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Abstract
Preparation of accurate and up-to-date susceptibility maps at the regional scale is mandatory for disaster mitigation, site 
selection, and planning in areas prone to multiple natural hazards. In this study, we proposed a novel multi-hazard suscep-
tibility assessment approach that combines expert-based and supervised machine learning methods for landslide, flood, 
and earthquake hazard assessments for a basin in Elazig Province, Türkiye. To produce the landslide susceptibility map, an 
ensemble machine learning algorithm, random forest, was chosen because of its known performance in similar studies. The 
modified analytical hierarchical process method was used to produce the flood susceptibility map by using factor scores that 
were defined specifically for the area in the study. The seismic hazard was assessed using ground motion parameters based 
on Arias intensity values. The univariate maps were synthesized with a Mamdani fuzzy inference system using membership 
functions designated by expert. The results show that the random forest provided an overall accuracy of 92.3% for landslide 
susceptibility mapping. Of the study area, 41.24% were found prone to multi-hazards (probability value > 50%), but the 
southern parts of the study area are more susceptible. The proposed model is suitable for multi-hazard susceptibility assess-
ment at a regional scale although expert intervention may be required for optimizing the algorithms.

Keywords  Earthquakes · Floods · Fuzzy inference systems · Landslides · Multi-hazard susceptibility assessment · Random 
forest · Türkiye

1  Introduction

Hazards are natural, technological, and human-induced 
events that potentially cause injury or loss of life, and dam-
age to property, the socioeconomic well-being of society, the 
natural environment, and to historical and cultural resources 
(Bordbar et al. 2022). Earthquakes, floods, landslides, ava-
lanches, wildfires, tsunamis, debris flows, and volcanoes are 
among the frequently observed natural hazards in the world. 
Most studies in the literature focus on a single hazard type 
(Wang et al. 2020a; Cetinkaya and Kocaman 2022; Feiziza-
deh et al. 2022; Karakas et al. 2022). However, multiple 

natural hazards often affect an area, interact with each other, 
and may occur as cascading events (Khatakho et al. 2021; 
Bordbar 2022). In such areas, disaster-related risks need to 
be predicted precisely to mitigate the adverse effects.

In recent years, a rise has been observed in the number 
of natural hazards associated with climate change and rapid 
urbanization (Dhar et al. 2017; Kocaman et al. 2020; Wang 
et al. 2020b) and it is expected to continue in the future. 
According to the reports published by the Disaster and 
Emergency Management Presidency of Türkiye (AFAD), 
approximately 344,560 natural hazards—including earth-
quakes, landslides, rockfalls, floods, and avalanches—
occurred in the country between 1950 and 2019 (AFAD 
2020). Most natural hazard assessment studies in Türkiye 
have also focused on a single hazard type such as earth-
quakes (Erdik et al. 1999; Alpyurur and Lav 2022), land-
slides (Karakas et al. 2020; Akinci and Ozalp 2021), floods 
(Tiryaki and Karaca 2018), and wildfires (Arca et al. 2020). 
One natural hazard may trigger another, such as landslides 
induced by earthquakes or extreme rainfall.
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Although susceptibility maps for a single natural hazard 
have been widely produced, there is no consensus on the 
method to be used when combining these maps. Therefore, 
this issue is still a subject that is open to development in 
the international natural hazards literature. For this reason, 
in this study, we proposed a novel multi-hazard suscepti-
bility assessment (MHSA) approach for the regional scale 
and implemented it in an area prone to earthquakes, land-
slides, and floods, based on the Mamdani fuzzy inference 
system (FIS) (Mamdani and Assilian 1975). Yanar et al. 
(2020) presented the first example of employing Mamdani 
FIS for multi-hazard susceptibility assessment, but only 
two natural hazards were considered in their study. Thus, 
this study differs from previous studies as it is the first 
to use the Mamdani FIS to combine three natural haz-
ards. The study site is located in Elazig Province, in the 
southeastern part of Türkiye, and is prone to multi-hazards 
due to its young and active tectonism, high seismicity, the 
weak shear strength of the lithological units, steep slopes, 
and climatic conditions. A 6.8 Mw earthquake in the prov-
ince on 24 January 2020 caused over 30 fatalities, injured 
thousands, and triggered several landslides (Karakas, Nef-
eslioglu, et al. 2021). Extreme meteorological events also 
frequently cause floods in the region, yet no studies have 
appeared in the literature so far.

The methodology proposed here involves data-driven 
and expert-based methods for the production of univari-
ate susceptibility maps for earthquakes, landslides, and 
floods individually, and combining them using an expert-
based method. The expert inference required at various 
steps was provided by a coauthor, Gokceoglu, who has 
visited the region frequently. The methods preferred here 
were selected based on data availability, suitability for the 
target region, and their prediction performances. Thus, an 
ensemble machine learning (ML) method, random forest 
(Breiman 2001), was applied for the landslide suscepti-
bility assessment (LSA) with optimized hyperparameters. 
Regarding the flood susceptibility assessment (FSA), an 
expert-based approach with a modified analytical hierar-
chical process (M-AHP) proposed by Nefeslioglu et al. 
(2013) was preferred and the score factors were deter-
mined based on the characteristics of the study area. For 
earthquake susceptibility, Arias intensity (AI) proposed by 
Arias (1970) was employed as the AI is a reliable param-
eter used to describe the earthquake shaking to trigger 
landslides. For the MHSA an expert-based approach, the 
Mamdani FIS, was used and the map was validated by 
the expert. Yanar et al. (2020) used the Mamdani FIS for 
the joint assessment of landslide and flood hazards in an 
urban expansion area in Ankara, Türkiye, but the present 
study includes earthquakes as well and proposes a more 
advanced strategy for defining the membership functions 
for each input. The proposed method is novel and produced 

an accurate multi-hazard susceptibility map (MHSM) for 
the region.

