system such as the S2, there is a delay associated w ith locating the source o f the

error. T his delay is the fault isolation time. If the fault is transient, it w ill be corrected by perform ing a

"pow er-on se lf test" (PO ST) and reintegrating the subsystem . The tim e required to perform PO ST and

reintegration is ihe fault correction time.

© 1992 L .T . Y oung and R .K . Iyer

-T777777Zrer

A A

s
A A A

(> (T im e)

f a u l t c o r r e c t e d

f a u l t i s o l a t e d

m is m a t c h a t v o t e r

m e m o r y lo c a t i o n a c c e s s e d b y C P U

f a u l t i n j e c t e d / d e v e l o p s in m e m o r y

F a u l t L a t e n c y

E r r o r D e t e c t io n L a t e n c y

F a u l t I s o la t io n T im e

F a u l t C o r r e c t io n T im e

(P . O . S . T . + R e in t e g r a t io n)

Figure 7: Fault T im eline

In the fo llow ing sections, w e present the results o f perform ing several d ifferent form s o f fault

injection. T he S2 is used as a case study and the results here m ay no t be representative o f T andem sys ­

tem s as a w hole. W e begin in section 5.2 by exam ining issues o f fault sensitivity , fault detection p er ­

centage, and the error propagation effects due to single b it faults on instructions. A fter that, w e exam ine

latency issues at several levels: In section 5.3, w e characterize fa u lt latency in the local m em ory sub ­

system o f the S2. T hen w e m ove on to detection at the system level by studying e r r o r d e tec tio n

latency by fault propagation type in section 5.4. Finally , in section 5.5, we characterize the tim e taken

by the system to perform fa u lt iso la tion .

5.2 In s tru c t io n L evel F a u lt D etec tion

T he purpose o f th is experim ent is to quantify the relative exten t to w hich instruc tions are sensitive

to faults. Faults w ere injected random ly w ithin the code sections (local m em ory and cache) o f execu t ­

ing program s. If a fault resulted in the failure o f a CPU, then the identity o f the faulted instruction w as

obtained. From the m easurem ents, the probability that a CPU failure w as caused by a fau lt in a specific

instruction w as estim ated. By com paring the m easurem ents w ith the probabilities calculated from

© 1992 L .T . Young and R .K . Iyer

18

instruction execu tion frequencies, the relative fault sensitivity o f d ifferent instructions w as evaluated.

M easured values w ere obtained from 2,400 fau lt in jections, 95 percen t o f w hich caused CPU

failure. T he identity o f each faulted instruc tion was obtained from the disassem bler by m atching listed

virtual addresses w ith those obtained from the softw are m on ito r,2 T he estim ated probability that a CPU

failure w as caused by a fault in a specific instruction was obtained by coun ting the num ber o f failures

attributed to each instruction and dividing by the to tal num ber o f faults.

E xpected values w ere com puted from opcode distributions and instruction execu tion frequencies.

T he opcode distribu tions were found by counting the num ber o f tim es an opcode appeared w ithin the

static im age o f the program tested. By dividing th is coun t by the total instruction coun t o f the program ,

T able I. E xpected and M easured D etection Probabilities

Instr E xpected M easured

addiu 35.5615 % 16.0342 %
sll 18.8399 % 7.3529 %

lw 16.8997 % 18.1214 %

sw 13.8242 % 13.3776 %

bne 4.2130 % 5.6452 %

addu 3.2937 % 9.9146 %

beq 3.0868 % 8.4440 %

lui 1.5014 % 3.5579 %
lbu 1.0479 % 5.3605 %

ja l 0 .6532 % 4.4118 %

jr 0 .4229 % 3.0361 %

andi 0 .2689 % 1.6603 %

subu 0.1919 % 1.0911 %
ori 0.1263 % 0.2846 %

bgez 0.0433 % 0.5693 %

situ 0.0210 % 0.5693 %
sit 0.0045 % 0.5693 %

2 In s tr u c t io n s h a v in g id e n t ic a l o p c o d e s w e r e m e r g e d . N O P , L I , B , a n d M O V E a r e a c t u a l ly s p e c ia l c a s e s o f S L L , A D D I U , B E Q , a n d

A D D U , r e s p e c t iv e ly .

