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Abstract. A hybrid Multi-Objective Evolutionary Algorithm is used
to tackle the uncapacitated exam proximity problem. In this hybridiza-
tion, local search operators are used instead of the traditional genetic
recombination operators. One of the search operators is designed to re-
pair unfeasible timetables produced by the initialization procedure and
the mutation operator. The other search operator implements a sim-
plified Variable Neighborhood Descent meta-heuristic and its role is to
improve the proximity cost. The resulting non dominated timetables are
compared with those produced by other optimization methods using 15
public domain datasets. Without special fine-tuning, the hybrid algo-
rithm was able to produce timetables with good rankings in nine of the
15 datasets.

1 Introduction

This paper presents a hybrid Multi-Objective Evolutionary Algorithm (MOEA)
designed for the uncapacitated exam proximity problem in which a timetable has
to offer student maximum free time between exams while satisfying the clashing
constraint (exam conflicts) and without regard to the seating capacity. The pro-
posed multi-objective approach also considers timetable length as an optimiza-
tion objective. It is thus possible to generate a set of alternative solutions without
multiple execution of the optimization process. The hybridization is inspired by
Radcliffe and Surry’s Memetic Algorithm (MA) [22]. Its structure is compara-
ble to other modern hybrid evolutionary timetabling algorithms as described in
Silva et al. [23]. In the basic MA, local search operators are added to the ge-
netic recombination and mutation operators and local optimization is performed
following the genetic reproduction phase. To obtain a reasonable computation
requirement, the local search operators are usually implemented as greedy hill
climbers. It is possible to introduce more sophisticated local search heuristics but
the optimization response time will increase as a function of search complexity.
A way to incorporate advanced local search heuristics while maintaining accept-
able computation time is to remove the genetic recombination operator from the
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MA. The genetic recombination can be viewed as an exploitation strategy where
the search focuses on neighbors of good solutions. A local search heuristic can
play the same exploitative role in exam timetabling problems.

This paper is organized as follows. Section 2 describes the problem model
including the clashing constraint (exam conflicts). Section 3 presents a brief
survey of previous methods. This survey is restricted to research carried out
on the datasets provided by Carter et al. [6], Burke et al. [4] and Merlot et
al. [15]. Section 4 explains the multi-objective approach investigated in this work.
Section 5 details the results, and the conclusions follow in Section 6.

2 Problem Description

Given a set of exams E = {e1, e2, . . . , e|E|} and a set of timeslots T = {1, 2, . . . ,
|T |}, the goal of examination timetabling is to obtain an assignment where each
exam in E is allocated to a timeslot in T . The result of such an assignment is
a timetable represented here by a set h of ordered couples (t, e) where t ∈ T
and e ∈ E . A timetable h is called feasible if it satisfies all required constraints.
Otherwise, h is identified as unfeasible. A fundamental requirement in exam
timetabling is to prohibit clashing, or exam conflicts (a student having to take
two or more exams in a given timeslot). In this work, clashing is a hard constraint
and can be expressed as

|T |∑

k=1

|E|∑

i=1

|E|∑

j=1

ηijεikεjk = 0 . (1)

In (1), ηij is the number of students taking exam ei and exam ej, εjk ∈ {0, 1}
is a binary quantity with εjk = 1 if exam ej is assigned to timeslot k. Otherwise,
εjk = 0. A timetable is feasible if (1) is satisfied.

The basic examination timetabling problem is to minimize the number of
timeslots used in a feasible timetable. This minimization problem is defined as

minimize u1 = |T | ,

s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 .
(2)

Note that (2) is equivalent to the graph-coloring problem. A more elaborate
problem is the exam proximity problem (EPP). A practical timetable should
allow students to have more free time between exams. Thus, the objective of
the EPP is to find a feasible timetable while minimizing the number of students
having to take consecutive exams. Equation (3) is a variant of the EPP model
where q is the number of timeslots per day, N ≥ 0 is the number of free timeslots
between exams and K is a constant representing the maximum timetable length.
That is,

minimize u2 =
1
2

|T |−(N+1)∑

k=1

|E|∑

i=1

|E|∑

j=1

ηijεikεjk+(N+1) , ∀k where k mod q �= 0 ,
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s.t.
|T |∑

k=1

|E|∑

i=1

|E|∑

j=1

ηijεikεjk = 0 , |T | ≤ K . (3)

The above model represents an Uncapacitated Exam Proximity problem
(UEPP) because it does not take into account classroom seating capacity.

3 Previous Methods

The UEPP has been investigated by many researchers. However, the problem
formulation and enrollment data are often defined by the environment and re-
quirements of a particular institution. As a result, many methods and algorithms
have been proposed to solve particular instances of the UEPP.

