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A B S T R A C T

T h is  p a p e r  d e sc r ib e s  a  h y b r id  fa u lt in je c t io n  e n v ir o n m e n t  th a t  c a n  b e  u se d  to  e v a lu a te  th e  

d e p e n d a b ility  o f  c o m p u tin g  sy ste m s . I t  c o n s is ts  o f  a  fa u lt  in je c t io n  sy ste m , a  h y b r id  m o n ito r , a n d  

a  su p e r v iso r y  sy ste m  to  a u to m a te  th e  m e a su r e m e n ts . T h e  h y b r id  e n v ir o n m e n t  c o m b in e s  th e  v e r ­

sa tility  o f  so f tw a r e  in jec t io n  a n d  th e  a c c u r a c y  o f  h a r d w a r e  m o n ito r in g . I t  is  u se fu l fo r  o b ta in in g  

d e p e n d a b ility  s ta t is t ic s  a n d  fa ilu r e  c h a r a c te r is t ic s  fo r  a  r a n g e  o f  sy s te m  c o m p o n e n ts . I t  is  a lso  

w ell su ite d  fo r  m e a su r in g  e x tr e m e ly  sh o r t  e r r o r  la te n c ie s , a n d  th e  in tr o d u c e d  o v e r h e a d  is  m in im a l 

so  th a t e r r o r  p r o p a g a t io n  a n d  c o n tr o l f lo w  a r e  n o t  s ig n ific a n tly  a f fec te d  b y  th e  p r e se n c e  o f  in s tr u ­

m e n ta t io n . T h e  h y b r id  e n v ir o n m e n t  c a n  b e  u se d  to  o b ta in  p r e c is e  m e a su r e m e n t s  o f  in s tr u c tio n -  

le v e l a c t iv ity  th a t w o u ld  o th er w ise  b e  im p o ss ib le  to  p e r fo r m  w ith  a  h a r d w a r e  m o n ito r  a lo n e .

T h e  u t il ity  o f  th e  fa u lt  in jec t io n  e n v ir o n m e n t  is  d e m o n s tr a te d  b y  a p p ly in g  it  to  th e  s tu d y  o f  a  

T a n d e m  Integrity S 2  sy s te m . F a u lts  a r e  in jec te d  in to  C P U  r e g is te r s , c a c h e , a n d  lo c a l m e m o r y . 

T h e  e ffe c ts  o f  fa u lts  o n  in d iv id u a l u se r  a p p lic a t io n s  a r e  s tu d ie d  b y  o b t a in in g  su b sy s te m  d e p e n d a ­

b il ity  m e a su r e m e n ts  su c h  a s  d e te c t io n  a n d  la te n c y  s ta t is t ic s  fo r  c a c h e  a n d  lo c a l m e m o r y  su b sy s ­

te m s . In s tr u c t io n - le v e l fault sensitivity a n d  e r r o r  p r o p a g a t io n  e ffe c ts  a r e  a lso  m e a su r e d .

k e y w o rd s:  e r r o r  la te n c y , e r r o r  p r o p a g a t io n , a p p lic a t io n  d e p e n d a b ility , h y b r id  m o n ito r , fa u lt  

in je c t io n , T M R , R IS C .

I . IN T R O D U C T IO N

D esigners o f  h ighly reliable com puter system s need realistic m easurem ents in o rd er to com plete 

evaluations based on sim ulation o r analytical m ethods. Fault injection is w ell know n fo r its successful 

use in  system  validation and in  the extraction o f dependability  statistics such as latency and fau lt de tec ­

tion ratio. It is difficult, how ever, to realistically  m easure the effects o f  faults w ithout depend ing on a 

passive m onitor. L ikew ise, it is difficult to m easure the effects o f  faults on  softw are-defined com -
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ponents (e.g., sections o f  a g iven application) w ithout significantly d isturbing the system  under test.

T his paper describes a hybrid  fault in jection environm ent, w herein  faults are in jec ted  v ia  softw are 

and the im pact is m easured by both  softw are and hardw are. T he env ironm ent is useful fo r evaluating 

system  dependability , and it has the advantage in  that it in troduces m inim al perturbation, and provides a 

h igh  degree o f  con trol o ver the location  o f  faults to be injected. Faults can be in jec ted into any location 

that has a physical address, e .g., C PU  registers, cache, local m em ory, m ass storage, ne tw ork  controllers, 

etc.... Faults  can also  be in jected into locations allocated to  a single, executing  u ser program  o r even  

into the kernel, and propagation can be characterized dow n to the instruction level. T he environm ent is 

w ell suited fo r m easuring  extrem ely short e rro r latencies, and the introduced overhead is m inim al so that 

e rro r propagation and control flow are no t significantly  affected by the presence o f  instrum entation.

W e illustrate the env ironm ent by applying it to  the study o f  the U nix-based, Tandem Integrity S2 

com puting system . D etection statistics and prec ise latency  m easurem ents fo r cache and local m em ory 

subsystem s are obtained. W e also exam ine instruction-level erro r propagation  effects and m easure fault 

iso lation tim es.

Several key  results are presented in th is paper. O ur findings support the design decision to 

preserve e rro r correction  coding in  cache but no t in  local m em ory. T he faults in jected in  the local 

m em ory subsystem  o f  the S2 causes a C PU  divergence/shutdow n only 3.6%  o f  the tim e. B ut in the 

cache, CPU  divergence/shutdow n occurs 95.0%  o f  the tim e (in  only  the first m inute). E arly  fault rem o ­

vals are due m ostly to overw rites by the application; la te r rem ovals are due m ostly  to  page deallocation. 

T his inform ation  characterizes a natural fault rem oval processes and could  assist in the design o f  

efficient scrubbing techniques. In cache, m ost detected faults are found in  less than  493 m icroseconds 

and m ost in jected faults are found in less than 501 m icroseconds. By com parison, it takes 51.2 seconds 

to scrub all o f  cache at the rate local m em ory uses. T his finding supports the design decision to not p e r ­

form m em ory scrubbing in  cache. W e characterize im m ediate error propagation effects caused by

©  1992 L .T . Y oung and R .K . Iyer
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in jection faults in to  the instruction stream  o f  a M ips R ISC  processor. T he im pact o f  faults on instruc ­

tion code during runtim e is significant —  we find that single-bit errors propagate additional errors 85.9 

percent o f  the tim e. W e observe that instructions d iffer substantially  in  the degree to w hich they are 

fault sensitive and affect error propagation. Since la tency and detection  statistics can be obtained for 

m any applications and opcodes, this tool provides a w ay to charac terize the dependab ility  o f  an  entire 

instruction set.

I I .  R E L A T E D  R E S E A R C H

2.1 L a te n cy  S tu d ies

T he term  error detection latency is defined as the tim e tha t elapses betw een  the activation o f  an 

error and its d iscovery. S im ilarly , fault latency is the tim e delay  betw een  w hen a fau lt com es into 

existence and w hen it becom es active by producing an error. In  com puter system s, failure rates can be 

elevated during a bu rs t o f  system  activity  because errors m ay rem ain und iscovered  until then. F o r th is 

reason, it is generally  believed that long fault and erro r latencies are undesirable and can have a 

significant im pact on a com puting system ’s reliability.