© 1992 L .T. Y oung and R .K . Iyer

19

the probability that a specific instruction w ill be faulted was estim ated. Instruc tion execu tion frequen ­

cies w ere obtained by counting the appearances o f an opcode w ithin an instruc tion trace generated b t

executing a profiled program . T hese frequencies reflect the cond itional probability tha t a fau lt in a

specific instruction w ill be detected, g iven that the instruction has been faulted .3 M ultip lication o f this

conditional probability by the probability th a t a specific instruction w ill be faulted produces the jo in t

probability that a fau lt w ill appear in a specific instruction and be detected.

T he expected and m easured values fo r the probability tha t a fau lt w ill occu r in an instruction and

be detected are listed in T able I fo r several opcodes. T he values w ere norm alized to com pensate fo r all

the opcodes no t show n. Instructions w ere listed by decreasing o rd er o f expected values, and it can be

seen that m easured values generally decrease as w ell, bu t no t in every case. T his tab le perm its us to

evaluate the relative fau lt sensitiv ity o f any tw o instructions.

C om paring expected detection probabilities o f the load w ord and store w ord instructions, we see

that L W is expected to be faulted and cause a C PU failure 1.2225 tim es as often as SW . From the

m easurem ents, we see that th is happened. 1.3546 tim es as often , w hich indicates th a t SW is slightly

better able to perform its function in the presence o f faults than L W is. By tak ing the ratio o f the m eas ­

u red and expected relative frequencies, (1.3546/1 .2225), one m igh t say th a t L W is 10.8 percent m ore

sensitive to faults than SW is. F o r A D D IU and L W , w e see that A D D IU is expected to be faulted and

cause a CPU failure 2 .1043 tim es as often as LW . From the m easurem ents, w e see that this happened

only 0 .8848 tim es as often, w hich indicates that L W is 137.8 percen t m ore sensitive to faults than

A D D IU is.

T hese results are o f im portance in several areas. T he findings are re levan t to com pile r designers

w ishing to take into account dependability issues because, as this experim ent has show n, instructions

3 T h is r e f le c t io n i s n o t n e c e s s a r i l y l in e a r , s in c e l o o p i n g c a n s k e w r e s u lts o v e r sh o r t p e r io d s o f t im e . In g e n e r a l , h o w e v e r , a f a u l t in a

fr e q u e n t ly e x e c u t e d in s t r u c t io n i s m o r e l i k e l y t o b e d i s c o v e r e d th a n o n e in a s e l d o m l y e x e c u t e d in s t r u c t io n .

© 1992 L .T. Y oung and R .K . Iyer

20

differ substantially in the degree to w hich they are fault sensitive.- Since the func tion o f an instruction

m ay be partially responsible fo r its fault sensitiv ity, these findings reveal a need to exam ine fault detec ­

tion in term s o f the erro r propagation effects caused by faulted instructions.

In exam ining popular, fixed-w idth instruction sets such as those o f the M ips R ISC set, we found

that a single b it fau lt w ill im m ediately im pact a g iven instruction in one o f several fashions — we also

found that the im pact could be determ ined autom atically by a d isassem bler-like program . T able II lists

the eleven m anifestations in to w hich all instructions and faulted bits w ere m apped fo r this study. T he

N IL case is tha t in w hich a flipped b it is incapable o f alte ring norm al operation. A n exam ple is d is ­

cussed below . C ases U SV and ILI trigger error detection m echanism s on a C PU , w hich in turn alert the

system that an unaccep tab le instruction has been encountered. In bo th cases, no further corruption

occurs. E xecu tion o f the w rong instruction (W IE) can be caused by an im properly specified opcode. A

branch to a w rong address (BW A) can be caused e ither by an im properly specified address o r base

register, or by m isdirected calculations. B oth W IE and B W A cases are capable o f causing m ultiple

corruptions. W rites to w rong registers (W W R) and addresses (W W A) can cause double corruptions:

