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Abstract The high productivity of a production process has

a major impact on the reduction of the production cost and

on a quick response to changing demands. Information about

a failure-free machine operation time obtained in advance

allows the users to plan preventive maintenance in order to

keep the machine in a good operational condition. The intro-

duction of maintenance work into a schedule reduces the

frequency of unpredicted breaks caused by machine failures.

It also results in higher productivity and in-time production.

The foregoing of this constitutes the main idea of the predic-

tive scheduling method proposed in the paper. Rescheduling

of disrupted operations, with a minimal impact on the sta-

bility and robustness of a schedule, is the main idea of the

reactive scheduling method proposed. The first objective

of the paper is to present a hybrid multi-objective immune

algorithm (H-MOIA) aided by heuristics: a minimal impact

of disrupted operation on the schedule (MIDOS) for pre-

dictive scheduling and a minimal impact of rescheduled

operation on the schedule (MIROS) for reactive schedul-

ing. The second objective is to compare the H-MOIA with

various methods for predictive and reactive scheduling. The

H-MOIA + MIDOS is compared to two algorithms, identified

in reference publications: (1) an algorithm based on prior-

ity rules: the least flexible job first (LFJ) and the longest

processing time (LPT) (2) an Average Slack Method. The

H-MOIA + MIROS is compared to: (1) an algorithm based

on priority rules: the LFJ and LPT and (2) Shifted Gap-
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1 Introduction

The term ’scheduling’ refers to the allocation of a set of

jobs, materials, tools and workers to predefined number of

machines in order to optimize one or more objective func-

tions. All input data are known in advance in deterministic

scheduling problems. For example, when a set of tasks are

assigned using a specific number of machines, processing

times of operations are constant, and there is no disrup-

tion during a scheduling horizon on a shop floor (Wosik

and Skołud 2009). Due to disruptions which may appear

on the shop floor (a machine failure, job priority changes,

material unavailability etc,), it is more realistic to build a

predictive schedule (PS). In this paper, the term ’disrup-

tion’ represents a machine failure. The paper presents the

hybrid multi-objective immune algorithm (H-MOIA) aided

by heuristic: minimal impact of disrupted operation on the

schedule (MIDOS) for predictive scheduling. The advantage

of this method is in the introduction of maintenance work

into a schedule, taking into consideration a predicted time

of failure. The introduction of maintenance into a sched-

ule reduces the frequency of unpredicted breaks caused by a

machine failure and enables higher productivity, as well as

in-time production. In general, predictive schedules (PS) are

robust if they absorb the effects of disturbances which occur

(Liu et al. 2007; Al-Hinai and ElMekkawy 2011).
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A reactive schedule (RS) is generated if effects of a dis-

turbance are excessively large and disruption-affected tasks

need to be rescheduled (Hasan et al. 2011; Turkcan et al.

2009; Grabowik and Kalinowski 2011). The paper presents

the hybrid multi-objective immune algorithm (H-MOIA)

aided by heuristic: minimal impact of rescheduled opera-

tion on the schedule (MIROS) for reactive scheduling. The

advantage of this method is in introducing as few changes as

possible after a disturbance in a schedule. This benefit can

be achieved using two criteria for the evaluation of reactive

schedules, ie stability and robustness.

Having reviewed the relevant literature, the authors con-

tinued the classification process proposed by Goren and

Sabuncuoglu (2008). We have classified predictive and reac-

tive scheduling algorithms and the problems the algorithms

are applied to. Predictive and reactive scheduling algorithms

are applied to various scheduling problems, such as a sin-

gle machine scheduling problem (Liu et al. 2007; Pan et al.

2012; Goren and Sabuncuoglu 2008), a flow shop, permu-

tation flow shop, job shop (Hasan et al. 2011; Al-Hinai and

ElMekkawy 2011; Wosik and Skołud 2009; Paprocka et al.

2014), a general shop, parallel (Turkcan et al. 2009; Duenas

and Petrovic 2008) and an open job shop scheduling problem

(Smutnicki 2002) (Table 1). This paper focuses on the search

for the PS and RS for flow shop and job shop scheduling

problems. The literature proposes two scheduling methods

to deal with static and dynamic problems. Deterministic or

static (off line) scheduling takes place where a schedule is

generated in advance. Dynamic (on line) scheduling refers to

situations when a schedule is generated or a control decision

is made after a disruption (Guilherme et al. 2003) (Table 1).