This section surveys previous solution methods applied to a collection of
publicly available datasets. The datasets used in this work are from Carter et
al. [6], Burke et al. [4] and Merlot et al. [15]. They contain actual enrollment data
taken from several universities and academic institutions. A common proximity
metric has also been defined for the datasets which is a weighted version of (3)
with 0 < N ≤ 4 (counting the number of students having 0–4 free timeslots
between exams). This proximity metric can be expressed using (3) as follows:

f =

4�

x=0
wi+1 u2|q=|T |,N=x

Ns
,

u2|q=|T |,N=x = 1
2

|T |−(x+1)∑
k=1

|ε|∑
i=1

|ε|∑
j=1

ηijεikεjk+(x+1) ,

∀k where k mod |T | �= 0 .

(4)

In the above equation wi are are the weighting factors, Ns is the total student
enrollment and u2|q=|T |,N=x means computing the objective function using q =
|T | and N varies from x = 0 to x = 4. In (4), the timeslots are numbered
contiguously with no overnight gap. The weighting factors were proposed by
Carter et al. [6]. They are w1 = 16, w2 = 8, w3 = 4, w4 = 2, and w5 = 1. Thus,
(4) can be viewed as the average proximity cost of a given timetable and the
resulting UEPP is

minimize f =
4∑

i=0

wi+1 u2|q=|T |,N=i

/
Ns ;

s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 ,

|T | ≤ K .

(5)

Early solution techniques were derived from sequential graph coloring heuris-
tics. These heuristics attempt to assign each exam to a timeslot according to
some ordering schemes. Carter et al. [6] successfully applied a backtracking se-
quential assignment algorithm to produce feasible timetables for the UEPP. The
backtracking feature enables the algorithm to undo previous assignments and
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thus escape from cul-de-sacs. In all, 40 different strategies have been imple-
mented. The results showed that the effectiveness of the sequential assignment
algorithm is related to the ordering scheme and the nature of the datasets. Note
that the backtracking sequential assignment is a deterministic algorithm. This
means that, for a given dataset and ordering scheme, it will always produce the
same timetable.

In Burke et al. [4], an initial pool of timetables is generated by grouping
together exams with similar sets of conflicting exams. Then timetables are ran-
domly selected from the pool, weighted by their objective value, and mutated
by rescheduling randomly chosen exams. Hill climbing is then applied to the
mutated timetable to improve its quality. The process continues with the new
pool of timetables. Caramia et al. [5] developed a set of heuristics to tackle the
UEPP with excellent results. First, a solution is obtained by a greedy assignment
procedure. This procedure selects exams based on a priority scheme which gives
high priority to exams with high clashing potential. Next, a spreading heuristic
is applied to decrease the proximity penalty of the solution without lengthening
the timetable. However, if the spreading heuristic failed to provide any penalty
decrease then another heuristic is applied to decrease the proximity penalty by
adding one extra timeslot to the solution. These heuristics are reapplied until no
further improvement can be found. A perturbation technique is also described
in which the search process is restarted by resetting the priority and proximity
penalty.

The proximity problem was also investigated by Di Gaspero and Schaerf [10].
Their approach starts with a greedy heuristic to assign timeslots to all exams
having no common students. The remaining unassigned exams are distributed
randomly to different timeslots. The solution obtained is then improved by a
tabu search algorithm using a short-term tabu list with random tabu tenure.
The search neighborhood is defined as the set of exams that can be moved from
one timeslot to another without violating the constraints. A further reduction
of the neighborhood is obtained by using the subset of exams currently in con-
straint violation. To improve the proximity cost, Di Gaspero and Schaerf also
implemented the shifting penalty mechanism from Gendreau et al. [14].

A Tabu Search algorithm (called OTTABU) with a recency-based and a
frequency-based Tabu list was implemented by White and Xie [25]. An initial
solution is first generated by a bin-packing heuristic (“largest enrollment first”).
If the initial solution is unfeasible, then a Tabu Search is executed to remove all
constraint violations using the set of clashing exams as neighborhood. Another
Tabu Search is used to improve the quality of the feasible solution. This time,
the neighborhood is the set of exams that can be moved from one timeslot to
another without causing any clashes. White and Xie also devised an estimation
technique for the Tabu tenure based on enrollment, the number of exams having
the same pool of students and the number of students taking the same exams.
More recently, Paquete and Stutzle [20] considered the UEPP by casting the
constraints as part of an aggregated objective function. The search process is
prioritized and is realized by the use of a Tabu Search algorithm with a short-
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term Tabu list and random tenure. The 1-opt neighborhood is defined by the
subset of exams with constraint violations.