T a b le n . E r ro r P ro p a g a tio n T y p e s

Id D e sc r ip tio n M u ltiü lie r

N IL F a u lt h a s n o im p a c t w h a tso e v e r o n e x e c u tio n 0

U S V (U n a ss ig n e d S p a c e V io la tio n) A d d re ss E x c e p tio n 0

IL I L L legal In s tru c tio n 0

W IE W ro n g In s tru c tio n E x e c u te d m a n y

B W A B ra n c h to W ro n g A d d re ss m a n y

W W R W rite to W ro n g R e g is te r 2

W W A W rite to W ro n g A d d re ss 2
R W R R e a d f ro m W ro n g R e g is te r (reg . c o rru p te d) 1
R W A R e a d f ro m W ro n g A d d re ss (reg . c o rru p te d) 1+
B ID B a d Im m e d ia te D a ta (reg . c o rru p te d) 1
B V M W ro n g re g is te r (B a d V a lu e) tra n s fe rre d to M e m o ry 1

© 1992 L.T. Y oung and R .K . Iyer

21

the in tended location fails to be updated w ith new data, and a m isin tended location is corrupted. The

process o f reading a w rong register o r address does not, in itself, cause e rro r propagation. B ut w hen

such actions cause w rong values to be passed on to operations tha t update registers (R W R, R W A and

BID) o r m em ory (B V M), e rro r propagation results. T he case o f R W A is a potential exception — if the

read o f a w rong address causes a page fault at the w rong tim e, then flow o f control is altered, causing

m ore than ju s t data co rruption to occur.

R eusing the tracefile data ob tained in studying fault sensitivity , w e com puted first-order e rro r pro ­

pagation effects from the instruction type and X O R b it vecto r associated w ith each injected fa u lt T he

fault detections w ere then tabulated by effect and analyzed. T able III show s the results o f this analysis.

Roughly five percent o f the instruction single-bit errors had no observab le im pact on program execution.

Tw o o f the form s trigger e rro r detection w ithout erro r propagation, b u t they are caused by only 9.13%

o f the instruction sing le-bit errors. T his m eans that over 90 percen t o f all de tectable single-bit errors in

T able in. E ffects o f Instruction S ingle B it E rrors.

Effect o f error on instruction execution:______ Portion

w rong instruction executed (m ultiple effects) 21.18%

branch to w rong address (m ultiple effects) 14.98%

read from w rong address (register corrupted) 13.10%

bad im m ediate data (register corrupted) 9.83%

w rite to w rong regis ter (double fault) 9.83%

w rite to w rong address (double fault) 8.12%

read from w rong reg ister (register corrupted) 6.90%

illegal instruction (triggers detection) 6.16%

no observable im pact on program execution______ 4.97%

(USV) address exception (triggers detection) 2.97%

value o f w rong registe r transferred to m em ory 1.97%

© 1992 L.T. Young and R .K . Iyer

2 2

instructions cause propagating errors. C om paring ILI w ith W IE, w e observe that a single alteration in

an in struc tion’s opcode b it is 3.44 tim es as likely to produce another legal (but w rong) instruction than

it is to produce an illegal instruction. W e also observe that the tw o m ost com m on error form s (wrong

instruction execution and branch to wrong address) occur 36.2 percen t o f the tim e and are also the tw o

w ith the highest propagation fan-out. T his finding m eans th a t the expected propagation fan-out can be

quite high.

A com parison o f fau lt detec tion breakdow ns by propagation effect betw een tw o applications

(T able IV) show s that several propagation effects are sensitive to application. A n instruction single b it

erro r w as m ore likely to produce w rong instruction execution (W IE) and bad im m ediate data (BID) p ro ­

pagations w ithin the PR IM E app lication than w ithin A N A G RA M . A lso, W W R , R W R , and R W A

errors w ere m ore likely to resu lt w ith in the A N A G R A M app lication than in PR IM E. F o r the rest o f the

e rro r types, the odds w ere abou t even.