M ost fault latency experim ents have taken an em ulator-based approach. S tudies o f CPU  fault 

latency using a gate-level em ulation o f  an avionic m inip rocessor are described in  [N A SA 81],[N A SA 83]. 

S im ilar experim ents are reported in [L ala83],[M cG o83]. A m ethodology fo r on-line testing o f  

m icroprocessors and the distribution o f  failure detection tim es for those affecting the M 6800 C PU  die 

are reported in [Cour81]. In [Shin86], an indirect technique is used to estim ate fau lt latency at the p ins 

o f  the chips in  the C PU  o f  the Fault T olerant M ultiprocesso r (FTM P). B ecause the exac t m om ent w hen 

a fault becom es an e rro r is not know n, the technique gives only an upper bound fo r fault latency.

©  1992 L .T. Y oung and R .K . Iyer
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C hillarege has developed  a m ethodology fo r studying e rro r latency characteristics o f  m edium  to 

large com puter system s in  a full p roduction  environm ent [Chil87]. T he technique is applied to the 

m em ory subsystem  and em ploys periodic sam pling by a hardw are m onitor. In [M itr88], this technique 

w as ex tended to a shared-m em ory m ultiprocessing system  and used to calculate  the risk  o f  encountering 

m ultip le la tent errors. A  fa ilure acceleration m ethod fo r de term ining fault detection  characteristics is 

d iscussed in [Chil89]. B ecause this study used periodic sam pling, the d iscovery tim es o f  only p e r ­

m a n en t  fa u lts  could  be m easured. In [Y oun91], a  hybrid  m onito r approach  to  m easuring erro r latency 

was applied to a T I E xp lo rer II L isp  m achine. T he m ethod is based on sim ulation o f  the erro r discovery 

process taken  from  a continuous trace o f  softw are-selected locations.

22  S o ftw a r e  F a u lt  In je c t io n  S tu d ie s

A nu m ber o f  studies perform ed at Carnegie M ellon U niversity  have centered around FIAT, an 

autom ated env ironm ent fo r in jecting faults in a d is tributed system  [Sega88]. T he FIA T  environm ent 

u tilizes software implemented fault injection (SW IFI) to em ulate various hardw are faults [Czec91]. The 

em ulation o f  hardw are failure  m anifestations by autom atic instruction substitu tions is described in 

[Y oun92]. A nother autom ated fau lt in jection environm ent, FE R R A R I, w as able to em ulate faults in 

hardw are com ponents such as opcode decoding circuitry, program  control units, da ta  registers, ALU, 

and address and data  buses [K ana92]. I t gave a u ser control over the location  and duration  o f  an in jec ­

tion  by inserting trap  instructions that rem ove them selves after recreating the sam e effects tha t a g iven 

hardw are fault w ould  have.

S im ulation based approaches have been  taken  in studying the effects o f  fau lt injection. In 

[Lom e86], a sim ulation env ironm ent was used to study erro r propagation from  the gate to chip  level. 

FO C U S, a sim ulation env ironm ent to conduct fault sensitiv ity  analysis o f  ch ip-level designs, is 

described in [Choi89]. A nother sim ulation environm ent, D EPE N D , studies the effects o f  faults at the 

system  level [G osw 91]. Instruction-level sim ulations are used to supplem ent SW IFI in [Czec91]. Such

© 1992 L .T. Y oung and R .K . Iyer
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m ethods are useful at the design stage, but they fail to provide a com plete env ironm ent for fault p ropa ­

gation. T hey  cannot, fo r exam ple, include the effects o f  paging, various in terrupts, scheduling, I/O , 

etc....

T his paper describes a hybrid  fault in jection environm ent th a t can  be used to evaluate  the dependa ­

b ility o f  com puting system s. T he  env ironm ent com bines the versatility  o f  so ftw are in jec tion and m on i­

toring w ith the accuracy o f hardw are m onitoring. T rad itional SW IFI m ethods are used to  in ject faults 

into C PU  registers, cache, and local m em ory o f  a test system . T he env ironm ent consists  o f  a fault 

in jection system , a hybrid  m onitor, and a supervisory system  to autom ate the m easu rem ents. T he 

hybrid m on ito r is fu rther divided into hardw are and softw are m onitors. D etails o f  the hybrid  environ ­

m ent provided in the follow ing section.

m .  E X P E R IM E N T A L  E N V IR O N M E N T

3.1 T h e  H y b r id  F a u lt  In je c tio n  E n v ir o n m e n t

Figure 1 illustrates the subsystem s that m ake up the hybrid  fault in jection  environm ent. It consists 

o f a fault in jection system , a hybrid  m onito r system  to  m easure the effects o f  in jec ted faults, and a

Hybrid Fault Injection Environment

Fault

Injector

Hybrid Monitor

Hardware

Monitor

Software

Monitor

Supervisor

Figure 1: H ybrid  Fault Injection E nv ironm ent

©  1992 L .T. Y oung and R .K . Iyer
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supervisory  system  to autom ate the m easurem ents. T he hybrid  m onito r system  is fu rther divided into a 

hardw are m on ito r and a softw are m onitor. F igure 2 illustrates how these system s are physically  

situated. T he  fault injector and software monitor execute on  the test system, w hile the supervisor pro­

gram executes on the control host. Probes attach the hardw are m onito r to the address/data backplane o f 

the te st system  so that the m onito r can analyze and record the signals generated. C om m unication 

betw een  the superv iso r and the hardw are m onito r takes place over an RS-232 or GPIB connection.

T he  func tion o f  the env ironm ent is to perform  experim ents tha t repeatedly  in ject faults and record 

observations. T he env ironm ent in troduces faults into the te st system  during the execution  o f  a target 

program, m easures the effects o f  that fault, and returns the test system  to conditions p resen t prior to 

fault in jection. T hese  operations form  a single observation loop. Figure 3 illustrates the con trol flow o f  

an experim ent.

To use the hybrid  fau lt in jec tion environm ent, one m ust specify  the target program to run (w ith 

data), the num ber o f  tim es to repeat an observation loop, the num ber o f faults to generate per

Figure 2: Physical L ayout o f  H ybrid  Fault In jection System
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observation, and term ina tion conditions (typically  a tim e lim it o r C PU  fail). T he target program can be 

any user program  desired. A fte r the targe t program  has been  started , physical addresses o f  locations to 

fault are random ly generated by the supervisor and presented to the hardw are m onitor. W hile the 

hardw are m o n ito r is reconfiguring, the softw are m onito r determ ines w hich virtual addresses have been 

allocated to the ta rget program . T he softw are m onitor then converts these virtual addresses to  physical 

addresses and determ ines w hich physical addresses m atch those generated by the supervisor. I f  no 

m atch is found, the supervisor m ust generate ano ther random  set o f  physical addresses and restart the 

hardw are m onitor. T hus, the supervisor and the software monitor w ork in  parallel over the netw ork  to 

generate random  locations in  the test system  to fault.

