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1 Introduction

There has been a great deal of research done on vehicle routing problems (VRP).
Both exact algorithms and metaheuristic procedures have been proposed for
deterministic cases of the VRP (see [30]). However, in practice, one rarely has
access to perfect information concerning the parameters of a problem. There-
fore, in recent years, stochastic versions have been considered where certain
parameters of the VRP are modeled by random variables. By solving stochastic
routing problems, one can obtain significantly better solutions whenever there is
uncertainty in the situation being modeled. These problems are therefore very
interesting for real life applications but they are unfortunately notoriously hard
to solve.

In this paper, the problem that is studied is the single vehicle routing prob-
lem with stochastic demands (SVRPSD). The SVRPSD is defined as follows:
let G(V, E) be an undirected graph, where V = {v1, . . . , vN} is a set of vertices
and E = {(vi, vj) : vi, vj ∈ V, i < j} is a set of edges. Defined on E is a sym-
metric matrix C = [cij ] that corresponds to the travel costs between vertices.
Vertex v1 represents a depot from which the vehicle must start and finish its
route. If one searches for a route that visits all vertices once and minimizes the
total travel cost, then one is in fact solving the well known travelling salesman
problem (TSP). The TSP is an NP-hard problem which has been extensively
studied, see [14].

The SVRPSD is obtained by adding a particular component to the classical
TSP problem. Let us suppose that the vehicle has a limited capacity D and
that each vertex j ∈ V \ {v1} corresponds to a customer that has a nonnegative
demand ξj that is stochastic. Let us also make the following hypothesis: ∀j ∈
V \{v1}, demand ξj only becomes known when the vehicle arrives at the location
of customer j. In this case, whenever a customer is visited, the residual capacity
of the vehicle may not suffice to fulfill the observed demand. When such a failure
occurs, one must take a recourse action that will entail an extra cost.

The model used here is based on the classical two stage stochastic pro-
gramming formulation. In the first stage one constructs a route that visists all
customers once. In the second stage, the determined route is followed and de-
mands become known. When a failure occurs, partial delivery is performed and
the recourse action taken is to return to the depot, to stock up (or to unload),
and then go back to the customer where failure occured to finish the delivery
and continue the route. In this case, the extra cost incurred is the traveling cost
to the depot and the return cost to the customer location. The optimization
problem consists of finding a route that minimizes the sum of both the total
travel cost as well as the expected cost of recourse. For a complete description
of the models that can be used as well as the properties associated with them,
the reader is refered to the papers of Dror and al. [7, 6].
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What makes the SVRPSD a hard problem to solve is the combination of
both the inherent complexity of the TSP and the stochastic cost associated with
the feasible solutions. If one defines the expected filling rate of the vehicle as:

f =
N∑

j=1

E[ξj ]/D, then as f increases so does the risk of failures. Instances where

both the number of customers and f are large are very hard to solve optimaly
(see [24]). The main contribution of this paper is to propose a new heuristic
algorithm that solves efficiently such hard instances. The heuristic developped
is a hybrid method that uses both local branching and Monte Carlo sampling.
Certain characteristics of the SVRPSD will be exploited in the implementation
of the method. However, the methodology that is proposed is quite general and
can be applied to other stochastic problems.

The remainder of this paper is divided as follows. In section 2, the model
used for the SVRPSD is presented as well as a brief description of the solution
methods to solve it. In section 3, various Monte Carlo methods that have been
developped to solve stochastic programming problems are reviewed. Section 4
includes a description of the heuristic that is proposed in this paper. This is
followed by the computational results obtained on the SVRPSD in section 5.
Finally, section 6 presents some concluding remarks.

2 The SVRPSD

The model for the SVRPSD is defined as follows:

Min
∑

i<j

cijxij + Q(x) (1)

s.t.

N∑

j=2

x1j = 2, (2)

∑

i<k

xik +
∑

j>k

xkj = 2, k = 2, . . . , N, (3)

∑

i∈S

∑

j /∈S
j>i

xij +
∑

i/∈S

∑

j∈S
j>i

xij ≥ 2, S ⊆ V, |S| ≥ 3, (4)

xij ∈ {0, 1}, 1 ≤ i < j ≤ N. (5)

Function Q(x) in (1) is the recourse function which represents the expected
cost of recourse. It should be specified that under some assumptions, given
a feasible route x, function Q(x) can be easily computed, as described in the
paper of Laporte and al. [19]. Constraints (2) and (3) are used to make sure that
the route starts and ends at the depot and that each customer is visited once.
Inequalities (4) are the subtour elimination constraints. Finally, constraints (5)
impose the integrality restriction on the variables of the problem.
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The principal solution approach that is used to solve problem (1)-(5) is
based on the 0-1 integer L-shaped algorithm presented by Laporte and Louveaux
[18]. Following this approach, Benders decomposition is applied to the problem.
The recourse function Q(x) is replaced in the objective by variable Θ which
is then bounded by a series of optimality cuts (or any other lower bounding
functionnals). In addition, constraints (4) and (5) are relaxed from the model.
Optimality cuts as well as constraints (4) are then gradually added to the relaxed
problem following a branch and cut framework.

Gendreau and al. [12] were the first to apply the standard L-shaped al-
gorithm to the single vehicle routing problem with stochastic demands. In
1999, Hjorring and Holt [16] proposed a new type of cut that uses informa-
tion taken from partial routes. A partial route is made up of three sets. Us-
ing the notation proposed by Laporte and al. [19], let us first define the two
ordered sets S = {v1, . . . , vs} and T = {v1, . . . , vt}. Sets S and T must re-
spect the following condition: S ∩ T = {v1}. Let us now define a third set
U = V \ ((S \ {vs}) ∪ (T \ {vt})). One easily sees that S ∩ U = {vs} and
T∩U = {vt}. Therefore, a partial route is made up of the two vectors (v1, . . . , vs)
and (vt, . . . , v1) that define the beginning and end portions of the route and of
set U , which contains all vertices that are not yet ordered. If (vi, vj) ∈ S
or T refers to the case where vi and vj are consecutive in S or T , then let
W (x) =

∑
(vi,vj)∈S

xij +
∑

(vi,vj)∈T

xij +
∑

vi,vj∈U

xij − |V |+ 1. If Q is a lower bound

on the value of recourse for the partial route and L is a general lower bound on
Q(x), then the following inequality is valid for problem (1)-(5):

Θ ≥ L + (Q − L)W (x). (6)

In [16], the authors present a lower bounding technique to obtain value Q.
Laporte and al. [19] generalize (6) to the case of multiple vehicles. They also
develop a new technique to obtain a better general lower bound L.