5 3 F a u lt L a te n c y

In this experim ent, fau lt locations w ere selected from all sections o f m em ory allocated to the

A N A G R A M test program (data, stack, and text). T he A N A G R A M program w as executed under a

m oderately heavy w orkload, and a to tal o f 750 fau lt in jection observations w ere perform ed. Trial runs

indicated that the general d istribu tion form s did no t change by extending observation tim es, so we

T able IV . Selected E rror M anifestation Probabilities

D escrip tion A N A G R A M PR IM E

w rong instruction executed 18.56% 24.36%
w rite to w rong regis ter 11.13% 8.31%
read from w rong reg ister 8.23% 5.35%
read from w rong address 14.52% 11.46%
bad im m ediate data 8.47% 11.46%

© 1992 L .T. Y oung and R .K . Iyer

tim e in seconds

(a) Fault Page D eallocation H istog ram
p. = 210.039 secs, a = 156.338 secs

Figures 8a-8c.
D istributions for D eallocation,

O verw rite, and Fault L atencies.

tim e in seconds

tim e in seconds

restricted observations to ten m inutes each. T he follow ing results w ere obtained:

© 1992 L .T . Y oung and R .K . Iyer

24

(fate o f fault) count (%)

F au lt n ev er accessed: 687 91.6%

A ctivated C PU failure: 27 3.6%

(4.3%) no effect: 5 0.7%

U ndetected O verw ritten: 16 2.1%

(4.1%) D eallocated: 15 2.0%

T hese results tell us w hat can happen to a fault, though m any (91.6 percent) w ere n ev er accessed

in the first ten m inu tes o f observation. O f those faults tha t w ere accessed (8 .4 percent), abou t one h a lf

becam e active errors v ia a read (51 percent). M ost o f the active errors caused C PU failure (84 percent)

and the rest had no effect (16 percent). T he rem ainder o f the accessed faults w ere undetected, either

because the application overw rote them w ith new values o r because the pages con ta in ing them w ere

deallocated first. F ifty-tw o percen t o f the accessed, undetec ted faults w ere overw ritten and 48 percent

w ere w ith in pages th a t w ere deallocated.

F igures 8a and 8b show the latency associated w ith the rem oval o f undetec ted faults, i.e., those

faults th a t w ere rem oved before they could becom e errors. F igure 8a show s the la tency associated w ith

the deallocation o f the clean page containing a fault, and figure 8b show s the la tency associated w ith

overw riting a fault. W e observe that faults w ithin clean pages w ere deallocated afte r an average o f

about 210 seconds, w hich is m ore than the average tim e spent before a fault is overw ritten by the appli ­

cation (about 164 seconds). In figure 8b, we observe that m any o f the fault overw rites occurred w ithin

the first m inute. T hese observations tell us is that early fault rem ovals are due m ostly to overw rites by

the app lication and tha t la te r rem ovals are due m ostly to page deallocation. T his inform ation character ­

izes a na tura l fault rem oval processes and could assist in the design o f efficient scrubbing techniques.

In figure 8c, w e again see a sharp decay and long-tailed distribution fo r de tected faults. In th is

exam ple, faults w ere detected afte r an average o f about 100 seconds, but h a lf w ere detected in the first

35 seconds. T his d istribution is very sim ilar to the distribu tion o f la tency associated w ith fault

© 1992 L .T . Y oung and R .K . Iyer

25

overw rites (figure 8b), and is characteristic o f d istributions found in past latency studies [Youn91]. The

sim ilarity in d is tribu tions im plies that the probability that a local m em ory lo cation w ill be read before it

w ill be w ritten does n o t significantly change w ith increasing dorm ancy. T his finding can be used to

support m em ory m anagem ent decisions.

5 .4 E r r o r D e te c t io n L a te n c y

T his experim ent reuses the tracefile obtained in section 5 .2, w here faults w ere in jected into the

code (text) sections o f m em ory allocated to the test program s. E ach program w as tested to determ ine

how long it w ould take the system to detect an erro r through its voters. T he cache w as selectively

flushed after a fault in jection to ensure tha t faults w ould propagate to the C PU and cache upon a cache

m iss. T he e rro r detection latency was m easured fo r each o f 2,176 faults and the identity o f each faulted

instruction w as ob tained from the disassem bler by com paring lis ted virtual addresses w ith those

obtained from the softw are m onitor. C orresponding e rro r propagation type w as then com puted by the

m ethod o f section 5 .2, and la tency distributions w ere tabulated according to e rro r propagation type.