In the following, work related to the LSA, FSA, and 
MHSA is presented and discussed in Sect. 2. The meth-
odological details, together with the data, are explained in 
Sect. 3, and the results of the LSA, FSA, and MHSA are 
presented in Sect. 4, followed by a brief discussion and con-
clusion in Sects. 5 and 6.

2 � Related Work

Based on the literature analysis, it was apparent that most 
susceptibility assessment studies considered a single hazard 
type. Recent reviews with bibliometric analyses of landslide 
susceptibility research were provided by Liu et al. (2022), 
who analyzed a period between 1999 and 2021, and by Lima 
et al. (2022), who analyzed literature on data-driven methods 
utilized for LSA between 1985 and 2020. According to Liu 
et al. (2022), the trends in the LSA methods have evolved 
from expert-based, statistical, or probabilistic analysis to 
supervised ML in recent years. The number of LSA stud-
ies, especially with data-driven methods, is much greater 
thanks to the availability of comprehensive inventories, 
the increasing availability of geospatial datasets, and novel 
ML methods. Among the supervised ML methods, logistic 
regression (LR), artificial neural networks (ANN), support 
vector machines (SVM), and RF appear most frequently in 
the LSA literature (Lima et al. 2022).

The LSA studies mainly differ from each other based on 
the data sources utilized for the assessment, the geographic 
locations, the size of the assessed area (local or regional), the 
spatial resolution of the data, and the predictors (that is, the 
conditioning factors). The data used for the landslide inves-
tigations can be sourced from photogrammetric and remote 
sensing techniques—such as using passive (satellite and 
aerial optical images) or active sensors, for example, light 
detection and ranging (LiDAR) or synthetic-aperture radar 
(SAR) (Colesanti and Wasowski 2006; Jaboyedoff et al. 
2010; Karakas, Kocaman, et al. 2021; Nava et al. 2022)—or 
can be obtained from existing geodatabases.

The methods used for producing the landslide suscep-
tibility maps (LSMs) can be expert-based (Liu and Chen 
2007; Pourghasemi et al. 2012, 2013; Nefeslioglu et al. 
2013), statistical or probabilistic analysis (Gokceoglu et al. 
2005; Nefeslioglu and Gokceoglu 2011; Lari et al. 2014), 
and supervised ML (Wang et al. 2016; Sevgen et al. 2019; 
Yi et al. 2019).

The accuracy assessment approaches are either quali-
tative (expert inspection) or quantitative based on vari-
ous metrics, such as precision, recall, receiver operating 
characteristic (ROC) curve, the area under the ROC curve 
(AUC) value, Kappa index, F-1 score, overall accuracy 
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(OA), and so on, or both approaches at the same time. 
In LSA studies, highly accurate results can be obtained 
depending on the data quality and the suitability of the 
learning method. Merghadi et al. (2020) compared dif-
ferent ML algorithms for the LSA, and found that the RF 
method was more robust than the other tested methods. 
Can et al. (2021) obtained an AUC value of 0.96 in an 
area over 2700 km2 using the decision-tree (DT) based 
extreme gradient boosting (XGBoost) method. Karakas 
et al. (2022) obtained an AUC value of 0.93 using the 
RF method with very high-resolution aerial photogram-
metric datasets. But although very accurate results can be 
achieved, the LSA methods and the predictors have not 
yet been standardized, mainly due to geological and geo-
graphic differences, and spatially and temporally incom-
plete inventories.

When compared with landslide susceptibility assess-
ment, flood susceptibility assessment studies appear less 
in the literature as they are highly reliant on expert opin-
ion, and accurate flood inventories are often unavailable. 
Yet, similar to the LSA, there is an increasing interest in 
FSA studies. The FSA studies mostly utilize the analyti-
cal hierarchical process (AHP) (Dahri and Abida 2017; 
Das 2018; Skilodimou et  al. 2019; Swain et  al. 2020; 
Wubalem Azeze et  al. 2021) and FIS (Razavi Termeh 
et al. 2018; Sahana and Petel 2019; Sepehri et al. 2020). 
As data-driven approaches, the DTs (Tehrany et al. 2013; 
Khosravi et al. 2018), LR (Chapi et al. 2017; Ullah and 
Zhang 2020), frequency ratio (FR) (Tehrany et al. 2015; 
Samanta et al. 2018; Natarajan et al. 2021), the RF (Lee 
at al. 2017; Chen et al. 2020), the SVM (Bera et al. 2022), 
and bivariate and multivariate statistics (Tehrany et al. 
2013; Tehrany et al. 2014) were also applied. A few stud-
ies involved hybrid approaches as well (Kolat et al. 2006; 
Bui et al. 2018; Hong et al. 2018). Modifications of AHP 
such as M-AHP (Nefeslioglu et al. 2013) were utilized for 
the FSA (Sozer et al. 2018). The flood susceptibility maps 
(FSMs) are often validated visually.