Recently, Rei and al. [24] proposed a new type of valid inequalities that
apply to the case of the 0-1 integer L-shaped algorithm. These inequalities
are based on local branching descents and are applied to problem (1)-(5). The
implementation of the 0-1 integer L-shaped algorithm for the SVRPSD proposed
in [24] produces the best results for the case where demands are Normal random
variables (i.e., ξj ∼ N(µj , σj)) and where all random variables are independently
distributed. However, instances where both the filling rate and the number
of customers are large still present a tremendous challenge which justifies the
development of efficient heuristics for this problem.

Heuristics have been proposed for related versions of problem (1)-(5). Gen-
dreau and al. [13] proposed a tabu search algorithm for routing problems where
customers and demands are stochastic. In 2000, Yang and al. [32] have pro-
posed a series of heuristics for routing problems with stochastic demands for
which restocking is considered. Restocking allows the vehicle to return to the
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depot before visiting the next customer on the route. By doing so, one may
prevent failures. Recently, Bianchi and al. [2] have also implemented a series of
metaheuristics for stochastic routing problems that allow restocking. Secomandi
[26, 27] proposes neuro-dynamic programming algorithms for the case where re-
optimization is applied to the SVRPSD. In this case, as demands become known,
the ordering of the customers that have not yet been visited may be changed
depending on the state of the situation. Finally, Chepuri and Hommem-De-
Mello [4] solve an alternate formulation of the SVRPSD using the cross-entropy
method. The alternate formulation considered allows the possibility that cer-
tain customers may not be serviced by the vehicle. However, a penalty function
is used to dissuade such situations.

3 Monte Carlo sampling in stochastic program-

ming

In this section a general presentation of how Monte Carlo sampling has been
used in stochastic programming is provided. Note however that this section does
not aim at being exhaustive but focuses on presenting the principal results and
solution approaches within this field. Let us first define the classical stochastic
programming problem with fixed recourse as follows:

Min c⊤x + Q(x) (7)

s.t. Ax = b (8)

x ∈ X, (9)

where Q(x) = Eξ[Q(x, ξ(ω))] and Q(x, ξ(ω)) = Miny{q(ω)⊤y | Wy = h(ω) −
T (ω)x, y ∈ Y }, ∀ω ∈ Ω. Monte Carlo sampling is mainly used in two different
ways to solve problem (7)-(9). As presented by Linderoth and al. [20] sampling
is either used in an interior fashion or in an exterior fashion. When sampling is
used in an interior fashion, one is actually trying to solve directly problem (7)-
(9) but whenever the algorithm being used requires information concerning the
recourse function, then sampling is applied to approximate this information. In
the exterior approach, instead of trying to solve the stochastic problem directly,
one uses sampling beforehand as a way to approximate the recourse function.
One can then apply any adapted deterministic optimization algorithm to solve
the approximated problem.

The first type of methods that have been proposed using the interior ap-
proach are based on the L-shaped algorithm presented by Van Slyke and Wets
[29] for the case of continuous stochastic programming problems with fixed re-
course. The first to introduce sampling in the L-shaped algorithm were Dantzig
and Glynn [5]. The algorithm proposed in [5] uses sampling to estimate the
cuts needed in the solution process. Samples are determined so as to obtain a
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given confidence level. To improve the convergence rate, importance sampling
is used for the generation of the scenarios. Since the size of the samples needed
can become quite large, the authors also propose a parallel implementation of
the method to reduce solution times.

Another method that uses sampling in an L-shaped based algorithm is the
stochastic decomposition approach proposed by Higle and Sen [15] for the case
of problems with complete recourse (i.e., Q(x, ξ(ω)) < ∞ regardless of x and
∀ω ∈ Ω). The idea behind stochastic decomposition is to use larger samples to
produce cuts as the number of iterations of the L-shaped algorithm increases.
At iteration ν, the algorithm uses ν independently generated samples to pro-
duce the next optimality cut. Previously generated cuts are updated in such
a way that they become redundant and are subsequently dropped as the algo-
rithm proceeds. Details concerning the convergence and implementation of this
approach are provided in [15]. The authors also elaborate on the use of stop-
ping rules, which include both error bound estimates and tests on optimality
conditions.

Finally, stochastic quasi-gradient methods, see Ermoliev [8], have also ap-
plied Monte Carlo sampling in an interior fashion. In this case, sampling is used
to produce a subgradient or quasi-gradient for which a descent direction may
be obtained. The algorithm proceeds by taking a step in the direction that is
defined. A projection is then applied onto the set of feasible first stage solutions.

Techniques that use Monte Carlo sampling in an exterior fashion are gener-
ally based on the use of sample average approximations of the recourse function.
Let X = {x | Ax = b, x ∈ X} be the set of first stage constraints, then one
may rewrite problem (7)-(9) as: min

x∈X
f(x) where f(x) = Eξ[c

⊤x+Q(x, ξ(ω))] =

c⊤x + Eξ[Q(x, ξ(ω))]. If {ω1, . . . , ωn} is a subset of randomly generated events

of Ω, then function f̂n(x) = c⊤x + 1
n

n∑
i=1

Q(x, ξ(ωi)) is a sample average ap-

proximation of f(x). One may now define the approximating problem in the

following way: min
x∈X

f̂n(x).

It is shown in Mak and al. [23] that if one considers the average value of the
approximating problem over all possible samples, then one obtains a lower bound

on the optimal value of problem (7)-(9), that is: E

[
min
x∈X

f̂n(x)

]
≤ min

x∈X
f(x). In

[23], the same type of reasoning is also applied to the case where one is trying
to compute the value of a first stage feasible solution. Let x̃ be a feasible first

stage solution, then one may show that E
[
f̂n(x̃)

]
≥ f(x̃). Therefore, by using

unbiased estimators for E

[
min
x∈X

f̂n(x)

]
and for E

[
f̂n(x̃)

]
, one can construct

confidence intervals on the optimal gap associated with solution x̃. Unbiased
estimators can be obtained by using batches of subsets {ω1, . . . , ωn}. Let f̂ j

n
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be the jth sample average approximation function using a randomly generated

subset of size n and let v̂j
n = min

x∈X
f̂ j

n(x), for j = 1, . . . , m. Then Ln
m = 1

m

m∑
j=1

v̂j
n

and Un
m = 1

m

m∑
j=1

f̂ j
n(x̃) can be used to estimate the gap associated with x̃. In

[23], some variance reduction techniques are also presented.