A three-stage approach using constraint programming, simulated annealing
and hill climbing was proposed by Merlot et al. [15]. An initial timetable is
generated by constraint programming. The resulting timetable is then improved
by a simulated annealing algorithm using the Kempe chain neighborhood [17]
and a slow cooling schedule. In the last stage, a hill climbing procedure is applied
to further improve the final timetable. The GRASP meta-heuristic [12] was also
used to solve the UEPP. Casey and Thompson [7] used a probabilistic version of
the sequential assignment algorithm from Carter et al. to realize the construction
phase of GRASP. In the improvement phase of GRASP, they ordered the exams
according to their contribution to the objective value. Then, for each exam, a
timeslot is found such that the objective value is decreased. The construction
and improvement phases are restarted with a blank timetable a number of times
and the best timetable is kept.

Burke and Newall [3] investigated the effectiveness of the local search ap-
proach to improve the quality of timetables. In their work, an adaptive technique
is used to modify a given heuristic ordering for the sequential construction of
an initial solution. They then compared the average and peak improvement ob-
tained by three different search algorithms: Hill Climbing, Simulated Annealing
and an implementation of the Great Deluge algorithm [11]. The reported results
indicated that the Adaptive Heuristics and Great Deluge combination provided
significant enhancement to the initial solution.

A fuzzy inference approach was developed by Asmuni et al. [1] to verify the
effectiveness of multiple ordering in the sequential construction of exam timeta-
bles. To construct a timetable, exams are first scheduled sequentially according
to an ordering scheme. However, some of the exams may remain unscheduled
after this step. For the unscheduled exams, a fuzzy expert system is used to de-
termine a new ordering. A modified backtracking algorithm is then executed to
assign timeslots to the unscheduled exams according to the new ordering. This
second step is repeated until all the exams are scheduled. As described in [1],
the fuzzy expert system has two inputs taken from different combination of the
following heuristic ordering criteria:

1. Largest degree first (LDF),
2. Largest enrollment first (LEF),
3. Greatest available timeslot first—saturation degree (SDF).

Fuzzification of the input variables resulted in a fuzzy degree of membership in
the qualifying linguistic set (i.e. small, medium and high). These fuzzified inputs
are then related to the output by a set of if-then rules. Since the rules may
have several connectives (AND, OR), the standard min–max operators are used to
deal with fuzzy inference. Finally, the centroid defuzzification technique is carried
out to obtain a single crisp output value. This crisp output value represents the
order of a given exam. The results given in [1] indicated that the fuzzy inference
approach provided better proximity cost for several datasets than the traditional
single-ordering scheme [6].
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4 Multi-objective Approaches

Multi-objective ETP is a more general and flexible formulation than its single-
objective counterpart. The following is a brief summary of three different
multi-objective strategies investigated by researchers. Further details on multi-
objective timetabling metaheuristics can be found in Silva et al. [23].

The method of compromise programming is used by Burke et al. [2] to seek
a timetable which is minimally located from a given reference point. In their
work, the reference point is obtained by generating good quality timetables in
terms of each objective using the saturation degree ordering scheme. While the
distance between the current timetables and the reference point is measured by
the Euclidean distance. The resulting timetables are then improved by an iter-
ative algorithm combining two variation operators: hill-climbing and mutation.
Burke et al. were able to generate good quality timetables for the NOT-F-94
dataset with nine different objectives including the seating capacity.

Another interesting multi-objective approach is the one described by Petrovic
and Bykov [21]. They developed a guided multi-objective optimization technique
using a reformulated Great Deluge algorithm [11] and a previously generated
reference timetable. The guidance is provided by defining a curve extending
from the origin of the multi-dimensional objective space through the reference
timetable’s objective values. To drive the search along the predefined curve, the
authors incorporated a variable weighting procedure within the Great Deluge
algorithm—each objective function is now associated with a weighting factor.
The search algorithm selects the largest objective value of the current timetable
and increases its weight. This causes the Great Deluge algorithm to lower the
acceptance level of the corresponding objective. The algorithm continues with its
weighting adjustment, timetable generation and acceptance until the maximum
number of iterations is reached. This approach resulted in high-quality timetables
for several datasets using nine different objectives including the seating capacity
(same as [2]).

A computational analysis involving multi-objective evolutionary algorithms
is given by Paquete and Foncesa for the general examination timetabling prob-
lem [19]. They compared the effectiveness of several evolutionary operators using
Foncesa and Fleming’s constrained multi-objective evolutionary framework [13].
For the problem encoding, they implemented a direct representation where each
position in the chromosome corresponds to an exam. Their analysis showed that
the Pareto-ranking technique performed better than the linear-ranking tech-
nique. Also, when time constraint is considered, independent mutation of each
chromosome position outperforms single-position mutation.