This paper is concerned with static scheduling, in the case of

a predictive scheduling problem, and dynamic scheduling, in

the case of a reactive scheduling problem.

A Genetic Algorithm (GA) is the most popular algorithm

used for solving scheduling problems (Table 1). The authors

selected the GA as a method strong enough to escape from a

local optimum (Liu et al. 2007). The comparison of the two

algorithms, the GA and H-MOIA, leads to the conclusion

that they offer a high diversity of solutions (Skołud and Wosik

2007). The migration mechanism (embedded in the evolution

process of the GA) and a suppression mechanism (embedded

in the H-MOIA) enable the search of various areas in the

solution space.

The first objective of the paper is to present the H-MOIA

aided by innovative methods, namely the MIDOS for pre-

dictive scheduling and the MIROS for rescheduling. The

second objective is to compare the H-MOIA with methods

for predictive and reactive scheduling which had already been

identified in the related reference publications.

A critical review of the literature allowed the identification

of benchmark approaches to predictive and reactive schedul-

ing. Three algorithms identified for predictive scheduling

include (1) an algorithm generating a basic schedule and

inserting a time buffer prior to a job with a disturbance pre-

diction (2) an algorithm based on priority rules: the least

flexible job first (LFJ) and the longest processing time (LPT)

and (3) the Average Slack Method (ASM) (Table 1). The

first algorithm was proposed by Lin et al. (2007). The basic

schedule is generated regardless of a disturbance, optimizing

one or more objective functions. Afterwards, a time buffer is

inserted prior to a job with a disturbance prediction. The use

of this method entails three problems, (a) for which machine

a failure-free time should be predicted, (b) where in a sched-

ule a time buffer should be inserted and (c) how long the

time buffer should to be. A predictive schedule generated

with the use of this method can be inefficient when taking

into account the machine utilization criteria. The model pro-

posed by the authors of the paper provides the following

solutions to the three problems mentioned above, (a) the pre-

diction of a failure-free time for a bottleneck/s in a production

system, (b) building a description of failure-free time using

a probability distribution function based on historical data

and the life stage of the bottleneck, and (c) insertion of a

time buffer for maintenance in the PS only. The second algo-

rithm was proposed by Duenas and Petrovic (2008), who

handle the uncertainty by adding idle windows to the prede-

fined processing times of the affected tasks with disturbance

prediction. Uncertain input data are expressed using linguis-

tic terms such as “the number of disruption occurrences is

much higher than n” and modelled using fuzzy logic. The

parameters are specified imprecisely, although they could be

obtained using the Manufacturing Execution Systems (MES)

and based on maintenance records. Moreover, the evaluation

of the stability and robustness of a schedule is still an open-

ended issue as the starting and completion times of operations

are unavailable before all tasks have been processed. Having

obtained the processing times of the jobs with disturbance

prediction, it is possible to apply two priority rules, those

being the LFJ and LPT. The advantages of these priority

rules include low computation complexity and easy imple-

mentation. The third algorithm was proposed by Goren and

Sabuncuoglu (2008) who deal with the issue by proposing

the initial schedule with the best performance in the event of

a disruption. The performance of the schedule is computed

by adding the initial performance measure of the schedule

and the degradation in the performance measure (the slack)

due to random disruptions. Input data are expressed using

probability density functions known in advance. There is no

explanation given for using different kinds of probability den-

sity functions. The parameters of distribution functions are

arbitrarily selected in two cases, a long and a short failure-

free time. Goren and Sabuncuoglu (2008) accept the value

of parameters generating the most robust schedules. The

scheduling algorithm consists of two parts, a sequence gen-

erator and a sequence evaluator. The Tabu Search algorithm
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is applied to effectively scan the solution space. The advan-

tage of the AMS is a high correlation between the stability

and the average slack value of schedules.