Under certain conditions, if x̂n is an optimal solution to problem min
x∈X

f̂n(x),

then it can be shown that x̂n converges with probability 1 to the set of optimal
solutions to (7)-(9) as n → ∞. Furthermore, when the probability distribution
of ξ is discrete, given some assumptions, Shapiro and Homem-De-Mello [28] show
that x̂n is an exact optimal solution to (7)-(9) for n large enough. The authors
also demonstrate that the probability associated with the event of x̂n not being
an optimal solution to (7)-(9) tends to zero exponentially fast as n → ∞. Using
these results, Kleywegt and al. [17] elaborate the sample average approximation
(or SAA) method.

The SAA method randomly generates batches of samples of random events
and then solves the approximating problems. Each solution obtained is an
approximation of the optimal solution to the original stochastic problem. Esti-
mates on the optimal gap using bounds Ln

m and Un
m are then generated to obtain

a stopping criteria. Value n may be increased if either the gap or the variance
of the gap estimator is to large. In [17], the authors also discuss the use of
postprocessing procedures that provide some guarantees as to the quality of the
solution chosen by the algorithm. The SAA method was adapted for the case of
stochastic programs with integer recourse by Ahmed and Shapiro [1]. Recently,
Linderoth and al. [20] have produced a series of numerical experiments using
the SAA method which show the usefulness of the approach.

4 Monte Carlo local branching hybrid algorithm

The SAA algorithm has been successfully applied to obtain good quality solu-
tions for a variety of stochastic problems for which direct solution approaches
are inefficient (see [31], [25] and [20]). However, one is not always able to solve
efficiently the approximating problems needed for the SAA approach. This sit-
uation has been observed in the case of hard istances of the SVRPSD. In this
section, a heuristic that uses both local branching and Monte Carlo sampling
will be presented to obtain good quality solutions even if the approximating
problems obtained after sampling are still too difficult to solve in a reasonable
time. This section will be divided in two subsections: the first will include
a presentation of the local branching methodology, in the second subsection,
a description of the solution approach using Monte Carlo sampling and local
branching will be provided.
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4.1 Local branching

The local branching solution approach was introduced by Fischetti and Lodi [9]
as a way to solve hard mixed integer problems. The idea behind this method
is to take advantage of the efficiency of generic solvers, such as CPLEX, for
solving small integer 0-1 problems. Therefore, one can divide the feasible space
of a problem into a series of smaller subregions and then use a generic solver to
explore each of the subregions thus created.

To better illustrate this approach, let us apply local branching to the case
of problem (7)-(9). To do so, let us first consider that problem (7)-(9) has
binary first stage variables. Let us also suppose that the stochastic problems
to be solved are such that all feasible first stage solutions are also feasible in
the second stage (i.e., relative complete recourse). In this case, if vector x is of
size n1, then the set of first stage constraints may be defined in the following
way: X = {x | Ax = b, x ∈ X ∩ {0, 1}n1}. Again, if f(x) = c⊤x + Q(x), then
problem (7)-(9) becomes:

Min f(x) (10)

s.t. x ∈ X. (11)

Let x0 be a vector of 0-1 values such that x0 ∈ X . Using x0, let function:
∆(x, x0) =

∑
j∈S0

(1 − xj) +
∑

j∈N1\S0

xj , where N1 = {1, . . . , n1} and S0 = {j ∈

N1 | x0
j = 1}, define the Hamming distance relative to x0. Using function

∆(x, x0) and a fixed integer value κ, one may divide problem (10)-(11) into two
subproblems: the first having first stage feasible region {x | x ∈ X, ∆(x, x0) ≤
κ} and the second having {x | x ∈ X, ∆(x, x0) ≥ κ + 1}. When κ is fixed to
an appropriate (small) value, constraint ∆(x, x0) ≤ κ can considerably reduce
the size of the feasible region of problem (10)-(11). Therefore, one can use
an adapted generic solver to solve this subproblem efficiently. The subregion
defined by ∆(x, x0) ≥ κ + 1 is left for further exploration.

Let us now consider two finite index sets Iν and Jν such that xk ∈ X ,
∀k ∈ Iν ∪ Jν . If xν is a feasible first stage solution such that ν /∈ Iν and κi,
∀i ∈ Iν ∪ {ν}, is a series of fixed integer values, then let us define the following
two subproblems:

(Pν) Min. f(x) (P ν) Min. f(x)
s.t ∆(x, xj) ≥ 1, j ∈ Jν s.t ∆(x, xj) ≥ 1, j ∈ Jν

∆(x, xi) ≥ κi, i ∈ Iν ∆(x, xi) ≥ κi, i ∈ Iν

∆(x, xν ) ≤ κ ∆(x, xν ) ≥ κ + 1
x ∈ X x ∈ X.

The local branching algorithm proceeds by solving subproblem Pν using the
generic solver. Subproblem Pν is either feasible, in which case one obtains a
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solution xν+1, or infeasible. If one obtains xν+1, then either f(xν+1) < f(xν)
or f(xν+1) ≥ f(xν). If f(xν+1) < f(xν) then the algorithm sets κν = κ + 1,
Iν+1 = Iν ∪ {ν} and Jν+1 = Jν . Constraint ∆(x, xν) ≤ κ is replaced by
∆(x, xν) ≥ κν , which gives us subproblem P ν . Following the same branching
scheme, solution xν+1 is then used to separate the feasible region of P ν , thus
creating subproblems Pν+1 and P ν+1. At this point, Pν+1 becomes the next
subproblem to be solved. In the case where f(xν+1) ≥ f(xν) or Pν is infeasible,
a diversification procedure is applied. The diversification procedure follows the
principle that in order to obtain a better solution (or a feasible subproblem),
then the feasible region of Pν must be increased. Therefore, if f(xν+1) ≥ f(xν),
then constraint ∆(x, xν+1) ≥ 1 is added to the subproblem and Jν+1 = Jν ∪
{ν + 1}. By doing so, one eliminates from further consideration a solution
xν+1 whose value is no better than that of xν . In order to increase the size of
the current subproblem feasible region, constraint ∆(x, xν) ≤ κ is replaced by
∆(x, xν) ≤ κ + ⌈κ

2 ⌉. By fixing Iν+1 = Iν , one obtains Pν+1, which will be the
next subproblem to be solved in the search process.