4.1 Hybrid MOEA Implementation

As shown in Section 3, the UEPP is traditionally treated as a single objective
combinatorial optimization problem. The timetable length is chosen a priori and
is part of the constraint set. In the context of resource planning, it is often desir-
able to assess the impact of timetable length on the proximity cost. A timetable
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Procedure HMOEA

P(t): population at iteration t
R(t): intermediate population at iteration t
L1, L2 : local search operators

U : archive update procedure

Mαm: uniform mutation operator with mutation rate αm

S: constrained dominance binary tournament operator

OUTPUT

Q(t): archive containing non dominated timetables

Initialize P0 and Q0 of size N with random timetables

For each iteration t← 0, 1, . . . , Imax do

// Step 1) Apply local searches to the combined population

R(t) ← L2(L1({P(t) ∪Q(t)}))
// Step 2) Compute ranking for the resulting timetables

F(h),∀h ∈ R(t)

// Step 3) Update archive

Q(t+1) ← U(R(t))
// Step 4) Create new population by mutation and selection

P(t+1) ← S(Mαm(R(t)))
End for

Fig. 1. Working principle of the proposed hybrid MOEA

length versus proximity cost assessment can also provide the planner with com-
promise solutions to the timetabling problem. Equation (6) is a bi-objective
formulation capable of realizing such an assessment:

minimize f1 = |T | ,

f2 =
4∑

i=0

wi+1 u2|q=|T |,N=i

/
Ns ,

s.t.
|T |∑
k=1

|E|∑
i=1

|E|∑
j=1

ηijεikεjk = 0 .

(6)

Now the task is to find a feasible timetable while minimizing timetable length
and proximity cost simultaneously.

The proposed hybrid MOEA is a Pareto-based optimization heuristic which
uses an auxiliary population (archive) to maintain the best non-dominated so-
lutions. Each potential solution in the population is a timetable (feasible or
unfeasible). The timetables are assigned a rank based on the objective functions
f1 (timetable length) and f2 (proximity cost). A special feature in the proposed
hybrid MOEA is the substitution of the recombination operator by two local
search operators. Local search algorithms are used here to remove constraint vi-
olations and to improve the proximity cost. The following pseudo-code explains
the operating principle of the algorithm.
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In Figure 1, the main population at iteration t is denoted by P(t) and the
archive by Q(t). Both P(t) and Q(t) contain N timetables and their size remains
constant during the optimization process. The initial timetables are generated
randomly without regard to their feasibility. The first local search operator L1 is
used to remove constraint violations, while the second local search operator L2

is used to decrease the proximity cost. The timetables produced by L1 and L2

form a combined intermediate population R(t) of 2N timetables. Next, a rank-
ing value is computed for each timetable in R(t) using Zitzler’s Pareto Strength
concept [26]. The non-dominated timetables are then inserted into the archive
using an archive update rule. Finally, each timetable in the intermediate popu-
lation is mutated with probability αm. Since there are 2N timetables in R(t), N
timetables are discarded from R(t) using the constrained tournament selection
technique [18]. The remaining N timetables form the new population P(t+1),
and the evolution process continues for Imax iterations.

4.2 Population and Archive Initialization

The same initialization procedure is applied to the main population P(t) and the
archive Q(t). Both P(t) and Q(t) can each contain N timetables and are divided
into β slots l0 > l1, . . . , > lβ representing different timetable lengths. For each
slot i, N/β random timetables with length li are generated. The number of slots
and the range of the timetable length are determined according to the published
results available for the datasets. Note that the initialization procedure will also
produce unfeasible timetables. These unfeasible timetables with be repaired with
the help of local search operators. This is explained in more detail in the next
section.

4.3 Search Operators L1 and L2

In the hybrid MOEA implementation, local search operators are used instead
of the traditional genetic recombination operators. This hybridization scheme
enables the evolutionary process focus better on the optimization task. Both
local searches L1 and L2 are in fact Tabu Search algorithms. The search operator
L1 implements a classic Tabu Search using a simple 1-opt neighborhood. This
neighborhood is defined by an ordered triple (e, ti, tj), where e is an exam in
schedule conflict with at least one other exam, and ti �= tj are two different
timeslots such that e can be moved from ti to tj without creating a new conflict.
The idea is to decrease the number of constraint violations for the timetables
currently in the main population P(t) and in the archive Q(t).