T he  m atched  physica l addresses are then passed to the fault injector. A lthough typical experi ­

m ents constra in  fault injections to portions o f  m em ory allocated to the target program , the hybrid  

environm ent can  generate faults w ithin an y  location  that has a physical address, e .g., locations m ay 

include the kernel, C PU  registers, cache, m ass storage, netw ork  controllers, etc.... T he  softw are m onito r 

periodically  checks th e  status o f  the test system  to  determ ine w hether term ination  conditions have been  

met. W hen term ination  conditions such as CPU  crash, application com pletion, o r tim eout occur, the 

hardw are m on ito r is stopped and the target program  is k illed. T he  supervisor then obtains m easurem ent 

reports from  bo th  the softw are and hardw are m onitors, m erges the data, and appends a sum m ary o f  the 

observation to any previous observations w ithin  the experim ent. T he observation loop is com plete at 

this point.

T he rem ainder o f  this section exam ines the com ponent system s o f  the hybrid  fault in jection 

environm ent in  g reater detail.

3.2 H y b rid  E n v iro n m e n t S u b sy stem s
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Figure  3: Fau lt Injection C ontrol F low

T he su p e r v iso r  is w ritten  in  C and runs on the control host, w hich, in o u r case, is a D EC  M icro- 

V A X  II. T he superv isor p lays roles o f  com m unication, synchronization, and data analysis in the hybrid 

environm ent. In its cu rrent im plem entation, the superv isor com m unicates w ith  the softw are m onitor v ia 

N FS sockets and w ith the hardw are m onitor over an R S-232 connection tha t uses a software- 

reconfigured T T Y  port. A t the beginning o f  an observation loop, it com m unicates physica l addresses to 

both  the softw are and hardw are m onitors. A t the end o f  an observation loop, it receives virtual 

addresses back from the softw are m onito r and acquisition data back  from  the hardw are m onitor. Fo r 

synchronization purposes, the supervisor controls w hen to start and stop both  the target program  and the
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hardw are m onitor. T he uploading o f  m easurem ents from  the hardw are and softw are m onitors is also 

controlled  by the supervisor. T he  analysis role o f  the supervisor involves tak ing  hardw are m onitor 

m easurem ents in  the form  o f  a tim estam ped trace and parsing it according to m easurem ents taken  by the 

softw are m onitor. F urther details o f  the analysis are g iven in  section  3.3.

T he h y b r id  m o n ito r  consists o f  bo th  a hardw are m on ito r and a softw are m onitor. T he  hardw are 

m onitor can record and tim estam p any activity, addresses, o r da ta  presen t on  the address/data backplane 

o f the system  under te s t  In o u r hybrid  environm ent, the hardw are m onito r is a T ek tron ix  DAS 9200 —  

a program m able, digital analysis tool. T ransfers o f  acquisition data and instrum ent setup data betw een 

the hardw are m onitor and supervisor are supported through a Program m atic C om m and L anguage (PCL ) 

[Tek88]. T he PC L  com m ands allow  the supervisor to reprogram  the D A S, start and stop acquisitions, 

and upload acquisition files. T hrough  its 92A 90 data acquisition m odule, the D A S 9200 can perform  

general-purpose state analysis for up  to  90 channels. T he 20 M H z buffer probe  accom panying the 

92A 90 is retargetable and can store up to 32,768 sam ples, w here each  sam ple is tim e-stam ped w ith  a 

resolution o f  20 ns.

T he  softw are m onito r is also w ritten  in  C and designed to function w ithin  a U nix operating sys ­

tem. It assists the supervisor by determ ining w hich virtual addresses can be used fo r fault injection dur ­

ing an experim ent. V irtual-to-physical address translations are perform ed by accessing the system  page 

table. I f  no m atch can be found, the softw are m onito r notifies the supervisor. O therw ise, it provides the 

fault in jec tor w ith the m atching physical addresses and a generated b it vecto r th a t specifies where, 

w ith in  the w ord, to inject a fault. A fte r a fault has been  injected, the so ftw are m onito r perform s 

periodic, unobtrusive checks o f  the system  status to determ ine w he ther term ina tion conditions have been 

reached. A t the end o f  an  observation cycle, the softw are m onito r reports inform ation  such as v irtual 

page fram e num bers and cause o f term ination to the supervisor.
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T he fa u lt  in je c to r  is a psuedo-device d river w ritten  in  C and was partia lly  im plem ented through 

the addition o f  a sm all, special-purpose kernel routine. D uring a fault in jection, the content o f  the phy ­

sical address is read and then  w ritten  back to a dum m y reg is ter w ith  a fixed, physical address. The o ri ­

g inal va lue is then  X O R ed w ith the bit vector provided by the softw are m onitor, and the new  value is 

w ritten  back  to the orig inal address. By th is schem e, every  fau lt in jec tion is im m ediately  preceded by a 

w rite to a fixed, physical address. Thus, by program m ing the hardw are m onito r to detect and record all 

w rite activ ity  to th is  address, we can ob tain  a record o f  the prec ise m om ent o f  fau lt injection.

3.3 A n aly sis

O ne o f  the ro les o f  the superv iso r is to analyze and m erge the data it obtains from  the hardware 

and softw are m onitors. F igure 4  show s the inform ation reported by both  the softw are and hardware 

m onitors. F o r each fault injected, the softw are m onito r reports a v irtual address, an  X O R  bit vector, and

H a r d w a r e  M o n i t o r

HkAU

T im e s ta m p  
D a ta  V alu e  

In te r r u p ts  

E r r o r  S ig n a ls  
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.W H lI t .
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T im e  o f  In je c tio n  
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N ew  V alu e

S o f t w a r e  M o n i t o r

S u p e r v i s o r

ANALYSIS(yirtual Addres^

pattern^)

(Manifestation^ \
_ _ _ x  :  ( F a u l t  P r o p a g a t i o n )
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Figure 4: A nalysis o f  H ardw are and Softw are M onitor Reports
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the effect o f  the fau lt a t te rm ination tim e. F o r that sam e fault, the hardw are m on ito r reports the tim e o f  

fault injection, a physical address, and the contents o f  that address before and afte r that fault. T his 

inform ation is fo llow ed by a tim estam ped lis t o f  all reads, w rites, and D M A  accesses to the physical 

address (com plete w ith  data values and signals such as interrupts, bus errors, and in terrupt requests).

T here are tw o prim ary functions that the supervisor perform s w hen m erging  the separate hardw are 

and softw are m onito r reports. O ne function is to prune ou t im pertinen t inform ation, and the o th er func ­

tion  is to perform  fo rm at conversions. T he hardw are and softw are m onitors use d ifferent form ats in 

uploading m easurem ents to the supervisor. T he  supervisor m ust translate and  m erge the inform ation  it 

receives so that hardw are-level activity  and tim ing can  be connected to  softw are specific inform ation. 

T he result o f  the m erge is a trace file that can be analyzed at m any  levels.