It should be specified that the branching decision may be applied using
a different criteria then the one that has been evoked. Furthermore, for the
diversification strategy, one may also use a different increase in the update of
constraint ∆(x, xν) ≤ κ. Local branching offers a general search context that
one may adapt to the type of problem being solved. In [9], the authors impose
a time limit for the solution of the subproblems. A series of diversification
mechanisms derived from local search metaheuristics are also proposed. For
the purpose of this paper, we will simply define a local branching descent as
being a series of subproblems P0, P1, . . ., that are solved to optimality or until
a specified time limit is reached. The structure of each descent will be described
in the next subsection.

4.2 Monte Carlo sampling and local branching

Monte Carlo sampling can be used to approximate the recourse function in (7)-
(9). In doing so, one alleviates the stochastic complexity of the problem. By
using local branching to explore X , one is able to control the combinatorial
complexity associated with the first stage of problem (7)-(9). We will now show
how these strategies may be used in a coordinated fashion creating what we will
refer to as a multi-descent algorithm for the SVRPSD. To do so, we will first
explain the multi-descent scheme and then describe the local branching descent
structure used.
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4.2.1 Multi-descent scheme

For the moment, let us suppose that one is able to solve efficiently local branch-
ing subproblems whitout resorting to sampling. Let us also consider the mean
value problem (MVP), or expected value problem as in [3], associated with (7)-
(9). The MVP problem is obtained by taking the random parameters of the
stochastic problem and replacing them by their mean values. Using the formu-
lation introduced in the previous sections, the MVP problem can be stated as
follows:

Min c⊤x + Q(x, ξ) (12)

s.t. x ∈ X, (13)

where ξ = E[ξ]. If x is an optimal solution to (12)-(13) and x⋆ is an optimal
solution to the stochastic problem (10)-(11), then it is a well known result that
f(x⋆) ≤ f(x) (see [3]). Actually, f(x)−f(x⋆) defines the value of the stochastic
solution (VSS), which can be arbitrarily small or large depending on the problem
considered.

In the case of routing problems, Louveaux [21] showed the importance of
using the stochastic formulation when one considers the VSS. Although the VSS
may be large, there is an important point to be made concerning the relative
weight of the first stage objective function c⊤x versus the recourse function
Q(x) in the case of the SVRPSD. A problem where the expected filling rate f is
small is in general easier to solve because it resembles the TSP. In this case, the
MVP (12)-(13), or simply the TSP (min

x∈X
c⊤x), offers a good approximation for

the original problem (10)-(11). As f increases so does the risk of failures and
x becomes a potentially bad route when considering the stochastic formulation.
However, x⋆ usually remains a good solution for the MVP (or the TSP). The
reason for this is that, with the exception of extreme cases, the travel cost of a
route (c⊤x) generally outweighs the value of recourse (Q(x)). Therefore, a route
for which the travel cost is high will unlikely be optimal even if the recourse
value is small. The main idea behind the algorithm proposed in this paper will
be to use as starting point solution x, or any other route whose travel cost is
low, and then try to close the gap to obtain x⋆.

If one defines x0 as a feasible solution to the stochastic problem, then let
P k

0 , P k
1 , . . . , P k

lk
be the kth finite local branching descent starting from x0.

Let us suppose that only solution x0 is eliminated using the Hamming distance
function in problem (10)-(11). In this case, the last subproblem solved (i.e. P k

lk
)
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is:

Min f(x) (14)

s.t. ∆(x, x0) ≥ 1 (15)

∆(x, xi) ≥ κi, i ∈ I lk (16)

∆(x, xlk ) ≤ κlk (17)

x ∈ X. (18)

Since a different solution is used each time the branching decision is taken in a
local branching descent, then from P k

0 , . . . , P k
lk

, one obtains at least lk different
first stage solutions.

From a multi-descent point of vue, one needs a feasible first stage solution
to start a new descent. If one considers the kth local branching descent, then
solutions x1, . . . , xlk , are all possible starting points. Using x1, . . . , xlk , the
strategy that was chosen was to identify the best solution found in the last
descent, xk⋆

∈ arg min{f(xi) | i = 1, . . . , lk}, add constraint ∆(x, xk⋆

) ≥ 1 to
problem (10)-(11) and then use xk⋆

as the new starting point of descent k+1. It
should be noted that, in the case of the SVRPSD, xk⋆

represents a feasible route.
Therefore, constraint ∆(x, xk⋆

) ≥ 1 may be replaced by ∆(x, xk⋆

) ≥ 4, since all
other feasible routes lie at a Hamming distance of at least four from xk⋆

(see
[24]). This type of descent will be refered to as a base descent. Since constraint
∆(x, xk⋆

) ≥ 1 is added to problem (10)-(11), the best solution that one finds in
the k + 1th descent will be different from the ones obtained in the previous k
descents. Furthermore, since only solution xk⋆

is eliminated, the algorithm can
always come back and explore similar neighbourhoods from descent k to k + 1.
Base descents enable the algorithm to intensify the search around solutions
that are found to be locally good. The drawback of this strategy is that if
one eliminates all good feasible solutions in a certain vicinity of X or if one is
exploring uninteresting neighbourhoods, then by only applying base descents,
the procedure can take too long to reach different subregions.

To counter this potential problem, another strategy, using the local branch-
ing constraints, was applied in the multi-descent approach. If one considers
descent k, then one may be satisfied by the extent of the exploration car-
ried out in the subregions defined by subproblems P k

0 , . . . , P k
lk

. If one sets

I lk+1 = I lk ∪ {lk} and κlk = κlk + 1, then one may be interested in apply-
ing the next local branching descent from a first stage solution defined by:
x ∈ {x ∈ X | ∆(x, xi) ≥ κi, ∀i ∈ I lk+1}. This corresponds to applying the next

descent from a feasible solution to subproblem P
k

lk associated with (14)-(18).

To obtain this solution, one can add constraints ∆(x, xi) ≥ κi, ∀i ∈ I lk+1, to
the MVP (12)-(13) and then use the optimal solution to this new problem as
a starting point for the k + 1th descent. In the case of the SVRPSD, to make
the search for this new solution easier, function Q(x, ξ) is dropped from the
objective and the problem that is used is the TSP. This amounts to starting the
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next local branching descent from a route whose travel cost is low but which is
in a region that has not yet been explored.

Therefore, a meta phase will be defined as a series of local branching de-
scents whose strating point will be an optimal solution (defined by xk+1) to the
following problem:

Min c⊤x (19)

s.t. ∆(x, xi) ≥ κi, i ∈ I lj+1, j = 1, . . . , k (20)

x ∈ X. (21)

It should be specified that an optimal solution to (19)-(21) is not necessarily
needed. A good feasible solution can be sufficient. The feasible first stage
solution xk+1 does not lie in any of the neighbourhoods explored in the previous
k descents. Constraint ∆(x, xk+1) ≥ 1 is added to problem (10)-(11), and
the next series of descents is executed. Meta phases provide a diversification
strategy in the multi-descent scheme. It should be noted that the local branching
constraints are only used in order to find a new starting point. They are not
used in the following descents. This will allow the algorithm to come back to
subregions which have already been visited if the solutions found are locally
good.