In order to improve the proximity cost of the timetables, the search operator
L2 implements a simplified version of the VND (Variable Neighborhood Descent)
meta-heuristic [16]. Two neighborhoods, the Kempe chain interchange [17,24]
and 1-move, are used in L2 with Tabu Search as the search engine. In the simpli-
fied VND, local searches are executed in n > 1 neighborhoods sequentially. The
initial solution of the current search is the best solution obtained from the previ-
ous search. Since there are n > 1 neighborhoods involved, it is conjectured that
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VND has better search space coverage than do single neighborhood search tech-
niques [16]. In our implementation, the Kempe chain interchange neighborhood
is used first. Similar to the 1-opt neighborhood, a Kempe chain is defined by
an ordered triple (e, t0, t1), where exam e is assigned to timeslot t0 and t0 �= t1.
However, exam e is now selected by sampling the set of exams. Consider a graph
G where the vertices are the exams and an edge exists between vertices ei and
ej if at least one student is taking exams ei and ej . Each vertex in G is labeled
with the exam’s assigned timeslot, and an edge linking two exams indicates a
potential clashing situation. A Kempe chain (e, t0, t1) is a connected subgraph
induced by a subset of linked exams assigned to timeslots t0 and t1. The subset
of linked exams must also contain the exam e. In other words, it is the subset of
exams reachable from e in the digraph D given by

V (D) = {Vt0} ∪ {Vt1} ,
E(D) =

{
(u, w) : (u, w) ∈ E(G), u ∈ Vti ∧ w ∈ Vt(i+1) mod 2

}
,

(7)

where E(G) represents the set of edges in graph G and Vti is the subset of exams
assigned to timeslot ti that are reachable from exam e. Thus, a Kempe chain
interchange is the relabeling of each chain vertex in timeslot t0 to timeslot t1,
and vice versa. This relabeling is conflict-free if the original timetable is also
conflict-free. It is also applicable to unfeasible timetables.

In the Tabu Search implementation, we choose Nk Kempe chains and apply
the best chain as the current move. To sample a chain, we choose two linked ex-
ams randomly without replacement from the set of exams and use their timeslots
as t0 and t1. One disadvantage of the Kempe chain interchange neighborhood
is that the number of useful chains decreases as the search progresses toward a
local optimum [17]. To avoid this pitfall, we use another neighborhood to ex-
plore the search space. After NI iterations without improvement by the Kempe
chain interchange, we start another Tabu Search using the 1-move neighbor-
hood. To select a move from the 1-move neighborhood, we sample Nm legal
moves (moving one exam from its assigned timeslot to another timeslot without
creating constraint violations) and the one with the best proximity cost is se-
lected. The initial timetable for the 1-move neighborhood search is the current
best timetable.

As shown in Figure 2, f(·) represents the proximity cost, TSkci designates a
Tabu Search with the Kempe chain interchange neighborhood and TS1−move

indicates the one using a 1-move neighborhood. For a given timetable, the
search terminates when no further improvement can be obtained by TSkci and
TS1−move.

4.4 Ranking Computation

The timetables in the combined intermediate population R(t) are to be ranked in
order to determine their quality relative to the current population. The ranking
computation process assigns a numerical value to each timetable according to
their dominance performance in the current population [8]. An efficient ranking
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Operator L2(H)
f(·): proximity cost

h: current best timetable

INPUT

H: set of timetables in the current population and in the archive,

H ≡ P(t) ∪Q(t).
OUTPUT

R(t): combined intermediate population

For each h ∈ H do,

while true,

// Apply Tabu Search with Kemp chain interchange

// Stopping criterion: NI iterations

h′ ← TSKci(h)
// h′ is better than h ?

If f2(h
′) > f2(h),

// No. Apply Tabu Search to h using 1-move neighborhood

h′ ← TS1−move(h)
// h′ is better than h ?

If f2(h
′) > f2(h),

// No. Exit While loop and process next timetable

next

End If

End If

// update current best timetable

h← h′

End While

R(t) ← {R(t)} ∪ {h}
End Do

Fig. 2. Search operator L2 implements a simplified VND meta-heuristic

procedure is the one based on the Pareto Strength concept used in the SPEA-
II multi-objective evolutionary algorithm [26]. In this procedure, a timetable’s
Pareto strength C(·) is the number of timetables it dominates in the combined
intermediate population. That is,

C(hi) =
∣∣∣
{
hj : hj ∈ R(t) ∧ hi � hj

}∣∣∣ , (8)

where the symbol � corresponds to the Pareto dominance relation. For a P ob-
jective minimization problem with objective functions f1, f2, . . . , fp, a timetable
h1 is said to dominate another timetable h2, denoted here by h1 � h2, if and
only if

1. fi(h1) ≤ fi(h2) , i = 1, 2, . . . P ,
2. ∃i such that fi(h1) < fi(h2) .