A nalysis o f  a trace  file can yield a num ber o f  dependability  statistics. L atency m easurem ents can 

be derived from  the difference betw een tw o tim estam ps, w here the first tim estam p  corresponds to the 

m om ent o f  fault in jection and the second tim estam p corresponds to the m om ent o f  fault detec tion (as 

indicated by the appropriate read o r in terrupt signal). T he fault de tec tion  ratio  can be gathered from  

w hether o r no t the softw are m onito r reports that a failure occurred. O ther statistics such as instruction 

fault sensitivity (d iscussed in  section  5.2) can be derived by observation  o f  the v irtual add ress .1 By exa ­

m ining the app lication task  im age, it is possible to de term ine w hich instruc tion is be ing faulted, and 

w hat im m ediate erro r propagation effect that fault w ill have. A n exam ple o f  a typical trace file and its 

in terpretation is provided in section 4.2.

3 .4  T a r g e t P r o g r a m s  T e s te d

1 In  a  U n ix  s y s t e m ,  t h e  c o n t e n t s  o f  v ir t u a l  m e m o r y  a re  a lr e a d y  c a t e g o r iz e d :  K e r n e l  c o d e  b e g in s  a t  v ir t u a l a d d r e s s  0 x 8 0 0 0 0 0 0 0 ,  u s e r  

a p p l ic a t io n  c o d e  b e g in s  a t  0 x 4 0 0 0 0 0  ( t e x t ) ,  u s e r  d a ta  b e g in s  a t  0 x 1 0 0 0 0 0 0 0  ( d a t a ) ,  u s e r  s u c k  s p a c e  b e g in s  a t  0 x 7 F F F F 0 0 0  ( s u c k )  a n d  w o r k s  

d o w n .
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F o r all the experim ents described in th is paper, tw o applications w ere tested  under this fault in jec ­

tion  environm ent. T hey are PR IM E  and A N A G RA M , and are 3,926 and 7,302 instructions long, 

respectively . B o th  w ere tested  under heavy and ligh t m u ltiuser w orkloads and selected because they 

w ere bo th  able to take o ver h a lf  an ho u r to com plete, depending on  the  w orkload. PR IM E  is a CPU and 

m em ory  in tensive program  that generates the first h a lf  m illion  prim e in tegers. A N A G R A M  is a pro ­

g ram  tha t finds all three-w ord anagram s o f  a string o f  letters. S ince  it m ust access a local d ictionary, it 

m ust perform  extensive I/O  in  the early  stages o f  execution.

IV . T H E  T A N D E M  IN T E G R IT Y  S 2  S Y S T E M

4 .1  S 2  A r c h ite c tu r e

T he T andem  Integrity S2 is a  fault-to lerant com puting platform  fo r U nix-based applications. F ig ­

u re 5 depicts the architecture o f  the S2 system  used in  these experim ents. T he p rinciple  feature o f the 

S2 is its R ISC -based, T M R  processing core, m aking it a h ighly-available, fault-to lerant system . Each o f  

the three  C PU  boards contains a traditional CPU  w ith cache and 8 M B o f  local m em ory. T he three 

CPU s act as one CPU , perform ing identical operations and accessing the duplexed T riple  M odular 

R edundant C ontrollers (T M R C s) through the Reliable System Bus (RSB). E ach  T M R C  provides a 32 

M B global m em ory and dual-rail voters. T he R eliable I/O Bus (RIO B) in terconnects  the T M R Cs w ith 

the I/O  Packetizers (IO Ps), w hich handle all system  I/O (including m irrored disks, tape  drives, ethem et 

controllers, term inals, etc...). F urther inform ation on  the S2 architecture m ay be found in [Jewe91] and 

[Cutt90].

T he voters are the key error detection m echanism s p resent on  the S2. W henever a C PU  attem pts 

to access the duplexed global m em ory and I/O system s, it m ust issue requests through the voters and, if  

necessary, w ait fo r voting to com plete and a result to be returned. A n erro r is de tected if  two CPUs fail
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Figure 5. A rchitecture o f  the T A N D E M  Integrity S2.

to issue the sam e request w ithin a fixed tim e period. Such requests are issued in  the form  o f  address, 

data, control, and in terrupt values. F o r instance, i f  only  tw o C PU s generate an in terrupt, the voters w ill 

tim e out and signal th a t an erro r has occurred.

Several facets o f  the S2 architecture underscore the need to study fa u lt  d e te c t io n  r a t io s  and e r r o r  

p ro p a g a t io n . T he S 2 ’s voters are able to de tect and co rrect all single-bit errors and can detect and 

correct m any m ultip le-bit errors. The degree to w hich they are called upon to correct errors can be 

found through studies o f  error propagation and fault detection. T he natu re  o f  local m em ories also pro-
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vides incentive fo r studying detec tion  and erro r propagation. In  local m em ories, parity  checking is not 

perform ed, and errors are free to propagate to the CPU  and cache w ithout detection. O nce inside the 

CPU, errors can propagate  to registers and o ther local m em ory locations until the CPU  is forced to 

access the T M R C s.

T hese system  features ju s t d iscussed also  po in t ou t the need  to exam ine e r r o r  la ten cy  on the S2. 

Such exam inations w ould reveal the degree to w hich the am ount o f  tim e spen t by a vo te r in  detecting an 

erro r affects overall e rro r latency. M easuring erro r la tency w ithin  local m em ory  w ould tell us how long 

errors are free to propagate w ithin  a single CPU  board before being detected. Forced stalls during C PU  

synchronization causes e rro r detection to be delayed on  the faster CPU s w hile contributing to error p ro ­

pagation w ithin  the slow est CPU s. T he degree to w hich this is so m ay be quantified through studies o f 

error latency on  the S2.

K now ing the tim e associated w ith  isolating a fault is also im portant to the study o f  the S2. A n 

intricate chain  o f  in terrupts and tests are perform ed on the S2 in  order to isolate faults [Cutt90]. I f  a 

fault stem s from  a voter, the effect is the sam e as i f  a fau lt had stem m ed from  a CPU. T o isolate the 

source o f  an  error, an excep tion hand ler running on all CPU s uses a co llection o f  registers on the CPU  

and T M R C  to  determ ine w he ther the vo te r or one o f  the CPU s contains the fault. It w ould  be useful to 

know  how  long fau lt iso lation takes, because additional errors could appear during this chain  o f  tests 

and prevent successful isolation.

T he issues o f  detection ratio , latency, error propagation, and fault iso lation tim es are addressed by 

this study. T o  bette r illustrate fau lt in jection and data collection, the follow ing exam ple dem onstrates an 

application o f  the hybrid  fault in jection  environm ent to the S2 system .