4.2.2 Descent structure

One should now examine how the local branching descents may be performed.
Since local branching subproblems of type Pν may be hard to solve efficiently,
sampling will be used. There is an important point to be made concerning
the size of the samples that one may use for this approximation. Since the
local branching search strategy is aimed at controling the complexity associated
with the first stage of problem (7)-(9), then one may use larger samples in
the approximation of the recourse function for Pν compared to the original
stochastic problem (10)-(11).

The original branching decision, in a local branching descent, is taken on
the basis of the objective value of the solutions considered. When sampling is
used, the information provided by the objective function of the approximated
subproblems will no longer be completely accurate. Furthermore, if the feasible
region of a subproblem becomes too large, it may turn out to be impossible
to solve it efficiently. Therefore, the strategy that is used in this paper, is to
keep value κ fixed and apply the branching decision each time a new solution
is found. A descent will include a fixed number of levels, where each level will
be comprised of a series of subproblems that are approximated using the same
sample of random events.

We will now briefly describe the algorithm that will be used to solve the
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local branching subproblems. Each subproblem will be solved to optimality or
until a specified time limit is reached. The procedure used will be the branch
and cut algorithm presented by Rei and al. [24]. There are three types of
cuts that are generated by the algorithm: subtour elimination constraints (4),
partial route cuts (6) and local branching valid inequalities as defined in [24].
Constraints (4) are obtained by using the procedures in the CVRPSEP package
proposed by Lysgaard and al. [22]. These constraints are valid for all local
branching subproblems explored by the algorithm. Therefore, a pool of cuts
will be defined in order to reuse previously identified constraints. Both partial
route cuts and local branching valid inequalities use information on the recourse
function. These cuts are therefore only valid for subproblems in the same level
of a descent, that is, when the recourse function is approximated using the
same sample. Partial route cuts will be reused on all subproblems in a given
level. However, following the results obtained in [24], the local branching valid
inequalities will be generated locally for each subproblem since this strategy was
found to be more efficient.

In a given local branching descent, let {ωp
1 , . . . , ω

p
n} be the pth subset of

randomly generated events of Ω for p = 1, . . . , m, where m is the number
of levels in the descent. If each level is made up of q subproblems (Pνp,
ν = 1, . . . , q), then the local branching descent produces m × q different so-
lutions. At the end of a descent, one must identify the best solution ob-
tained. If xi, i = 1, . . . , m × q, are the feasible solutions found, then one may
use the m batches of randomly generated subsets to estimate the objective

value of each solution. Therefore, let f̂p
n(x) = c⊤x + 1

n

n∑
j=1

Q(x, ξ(ωp
j )) and

Un
m(x) = 1

m

m∑
p=1

f̂p
n(x), then the best solution obtained in iteration k will be

estimated as being xk⋆

∈ arg min{Un
m(xi) | i = 1, . . . , m× q}. This criterion di-

rectly follows the general principle that states that it is usually easier to find an
ordering of the solutions rather than to correctly estimate their recourse value,
see Fu [11].

For each local branching descent, one obtains a different feasible first stage
solution that is identified as being the best one found in the neighbourhoods
explored. Each of these solutions are obtained using different samples of random
events. When the search process ends, one is left with the problem of having to
identify the best solution found. Using simulation, a variety of methods have
been proposed to deal with the problem of selecting between a finite number
of possibilities. Following the classification provided by Fu [10], these methods
can use the principles of multiple comparisons or ranking and selection. In the
case of the SVRPSD, since one is now interested in evaluating the best recourse
value obtained, then Q(x) will be measured for these solutions.
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5 Computational results

In order to assess the performance of the proposed algorithm, we selected a
subset of instances from the paper of Rei and al. [24]. These instances were
choosen to be the problems of size N = 60, 70, 80 and 90 for which f = 1.025,
1.05, 1.075 and 1.10 and that were classified as being hard to solve optimaly
by the classical L-shaped algorithm (see [24]). We thus obtained a total of 60
instances. All results reported will be averages over the number of instances
(nb. i.) for all values of N and f . Also, a time limit of 60, 120, 180 and 240
seconds was imposed respectively on the solution process for the local branching
subproblems for the instances of size N = 60, 70, 80 and 90.

Tests will be conducted in three phases. In the first phase, we will establish
the appropriate structure of the local branching descents. This will include
finding the best value for the size of the neighbourhoods (parameter κ) as well as
the number of scenarios (parameter n) that should be used in order to solve the
local branching subproblems. We will also determine the number of subproblems
(parameter q) that should be included in each level of a descent. In the second
phase, we will look at how results vary when the number of base descents is
changed in the meta phases. Finally, we will analyse the quality of the results
obtained by the best strategy for the multi-descent local branching algorithm.
To do so, we will compare it to the L-shaped algorithm proposed in [24] for
which a large time limit of 6000 seconds is imposed. It should be specified that
all results for the heuristic algorithm are average values over five runs. Also, all
experiments were performed on a 2.4 GHz AMD Opteron 64 bit processor.

κ = 4 κ = 6 κ = 8

N f nb. i. n = 100 n = 200 n = 300 n = 100 n = 200 n = 300 n = 100 n = 200 n = 300
60 1.025 1 1314.54 1313.2 1312.43∗† 1314.72 1313.72 1312.43∗† 1314.32 1312.43∗† 1312.43∗†

1.050 3 1347.5 1344.68∗ 1346.85 1344.34 1343.24∗ 1345.85 1341.08∗† 1343.21 1343.47
1.075 5 1333.97 1334.05 1333.74∗ 1332.26 1332.28 1331.99∗† 1332.99 1333.06 1332.88∗
1.100 5 1343.14 1343.13 1341.96∗ 1338.03 1337.96∗† 1339.03 1341.01 1340.2∗ 1340.41

70 1.025 3 1434.6∗ 1434.72 1434.82 1430.89∗† 1433.67 1433.53 1433.25 1433.13 1432.38∗
1.050 3 1401.91 1401.51 1401.33∗ 1401.8 1401.11∗† 1401.8 1401.74 1401.3 1401.19∗
1.075 5 1455.5 1454.82∗ 1454.82∗ 1444.4 1442.78∗ 1445.72 1443.68 1442.68∗† 1443.89
1.100 4 1498.74 1497.45∗ 1499.62 1495.57 1498.28 1495.25∗ 1496.08 1494.53∗† 1495.1