T able V. E rro r D etection L atency by T ype

T vne M edian M ean Std Dev

U SV

ILI

W IE

BW A

W W R

W W A

RW R

RW A

BID

BV M

252.2]l l s

280.1 |is

381.0 fis

543.5 fis

654.9 fis

609.0 fis

481.8 fis

596.8 fis

690.6 fis

1.179 ms

464.0 fis

1.425 ms

30.08 ms

21.35 ms

85.82 ms

40.67 ms

47.55 ms

84.37 ms

20.43 m s

43.06 ms

734.0 fis

4 .929 ms

380.8 ms

162.1 ms

1.069 s

281.2 m s

344.8 m s

903.6 ms

127.4 ms

231.3 ms

all 492.9 iis 40.61 ms 534.0 ms

© 1992 L .T. Y oung and R.K . Iyer

26

(a) E rro r D etection L atency (log scale)
p. = 40.6147 msecs, a = 534.032 msecs

200

150

#
100

50

-0

log(t), t = error propagation time in secs

— \— n— n— n— n— n— rr
lOus .1ms 1ms 10ms .Is Is 10s

(b) Illegal Instruction D etection
ji = 1.4252 msec, <7 = 4.9287 msec

log(t), t = error propagation time in secs

(c) R W A E rro r D etection L atency
p = 84.370 msec, a = 903.65 msec

Figures 9a-9c.

H istogram s fo r E rro r D etection L atency,

ILI E rror D etection, and R W A E rror D etection.

log(t), t = error propagation time in secs

F igure 9a illustrates the overall e rro r detec tion la tency distribution. L atencies range from under

5 0 |is to ov er 10 seconds. T he m ean error detection latency was 40.61 m secs, but several d istinct peaks

can be seen in the distribu tion and m ay be due to d istinct e rro r detection m echanism s.

© 1992 L.T. Young and R.K. Iyer

27

T able V lists e rro r detection latency m eans and m edians fo r each o f the erro r types. T he first tw o,

USV and ILI cause im m ediate detection at the CPU level and short e rro r detection latencies at the sys ­

te m level. T hese system -level latencies are considerably long er than the C PU -level erro r detec tion

latencies found in past sim ulation-based studies[C zec91], bu t part o f the system -level latency com es

from the tim e taken during voting. As w ill be seen later, these latencies are usually neglig ib le w hen

com pared to fault iso lation tim es. In exam ining each o f the erro r types, w e observe th a t w hile the

m eans are on the o rd e r o f tens o f m illiseconds, m ost errors are de tected in u n d er 493 ps. T his

corresponds to about 5 ,900 instruction cycles and includes at least one round o f excep tion handling.

F igures 9b and 9c illustrate d istributions o f e rro r detection la tency fo r e rro r types ELI and R W A ,

respectively. F o r illegal instructions, the nu m ber o f cycles required to cause the C PU to issue an in te r ­

rupt is sm all and fairly co n stan t T herefore, w hat we see in figure 9b is prim arily the la tency im posed by

the voters in de tecting the e rro r o f a lone C PU -generated interrupt. As expected, the m ain peak seen in

an Illegal Instruction e rro r is narrow er than w hat is seen in the distributions fo r errors tha t propagate.

By contrast, the e rro r detection latency distribution fo r errors that co rrupt registers by reading from

a w rong m em ory location (R W A) is quite wide. In figure 9c, we observe that the erro r detection la tency

in troduced by the vo te r plus the latency due to error propagation can be as large as 10 seconds. T his

finding show s that propagating errors can rem ain undetected fo r m illions o f instructions and highlights

the need to bette r characterize erro r propagation.

5 .5 F a u lt I so la t io n

As defined in section 5 .1 , fault isolation time is the delay associated w ith locating the source o f an

error. Such a source m ay be a faulty CPU board, m em ory board, voter, bus, etc... In this experim ent,

faults w ere in jected only into the local m em ory o f CPU B. C onsequently , fault iso lation identified CPU

B as the com ponent to be shutdow n every tim e. As can be seen in Figure 10, the am ount o f tim e

© 1992 L .T. Y oung and R .K . Iyer

28

250

2 0 0

150

#

100

50

-0

44 45 46 47 48 49 50 51 52

tim e in m secs

Figure 10. H istogram o f Fault Isolation T im es

required to achieve fault iso lation was roughly constant (47 m secs), w ith a standard devia tion o f only

3.88% . T im es w ere fairly independen t o f w orkload level and the application tested . T he fau lt iso lation

tim e corresponds to approxim ately 560,000 instructions.