4.2 E x am p le : F a u lt  In je c tio n  a n d  D a ta  C ollection
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P h y s  A d d r  =  0 0 x x x 9 9 4

t i m e  l o c a t i o n  d a t a  f l a g s  comments (added)

0 u s 1 ( 0 0 7 0 5 9 9 4 ) => 2 6 2 4 0 0 0 1 F 3 before
1 7 . 4 6 u s 1

1
( 0 0 7 0 5 9 9 4 ) <= 2 6 2 4 4 0 0 1 F 4 after

1 0 8 . 6 2 u s

1

1 ( 0 0 7 E 6 9 9 4 ) - > 8 F B F 0 0 2 C F 3 before
1 1 4 . 8 4 u s 1

1
( 0 0 7 E 6 9 9 4 ) <= 8 F B F 0 0 2 4 F 4 after

1 8 9 . 8 4 U S

1
1 ( 0 0 5 6 7 9 9 4 ) => 0 0 4 3 C 8 2 1 F 3 <— addu t9,v0,vl (before)

1 9 6 . 4 0 U S 1
1

( 0 0 5 6 7 9 9 4 ) <= 0 0 4 3 C 8 0 1 F 4 « - reserved instruction

2 6 9 . 5 4 U S

1

1 ( 0 0 4 C 8 9 9 4 ) => 1 0 0 0 0 0 1 A F 3 before
2 7 6 . 2 4 U S 1

1
( 0 0 4 C 8 9 9 4 ) <= 1 0 0 0 0 0 3 A F 4 after

3 5 0 . 1 4 U S

1

1 ( 0 0 6 4 B 9 9 4 ) => 0 0 0 0 0 0 0 0 F 3 before
3 5 6 . 3 4 U S 1

1
( 0 0 6 4 B 9 9 4 ) <= 0 0 4 0 0 0 0 0 F 4 after

5 6 . 0 6 2 2 4 m s

1
1 ( 0 0 5 6 7 9 9 4 ) => 0 0 4 3 C 8 0 1 F 3 <— error activated

5 6 . 3 8 8 3 8 m s 1 ( 0 0 7 E 0 7 C 0 ) 8 0 1 7 B 3 D 0 B 1 <— error detected
5 7 . 9 9 3 0 4 1 ( 1 F D 1 0 0 3 0 ) B 8 4 4 F F 0 E 8 1

1 0 3 . 3 1 6 5 0 m s 1 ( 1 F C 0 0 0 0 0 ) = > 0 B F 0 0 0 8 2 F 3 <r- fault isolated

F ig u r e  6 . E x a m p le  o f  H a r d w a r e  M o n ito r  T ra c e

T his exam ple is taken  from  an experim ent in w hich w e m easured error detection latency and fau lt 

iso lation tim es associated w ith single b it faults in the instruction-stream  o f  a g iven application. In this 

exam ple, five sing le-bit faults w ere injected into the local m em ory  o f  a single CPU. T he five faults 

w ere selected random ly  from physical addresses that m apped back  to those virtual addresses allocated to 

the code section o f  a te st application. T he test application w as A N A G RA M , a program  that generates 

anagram s from  a string  o f  letters. T he application w as running under a m oderate w orkload w ithin  a 

m ultiuser environm ent. A fte r the faults were injected, the cache w as selectively  flushed to ensure that 

faults w ould  propagate to the CPU  and cache upon a cache m iss.

F igure 6 illustrates a partial trace file from  a single observation  generated by the supervisor. T he 

interpretation o f  th is exam ple is as follows: Inform ation recorded includes a tim estam p, a m em ory 

address, d irection o f  data transfer, data, in terrupt flags, and state analysis values. R eads are denoted by
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"=>", and w rites are denoted by "<=" in this expansion.

T he  th ird  fault co rresponds to  a flip o f  the 5 th  bit in the instruction addu t9,v0,vl, w hich turned it 

into a reserved instruction. A n attem pt to execute the instruction 56.06 m secs la te r forced a cache m iss 

and caused the error to m igrate to  the cache. U pon an attem pt to execute  th is illegal instruction, the 

CPU  generated a reserved instruction exception. T his is a low -level excep tion and does no t trigger v o t ­

ing. U pon discovery tha t no instruction in terpretation had been im plem ented, the kernel generated an 

illegal instruction fault signal w hich presented  a h igh-level excep tion to the voters. T he generation o f 

this la st exception  indicates the m om ent o f  error detection at the system  level. T he e rro r detection 

latency in  this exam ple w as 326.14 psecs. Because the o ther tw o CPU s w ere  no t faulted , they did  not 

report s im ilar activity . A fte r a b rie f  signal tim eout, the T M R C  perform ed tests and determ ined that 

CPU B (the one that w as faulted) needed  to be taken  offline. T he  fault iso la tion tim e in this exam ple 

was 46.92812 m secs (± 20 ns).

V . E X P E R IM E N T A L  R E S U L T S

5 .1  F a u lt  C h r o n o lo g y

Figure 7 depicts the life o f  a fau lt in the local m em ory subsystem  o f  the  S2. In  this exam ple, an 

erro r occurs w hen the CPU  obtains incorrect data from the m em ory. T he e rro r is detec ted  at the system  

level w hen the voters de tect a request m ism atch. T he fault latency is the tim e that elapses betw een the 

developm ent o f  this fault and its access by the C PU  as data. T he error detection latency is the tim e 

betw een  CPU  access o f  th is data and system -w ide acknow ledgm ent o f  a prob lem  (via the voters). 

W ithin  a fault to lerant system  such as the S2, there is a delay associated w ith locating  the source o f  the 

error. T his delay  is the fault isolation time. If  the fault is transient, it w ill be corrected by perform ing a 

"pow er-on se lf  test" (PO ST) and reintegrating the subsystem . The tim e required to perform  PO ST  and 

reintegration is ihe fault correction time.
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Figure 7: Fault T im eline

In the  fo llow ing sections, w e present the results o f  perform ing several d ifferent form s o f  fault 

injection. T he S2 is used as a case study and the results here m ay no t be representative o f  T andem  sys ­

tem s as a w hole. W e begin  in section 5.2 by exam ining issues o f  fault sensitivity , fault detection  p er ­

centage, and the error propagation effects due to single b it faults on  instructions. A fter that, w e exam ine 

latency issues at several levels: In section 5.3, w e characterize fa u lt latency in the local m em ory sub ­

system  o f  the S2. T hen  w e m ove on to detection at the system  level by studying e r r o r  d e tec tio n  

latency by fault propagation type in  section 5.4. Finally , in section 5.5, we characterize the tim e taken  

by the system  to perform  fa u lt iso la tion .

5.2 In s tru c t io n  L evel F a u lt D etec tion

T he purpose o f  th is experim ent is to quantify  the relative exten t to w hich instruc tions are sensitive 

to faults. Faults w ere injected random ly w ithin  the code sections (local m em ory  and cache) o f  execu t ­

ing program s. If  a fault resulted in  the failure o f  a CPU, then  the identity o f the faulted  instruction w as 

obtained. From  the m easurem ents, the probability  that a CPU  failure w as caused by a fau lt in a specific 

instruction w as estim ated. By com paring the m easurem ents w ith  the probabilities calculated from
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instruction execu tion frequencies, the relative fault sensitivity o f  d ifferent instructions w as evaluated.

M easured  values w ere obtained from  2,400 fau lt in jections, 95 percen t o f  w hich caused CPU 

failure. T he identity  o f  each faulted instruc tion was obtained from  the disassem bler by m atching  listed  

virtual addresses w ith  those obtained from  the softw are m on ito r,2 T he estim ated probability  that a CPU  

failure w as caused by a fault in  a specific instruction was obtained by coun ting the num ber o f  failures 

attributed to each  instruction and dividing by the to tal num ber o f  faults.