Four algorithms identified for reactive scheduling include

(1) Right Shifting (RSh), (2) Rescheduling Disrupted Opera-

tions to parallel machines available first (RDO), (3) reschedul-

ing based on priority rules: the LFJ and LPT and 4) Shifted

Gap-Reduction (SG-R) (Table 1). The first method maintains

the same sequence as the initial schedule and consumes little

computational power (Liu et al. 2007; Wu et al. 1993; Al-

Hinai and ElMekkawy 2011; Goren and Sabuncuoglu 2008).

The second method, proposed by Jai and Elmaraghy (1997),

reschedules only disruption-affected operations in order to

maintain the stability of the existing schedule and provide

quick solutions. However, this may result in a less effective

overall schedule if compared with the complete rescheduling.

Furthermore, this method does not plan a disruption (main-

tenance) or re-scheduling in advance, and does not collect

experience from past circumstances. The third method was

proposed by Duenas and Petrovic (2008). The authors have

built a new schedule with all the tasks that have not been

processed yet, considering the moment of material shortage

to be the earliest possible starting time of all the affected jobs.

Building a new schedule using the LFJ and LPT rules prove

to be better for efficiency objectives (such as makespan), but

not for stability objectives. The fourth method was proposed

by Hasan et al. (2011). In the SG-R algorithm, a disrupted

operation fills a gap, provided that the gap is large enough to

accommodate the operation, without creating infeasibility.

The gap can also be filled (if it is shorter than the opera-

tion duration by a predefined tolerance limit) by shifting the

operation to the right of the gap. The authors re-scheduled the

affected tasks, for the remaining operations, from the point

of breakdown. When applying this algorithm, the authors

noticed that the impact of a breakdown was smaller where a

machine failure-free time was known in advance rather than

when the breakdown was sudden. The problem of reactive

scheduling is complex when a breakdown is unpredictable.

If a breakdown occurs at an early stage of a schedule, the

affected tasks can be rescheduled with only a small increase

in the makespan. The SG-R algorithm dominates the RSh if

the makespan minimization is a criterion.

This paper focuses on the development of a new algo-

rithm for predictive and reactive scheduling (the H-MOIA).

The H-MOIA consists of three stages, i.e. the first for basic

schedule generation, the second for predictive scheduling

(H-MOIA + MIDOS) and the third for reactive scheduling

(H-MOIA + MIROS). The determination of uncertain input

data is still an open-ended issue. This is because data are

expressed on the basis of vague or imprecise knowledge

within the literature (Duenas and Petrovic 2008). In the

method proposed by the authors of this paper, uncertain input

data for the bottleneck, such as the MTTR and the MTTF,

are predicted on the basis of maintenance records related to

historical failure-free times and repair times. Data based on

maintenance records are used to fit a shape of the probabil-

ity distribution, of both busy time and repair duration of the

machine.

In the MIDOS, a maintenance task is introduced into a

schedule, taking into consideration the predicted time of fail-

ure occurrence. The evaluation of the stability and robustness

of the schedule remains a problematic issue. The starting

and completion times of operations are unavailable before

all tasks have been executed in the method which applies the

insertion of idle time prior to each job with a disturbance

prediction (Liu et al. 2007; Duenas and Petrovic 2008).

The MIROS chooses between two rescheduling methods,

the RSh and RDO, in order to select a better solution for

stability and robustness. The elaboration of the method that

provides efficient schedules, not only for the makespan crite-

rion, but also for the stability and robustness also is complex

(Duenas and Petrovic 2008).

The authors of the paper intend to develop the existing

studies by other methods based on immunology and heuris-

tics. On the basis of overview of reference publications, the

following research points have been identified:

(1) methods of dealing with uncertainty and enabling the

obtainment of best performance schedules, when the

objective is to minimize makespan, flow time, total tar-

diness and idle time.

(2) methods dealing with predicted or unexpected interrup-

tions in an efficient manner, when the objective is to

maximize stability and robustness.

The efficiency of the solution achieved using the H-MOIA +

MIDOS is compared to the efficiency of solutions achieved

using (1) LFJ and LPT and (2) ASM. The efficiency of the

solution achieved using the H-MOIA + MIROS is compared

to the efficiency of solutions achieved using (1) the algorithm

based on priority rules, such as the LFJ and LPT and (2) SG-

R.

The paper is organized as follows: a production schedul-

ing problem is described in the next Section. The first stage

of the H-MOIA, for basic scheduling, is presented in Sect. 3.