Considering the conditioning factors for the FSA and 
LSA, topographic (for example, altitude, gradient slope, 
slope length factor, topographic wetness index (TWI), 
stream power index (SPI), plan curvature), hydrologic 
(for example, distance to rivers), land use and land cover 
(LULC), and geological (for example, soil drainage) parame-
ters have often been utilized for both types of studies. In this 
study, before selecting the factors, the most frequently uti-
lized parameters for the LSA and the FSA in the last 5 years 
were evaluated after filtering with the number of citations 
(> 15). The topographic derivatives (altitude, slope, aspect, 
curvature), lithology, distances to hydrologic elements (for 
example, rivers), infrastructure (for example, roads), and 
geological structures (for example, faults), and LULC were 
found the most frequently utilized factors for the LSA. For 

the FSA, topography, lithology, hydrology, and LULC were 
commonly used variables.

The peak ground acceleration (PGA) has been frequently 
used for the probabilistic assessment of seismic hazards in 
site selection and design of engineering structures. Erdik 
et al. (1999) assessed the probabilistic seismic hazard in 
Türkiye and its surrounding areas, and produced a PGA 
map according to specific return periods. Alpyurur and Lav 
(2022) evaluated the seismic hazard for the southwest of 
Türkiye and produced a new seismic susceptibility database.

Only few studies on MHSA appear in the literature. The 
majority of these are stepwise studies and combine univari-
ate susceptibility maps with weighted overlay analysis or the 
AHP. Mukhopadhyay et al. (2016) used the multiple-crite-
ria decision analysis (MCDA) for the MHSA considering 
coastal erosion, storm surge, sea-level rise, coastal floods, 
tsunamis, and earthquakes in India, and the weights were 
defined by experts involved in the study. Khatakho et al. 
(2021) applied the AHP for evaluating flood, landslide, 
earthquake, and urban fire hazards in Nepal and aggregated 
them again by using the AHP. Aksha et al. (2020) also uti-
lized the AHP for MHSM production in Nepal. Rusk et al. 
(2022) used an ML method, the maximum entropy (Maxent), 
for producing the FSM, LSM, and a fire susceptibility map 
in the Hindu Kush Himalaya. In addition, recent studies by 
Liu et al. (2018) (China), Pourghasemi et al. (2020), Yousefi 
et al. (2020), Javidan et al. (2021), Pouyan et al. (2021), all 
in Iran, and Youssef et al. (2023) (Saudi Arabia), employed 
various ML methods for MHSA. Pourghasemi et al. (2019) 
produced an MHSM using a new ensemble model named 
stepwise weight assessment ratio analysis (SWARA) utiliz-
ing adaptive neuro-fuzzy inference system (ANFIS) and grey 
wolf optimizer (GWO) for the LSA, FSA, and earthquake 
assessment in Iran by using a PGA map. Yanar et al. (2020) 
produced an MHSM for a part of Ankara, Türkiye by inte-
grating an FSM and an LSM with the Mamdani FIS. In the 
present study, we integrate the FSM, LSM, and AI map for 
the Elazig region using a Mamdani FIS with membership 
functions defined using the data characteristics. Therefore, 
our study is the first example of combining the landslide, 
flood, and earthquake hazards for MHSA using a FIS.

3 � Materials and Methods

In this section, we present the study area, the geospatial 
datasets employed in the study, and the methods utilized 
for the production of the LSM, FSM, AI, and the MHSM.

3.1 � Study Area Characteristics

The study area is located in the southeastern part of Tür-
kiye (Fig. 1a) in Elazig Province and covers part of the 
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Keban Dam Lake basin. It covers approximately 1010 km2 
and the altitudes obtained from the EU-DEM v1.1, pub-
lished by the Copernicus Land Monitoring Service (CLMS 
2021), range from 822 to 2146 m (Fig. 1b). A worldwide 
land cover map published by the European Space Agency 
(ESA-WorldCover 2020) with 75% overall accuracy was 
used to represent the environmental conditions as LULC 
classes, which consist of tree cover (1) (1.23%), shrub-
land (2) (0.07%), grassland (3) (39.20%), cropland (4) 
(27.94%), built-up area (5) (5.50%), bare/sparse vegetation 
(6) (15.32%), and permanent water bodies (7) (10.72%) 
(Fig. 1c). The average annual temperature of Elazig Prov-
ince is 13.1 °C, and the average annual precipitation is 
415.1 mm (MGM 2022). The region is in the East Ana-
tolian Fault Zone (EAFZ), tectonically active, with high 
seismicity (Gokceoglu et al. 2020; Karakas, Nefeslioglu, 
et al. 2021), and has historically been subject to frequent 
devastating earthquakes (AFAD 2020; METU 2020). The 
geological features consist of lithological units with weak 
shear strength characteristics (Fig. 1d). Avci and Sunkar 
(2018) investigated the relationship between lithological 
units and the distance to faults with landslides in Elazig 
and the neighboring province in the north, and observed 

that most of the landslides in the region were triggered by 
earthquakes.