E xpected values w ere com puted from  opcode distributions and instruction execu tion  frequencies. 

T he opcode  distribu tions were found by counting the num ber o f  tim es an opcode appeared w ithin the 

static im age o f  the program  tested. By dividing th is coun t by the total instruction coun t o f  the program ,

T able I. E xpected and M easured D etection Probabilities

Instr E xpected M easured

addiu 35.5615 % 16.0342 %
sll 18.8399 % 7.3529 %

lw 16.8997 % 18.1214 %

sw 13.8242 % 13.3776 %

bne 4.2130 % 5.6452 %

addu 3.2937 % 9.9146 %

beq 3.0868 % 8.4440 %

lui 1.5014 % 3.5579 %
lbu 1.0479 % 5.3605 %

ja l 0 .6532 % 4.4118 %

jr 0 .4229 % 3.0361 %

andi 0 .2689 % 1.6603 %

subu 0.1919 % 1.0911 %
ori 0.1263 % 0.2846 %

bgez 0.0433 % 0.5693 %

situ 0.0210 % 0.5693 %
sit 0.0045 % 0.5693 %

2 In s tr u c t io n s  h a v in g  id e n t ic a l  o p c o d e s  w e r e  m e r g e d .  N O P ,  L I , B , a n d  M O V E  a r e  a c t u a l ly  s p e c ia l  c a s e s  o f  S L L ,  A D D I U ,  B E Q , a n d  

A D D U ,  r e s p e c t iv e ly .
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the probability  that a specific instruction  w ill be faulted was estim ated. Instruc tion execu tion  frequen ­

cies w ere obtained by counting the appearances o f  an opcode w ithin  an  instruc tion trace generated b t 

executing a profiled program . T hese  frequencies reflect the cond itional probability  tha t a fau lt in a 

specific instruction w ill be detected, g iven that the instruction has been  faulted .3 M ultip lication  o f  this 

conditional probability  by the probability  th a t a specific instruction w ill be faulted  produces the jo in t 

probability  that a fau lt w ill appear in  a specific instruction and be detected.

T he expected and m easured values fo r the probability  tha t a fau lt w ill occu r in  an  instruction and 

be detected are listed  in  T able I fo r several opcodes. T he values w ere norm alized  to com pensate fo r all 

the opcodes no t show n. Instructions w ere listed  by  decreasing o rd er o f  expected  values, and it can be 

seen that m easured values generally  decrease as w ell, bu t no t in  every  case. T his tab le  perm its us to 

evaluate the relative fau lt sensitiv ity  o f  any tw o instructions.

C om paring expected detection  probabilities o f  the load w ord and store w ord instructions, we see 

that L W  is expected to be faulted and cause a C PU  failure 1.2225 tim es as often  as SW . From  the 

m easurem ents, we see that th is happened. 1.3546 tim es as often , w hich indicates th a t SW  is slightly 

better able to perform  its function in the presence o f  faults than L W  is. By tak ing  the ratio o f  the m eas ­

u red and expected relative frequencies, (1.3546/1 .2225), one m igh t say th a t L W  is 10.8 percent m ore 

sensitive to faults than  SW  is. F o r A D D IU  and L W , w e see that A D D IU  is expected to be faulted  and 

cause a CPU  failure 2 .1043 tim es as often  as LW . From  the m easurem ents, w e see that this happened 

only 0 .8848 tim es as often, w hich indicates that L W  is 137.8 percen t m ore sensitive to faults than 

A D D IU  is.

T hese results are o f  im portance in  several areas. T he findings are re levan t to  com pile r designers 

w ishing to take into account dependability  issues because, as this experim ent has show n, instructions

3 T h is  r e f le c t io n  i s  n o t  n e c e s s a r i l y  l in e a r , s in c e  l o o p i n g  c a n  s k e w  r e s u lts  o v e r  sh o r t  p e r io d s  o f  t im e .  In  g e n e r a l ,  h o w e v e r ,  a  f a u l t  in  a  

fr e q u e n t ly  e x e c u t e d  in s t r u c t io n  i s  m o r e  l i k e l y  t o  b e  d i s c o v e r e d  th a n  o n e  in  a  s e l d o m l y  e x e c u t e d  in s t r u c t io n .
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differ substantially  in  the degree to w hich they are fault sensitive.- Since the func tion o f  an instruction 

m ay be partially  responsible  fo r its fault sensitiv ity, these findings reveal a need  to  exam ine fault detec ­

tion  in  term s o f  the erro r propagation effects caused by faulted instructions.

In  exam ining popular, fixed-w idth  instruction sets such as those o f  the M ips R ISC  set, we found 

that a single b it fau lt w ill im m ediately  im pact a g iven instruction in  one o f  several fashions —  we also 

found that the im pact could  be determ ined autom atically by a d isassem bler-like program . T able II lists 

the eleven m anifestations in to  w hich all instructions and faulted  bits w ere m apped fo r this study. T he 

N IL case is tha t in w hich a flipped b it is incapable o f  alte ring  norm al operation. A n exam ple is d is ­

cussed below . C ases U SV  and ILI trigger error detection m echanism s on  a C PU , w hich  in turn  alert the 

system  that an  unaccep tab le  instruction has been encountered. In  bo th  cases, no further corruption 

occurs. E xecu tion o f  the w rong  instruction (W IE) can be caused by  an im properly  specified opcode. A 

branch to a w rong address (BW A ) can be caused e ither by an im properly  specified address o r base 

register, or by m isdirected  calculations. B oth W IE and B W A  cases are capable o f causing m ultiple 

corruptions. W rites to  w rong registers (W W R) and addresses (W W A ) can  cause double corruptions:

T a b le  n .  E r ro r  P ro p a g a tio n  T y p e s

Id D e sc r ip tio n M u ltiü lie r

N IL F a u lt  h a s  n o  im p a c t w h a tso e v e r  o n  e x e c u tio n 0

U S V (U n a ss ig n e d  S p a c e  V io la tio n )  A d d re ss  E x c e p tio n 0

IL I L L legal In s tru c tio n 0

W IE W ro n g  In s tru c tio n  E x e c u te d m a n y

B W A B ra n c h  to  W ro n g  A d d re ss m a n y

W W R W rite  to  W ro n g  R e g is te r 2

W W A W rite  to  W ro n g  A d d re ss 2
R W R R e a d  f ro m  W ro n g  R e g is te r  (reg . c o rru p te d ) 1
R W A R e a d  f ro m  W ro n g  A d d re ss  (reg . c o rru p te d ) 1+
B ID B a d  Im m e d ia te  D a ta  (reg . c o rru p te d ) 1
B V M W ro n g  re g is te r  (B a d  V a lu e ) tra n s fe rre d  to  M e m o ry 1
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the in tended location  fails to be updated w ith  new  data, and a m isin tended location  is corrupted. The 

process o f  reading a w rong register o r address does not, in itself, cause e rro r propagation. B ut w hen 

such actions cause w rong values to be passed on to operations tha t update registers (R W R, R W A  and 

BID) o r m em ory (B V M ), e rro r propagation results. T he case o f  R W A  is a potential exception —  if  the 

read o f  a w rong address causes a page fault at the w rong tim e, then flow o f  control is altered, causing 

m ore than ju s t data co rruption to occur.