The second and third stages of the H-MOIA, for predictive

and reactive scheduling, are presented in Sect. 4. Methods for

predictive and reactive scheduling, identified in the related

literature, are also presented in Sect. 4. The criteria for pre-

dictive and reactive scheduling are described in Sect. 5. The

flow shop and job shop scheduling problems, together with

interruptions for experimental study, are presented in Sect. 6.

Section 7 contains an exemplary flow shop scheduling prob-

lem generated to illustrate the steps of the proposed predictive

and reactive algorithm. Section 8 contains necessary analy-

ses and experimental test results related to the research on the
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application of predictive and reactive algorithms in job shop

and flow shop scheduling problems. The paper concludes

with a brief summary of the results (Sect. 9).

2 Problem formulation

The job shop production system is described as follows:

– number of jobs J, j = 1, 2, . . ., J to be executed on

a number of machines W , w = 1, 2, . . .W . Each job

consists of a number of operations V j , v j = 1, 2, . . ., V j ,

– each operation v j can be executed on one machine from

a set of parallel machines,

– the bottleneck can be broken,

– each job consists of a number of operations,

– operations must be processed in a pre-specified order,

– jobs are non-preemptive and non-reentrant,

– production batch of a job is predefined,

– deadlines related to the execution of individual batches

of jobs are predefined.

In the flow shop production system, the operations of each

task are processed in the same sequence on all machines.

The remaining conditions are the same as in the job shop

production system.

Such production systems are monitored using the MES

which allows, the downloading of information about pro-

duction processes directly from machines. Acquired data

include a mode of disruption, availability time, disability

time (the time when a machine is incapable of work due to a

disturbance) and the number of disturbances (Ćwikła 2014;

Janik and Gendarz 2011). Having historical data concerning

failure-free times and repair times of a bottleneck, it is possi-

ble to predict the Mean Time of Repair (MTTR) and the Mean

Time To Failure/To First Failure (MTTF/MTTFF) of the

machine. The MTTR and the MTTF/MTTFF are described

using probability density functions. Parameters of the func-

tions are estimated using the Empirical Moments approach,

the Renewal Theory based approach and the Maximum Like-

lihood approach (Skołud et al. 2011; Kempa et al. 2014).

The mathematical description of the production model is pre-

sented by Paprocka and Kempa (2012).

For the production system (flow shop or job shop), the

basic schedule is generated using the H-MOIA. Having pre-

dicted the values of the MTTF and MTTR, the predictive

schedule is generated using the H-MOIA + MIDOS. Td is

the real time of the bottleneck failure. The reactive schedule

is generated using the H-MOIA + MIROS.

The problem is concerned with generating a predictive

schedule, robust for disturbance, created on the basis of his-

torical data about failure-free times and repair times of the

bottleneck. If the predictive schedule cannot absorb the effect

of a disturbance, the problem is the generation of a reac-

tive schedule. The reactive schedule should introduce as few

changes as possible into the previous schedule.

The efficiency of the basic and predictive schedules is

evaluated using such criteria as makespan Cmax, flow time

F , total tardiness T and idle time I . The efficiency of reactive

schedules is evaluated using stability and robustness criteria

described in Sect. 4.3 (6,7).

3 The basic schedule generation

The basic schedule is generated by applying the hybrid

multi-objective immune algorithm (H-MOIA). Phenomena

of an immune system, adopted in the H-MOIA, includes

a pathogen representing a scalar objective function (1), an

antibody corresponding to a solution of the problem—the

schedule with the minimal value of the scalar objective func-

tion. Priority rules such as the LPT (Longest Processing

Times), RIPS (Random Insertion Permutation Scheme) and

EDD (Earliest Due Date) aid the processes of searching for

a good quality basic schedule.

Input data to the H-MOIA can be divided into two groups;

the first group consists of information about a production

system, whereas the second group is composed of the H-

MOIA parameters:

1. number of evaluation criteria O , o = 1, 2, . . . O; priority

rule of an objective function wo; objective function fo(y)

used for the evaluation of a schedule, the number of tasks

(jobs) J, j = 1, 2, . . ., J ; the number of machines W ,

w = 1, 2, . . .W ; operation time aw,v j
; the number of

operations of each job j performed using the machine w,

v j ; routes of a job j ; the batch size of a job j , s j ; the due

date of a job j , d j . A decision-maker can select criteria

from makespan f1(y) = Cmax, flow time f2(y) = F ,

total tardiness, f1(y) = T and idle time f1(y) = I .