80 1.025 2 1483.34 1481.99∗† 1485.77 1482.98∗ 1483.06 1483.17 1483.09 1482.94∗ 1483.92
1.050 2 1494.04∗ 1494.43 1494.6 1494.18 1494.03 1493.93∗† 1494.72 1493.96 1493.93∗†
1.075 5 1491.76∗ 1491.87 1491.95 1487.55∗ 1488.32 1488.13 1487.23 1486.55∗† 1487
1.100 5 1503.97 1501.01 1500.12∗ 1495.02 1494.89 1494.09∗† 1494.19∗ 1494.36 1496.33

90 1.025 2 1576.52 1577.63 1575.63∗ 1575.27∗ 1575.31 1575.63 1574.74 1573.96 1573.08∗†
1.050 5 1606.11 1606.29 1605.87∗ 1605.56∗ 1606.56 1606.45 1604.73∗† 1604.96 1605.58
1.075 5 1605.54∗ 1606.28 1605.92 1604.48 1604.62 1603.92∗ 1602.51 1602.01∗† 1604.73
1.100 5 1598.81∗ 1599.23 1599.41 1599.02 1598.76 1598.59∗ 1596.54∗† 1596.55 1596.71

Local best (∗) 5 4 8 5 4 7 4 7 6
Absolute best (†) 0 1 1 1 2 4 3 5 3

Table 1: Results: parameters κ and n

To establish the appropriate size of the neighbourhood as well as the number
of scenarios necessary, the heuristic algorithm is first applied to produce one
descent, starting from the solution to the TSP, where the number of levels is six
(m = 6) and the number of subproblems for each level is one (q = 1). By doing
so, each run performed includes a total of six subproblems solved. By fixing m
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and q, one can better see the tradeoffs between both parameters κ and n. In
Table 1, results are reported for the following values: κ = 4, 6 and 8 and n =
100, 200 and 300. Since in all cases the descent is performed using the same
starting point, the algorithm will tend to search the same region of the problem.
Therefore, one first observes that the differences in the quality of the solutions
obtained are very small. Results in Table 1 also include the number of times
each run obtained the best solutions for a given κ (Local best (∗)), and, overall
values of κ (Absolute best (†)). By analyzing these results, one is better able
to distinguish which of the parameter settings produced the best local search.
For any given value κ, one observes that larger values of n produce the best
solutions in general. For κ = 4 and 6, n = 300 is best and as for κ = 8, n
= 200 seems to be slightly better than n = 300. Including all runs, when one
compares the number of times each value of κ obtains the best overall values
then one can see that κ = 4 is best on a total of two occasions, κ = 6 on seven
occasions and κ = 8 on 11 occasions. Therefore, it seems that by fixing κ =
8, one obtains the best local search. Furthermore, since one generally obtains
better results for larger values of n, then for all following runs we will set: κ =
8 and n = 200.

N f nb. i. 6-1 3-2 2-3 1-6
60 1.025 1 1312.43∗ 1313.00 1313.00 1313.02

1.050 3 1343.21 1342.11∗ 1343.26 1343.33
1.075 5 1333.06 1333.31 1333.02 1332.43∗
1.100 5 1340.2∗ 1340.99 1342.79 1340.47

70 1.025 3 1433.13 1432.72∗ 1433.49 1433.16
1.050 3 1401.3 1401.54 1401.52 1400.83∗
1.075 5 1442.68∗ 1443.71 1443.92 1443.48
1.100 4 1494.53∗ 1494.96 1494.85 1495.59

80 1.025 2 1482.94∗ 1483.41 1484.59 1483.79
1.050 2 1493.96 1494.08 1493.92∗ 1494.10
1.075 5 1486.55 1485.84∗ 1486.76 1487.03
1.100 5 1494.36∗ 1494.40 1493.58 1493.99

90 1.025 2 1573.96∗ 1574.40 1575.21 1575.21
1.050 5 1604.96∗ 1606.05 1606.60 1605.86
1.075 5 1602.01 1600.31∗ 1603.53 1602.64
1.100 5 1596.55 1596.69 1596.29 1595.17∗
Best (∗) 7 4 2 3

Table 2: Results: parameters m and q

We will now examine how the concept of levels influences the quality of the
results obtained. As was previously mentioned, solving several subproblems
within a given level is interesting since the branch and cut algorithm may reuse
the partial route cuts on all subproblems that are created using the same sample.
In turn, this will accelerate the solution process for all subproblems on a given
level. However, by reusing the same samples, one may also limit the search
process. When solving a local branching subproblem, the quality of the solution
obtained is dependent on the sample used to approximate the recourse function.
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Results will be poor if a non representative sample is used. If the same non
representative sample is applied on different subproblems then one can seriously
limit the search process in the neighbourhoods that are explored.

In Table 2 the quality of the solutions obtained are presented when m = 6,
3, 2 and 1 and q = 1, 2, 3 and 6. For example, 6-1 will refer to the case where
the total number of levels is six (m = 6) and each level contains one subproblem
(q = 1). For these tests the number of descents is again limited to one, for a
total of six subproblems solved in each run. By using the same starting point
for each descent and by fixing both κ = 8 and n = 200, one is able to clearly
see how results vary with the structure of the descent. The total number of
times each run obtained the best results is also reported (Best (∗)). Results
in Table 2 seem to indicate that 6-1 outperforms all others. One obtains the
best results on seven occasions with 6-1, compared to four for 3-2, two for 2-3
and three occasions for 1-6. It would seem that by using different samples for
each subproblem, one better hedges against the risk of relying heavily on non
representative samples. Therefore, the type of descent that will be used in the
multi-descent approach will be made up of levels for which q = 1 and where
subproblems are created using κ = 8 and n = 200.