R eusing the tracefile data ob tained in studying fault sensitivity , w e com puted  first-order e rro r pro ­

pagation effects from  the  instruction type and X O R  b it vecto r associated w ith  each injected fa u lt  T he 

fault detections w ere then  tabulated by effect and analyzed. T able  III show s the results o f  this analysis. 

Roughly  five percent o f  the instruction single-bit errors had  no observab le  im pact on  program  execution. 

Tw o o f  the form s trigger e rro r detection w ithout erro r propagation, b u t they are caused by only 9.13%  

o f the instruction sing le-bit errors. T his m eans that over 90  percen t o f  all de tectable single-bit errors in

T able in. E ffects o f  Instruction S ingle B it E rrors.

Effect o f  error on instruction execution:______ Portion

w rong instruction executed (m ultiple effects) 21.18%  

branch to w rong address (m ultiple effects) 14.98%

read  from  w rong address (register corrupted) 13.10%

bad  im m ediate data (register corrupted) 9.83%

w rite to w rong regis ter (double fault) 9.83%

w rite to w rong address (double fault) 8.12%

read  from  w rong reg ister (register corrupted) 6.90%  

illegal instruction (triggers detection) 6.16%

no observable im pact on program  execution______ 4.97%

(USV) address exception (triggers detection) 2.97%

value o f w rong registe r transferred to m em ory 1.97%
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instructions cause propagating errors. C om paring ILI w ith  W IE, w e observe that a single alteration in 

an in struc tion’s opcode b it is 3.44 tim es as likely  to produce another legal (but w rong) instruction than 

it is to produce an illegal instruction. W e also observe that the tw o m ost com m on error form s (wrong 

instruction execution and branch to wrong address) occur 36.2 percen t o f  the tim e and are also the tw o 

w ith  the highest propagation fan-out. T his finding m eans th a t the expected propagation fan-out can be 

quite high.

A com parison  o f  fau lt detec tion breakdow ns by propagation  effect betw een  tw o applications 

(T able IV) show s that several propagation  effects are sensitive to application. A n instruction single b it 

erro r w as m ore likely  to produce w rong instruction execution (W IE) and bad  im m ediate data (BID) p ro ­

pagations w ithin  the PR IM E  app lication than w ithin A N A G RA M . A lso, W W R , R W R , and R W A  

errors w ere m ore  likely  to resu lt w ith in  the A N A G R A M  app lication  than in PR IM E. F o r the rest o f  the 

e rro r types, the odds w ere abou t even.

5 3  F a u lt  L a te n c y

In  this experim ent, fau lt locations w ere selected from  all sections o f  m em ory allocated to the 

A N A G R A M  test program  (data, stack, and text). T he A N A G R A M  program  w as executed under a 

m oderately  heavy w orkload, and a to tal o f  750 fau lt in jection observations w ere perform ed. Trial runs 

indicated that the general d istribu tion form s did no t change by extending  observation  tim es, so we

T able IV . Selected E rror M anifestation Probabilities

D escrip tion A N A G R A M PR IM E

w rong  instruction executed 18.56% 24.36%
w rite to w rong regis ter 11.13% 8.31%
read  from  w rong reg ister 8.23% 5.35%
read  from  w rong address 14.52% 11.46%
bad im m ediate data 8.47% 11.46%

©  1992 L .T. Y oung and R .K . Iyer



tim e in seconds

(a) Fault Page D eallocation H istog ram  
p. = 210.039 secs, a = 156.338 secs

Figures 8a-8c.
D istributions for D eallocation, 

O verw rite, and Fault L atencies.

tim e in seconds

tim e in seconds

restricted  observations to ten m inutes each. T he follow ing results w ere obtained:
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(fate o f  fault) count (% )

F au lt n ev er accessed: 687 91.6%

A ctivated C PU  failure: 27 3.6%

(4.3% ) no effect: 5 0.7%

U ndetected O verw ritten: 16 2.1%

(4.1% ) D eallocated: 15 2.0%

T hese  results tell us w hat can  happen  to a fault, though m any (91.6 percent) w ere n ev er accessed 

in the first ten  m inu tes o f  observation. O f those faults tha t w ere accessed (8 .4 percent), abou t one h a lf  

becam e active errors v ia a read (51 percent). M ost o f  the active errors caused C PU  failure (84 percent) 

and the rest had  no effect (16 percent). T he  rem ainder o f  the accessed faults w ere undetected, either 

because the application overw rote them  w ith  new  values o r because the pages con ta in ing  them  w ere 

deallocated first. F ifty-tw o percen t o f  the accessed, undetec ted  faults w ere overw ritten  and 48 percent 

w ere w ith in  pages th a t w ere deallocated.

F igures 8a and 8b show the latency associated w ith the rem oval o f  undetec ted faults, i.e., those 

faults th a t w ere rem oved before they could becom e errors. F igure 8a show s the la tency  associated w ith 

the deallocation  o f  the clean page containing a fault, and figure 8b show s the la tency associated w ith  

overw riting a fault. W e observe that faults w ithin  clean pages w ere deallocated afte r an  average o f 

about 210 seconds, w hich is m ore than  the average tim e spent before a fault is overw ritten  by the appli ­

cation (about 164 seconds). In figure 8b, we observe that m any o f the fault overw rites occurred w ithin  

the first m inute. T hese observations tell us is that early  fault rem ovals are due m ostly  to overw rites by 

the app lication  and tha t la te r rem ovals are due m ostly  to page deallocation. T his inform ation  character ­

izes a na tura l fault rem oval processes and could  assist in  the design o f  efficient scrubbing techniques.

In figure 8c, w e again  see a sharp  decay and long-tailed  distribution fo r de tected faults. In th is 

exam ple, faults w ere detected afte r an average o f  about 100 seconds, but h a lf  w ere detected in  the first 

35 seconds. T his d istribution is very sim ilar to the distribu tion o f  la tency associated w ith fault
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overw rites (figure 8b), and is characteristic o f  d istributions found in past latency  studies [Youn91]. The 

sim ilarity  in  d is tribu tions im plies that the probability  that a local m em ory  lo cation  w ill be read before it 

w ill be w ritten  does n o t significantly  change w ith increasing dorm ancy. T his finding can be used to 

support m em ory m anagem ent decisions.

5 .4  E r r o r  D e te c t io n  L a te n c y

T his experim ent reuses the tracefile obtained in section 5 .2, w here faults w ere in jected into the 

code (text) sections o f  m em ory allocated to the test program s. E ach program  w as tested  to determ ine 

how long  it w ould  take the system  to detect an  erro r through its voters. T he cache w as selectively 

flushed after a fault in jection  to ensure tha t faults w ould propagate to the C PU  and cache upon a cache 

m iss. T he e rro r detection latency was m easured fo r each o f  2,176 faults and the identity  o f  each faulted  

instruction w as ob tained from  the disassem bler by com paring lis ted  virtual addresses w ith  those 

obtained from  the softw are m onitor. C orresponding e rro r propagation type  w as then  com puted  by the 

m ethod o f  section 5 .2, and la tency distributions w ere tabulated according to  e rro r propagation type.