2. size of a sub-population for a single objective scheduling

problem, z; the size of the initial population for the multi-

criteria scheduling problem, Y = z · O , y = 1, 2, . . .Y

(y-an antibody); the number of iterations termcon (termi-

nal condition); the maximal number of genes undergoing

mutation in a hypermutation process; the affinity thresh-

old affthres (used for defining if one antibody is similar

to another); the stimulation threshold stimthres (used for

defining the number of similar solutions which can exist

in a population).

The H-MOIA is mainly based on an iterative cycle of six

steps, i.e. from 3 to 8. The steps of the H-MOIA are as fol-

lows:
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1. DNA Library generation (DNAL). In the DNAL, each

gene represents the number of a job in a scheduling prob-

lem. The number of genes is equal to the number of jobs.

An example of the DNAL for J = 5 is {1, 2, 3, 4, 5}.

2. Initial population generation (IP). The IP of antibodies

is randomly generated by giving priorities to jobs. The

size of IP equals Y. An example of antibody coding is

{2,3,5,4,1} and means that job 2 is first in the antibody

chromosome and has the highest priority in the schedule.

Next, job 3 is scheduled, etc.

3. Fitness function (FFy) evaluation. After decoding (gen-

erating the schedule), antibody y is evaluated using a

scalar objective function (1)

FFy =

O
∑

o=1

f so (y) · wo (1)

f so (y) = fo (y)/ fo

(

y∗
)

(2)

where y—a schedule, f so (y)—the scalar sub-function

of schedule y; o− the number of the scalar sub-function,

o = 1, 2 . . . , O; f o(y∗)− the maximal value of scalar

sub-function o of schedule y∗; wo—priority of objective

function o.

4. Sub-population generation. The IP is copied into two sub-

populations: the first (SCPo) is evaluated using a single

objective function from o = 1, 2, . . . O , the second one

(MCP) is evaluated using the fitness function (1). In the

subpopulation of antibodies evaluated using objective

function f1(y), the antibody with the lower affinity to

the pathogen (a schedule with a lower value of makespan

criterion) dies and a new one is generated according to

the LPT rule. In the subpopulation of antibodies evalu-

ated using objective function f3(y), the schedule with the

lower value of the total tardiness criterion is replaced with

a new one generated according to the Earliest Due Date

(EDD) rule. In the subpopulation of antibodies evaluated

using the fitness function, the schedule with the lower

value of (1) is replaced with a new one generated accord-

ing to the rules of the LPT and the Random Insertion

Perturbation Scheme (RIPS) (Ponnambalam et al. 2004).

5. Evolution of populations (SCPo), o = 1, 2, . . . O.

(a) In these sub-populations, new antibodies are gener-

ated using job_based_crossover and displacement_

mutation (Cheng et al. 1999). Each time a new anti-

body is generated, an elite selection process between

parent and offspring solutions is performed.

(b) Multi-criteria population (MCP) evolution. In this

sub-population new antibodies are generated using

a hypermutation (better solutions undergo mutation

with lower frequency). After generating a new anti-

body, the elite selection is performed between the

parent and offspring solution.

6. Affinity and stimulation. In order to prevent a prema-

ture convergence of the H-MOIA to a local optima, it is

necessary to use affthres. The degree of affinity between

antibodies from SCP is calculated using the Hamming

distance. If the degree of affinity between two antibod-

ies is greater than the affthres, one antibody stimulates

another as both antibodies are similar. An antibody is

deleted from SCP if it is stimulated by a number of anti-

bodies more than stimthres.

7. Elite selection. The elite selection is performed between

antibodies from two sub-populations, i.e. the SCP and

the MCP, in order to create a new IP.

8. Immune memory (IM). In each iteration, the antibody

with the best affinity to the pathogen (a schedule with the

best fitness function) is selected from the IP and memo-

rized in the IM.