The lithological units in the area (Fig. 1d) were obtained 
by digitizing the 1:100,000 scale geological map published 
by Keskin (2011) and Herece (2016) and are listed in Table 1 
in the order of their age. The most common units are ter-
races (unconsolidated gravel, sand, silt, clay), the Kırgeçit 
formation (conglomerate, sandstone, siltstone, claystone, 
limestone), and basalt. The landslide inventory was provided 
by the General Directorate of Mineral Research and Explo-
ration (GDMRE) (MTA 2022), Türkiye. The inventory is 
incomplete and covers an area of 1.42 km2, with the smallest 
and the largest landslide areas of 0.01 km2 and 0.34 km2, 
respectively. The landslides in the region are mostly present 
in lithological units that are not firmly attached under the 
thick basalts (Herece 2016), and in the Kırgeçit formation.

3.2 � Geospatial Datasets and Conditioning Factors

The types, sources, and scales/spatial resolutions of the data 
are summarized in Table 2. The topographic parameters 
were derived from the EU-DEM v1.1 tile E60N20 with a 
grid size of 25 m and a height accuracy of 7 m (CLMS 

Fig. 1   The Elazig Province study area in Türkiye: a Location map; b Digital elevation model (DEM); c Land use and land cover (LULC) map; d 
Lithological units. For a list of the lithological units, see Table 1



330	 Karakas et al. A Hybrid Multi-Hazard Susceptibility Assessment Model for Elazig, Türkiye

1 3

2021). The distances to rivers and drainage channels were 
computed with data from the topographic vector geoda-
tabase (TopoVT) of the General Directorate of Mapping 
(GDM), Türkiye, which was also partly updated by manual 
delineations from a recent orthoimage. The lithology and 
the distance to faults were used as geological parameters.

The topographic and geological features were computed 
using the ArcGIS software from ESRI and the open-source 
SAGA tool (Conrad et al. 2015). Slope is among the most 
important parameters for the FSA and the LSA. Steep 
slopes are more susceptible to landslides. Lower slopes 
and flat areas are more prone to flooding since the surface 
inundation level may increase in these areas (Sozer et al. 
2018; Khatakho et al. 2021). The aspect is the line direc-
tion of the steepest descent and denoted in degrees clock-
wise from the north. The sunlight exposure times, and the 

freezing and thawing events that affect the decomposition 
and erosion of the material of the slopes facing different 
directions, can be related to the aspect (Dai and Lee 2002). 
The plan and profile curvatures are the second derivatives 
of the DEM and denote the magnitude of the change in 
slope and aspect. With respect to the FSA, while the plan 
curvature explains the flow acceleration and erosion/depo-
sition rate, the profile curvature denotes the flow velocity 
variation (Kalantar et al. 2018). The TWI describes the 
hydrological conditions of the topography and is used to 
explain the water-saturated areas in a catchment. The SPI 
represents the erosional strength of running water and is 
related to the discharge to a catchment. The drainage den-
sity represents the proportion of the lengths of all streams 
and rivers to the total catchment area. Distances to perma-
nent rivers and dry drainage channels were used to analyze 

Table 1   Lithological units in 
the Elazig Province study area 
in Türkiye

ID Lithological unit Symbol Area (km2)

1 Alluvial fan Qay 56.85
2 Terrace: Unconsolidated pebble, sand, silt, clay Qçk 249.79
3 Palu formation: Conglomerate, sandstone, mudstone plQp 37.39
4 Karabakır formation: Pyroclastics rocks, lava flows, fluvial deposits, lacustrine Tplk 14.65
5 Basalt member: Basaltic lava Tplkb 26.31
6 Kırgeçit formation: Conglomerate, sandstone, siltstone, claystone, limestone Tek 140.35
7 Karadere formation: Andesite, basalt, claystone Temk 52.74
8 Hazar formation: Sandstone, limestone, mudstone Kh 12.07
9 Granite Kegr 8.74
10 Andesitic volcanics: Andesite, tuff, agglomerate Kpa 94.61
11 Basalt Keb 104.00
12 Gabbro Keg 30.05
13 Guleman ophiolite: Dunite, harzburgite, gabbro JKg 55.40
14 Keban metamorphics: White-gray massif marble, schist, phyllite, amphib PzMzk 3.47

Table 2   Geospatial parameters and respective data sources used in the Elazig Province, Türkiye, study

EU-DEM digital elevation model over Europe, TopoVT topographic vector geodatabase, GDMRE General Directorate of Mineral Research and 
Exploration, ESA European Space Agency

Parameter type Parameter name Source format Map scale/resolution Dataset

Topographic Altitude Grid 25 m EU-DEM v1.1
Slope
Aspect
Plan and profile curvature
Stream power index (SPI)
Topographic wetness index (TWI)
Drainage density
Permanent and dry drainage channels Polyline 1:25,000 TopoVT

Geological Lithology Polygon 1:100,000 Geological maps
Faults Polyline 1:25,000 WebGIS portal 

of the GDMRE
Environmental Land use and land cover (LULC) Grid 10 m ESA WorldCover



331International Journal of Disaster Risk Science

1 3

the effect of rivers in the event of flooding by assuming 
that closer proximity increases susceptibility.