N f nb. i. 6/1 3/2 2/3 1/6
60 1.025 1 1310.94∗ 1312.43 1311.35 1312.07

1.050 3 1342.24 1341.70 1341.08 1340.85∗
1.075 5 1332.04 1333.25 1331.92∗ 1331.92∗
1.100 5 1336.14∗ 1336.23 1336.26 1336.73

70 1.025 3 1430.79∗ 1431.99 1431.44 1432.39
1.050 3 1399.65 1399.53∗ 1400.70 1401.14
1.075 5 1440.37∗ 1441.03 1441.57 1442.53
1.100 4 1492.70 1492.69∗ 1493.01 1493.62

80 1.025 2 1481.49 1481.04∗ 1481.94 1481.49
1.050 2 1493.92∗ 1493.92∗ 1493.92∗ 1493.92∗
1.075 5 1483.76∗ 1485.43 1485.14 1485.70
1.100 5 1489.91 1489.77∗ 1490.56 1489.95

90 1.025 2 1572.23 1571.98∗ 1572.11 1573.23
1.050 5 1603.24∗ 1603.50 1604.63 1604.06
1.075 5 1597.96∗ 1600.70 1598.80 1599.63
1.100 5 1594.94 1594.84 1594.47 1594.06∗
Best (∗) 8 6 2 4

Table 3: Results: Meta phases/Base descents

We will now examine the multi-descent search strategies that one may use
for a given number of overall base descents. We fix the total number of base
descents to six and each local branching descent performed is limited to a depth
of three levels (m = 3), which produces a total of 18 subproblems solved by
the algorithm. In Table 3, results are reported for the cases where the number
of base descents varies in each meta phase. Therefore, the 6/1 column refers
to the case where six meta phases of size one are performed. The 3/2 column
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represents runs made up of three meta phases of size two. The 2/3 column is for
the case where two meta phases of size three are carried out. Finally, the 1/6
column is the case where six consecutive base descents are performed. These
results will help to establish the relative importance that one should give to the
diversification strategy versus the intensification strategy. Once again, if one
observes the number of times each run is the overall best (Best (∗)), then one
may see that 6/1 is better on eight occasions, 3/2 on six, 2/3 on two and 1/6 on
four. For a given level of effort (18 local branching subproblems), it would seem
that by applying more diversification, one obtains better results. Therefore, in
this case, the best strategy concerning the size of the meta phases is to set it
equal to one.

N f Category nb. i. 2/1 4/1 6/1 8/1 L-shaped
60 1.025 sol . 1 1312.43 (248.25) 1311.71 (496.91) 1310.94 (873.40) 1310.54 (1150.11) 1310.06 (637.28)

not sol . 0 - - - - -
und . 0 - - - - -

1.05 sol . 3 1343.63 (350.27) 1342.8 (757.1) 1342.24 (1128.43) 1340.85 (1520.49) 1340.91 (275.76)
not sol . 0 - - - - -
und . 0 - - - - -

1.075 sol . 3 1360.17 (342.32) 1359.12 (730.58) 1357.93 (1093.31) 1357.73 (1491.66) 1358.67 (1488.22)
not sol . 2 1293.21 (411.18) 1293.21 (820.96) 1293.21 (1231.25) 1293.21 (1641.56) 1281.72 (6034.74)
und . 0 - - - - -

1.10 sol . 2 1312.55 (395.91) 1311.68 (770.25) 1311.88 (1173.97) 1311.88 (1545.52) 1311.58 (3890.89)
not sol . 3 1356.13 (386.24) 1352.73 (775.50) 1352.31 (1195.63) 1351.95 (1574.10) 1353.74 (6038.66)
und . 0 - - - - -

70 1.025 sol . 3 1431.04 (388.04) 1430.79 (732.81) 1430.79 (1115.05) 1430.79 (1476.41) 1433.46 (157.34)
not sol . 0 - - - - -
und . 0 - - - - -

1.05 sol . 2 1387.53 (395.17) 1385.72 (791.08) 1385.93 (1272.56) 1380.74 (1680.38) 1380.77 (369.70)
not sol . 1 1427.08 (688.92) 1427.07 (1440.92) 1427.07 (2075.92) 1426.68 (2898.15) 1427.57 (6011.45)
und . 0 - - - - -

1.075 sol . 1 1401.03 (766.75) 1397.65 (1554.18) 1397.65 (2397.02) 1397.65 (3139.22) 1397.65 (2887.62)
not sol . 4 1453.92 (698.36) 1451.52 (1408.84) 1451.05 (2152.15) 1450.27 (2886.54) 1455.58 (6020.53)
und . 0 - - - - -

1.10 sol . 0 - - - - -
not sol . 4 1495.48 (790.11) 1493.25 (1568.15) 1492.70 (2328.58) 1492.90 (3178.22) 1493.06 (6011.10)
und . 0 - - - - -

80 1.025 sol . 2 1481.78 (876.32) 1481.04 (1614.56) 1481.49 (2531.47) 1480.33 (3347.57) 1480.14 (106.97)
not sol . 0 - - - - -
und . 0 - - - - -

1.05 sol . 1 1505.64 (1120.15) 1505.33 (2182.12) 1505.33 (3347.52) 1505.33 (4362.17) 1505.33 (4391.95)
not sol . 1 1482.53 (1099.36) 1482.53 (2268.15) 1482.53 (3521.99) 1482.53 (4642.29) 1468.72 (6004.49)
und . 0 - - - - -

1.075 sol . 2 1392.86 (824.91) 1392.86 (1601.04) 1392.86 (2234.21) 1392.86 (3216.07) 1392.87 (41.24)
not sol . 3 1549.60 (1098.36) 1547.70 (2262.29) 1544.37 (3387.57) 1544.09 (4625.32) 1554.97 (6027.58)
und . 0 - - - - -

1.10 sol . 2 1505.56 (939.47) 1505.47 (1980.21) 1502.50 (2994.12) 1500.63 (3984.65) 1497.24 (2656.43)
not sol . 3 1483.51 (1144.09) 1481.45 (2340.40) 1481.51 (3512.41) 1480.00 (4765.84) 1497.28 (6012.34)
und . 0 - - - - -

90 1.025 sol . 1 1638.93 (891.35) 1636.97 (1495.22) 1636.97 (2449.83) 1636.77 (3602.31) 1636.37 (1043.17)
not sol . 1 1508.08 (770.21) 1508.08 (2005.50) 1507.34 (3174.54) 1507.04 (4283.28) 1510.94 (6084.15)
und . 0 - - - - -

1.05 sol . 2 1590.80 (1040.17) 1590.20 (2293.46) 1589.90 (3588.56) 1590.00 (4703.11) 1591.27 (2060.68)
not sol . 2 1612.69 (1511.47) 1610.03 (2984.18) 1608.91 (4452.84) 1608.95 (6076.69) 1611.88 (6013.45)
und . 1 1618.76 (1455.36) 1618.56 (3237.7) 1618.56 (5702.97) 1618.56 (7304.46) - (6294.68)

1.075 sol . 0 - - - - -
not sol . 5 1601.41 (1571.91) 1600 (3174.45) 1597.96 (4757.07) 1596.95 (6377.13) 1601.17 (6007.51)
und . 0 - - - - -