(9)
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Using the Pareto strength given by (8), the ranking F(·) of a timetable hi is
determined by the Pareto strength of its dominators,

F(hi) =
∑

hj�hi,hj∈R(t)

C(hj) . (10)

Thus, the ranking of a timetable as given in (10) measures the amount of dom-
inance applied to it by other timetables. In this context, a small ranking value
indicates a good quality timetable.

4.5 Archive Update

The purpose of an archive is to memorize all current non dominated timetables.
To admit a timetable hi ∈ R(t) into the archive Q(t), no member of Q(t) should
dominate hi, that is

¬∃hj ∈ Q(t), hj > hi . (11)

Equation (11) is the archive admission criterion. By contrast, hi may dominate
some members of Q(t). In this case, all dominated members are removed and hi

is inserted into Q(t). Another possible situation arises where hi and the members
of Q(t) do not dominate each other. Then, hi ∈ R(t) replaces hj ∈ Q(t) if and
only if the following conditions are met:

1. |hi| = |hj| ,
2. F(hi) < F(hj) .

(12)

Thus, a timetable replaces another timetable of same length but with a lower
rank.

4.6 Mutation and Selection

The uniform mutation operator Mαm is used in this work to provide diversifica-
tion in the evolution process. Each exam within a timetable hi has a mutation
probability αm = 1/|hi|. To mutate a timetable, we assign a random timeslot to
the selected exams. The resulting effect is a slight perturbation to the scheduling
composition of the timetables. However, this is a destructive process because it
can introduce constraint violations into feasible timetables. The search operator
L1 will later be used to repair the unfeasible timetables created by the uniform
mutation.

A selection procedure S is executed after all timetables have been mutated.
The goal is to select N timetables from the combined intermediate population
R(t) to create the next population P(t+1). Since the mutation operator can
produce both feasible and unfeasible timetables, the selection procedure must
be able to discriminate between them. This is accomplished by the use of the
constrained dominance binary tournament [18] to select the timetables. A binary
tournament involves two randomly selected timetables. The selected timetables
are compared and the winner is inserted into the new population P(t+1). In order
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Table 1. Dataset characteristics

Dataset Number of exams Number of students

CAR-F-92 543 18419
CAR-S-91 682 16925
EAR-F-83 190 1125
HEC-S-92 81 2823
KFU-S-93 461 5349
LSE-F-91 381 2726
MEL-F-01 521 20656
MEL-S-01 562 19816
NOT-F-94 800 7896
RYE-F-92 486 11483
STA-F-83 139 611
TRE-S-92 261 4360
UTA-S-92 622 21266
UTE-S-92 184 2749
YOR-F-83 181 941

to decide which timetable is the winner, the constrained dominance relation is
used [8]. Given two timetables h1 and h2 with constraint violations c1 and c2,
timetable h1 is said to constraint-dominate h2, denoted here by h1 �c h2, if one
of the following conditions is met:

1. c1 = 0 and c2 > 0, or
2. c1 > 1, c2 > 1 and c1 < c2, or
3. c1 = c2 and h1 � h2.

(13)

The conditions given by (13) always favor timetables with fewer conflict vio-
lations. However, when both timetables have identical conflict violations, the
constrained dominance relation is reduced to the simple dominance relation.

5 Experimental Results

The hybrid MOEA described in Section 4 was tested on 15 datasets. Table 1
shows the number of exams and the number of students for each dataset.
Datasets MEL-F-01 and MEL-F-02 were contributed by Merlot [15]. Dataset
NOT-F-94 is by Burke [4]. All other datasets are taken from Carter [6].

Table 2 gives the algorithmic parameters and environmental settings used in
the experiments. For the VND search operator L2, Nk neighbors in the Kempe
chain interchange neighborhood and Nm neighbors in the 1-move neighborhood
were selected randomly to determine the current best move. The number of
selected neighbors Nk and Nm are identified as the “neighborhood sample size”
in Table 2. The range of timetable length (objective function f1) depends on
the datasets. Five timetable lengths centered on published values were retained
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Table 2. Hybrid MOEA parameters and environmental setting

Parameter Value

Number of runs 5 per dataset
Number of iterations Imax = 500
Number of slots in archive β = 8

Population and archive size |Q(t)| = |P(t+1)| = 80
Neighborhood sample size Nk = Nm = 50
Number of non-improvement iterations NI = 100
Mutation probability 1/|hi|
Computer Athlon XP 2.2 GHz, 512 MB RAM
OS Linux 2.4.2-2
Compiler and optimization level GNU v2.96, -O3

in the archive. The average and best proximity costs of the non-dominated
timetables were computed using the weighting factors presented in Section 3.
The results are detailed in Table 3. It is important to note that no fine-tuning of
the hybrid MOEA has been performed and that the same parameters are used
for all datasets. Although the numerical results (see Table 3) summarize the
overall effectiveness of the hybrid MOEA well, it is often interesting to appreci-
ate the dynamics of the search process. Figures 3 and 4 show the progress of the
non dominated timetables in the archive for the dataset YOR-F-83. Eight differ-
ent timetable lengths are used in the figures to help visualize the non-dominated
front.