T able V. E rro r D etection L atency by T ype

T vne M edian M ean Std Dev

U SV

ILI

W IE

BW A

W W R

W W A

RW R

RW A

BID

BV M

252.2 ]l l s  

280.1 |is

381.0 fis

543.5 fis 

654.9 fis

609.0 fis

481.8 fis

596.8 fis

690.6 fis 

1.179 ms

464.0  fis 

1.425 ms 

30.08 ms 

21.35 ms 

85.82 ms 

40.67 ms 

47.55 ms 

84.37 ms 

20.43 m s 

43.06 ms

734.0  fis 

4 .929 ms

380.8 ms

162.1 ms 

1.069 s

281.2  m s

344.8 m s 

903.6  ms 

127.4 ms

231.3 ms

all 492.9 iis 40.61 ms 534.0 ms
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(a) E rro r D etection L atency  (log scale) 
p. = 40.6147 msecs, a  = 534.032 msecs

200 

150

#
100 

50 

-0

log(t), t = error propagation time in secs

— \— n— n— n— n— n— rr
lOus .1ms 1ms 10ms .Is  Is 10s

(b) Illegal Instruction D etection 
ji = 1.4252 msec, <7 = 4.9287 msec

log(t), t = error propagation time in secs

(c) R W A  E rro r D etection L atency  
p  = 84.370 msec, a  = 903.65 msec

Figures 9a-9c.

H istogram s fo r E rro r D etection L atency,

ILI E rror D etection, and R W A  E rror D etection.

log(t), t = error propagation time in secs

F igure 9a illustrates the overall e rro r detec tion la tency distribution. L atencies range from  under 

5 0 |is  to ov er 10 seconds. T he  m ean  error detection latency was 40.61 m secs, but several d istinct peaks 

can be seen in the distribu tion and m ay be due to d istinct e rro r detection m echanism s.
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T able V  lists e rro r detection latency m eans and m edians fo r each o f  the erro r types. T he first tw o, 

USV  and ILI cause im m ediate detection at the CPU  level and short e rro r detection latencies at the sys ­

te m  level. T hese system -level latencies are considerably  long er than  the C PU -level erro r detec tion 

latencies found in past sim ulation-based studies[C zec91], bu t part o f  the system -level latency  com es 

from  the tim e taken  during voting. As w ill be seen later, these latencies are usually  neglig ib le w hen 

com pared to  fault iso lation  tim es. In  exam ining each o f  the erro r types, w e observe th a t w hile the 

m eans are on  the o rd e r o f  tens o f  m illiseconds, m ost errors are de tected in u n d er 493  ps. T his 

corresponds to about 5 ,900 instruction cycles and includes at least one round o f  excep tion  handling.

F igures 9b  and 9c illustrate d istributions o f  e rro r detection la tency fo r e rro r types ELI and R W A , 

respectively. F o r illegal instructions, the nu m ber o f  cycles required to cause the C PU  to issue an in te r ­

rupt is sm all and fairly co n stan t T herefore, w hat we see in  figure 9b  is prim arily  the la tency im posed by 

the voters in  de tecting the e rro r o f  a lone C PU -generated interrupt. As expected, the m ain  peak seen in 

an Illegal Instruction e rro r is narrow er than  w hat is seen in  the distributions fo r errors tha t propagate.

By contrast, the e rro r detection latency distribution fo r errors that co rrupt registers by reading from  

a w rong m em ory  location  (R W A ) is quite wide. In  figure 9c, we observe that the erro r detection  la tency 

in troduced by the vo te r plus the latency due to error propagation can  be as large as 10 seconds. T his 

finding show s that propagating errors can rem ain undetected fo r m illions o f  instructions and highlights 

the need to bette r characterize erro r propagation.

5 .5  F a u lt  I so la t io n

As defined in  section  5 .1 , fault isolation time is the delay associated w ith locating  the source o f  an 

error. Such a source m ay be a faulty CPU board, m em ory board, voter, bus, etc... In this experim ent, 

faults w ere in jected only into the local m em ory o f  CPU B. C onsequently , fault iso lation identified CPU 

B as the com ponent to be shutdow n every tim e. As can be seen in Figure 10, the am ount o f  tim e
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250  

2 0 0  
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44 45 46  47 48 49 50 51 52  

tim e in m secs

Figure 10. H istogram  o f Fault Isolation T im es

required to achieve fault iso lation was roughly constant (47 m secs), w ith a standard devia tion  o f  only 

3.88% . T im es w ere fairly independen t o f  w orkload level and the application tested . T he  fau lt iso lation 

tim e corresponds to approxim ately  560,000 instructions.

B earing in  m ind from  the previous section that undetected e rro r propagation tim es can w ell exceed 

47 m secs (3.45 percen t o f  the erro r detection tim es exceeded 47 m secs), the potential fo r any propagat ­

ing  errors to affect the fau lt iso lation process is o f  m uch concern. T his finding m akes ev iden t the need 

to investigate the effects o f  m ultip le errors.

V. C O N C L U S IO N S
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T his paper describes a hybrid  fault in jection environm ent, w herein  faults are in jected v ia  softw are 

and the im pact is m easured by  both  softw are and hardw are. T he  env ironm ent is useful for evaluating 

system  dependability , and it has the advantage in  that it in troduces m in im al perturbation, and provides a 

h igh degree o f  control o v er the location o f  faults to be injected. T he in jection system  is no t lim ited  to 

ju st u ser application  space. It can be used to in ject faults in  the K ernel, in  C PU  registers, cache, local 

m em ory, m ass storage, netw ork controllers, and any o th er subsystem  tha t is m apped into physical 

address space. T he fau lt in jec tion environm ent was applied  to the fau lt to lerant, U nix-based T andem  

Integrity  S2.

U sing our hybrid  m onito r and fault in jection environm ent, w e ob tained several key  results: T he 

design decision to preserve  e rro r correction coding in the cache bu t no t in  local m em ory w as supported 

by com paring fault detection  ratios o f  the cache and local m em ory  subsystem s. A natura l fault rem oval 

processes th a t can  assis t in  the design o f  efficient scrubbing techniques w as characterized. W e also 

characterized im m ediate e rro r propagation effects caused by in jecting faults into the instruction stream  

o f  a M ips R ISC  processor. T he  im pact o f  faults on instruction code during runtim e is significant —  we 

found that s ing le-bit errors propagate additional errors 85.9 percen t o f  the tim e and that individual 

instructions d iffer substantially  in  the degree to w hich they are fau lt sensitive. It w as also found that 

erro r propagation tim es can w ell exceed the fault iso lation time.

E m pirical m easu rem ents o f  all the dependability  statistics d iscussed  can  fu rther serve as input data 

for any sim ulation-based study o f  the long-term  effects o f  faults on  this system .
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