1.10 sol . 0 - - - - -
not sol . 5 1596.63 (1535.45) 1595.88 (3111.71) 1594.94 (4721.05) 1594.01 (6278.16) 1592.30 (6016.41)
und . 0 - - - - -

Total sol . 25 1538.67 (639.53) 1537.81 (1278.27) 1537.38 (1955.92) 1536.51 (2625.08) 1536.93 (1331.62)
not sol . 34 1505.44 (1052.37) 1503.77 (2141.12) 1502.8 (3227.68) 1502.24 (4343.87) 1505.13 (6019.95)
und . 1 1618.76 (1455.36) 1618.56 (3237.7) 1618.56 (5702.97) 1618.56 (7304.46) - (6294.68)

Table 4: Results: Multi-descent algorithm vs. L-shaped

We will conclude this section by comparing the multi-descent heuristic with
the L-shaped algorithm of Rei and al. [24]. The heuristic algorithm is applied
by specifying the total number of meta phases of size one to be done. Again
each descent will have a depth of three levels (m =3). As for the L-shaped
algorithm, a maximum time of 6000 seconds is imposed for the solution process.

16

A Hybrid Monte Carlo Local Branching Algorithm for the Single Vehicle
Routing Problem with Stochastic Demands

CIRRELT-2007-24



In Table 4 all instances solved are separated into three categories according
to the results obtained by the L-shaped algorithm. The sol . category refers
to all cases were the L-shaped algorithm was able to solve the problem for an
optimality gap of ǫ ≤ 1%. The not sol . category includes all instances that the
L-shaped algorithm was unable to solve in the maximum time allowed but where
at least one feasible solution was obtained. Finally, the und . category refers to
the cases where the L-shaped algorithm was unable to solve the problem and
no feasible solution was found before the maximum time allowed was reached.
According to this classification, one obtains 25 instances in the sol . category,
34 in the not sol . category and only one in the und . category. In order to see
how results vary for the multi-descent scheme, runs for the heuristic algorithm
are made for two, four, six and eight meta phases. Results in Table 4 include
both the best solution values found by both algorithms as well as the solution
times in seconds, which are the values reported between parentheses.

If one considers those instances that are solved by the L-shaped algorithm
(sol .), one first observes that the solutions obtained by the multi-descent heuris-
tic are in almost all cases either optimal or near optimal. For this category, the
total mean results show that the 2/1 runs obtain an average value of 1538.67 in
639.53 seconds of computation time. As for the L-shaped algorithm, it obtains
1536.93 in 1331.62 seconds. The heuristic finds near optimal solutions in half the
computation time when compared to the exact algorithm. Furthermore, as the
number of meta phases increases, the quality of results converge to the optimal
values. The 8/1 runs produce a total average value of 1536.51 versus 1536.93
for the L-shaped algorithm, whose results have an average gap of less than or
equal to one percent. One should note that the total average computation time
of 8/1 is larger than that of the exact algorithm (2625.08 seconds versus 1331.62
seconds). However, what these results seem to indicate is that the heuristic is
robust since it generates near optimal solutions relatively quickly, and in any
case, if the number of meta phases is increased then the procedure converges to
optimality.

We will now analyse the results obtained on those instances that were not
solved by the L-shaped algorithm (not sol . and und .). The detailed results show
that the multi-descent heuristic obtains better results in ten cases compared to
only three for the exact algorithm. If one considers those instances for which f =
1.075 and 1.10, then the heuristic is usually better than the L-shaped algorithm
and the differences can be quite significant. The multi-descent algorithm can
obtain similar results a lot faster, as is the case for the three instances of size
N = 60 and f = 1.10 where the average results are 1351.95 in 1574.10 seconds
for 8/1 compared to 1353.74 in 6038.66 seconds for the L-shaped algorithm;
or, it can obtain better results in favorable times, as in the case of the three
instances of size N = 80 and f = 1.10 where the average results are 1480.00
in 4765 seconds for 8/1 compared to 1497.28 in 6012.34 seconds for the exact
algorithm. Out of the three cases where the exact algorithm obtained better
results, only two are important to analyse (N = 60, f = 1.075 and N = 80, f
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= 1.05). In the case of N = 90 and f = 1.10, results are quite similar, 1594.01
in 6278.16 seconds for 8/1 versus 1592.30 in 6016.41 seconds for the L-shaped
algorithm. For the two instances for which N = 60 and f = 1.075, the 8/1 runs
obtain 1293.21 in 1641.56 seconds compared to 1281.72 in 6034.74 seconds for
the L-shaped algorithm. In this case, the computation times are not comparable.
If one increases the number of meta phases to 16/1, then the results obtained
are 1282.03 in 3355.66 seconds. Once again, the heuristic produces comparable
results in a favorable time. For the single instance of size N = 80 and f =
1.05, the same observation could not be made. In this case, the exact algorithm
obtains 1468.72 in 6004.49 seconds. The 8/1 runs produce 1482.53 in 4642.29
seconds and when the number of meta phases is increased to 16/1, the results
are 1478.56 in 9667.59 seconds. For this problem, the strategy used in the multi-
descent scheme was unable to outperform the L-shaped algorithm. However, it
remains a single case out of the 60 instances tested. The total mean results
show that the multi-descent algorithm produces equivalent results in a lot less
time, the 2/1 runs obtain 1505.44 in 1052.37 seconds compared to 1505.13 in
6019.95 seconds for the L-shaped algorithm. As one increases the number of
meta phases, the results obtained are improved while the computation times
remain favorable, the 8/1 runs obtain 1502.24 in 4343.87 seconds. Finally, the
single instance in the und category can be used to illustrate that the heuristic
is able to produce solutions quickly even if the exact algorithm was unable to.

6 Conclusion

In this paper, we propose a new hybrid algorithm that combines both local
branching and Monte Carlo sampling in a multi-descent search strategy for in-
teger 0-1 stochastic programming problems. By controling simultaneously the
inherent complexities associated with both the first stage problem and the re-
course function, one is able to better limit the effort needed to solve the approx-
imating subproblems. Furthermore, by using the local branching constraints
in order to obtain diversification for the search strategy, one is able to better
explore the feasible region of the original problem. This method was special-
ized to the case of the SVRPSD and was proven to be quite effective to solve
hard instances of the problem. One should also point out that the algorithmic
principles that were used are all quite general. In future work, it would be inter-
esting to see how one could adapt these ideas to other stochastic programming
problems.
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