Lithology is essential in landslide, flood, and earthquake 
hazard assessments. Rock type, permeability, and surface 
runoff are affected by lithological properties (Kalantar et al. 
2018; Khatakho et al. 2021). Since the study area is in the 
East Anatolian Fault Zone and is prone to landslides trig-
gered by earthquakes, the distance to fault parameter was 
included. The faults were digitized from the web portal of 
the GDMRE (MTA 2022). The different types of LULC in 
a region exhibit various influences in natural hazard events 
and were also used as conditioning factors.

3.3 � Methodology

In this study, we produced univariate susceptibility maps for 
landslides, floods, and earthquakes, and integrated all three 
maps into a single multi-hazard map as explained below. We 
applied a data-driven method (the RF) for the LSA. For the 
flood and multi-hazard susceptibility assessments, expert-
based methods were employed and the required inputs 
(expert opinion) were provided by a coauthor of this article, 
Gokceoglu.

3.3.1 � Production of Univariate Susceptibility Maps

The RF algorithm (Breiman 2001), which is frequently used 
for regression and classification problems, was utilized for 
the LSA. Consisting of multiple DTs with different sub-
samples, the RF is relatively immune to outliers and noise 
in the data. For hyperparameter optimization, the Rand-
omizedSearchCV method (Bergstra and Bengio 2012) was 
employed. The Gini index, which measures the variance in 
the classification, was preferred here. The number of estima-
tors and the maximum depth allowed in a tree were 418 and 
27, respectively. The bootstrap was used as the sampling 
strategy for training each tree. A balance of class weights 
was selected considering the imbalance problem in the clas-
sification and the parameter is usually introduced to give 
focus on the minority class.

The predictors used for the LSA were altitude, slope, 
aspect, plan and profile curvatures, lithology, drainage 
density, distance to fault, SPI, and TWI. The features were 
selected based on previous LSA studies performed for the 
area (Can et al. 2021; Karakas, Kocaman, et al. 2022; Kara-
kas, Nefeslioglu, et al. 2021; Karakas et al. 2022), and the 
expert opinion. The landslide samples used for the training 
were selected from the pixels in the inventory. The landslide/
non-landslide classes include 2264 and 3396 pixels, respec-
tively, yielding to a total of 56,600 pixels for all features. An 
80/20 ratio was used to split the training and test samples. 
The AUC value, precision, recall, and F-1 score metrics 
were used for validation with test samples. In addition, the 

SHapley Additive exPlanations (SHAP) methodology (Lun-
dberg and Lee 2017) was used to investigate the predictive 
performances of the input features.

The M-AHP was applied for the FSA due to the lack of 
learning data. The M-AHP eliminates the expert subjec-
tivity in pairwise factor comparisons in AHP (Nefeslioglu 
et al. 2013). A normalized factor score difference matrix 
is prepared with the maximum weights given and a factor 
comparison matrix is generated by considering the modi-
fied importance value chart to ensure consistency. The factor 
percentage importance distributions at the decision points 
are computed and linear distances between the normal-
ized factor score and the decision points are measured. A 
new weight vector is computed for each grid cell. Seven 
conditioning factors were considered in the FSA (altitude, 
slope, lithology, TWI, LULC, distance to permanent rivers, 
and distance to dry drainage channels) based on literature 
analysis and expert opinion. The class weights were defined 
by the expert. Both the LSA and the FSA methods were 
implemented in a Python programming environment and the 
workflows are presented in Fig. 2.

As stated by Rathje et al. (1998), it is often useful in 
earthquake engineering practice to characterize the fre-
quency content of an earthquake ground motion with a 
single parameter. However, it is still a difficult problem to 
illustrate earthquake hazard with a single map when prepar-
ing the regional multi-hazard susceptibility maps. Due to 
the significant role of local site conditions on earthquake 
shaking, the effect of the current seismic code provisions is 
described through appropriate elastic design spectra based 
on different site categories (Kotha et al. 2018).

The main parameter proposed for soil categorization is 
the Vs30 (Borcherdt and Glassmoyer 1992). Despite its 
common use, there is no universal agreement that this is a 
valid proxy for seismic amplification (Castellaro et al. 2008). 
Chousianitis et al. (2018) emphasized that not all of the main 
properties of a ground motion can be captured through a 
single parameter and proposed several different engineering 
parameters to reflect one or more ground motion charac-
teristics concurrently. However, there is still an inadequacy 
of standard methods for site classification to evaluate the 
expected amount of peak horizontal acceleration amplifica-
tion (Del Gaudio et al. 2019).