B earing in m ind from the previous section that undetected e rro r propagation tim es can w ell exceed

47 m secs (3.45 percen t o f the erro r detection tim es exceeded 47 m secs), the potential fo r any propagat ­

ing errors to affect the fau lt iso lation process is o f m uch concern. T his finding m akes ev iden t the need

to investigate the effects o f m ultip le errors.

V. C O N C L U S IO N S

© 1992 L.T. Y oung and R .K . Iyer

29

T his paper describes a hybrid fault in jection environm ent, w herein faults are in jected v ia softw are

and the im pact is m easured by both softw are and hardw are. T he env ironm ent is useful for evaluating

system dependability , and it has the advantage in that it in troduces m in im al perturbation, and provides a

h igh degree o f control o v er the location o f faults to be injected. T he in jection system is no t lim ited to

ju st u ser application space. It can be used to in ject faults in the K ernel, in C PU registers, cache, local

m em ory, m ass storage, netw ork controllers, and any o th er subsystem tha t is m apped into physical

address space. T he fau lt in jec tion environm ent was applied to the fau lt to lerant, U nix-based T andem

Integrity S2.

U sing our hybrid m onito r and fault in jection environm ent, w e ob tained several key results: T he

design decision to preserve e rro r correction coding in the cache bu t no t in local m em ory w as supported

by com paring fault detection ratios o f the cache and local m em ory subsystem s. A natura l fault rem oval

processes th a t can assis t in the design o f efficient scrubbing techniques w as characterized. W e also

characterized im m ediate e rro r propagation effects caused by in jecting faults into the instruction stream

o f a M ips R ISC processor. T he im pact o f faults on instruction code during runtim e is significant — we

found that s ing le-bit errors propagate additional errors 85.9 percen t o f the tim e and that individual

instructions d iffer substantially in the degree to w hich they are fau lt sensitive. It w as also found that

erro r propagation tim es can w ell exceed the fault iso lation time.

E m pirical m easu rem ents o f all the dependability statistics d iscussed can fu rther serve as input data

for any sim ulation-based study o f the long-term effects o f faults on this system .

V L A C K N O W L E D G M E N T S

Special thanks go to Carlos A lonso (Tandem Com puters) for w riting the custom ized kernel section

that enabled us to perform fau lt injections on the S2. W ithout h is expertise and fam iliarity w ith the S2,

our experim ents w ould not have been possible. T he authors also w ish to thank H ow ard A lt (Sun

M icrosystem s) for his help in the virtual to physical address conversion routines, R ob R einauer (T an ­

dem) for supplying w orkloads, and D oug Jew ett (Tandem) for supplying profile-parsing tools and m any

© 1992 L.T. Y oung and R .K . Iyer

30

useful suggestions.

T his research w as supported in part by T andem C om puters, Inc. and in part by the D epartm ent o f

the N avy, Office o f the C h ie f o f N aval R esearch under G rant N 00014-91-J-1116. T he con tent o f this

paper does no t necessarily reflect the position o r policy o f the governm ent and no official endorsem ent

should be inferred.

REFERENCES

[Chil87]

R. C hillarege and R. K. Iyer, "M easurem ent-B ased A nalysis o f E rro r L atency," IEEE Trans. Com­

puters, vol. C -36, no. 5., M ay 1987, pp. 529-537.

[Chil89]

R. C hillarege and N .S. B ow en, "U nderstanding large system failures — A fault injection experi ­

m ent," 19th International Symposium on Fault-Tolerant Computing, June 1989, pp. 355-363.

[Choi89]

G .S. C hoi, R .K . Iyer and V. C areno, “ FO C U S: A n E xperim ental E nv ironm ent for V alidation o f

Fau lt T o lerant System s: A case study o f a Jet E ngine C on tro lle r” , IEEE International Conference

on Computer Design, C am bridge, M A , O ctober, 1989, pp. 561-564.

[Cour81]

B. C ourtois, "A M ethodology fo r O n-line T esting o f M icroprocessors," Proc. 11th International

Symposium on Fault-Tolerant Computing, Portland, M aine, 1981, pp. 272-274.