Go to step 3, unless a terminal condition (termcon) is

met.

9. Local search of the IM. In the IM, each antibody

y is searched locally in order to achieve the Pareto

optimal solution. The neighbourhood of each antibody

N (x) is generated using four mutation procedures, those

being switching mutation, insertion mutation, recipro-

cal exchange mutation, displacement mutation (Cheng

et al. 1999). An undominated solution y′ is obtained if

fo (y) ≤ fo

(

y′
)

, ∀
o∈O

. From the Pareto set of optimal

solutions, the best schedule is selected using (1). The

structure of the H-MOIA is presented in Fig. 1.

4 Generation of predictive and reactive schedules

A predictive schedule (PS) has two functions. The first func-

tion relates to the allocation of jobs to resources in order to

optimize one or more objective functions. The second func-

tion is to serve as an overall plan under the conditions of

external disturbances. A reactive schedule (RS) is generated

if the effect of a disruption is excessively large.

4.1 Predictive scheduling methods

In the related literature there are, mainly, three basic methods

of generating a PS. The advantages and disadvantages of the

methods are described in the Introduction.

1. The basic schedule is generated regardless of a distur-

bance, by optimizing one or more objective functions

and, next, inserting a time buffer prior to a job with dis-

turbance prediction (Liu et al. 2007).

2. The Average Slack Method (ASM) can also be applied to

generate a robust schedule. The ASM performs the evalu-

ation of a schedule using the same criterion as the criteria

used for the initial schedule evaluation. However, in this
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Fig. 1 Architecture of the

H-MOIA
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case, this criterion is increased by the value of deteriora-

tion of the criterion due to a disturbance. In the tabu search

method, the sequence of jobs is generated and evaluated

taking into account the effects of disturbances (Goren and

Sabuncuoglu 2008). The best sequence, achieved in an

iteration, constitutes the input data for the next iteration.

3. The PS is generated using two dispatching rules, the least

flexible job first (LFJ) and the longest processing time

(LPT) for parallel machines predictive scheduling prob-

lems (Duenas and Petrovic 2008). The LFJ rule identifies

the job which can be performed using the lowest number

of parallel machines and assigns it to the first available

machine. If at least two jobs have the same priority rule,

the job with the longest processing time (the LPT rule)

has the highest priority. The PS is generated by increasing

a job processing time by a time approximately equalling

a repair time.

In the approach proposed by the authors of the paper, the

basic schedule is generated using the H-MOIA. The basic

schedule constitutes the input data for predictive schedul-

ing. The remaining input data for the second stage of the

H-MOIA + MIDOS are as follows:

– the number of machines which can be disrupted-bottle_

necks;

– predicted failure-free time—MTTF;

– predicted repair time—MTTR;

– a is estimated on the assumption that the probability of

the failure-free time of the bottle_neck is higher than a

equalling 40% (Paprocka and Skołud 2013);
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– b is estimated on the assumption that the probability of the

failure-free time of the bottle_neck is less than b equalling

70% (Paprocka and Skołud 2013).

A technical inspection of the bottleneck is planned at a

time period [MTTF, MTTF + MTTR]. At the time period

[a, b + MTTR] operations are scheduled according to the

rule of the minimal impact of disrupted operation on the

schedule (MIDOS). [MTTF, MTTF + MTTR] (MTTF mean

time to failure, MTTR—mean time of repair) belongs to

[a, b + MT T R]. Batch ŝ j of job j , for which operation is

scheduled at the bottleneck at the time of the predicted dis-

turbance [a, b+MTTR], is removed from the basic schedule.

Time points a, b, MTTF, MTTR are estimated on the basis of

the probability theory (Paprocka and Kempa 2012; Skołud

et al. 2011; Kempa et al. 2014). The MIDOS is computed if

the operation can be executed on the bottleneck which is a

parallel machine. The operation of job ĵ , which is the most

flexible and whose disruption causes the smallest number of

changes in the schedule, is firstly assigned at the bottleneck

at a time period [a, b + MTTR]. For the remaining opera-

tions of job ĵ , backward and forward scheduling is applied.