The effects of the hybrid MOEA can be clearly identified in Figure 4. As
the optimization progresses, more and more non dominated timetables of vari-
ous timetable lengths were admitted to the archive. After 125 iterations, all the
empty slots in the archive were occupied with non dominated timetables. Simul-
taneously, the hybrid MOEA tries to lower their proximity cost. The lowering
of the proximity cost can be observed by noticing the vertical displacement of
the points in Figure 4 and by the trace left by the non-dominated timetables in
Figure 3.

A comparison with other published results was also conducted in order to
asses the effectiveness of the hybrid MOEA against other optimization methods.
Since most published results for the UEPP are based on the single-objective
approach with a fixed timetable length, the performance of the hybrid MOEA
will also be shown for that particular timetable length.

From the results given in Table 4, the hybrid MOEA obtained the best score
in three datasets. It is worth mentioning that the hybrid MOEA also achieved a
second-best position in six of the 15 datasets. In summary, the proposed multi-
objective evolutionary algorithm was able to produce high-quality timetables in
comparison to other optimization methods.
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Table 3. Non-dominated timetables and their proximity cost (5 runs per dataset)

Dataset Results Time (min)

CAR-F-92 |T | 30 31 32 33 34
Best 4.9 4.5 4.2 4.2 3.9
Avg 4.9 4.7 4.3 4.5 4.1 583

CAR-S-91 |T | 32 33 34 35 36
Best 6.1 5.7 5.4 5.4 5.2
Avg 6.2 5.9 5.5 5.5 5.3 816

EAR-F-83 |T | 23 24 25 26 27
Best 38.0 34.2 31.6 28.8 26.7
Avg 39.0 35.6 31.9 29.7 27.5 102

HEC-S-92 |T | 17 18 19 20 21
Best 12.0 10.4 9.3 8.1 7.3
Avg 12.1 10.5 9.3 8.2 7.5 27

KFU-S-93 |T | 19 20 21 22 23
Best 15.8 14.3 12.1 11.0 10.0
Avg 16.2 14.4 12.8 11.6 10.3 165

LSE-F-91 |T | 17 18 19 20 21
Best 12.3 11.3 9.7 8.5 7.7
Avg 12.6 11.5 10.1 9.3 8.1 92

MEL-F-01 |T | 26 27 28 29 30
Best 3.6 3.2 2.8 2.9 2.4
Avg 3.7 3.2 2.9 2.9 2.5 269

MEL-S-01 |T | 29 30 31 32 33
Best 2.8 2.6 2.4 2.3 2.0
Avg 3.0 2.7 2.5 2.3 2.1 281

NOT-F-94 |T | 22 23 24 25 26
Best 7.8 6.9 6.2 5.7 5.0
Avg 8.1 7.2 6.6 5.9 5.1 289

RYE-F-92 |T | 22 23 24 25 26
Best 9.8 8.8 7.8 7.0 7.0
Avg 10.1 9.1 8.1 7.2 7.3 218

STA-F-83 |T | 13 14 15 16 17
Best 157.0 140.2 125.2 112.7 101.4
Avg 157.1 140.4 126.0 113.2 101.6 26

TRE-S-92 |T | 21 22 23 24 25
Best 10.3 9.4 8.6 7.9 7.2
Avg 10.5 9.4 8.8 8.1 7.3 126

UTA-S-92 |T | 34 35 36 37 38
Best 3.7 3.5 3.3 3.2 3.2
Avg 3.9 3.6 3.4 3.2 3.2 265

UTE-S-92 |T | 10 11 12 13 14
Best 25.3 20.7 16.8 13.9 11.5
Avg 25.5 21.2 17.1 14.2 11.6 25

YOR-F-83 |T | 19 20 21 22 23
Best 44.6 40.6 36.4 33.8 31.6
Avg 45.6 41.0 37.6 34.5 31.9 89