[Cutt90]

R .W . Cutts, N .A . M ehta, and D .E. Jew ett, “ M ultip le P rocesso r System H av ing Shared M em ory

W ith Private-W rite C apab ility” , U nited States Patent No. 4 ,965,717, O ct. 23, 1990.

[Czec91]

E. Czeck, “ O n the Prediction o f Fault B ehav ior based on W ork lo ad” , Ph.D . d issertation, E lectri ­

cal and C om puter E ngineering D epartm ent, C arnegie M ellon U niversity, P ittsburgh, PA , April 19,

1991.

[Gosw91]

K. G osw am i and R. Iyer, “ A S im ulation-B ased Study o f a T riple M o du la r R edundan t System

using D E P E N D ” , 5 th International FTRS conference, N um berg , G erm any, Sept. 25-27 th 1991.

[Jewe91]

D. Jew ett, “ Integrity S2: A Fault-T olerant Unix P la tfo rm ” , 21st In ternational Sym posium on

Fault-T oleran t C om puting, M ontreal, June 25-27, 1991, pp. 512-519.

[Kana92]

G. K anaw ati, N . K anaw ati, and J. A braham , “ FE RR A R I: A Fault and E R R or A utom atic R eal ­

tim e In jec to r” , C ER C T echnical R eport U T -CE RC -T R -J A A 9 2 -0 1, C om puting E ngineering

R esearch C enter, U niversity o f T exas, A ustin, TX , 1992.

[Lala83]

J. H. L ala, "Fault detection, isolation and reconfiguration in FTM P: M ethods and experim ental

© 1992 L .T. Y oung and R .K . Iyer

31

resu lts ,” Proc. 5 th Avionics Systems Conference, Seattle, W A, N ov. 1983, pp. 21.3.1-21.3 .9 .

[Lome86]

D. L om elino and R. Iyer, “ E rro r propagation in a d igital avionic processor: A sim ulation-based

stu dy“ , NASA CR-176501, U niversity o f Illinois, 1986.

[M cGo83]

J. G. M cG ough, F. L. S w em and S. B avuso, "New results in fau lt latency m odeling," Proc. IEEE

EASCON Conf, W ashington, D .C ., A ug. 1983, pp. 882-889.

[M itr88]

S.G. M itra and R .K . Iyer, "M easurem ent-based A nalysis o f M ultip le L atent E rro rs and N ear ­

co inciden t Fau lt D iscovery in a Shared M em ory m ultiprocessor," Proceedings, 1988 International

Conference on Parallel Processing, St. C harles, IL, A ugust 15-19, 1988, pp. 404-409.

[NASA81]

"M easurem ent o f fault latency in a d igital avionic m iniprocessor," N A SA C ontractor R eport 3462,

1981.

[NASA83]

J. G. M cG ough and F. L. Sw em , "M easurem ent o f fault la tency in a d igital avionic m inip rocessor

part II," N A SA C ontractor R eport 3651, 1983.

[Sega88]

Z. Segall, D. V rsalovic, ef al., “ FIA T — Fault In jection B ased A utom ated T esting E nv iro nm en t” ,

18th International Sym posium on Fau lt-T oleran t C om puting, 1988, pp. 102-107.

[Shin86]

K. G. Shin and Y. H. L ee, "M easurem ent and A pplication o f Fault Latency," IEEE Trans. Com­

puters, vol. C -35, no. 4., A pril 1986, pp. 370-375.

[Tek88]

DAS 9200 92A60/90 User’s Manual (8-116-132-Bit Microprocessor Support Modules), T ektronix ,

Inc., B eaverton, OR, M ay 1988.

[Youn91]

L. Y oung and R. Iyer, “ E rro r L atency M easurem ents in Sym bolic A rch itectu res” , AIAA Comput­

ing in Aerospace 8, B altim ore, M aryland, O ctober 22-24, 1991, pp. 786-794.

[Youn92]

C. Y ount and D. S iew iorek, “ A utom atic G eneration o f Instruction-L evel E rro r M anifestations o f

H ardw are F a ilu res” , (pending technical report), C enter for D ependable System s, D ept, o f E lec tri ­

cal and C om puter E ngineering, C arnegie M ellon U niversity , P ittsburgh, PA , 1992.

© 1992 L .T . Young and R .K . Iyer