In the backward scheduling procedure, the operation of job

ĵ is scheduled on the first machine available from a set of

parallel machines, starting from time point a. Components

of the MIDOSv̂ j
(1) are the following: (1) the number of

changes needed to be performed after the disturbance of the

operation v̂ j performed at the bottleneck, Rv̂ j
. Rv̂ j

equals the

number of job ĵ operations which have to be rescheduled;

(2) the number of machines on which the disrupted operation

can be performed alternatively, Fv̂ j
. Fv̂ j

equals the number

of parallel machines.

MIDOSv̂ j
= Rv̂ j

+
(

W − Fv̂ j

)

→ min (3)

The PS with the maximum solution and quality robustness

can be obtained using MIDOSv̂ j
.

The second stage of the H-MOIA is compared with the

modified algorithm based on the priority rules of the LFJ and

the LPT (Duenas and Petrovic 2008). The LFJ and LPT are

For every job j

For every operation executed at the bottle_neck

compute the LFJ 

compute the LPT 

Forward scheduling according to the LFJ priority rule; if at least two jobs have the same priority, it is 

necessary to select the job with the longest processing time (according to the LPT rule) 

Fig. 2 Pseudocode of the LFJ/LPT predictive algorithm

Generate randomly a tabu-solution  

Evaluate the tabu-solution using FFy" for the first iteration 

For the number of iteration:   

Generate a neighborhood of the tabu-solution using:  

switching mutation; insertion mutation; reciprocal exchange mutation and displacement 

mutation; 

For each neighboring solution 

Decode the solution by generating schedule y; 

Evaluate the schedule using FFy

Generate reactive schedule y# in the case of the bottleneck disturbance occurrence using one 

heuristic from the following; 

RSh (HI) – reschedule the disrupted operation of the disrupted job ĵ  using heuristic: move to 

the right. Reschedule successors of the disrupted operation of job ĵ  in order to meet the 

non-preemptive conditions  

RDO II (HII) - reschedule the disrupted operation of job ĵ  on a parallel machine available 

first. Reschedule successors of the disrupted operation of job ĵ    on parallel machines 

available first in order to meet the non-preemptive conditions  

Evaluate the reactive schedule using FFy#=ASM

Select the schedule with the minimal value of the ASM from the Neighborhood,  

if the selected ASM < FFy", the new tabu-solution is obtained and FFy" ASM. 

Fig. 3 Pseudocode of the ASM predictive algorithm
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computed for operations which are performed at the bottle-

neck and can be disturbed. The pseudocode of the LFJ/LPT

predictive algorithm is presented in Fig. 2.

The second stage of the H-MOIA is also compared with

the modified ASM (Goren and Sabuncuoglu 2008). Figure 3

presents the tabu search method based on the ASM.

4.2 Reactive scheduling methods

There are three main strategies to generate the RS, namely

after the occurrence of a disturbance, after a rescheduling

point (periodic) (Al-Hinai and ElMekkawy 2011) and after

the occurrence of a disturbance which is not absorbed by the

PS (Table 1). The frequency of rescheduling influences the

nervousness of a production flow shop. If the nervousness

measure of a schedule is high, the stability of the sched-

ule is low (Wu et al. 1993). Therefore, rescheduling after a

disturbance is more commonly used in practice than after a

rescheduling point. Four methods for reactive scheduling are

identified in the related literature. The advantages and disad-

vantages of the methods are described in the Introduction.

1. The most popular method referred to in the reference

publications is the right shifting (RSh) of jobs affected

by a disturbance (Liu et al. 2007; Wu et al. 1993; Al-

Hinai and ElMekkawy 2011; Goren and Sabuncuoglu

2008) (Table 1).

2. The second method is rescheduling disrupted opera-

tions to parallel machines available first (RDO) (Jai and

Elmaraghy 1997).

3. The third approach consists of removing disturbance-

affected jobs from a schedule. The remaining jobs

undergo the Left Shift (LS) procedure, whereas removed

jobs are rescheduled using the LFJ and the LPT dispatch-

ing rules (Duenas and Petrovic 2008).

4. The fourth method identifies “time windows” before

shifting jobs to the right. Jobs executed after the occur-

rence of a machine failure are not affected if the RSh of

the jobs does not affect successive jobs. Affected jobs

are rescheduled using the Shifted Gap-Reduction (SGR)

applied in order to re-optimize the makespan criterion.