Another parameter used in ground motion prediction 
equation is the horizontal component of cumulative absolute 
velocity. Campbell and Bozorgnia (2010) used cumulative 
absolute velocity employed as an index to indicate the possi-
ble onset of structural damage to nuclear power plant facili-
ties and liquefaction of saturated soils. Foulser-Piggot and 
Goda (2015) stated that Arias intensity (AI) and cumulative 
absolute velocity are ground motion measures that have been 
found to be well suited to application in a number of prob-
lems in earthquake engineering, and these parameters reflect 
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multiple characteristics of the ground motion (for example, 
amplitude and duration), despite being scalar measures. 
Due to the availability of reliable data, Arias intensity is 
employed in the present study to classify the study area 
relatively in terms of earthquake effects, that is, the Arias 
intensity map classifies the area relatively in terms of earth-
quake impact. This classification does not express the abso-
lute effect of a possible earthquake, but rather demonstrates 
the relative influence in the study area. Therefore, the Arias 
intensity used to show the earthquake effect in the produc-
tion of the multi-hazard susceptibility map is expressed by 
the susceptibility map.

The Arias intensity proposed by Arturo Arias (1970) 
expresses the energy discharge considering the earthquake 
shaking duration and time-dependent variation of the fre-
quency content (Kayen and Mitchell 1997). The intensity of 
the shaking is determined by measuring the acceleration of 
transient seismic waves and the summation of the horizontal 
and vertical components of the acceleration record (Eq. 1). 
In Eq. 1, g is the acceleration of gravity, t is time, and td is 
the total recording length. Among the ground motion param-
eters that measure ground shaking, AI is well related to the 
landslide distribution and density (Keefer 1984; Wang et al. 
2007; Lee et al. 2008; Karpouza et al. 2021), and a reliable 

Fig. 2   The workflows implemented for: a The landslide susceptibility 
assessment (LSA); and b The flood susceptibility assessment (FSA) 
for the Elazig Province study area in Türkiye. EU-DEM digital eleva-

tion model over Europe, SPI stream power index, TWI topographic 
wetness index, ESA European Space Agency, LULC land use and 
land cover, M-AHP modified-analytical hierarchical process
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parameter used to describe the earthquake shaking to trigger 
landslides.

In this study, the AI was used to produce the earthquake 
susceptibility map with the inverse distance weighting 
(IDW) interpolation based on the records of 25 earthquake 
stations in the study area and its surroundings provided by 
the AFAD earthquake database.

3.3.2 � Multi‑Hazard Susceptibility Assessment 
with the Mamdani‑Fuzzy Inference System

Mamdani FIS (Mamdani and Assilian 1975) aims at creating 
a control system using linguistic rule sets based on expert 
opinion. It is an intuitive and easy-to-use method for solv-
ing complex and nonlinear problems. Here, the LSM, the 
FSM, and the AI maps were aggregated for producing the 
MHSM using Matlab Fuzzy Logic Toolbox. The Mamdani 
FIS method consists of four main steps—fuzzification, rule 
evaluation, aggregation, and defuzzification.

(1)IA = Ixx + Iyy =
�

2g∫
td

0

a2
x
(t)dt +

�

2g∫
td

0

a2
y
(t)dt

In the fuzzification step, the membership classes of crisp 
inputs are evaluated by the expert. Here, three membership 
classes—low, moderate, and high—were defined for each 
input (that is, LSM, FSM, and AI map) and the output was 
classified in five linguistic classes (very low, low, moder-
ate, high, and very high). The membership boundaries were 
defined considering the severity of each hazard in the area 
based on the statistics (for example, loss of lives and dam-
ages to properties) in the AFAD report (AFAD 2020).The 
most harmful hazard type has been earthquakes, followed 
by landslides and floods. The histograms of the univari-
ate susceptibility maps were also analyzed for probability 
distribution of each susceptibility map for the purpose of 
class boundary definition. Triangular functions define each 
membership (Fig. 3), with the x and y axes indicating the 
probability levels and membership degrees, respectively. 
Figure 3 shows a susceptibility level expressed with a prob-
ability between 0 and 1 (normalized) that falls within two 
membership classes (for example, 0.4 in the landslide mem-
bership function belongs to the moderate and high suscepti-
bility levels at different degrees).

Linguistic if-then rules were defined by the expert (Gok-
ceoglu, coauthor of this article) to be evaluated in the second 
step (Table 3). The 27 rules reflect the opinion of the expert, 

Fig. 3   The membership functions defined in the Mamdani fuzzy inference system (FIS). MHS multi-hazard susceptibility
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who has long experience in the region. In the third step, the 
aggregation is carried out and a fuzzy output of the model 
is obtained using the maximum operator (Osna et al. 2014). 
In the final step (defuzzification), the fuzzy output was 
transformed into crisp values using the centroid technique 
as the fuzzy output includes the results of multiple rules for 
every susceptibility level, which belongs to two membership 
classes each time. The fuzzy output is in fact an area, and 
the centroid technique computes the center of this area to 
obtain the crisp value. The crisp outputs were geocoded for 
the MHSM production.

4 � Results

The 10 feature maps used for the LSA—altitude (see 
Fig. 1b), slope (Fig. 4a), aspect (Fig. 4b), plan curvature 
(Fig. 4c), profile curvature (Fig. 4d), distance to faults 
(Fig. 4e), the TWI (Fig. 4f), the SPI (Fig. 4g), drainage den-
sity (Fig. 4h), and lithology (see Fig. 1d)—were employed 

for the LSM. For the FSA, the features involved included: 
altitude, slope, the TWI, lithology, distance to permanent 
rivers (Fig. 4i), distance to dry drainage channels (Fig. 4j), 
and the LULC (see Fig. 1c).