A Hybrid Multi-objective Evolutionary Algorithm 309

Table 4. Comparison with other methods

Dataset hMOEA Car Whi Di1 Cara Bur Mer Di2 Paq Cas Asm

CAR-F-92 Best 4.2 6.2 – 5.2 6.0 4.0 4.3 – – 4.4 4.6
32 timeslots Avg 4.4 7.0 4.7 5.6 – 4.1 4.4 – – 4.7 –
CAR-s-91 Best 5.4 7.1 – 6.2 6.6 4.6 5.1 – – 5.4 5.3
35 timeslots Avg 5.5 8.4 – 6.5 – 4.7 5.2 – – 5.6 –
EAR-F-83 Best 34.2 36.4 – 45.7 29.3 36.1 35.1 39.4 40.5 34.8 37
24 timeslots Avg 35.6 40.9 – 46.7 – 37.1 35.4 43.9 45.8 35.0 –
HEC-S-92 Best 10.4 10.6 – 12.4 9.2 11.3 10.6 10.9 10.8 10.8 11.8
18 timeslots Avg 10.5 15.0 – 12.6 – 11.5 10.7 11.0 12.0 10.9 –
KFU-S-93 Best 14.3 14.0 – 18.0 13.8 13.7 13.5 – 16.5 14.1 15.8
20 timeslots Avg 14.4 18.8 – 19.5 – 13.9 14.0 – 18.3 14.3 –
LSE-F-91 Best 11.3 10.5 – 15.5 9.6 10.6 10.5 12.6 13.2 14.7 12.1
18 timeslots Avg 11.5 12.4 – 15.9 – 10.8 11.0 13.0 15.5 15.0 –
MEL-F-01 Best 2.8 – – – – – 2.9 – – –
28 timeslots Avg 2.9 – – – – – 3.0 – – –
MEL-S-01 Best 2.4 – – – – – 2.5 – – –
31 timeslots Avg 2.5 – – – – – 2.5 – – –
NOT-F-94 Best 6.9 – – – – – 7.0 – – –
23 timeslots Avg 7.2 – – – – – 7.1 – – –
RYE-F-92 Best 8.8 7.3 – – 6.8 – 8.4 – – – 10.4
23 timeslots Avg 9.1 8.7 – – – – 8.7 – – – –
STA-F-83 Best 157.0 161.5 – 160.8 158.2 168.3 157.3 157.4 158.1 134.9 160.4
13 timeslots Avg 157.1 167.1 – 166.8 – 168.7 157.4 157.7 159.3 135.1 –
TRE-S-92 Best 8.6 9.6 – 10.0 9.4 8.2 8.4 – 9.3 8.7 8.7
23 timeslots Avg 8.8 10.8 – 10.5 – 8.4 8.6 – 10.2 8.8 –
UTA-S-92 Best 3.5 3.5 – 4.2 3.5 3.2 3.5 – – – 3.6
35 timeslots Avg 3.6 4.8 4.0 4.5 – 3.2 3.6 – – – –
UTE-S-92 Best 25.3 25.8 – 29.0 24.4 25.5 25.1 – 27.8 25.4 27.8
10 timeslots Avg 25.5 30.8 – 31.3 – 25.8 25.2 – 29.4 25.5 –
YOR-F-83 Best 36.4 36.4 – 41.0 36.2 36.8 37.4 39.7 38.9 37.5 40.7
21 timeslots Avg 37.5 45.6 – 42.1 – 37.3 37.9 41.7 41.7 38.1 –

Car: Carter et al. [6]; Whi: White and Xie [25];
Di1: Di Gaspero and Shaerf [10]; Cara: Caramia et al. [5];
Bur: Burke and Newall [3]; Mer: Merlot et al. [15]
Di2: Di Gaspero [9]; Paq: Paquete and Stutzle [20];
Cas: Casey and Thompson [7]; Asm: Asmuni et al. [1]

6 Conclusions

The hybrid MOEA performed well in comparison to nine other methods. Most
published results for the UEPP using these publicly available datasets are based
on the single-objective approach. A systematic comparison of the non dominated
sets was not possible. In spite of this, the hybrid MOEA demonstrated its ef-
fectiveness by producing timetables with competitive objective values in nine of
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the 15 datasets without special fine-tuning. Moreover, the MOEA approach was
able to generate non dominated timetables for a range of timetable lengths as
alternative solutions. A contribution of this work is the use of a single framework
to cover all the necessary timetabling steps:

– Initialization: Random initialization of the population and the archive;
– Search (exploitation): Variable Neighborhood Search operator and the rank-

ing of the timetable by Pareto Strength;
– Search (exploration): Destructive uniform mutation with repair operator to

obtain feasible timetables;
– Solution selection: Archive admission and non dominated timetable replace-

ment criteria.

All these steps are fully integrated into the hybrid MOEA presented in this
paper.
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