The LSM, FSM, AI map, and the MHSM are presented 
in Figs. 5a−d. The AUC value obtained from the RF is 0.98, 
which indicates high classification accuracy confirmed by 
the OA (92.3%) and F-1 score (0.91) as well. The feature 
importance results indicate that slope, lithology, and altitude 
are the most predictive features, and slope and altitude val-
ues have a positive correlation with the susceptibility levels, 
whereas smaller distance values to faults yield an increase 
in susceptibility level. The similarity between the high land-
slide susceptibility levels (Fig. 5a) and higher slopes (see 
Fig. 4a) is visually apparent.

The FSM (Fig. 5b) indicates that the areas around the 
Keban Dam Lake and in the center of Elazig City are highly 
susceptible. In addition, Elazig Airport was classified as 
highly susceptible to flooding. The AI map (Fig. 5c) indi-
cates higher intensity values in the southern parts of the 

Table 3   If-then rules used 
at the rule evaluation step of 
the Mamdani fuzzy inference 
system (FIS)

LS landslide susceptibility, FS flood susceptibility, AI Arias intensity, MHSL multi-hazard susceptibility 
level

No Mamdani FIS Rules

1 If (LS is high) and (FS is high) and (AI is high) then (MHSL is very_high)
2 If (LS is high) and (FS is high) and (AI is moderate) then (MHSL is very_high)
3 If (LS is high) and (FSis high) and (AI is low) then (MHSL is high)
4 If (LS is high) and (FS is moderate) and (AI is high) then (MHSL is very_high)
5 If (LS is high) and (FS is low) and (AI is high) then (MHSL is high)
6 If (LS is high) and (FS is moderate) and (AI is moderate) then (MHSL is high)
7 If (LS is high) and (FS is low) and (AI is low) then (MHSL is moderate)
8 If (LS is high) and (FS is low) and (AI is moderate) then (MHSL is moderate)
9 If (LS is high) and (FS is moderate) and (AI is low) then (MHSL is moderate)
10 If (LS is moderate) and (FS is high) and (AI is high) then (MHSL is very_high)
11 If (LS is moderate) and (FS is high) and (AI is moderate) then (MHSL is high)
12 If (LS is moderate) and (FS is high) and (AI is low) then (MHSL is moderate)
13 If (LS is moderate) and (FS is moderate) and (AI is high) then (MHSL is high)
14 If (LS is moderate) and (FS is low) and (AI is high) then (MHSL is moderate)
15 If (LS is moderate) and (FS is moderate) and (AI is moderate) then (MHSL is moderate)
16 If (LS is moderate) and (FS is low) and (AI is low) then (MHSL is low)
17 If (LS is moderate) and (FS is low) and (AI is moderate) then (MHSL is moderate)
18 If (LS is moderate) and (FS is moderate) and (AI is low) then (MHSL is moderate)
19 If (LS is low) and (FS is high) and (AI is high) then (MHSL is high)
20 If (LS is low) and (FS is high) and (AI is moderate) then (MHSL is moderate)
21 If (LS is low) and (FS is high) and (AI is low) then (MHSL is moderate)
22 If (LS is low) and (FS is moderate) and (AI is high) then (MHSL is moderate)
23 If (LS is low) and (FS is low) and (AI is high) then (MHSL is moderate)
24 If (LS is low) and (FS is moderate) and (AI is moderate) then (MHSL is low)
25 If (LS is low) and (FS is low) and (AI is low) then (MHSL is very_low)
26 If (LS is low) and (FS is low) and (AI is moderate) then (MHSL is low)
27 If (LS is low) and (FS is moderate) and (AI is low) then (MHSL is low)
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Fig. 4   Feature maps used 
for landslide susceptibility 
assessment (LSA) and flood 
susceptibility assessment (FSA) 
in the Elazig Province study 
area in Türkiye: a Slope; b 
Aspect; c Plan curvature; d 
Profile curvature; e Distance to 
faults; f Topographic wetness 
index (TWI); g Stream power 
index (SPI); h Drainage density; 
i Distance to permanent rivers; 
j Distance to dry drainage 
channels
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study area. The higher values are above the shaking thresh-
old for seismically triggered landslides and lateral flows 
determined by Keefer and Wilson (1989).

The gradient MHSM obtained from the Mamdani FIS 
(Fig. 5d) shows that the southern parts of the study area 
have very high susceptibility levels mainly due to the higher 
AI and landslide susceptibility values. Figure 5 shows that 
the landslide susceptibility is very high in most parts of the 
study area, although the flood susceptibility is lower in areas 
with higher slope values.

5 � Discussion

In this study, a new approach to combine landslide, flood, 
and earthquake hazards with different machine learning 
and expert-based methods was proposed for multi-hazard 
assessments at a regional scale. The RF method provided 
high performance (OA = 92.3%) for the LSA as expected. 

Although the number of landslides in the inventory is low, 
and they cover a small part of the study area, the accuracy 
was in line with the results of Karakas, Kocaman, et al. 
(2021; Karakas et al. 2022), thus indicating the adequacy 
of the landslide inventory for the study purposes. Yet, fur-
ther investigations and understanding of the relationships 
between the landslides and earthquakes in the region are 
needed similar to the study of Karakas and others (Kara-
kas, Nefeslioglu, et al. 2021a, b), in which the landslides 
triggered by the 2020 Mw. 6.8 Elazig earthquake were 
reported.

The FSM obtained from the M-AHP proved the usability 
of the method based on expert validation. This finding is in 
line with the study of Sozer et al. (2018), which applied the 
M-AHP in Ankara, Türkiye for the FSM at the regional scale. 
Hammami et al. (2019), Swain et al. (2020), and Khatokho 
et al. (2021) also used the AHP for the FSA and confirmed 
the suitability of this approach. But since the M-AHP method 
eliminates expert subjectivity and creates a weight matrix for 

Fig. 5   a Landslide susceptibility map; b Flood susceptibility map; c Arias intensity map of the site; d Multi-hazard susceptibility map of the 
study area in Elazig Province, Türkiye
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each pixel, the results are more accurate than the conventional 
AHP.

The conditioning factors used for the LSA and the FSA 
were selected after a review of the studies carried out between 
2017 and 2021 and considering the study area characteris-
tics. Since high quality maps could be obtained for both the 
FSA and the LSA, the selected factors were found suitable. 
Although the factors may involve multicollinearity, this issue 
was not considered here as the DT-based methods are rela-
tively immune to this issue (Piramithu 2008; Can et al. 2021; 
Karakas et al. 2022). Among the factors used for the LSA, the 
most predictive features were slope, lithology, and altitude. 
In addition, the EU-DEM was found suitable for the study 
purposes.

The AI, which was utilized to produce the earthquake sus-
ceptibility map, has been frequently preferred in seismic haz-
ard assessment studies in recent years (Costanzo 2018; Skilo-
dimou et al. 2019; Karpouza et al. 2021; Gupta and Satyam 
2022). As the parameter used to assess the earthquake shaking 
degree for triggering landslides, it is widely used in the litera-
ture and was preferred here.

The use of the Mamdani FIS for the MHSA is a major 
contribution of this study. The production of a multi-hazard 
susceptibility map (MHSM) is still an extremely complex 
problem due to regional complexities and the lack of ground 
truth data that prevents the use of data-driven machine learning 
methods. In the literature, the univariate susceptibility maps 
have usually been integrated with raster arithmetic operations 
or basic spatial analysis methods (Pourghasemi et al. 2019; 
Pourghasemi et al. 2020; Pouyan et al. 2021; Bordbar et al. 
2022; Ullah et al. 2022), such as the cumulation of the indi-
vidual hazard levels per pixel. The use of Mamdani FIS by 
creating rules for each hazard has increased the sophistication 
level and usability of the final maps. Yet, the method cannot 
be carried out simply in any desktop geographic information 
system (GIS) software but its application requires specific soft-
ware and a certain level of expertise. In addition, the mem-
bership functions and the rules must be defined by an expert 
who is familiar with the area as there are no widely accepted 
procedures or standards. Further applications and case studies 
would help to increase the knowledge, which may eventually 
lead to standardization of the method. Figure 5 shows a large 
portion of the study area is susceptible to landslides, floods, 
and earthquakes. In addition, a MHSM can be more useful 
than univariate susceptibility maps for site selection efforts 
for highways, railways, settlements, and so on.

6 � Conclusion

In this study, a novel approach for the combined assessment 
of landslide, flood, and earthquake hazard susceptibility was 
proposed and evaluated in a region in the Elazig Province 

of Türkiye, which is tectonically active and vulnerable to 
multi-hazards that affect each other. The RF was powerful 
for producing an accurate LSM (OA = 92.3%) even when 
the inventory is incomplete. The FSA was carried out with 
the M-AHP as no flood inventory was available. In addi-
tion, the AI values were used considering the earthquake 
susceptibility of the region. The univariate susceptibility 
maps were combined with the Mamdani-FIS to obtain the 
MHSM, which is the first example in the literature. The FSM 
and the MHSM were validated visually both in 2D and 3D 
views by the expert. The results exhibited high performance 
of the proposed methodology for the MHSA and can be 
recommended for similar efforts. The produced maps can 
be used by local authorities for identifying areas prone to 
multi-hazards, planning sustainable land use, site selection 
of engineering structures, and efficient disaster management.

Yet, regional MHSA is still a highly difficult problem, 
and it is almost impossible to solve it with data-driven 
approaches. For this reason, an expert-based fuzzy infer-
ence system (FIS) was preferred. Although successful and 
promising results were obtained in the present study, there is 
still a long and difficult way to go in producing multi-hazard 
susceptibility maps. Multi-hazard susceptibility assessment 
studies need to be carried out in different regions and with 
different methods to increase the accuracy and reliability of 
such assessments. The application of FIS can be complex as 
it requires specific tools and expert involvement for defining 
the membership functions and the rules. The future work of 
the study will include the evaluation of the proposed method 
in the neigboring basins in terms of prediction performance 
and usability. In addition, risk assessments by considering 
the vulnerable elements are also planned.
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