The SGR heuristic identifies any “time window” between

any two consecutive operations performed on a machine.

If the “time window” is larger, or equals the processing

time of the affected operation, the operation is inserted

into the time window without violating the preceding

constraints of successive job operations. The operation

can also be put into the “time window” if the duration of

the “time window” is shorter than the operation time, but

within the limits of a given tolerance, provided that the

algorithm improves the makespan criterion (Hasan et al.

2011).

In the approach proposed by the authors of the paper, the

PS constitutes the input data for reactive scheduling at the

third stage of the H-MOIA. The real time of the bottleneck

failure is the input data for the third stage of the H-MOIA.

After the bottleneck failure occurence, disrupted operation

v̂ j of job ĵ and successive operations of job ĵ are deleted

and repair works are performed. Undisrupted jobs are per-

formed according to the PS. The disrupted job is rescheduled

according to the following heuristics: I) moving to the right

(RSh) provided that the non-preemptive condition has been

met, II) reschedule operation to a parallel machine first avail-

able (RDO) provided that the non-preemptive condition has

been met. Taking into account the quality robustness (QR)

criterion (see next Sect. 7), the RSh obtained using the

RDO proves more convenient. Keeping in mind the solution

robustness (SR) criterion (see next Sect. 6), the RS obtained

using the RSh is always more convenient. The best sched-

ule is selected according to the rule of the Minimal Impact

of Rescheduled Operation on the Schedule (MIROS). The

MIROS rule consists of two sub-criteria, the SR and the QR.

Depending on priorities (weights) of criteria SR and QR in a

scalar fitness function (4), a single solution is selected.

MIROS (y) =

2
∑

p=1

f srp (y) · wp (4)

f srp (y) = f rp (y)/ f rp

(

y∗
)

(5)

y—a schedule, f srp(y) − a scalar sub-function after

rescheduling; p− the number of scalar sub-functions, p =

1, 2; f rp(y)− the value of scalar sub-function p reached

for schedule y; f rp(y∗)—the maximal value of scalar sub-

function p; wp—the priority of scalar sub-function p.

The RSh and the RDO are embedded in the third stage

of the H-MOIA. Therefore, only the algorithm based on the

priority rules of the LFJ and LPT and algorithm SGR are

applied in the comparative analysis. The algorithm based on

the priority rules, the LFJ and LPT, is modified in order to

enable its application in the job shop scheduling problem with

batch production. The pseudocode of the LFJ/LPT reactive

algorithm is presented in Fig. 4. The pseudocode of the SGR

algorithm is presented in Fig. 5.

5 Evaluation criteria for predictive and reactive

schedules

The previous section presents the second stage of the H-

MOIA for predictive scheduling and the third stage of the

H-MOIA for reactive scheduling. This section contains a

description of evaluation criteria for predictive and reactive

scheduling.
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Delete each disrupted operation and successive operations of the disrupted batch 
jŝ of disrupted job ĵ

Left shifting for undisrupted jobs j

For each disrupted batch 
jŝ of disrupted job ĵ

Apply the LFJ/LPT predictive algorithm described in Fig.2 

Fig. 4 Pseudocode of the LFJ/LPT reactive algorithm

he SGR reactive algorithm 

Delete each disrupted operation, and the successive operations of the disrupted batch 
jŝ of disrupted job 

ĵ

A) Right shifting for the disrupted operation of job ĵ  until the moment at which the machine 

becomes idle  

B) If the machine is not idle for a sufficient time, it is necessary to perform right shifting of 

successive operations to provide a sufficient idle time for rescheduling of the disrupted operation  

 Evaluate solutions A and B with the use of computing criteria selected by a decision-maker from: Cmax,

F,T,I

Select the best solution from the two options: A and B 

Fig. 5 Pseudocode of the SGR reactive algorithm

Predictive scheduling has two functions, (1) searching for

the allocation of jobs to machines, for which the best value

of an objective criterion is achieved and (2) serving as an

overall plan in the event of disruption. After the disruption,

a schedule becomes infeasible. Therefore, the objective is to

generate the PS which can absorb disruption without affect-

ing executed jobs and maintaining the high performance of

the shop floor (Liu et al. 2007). The first function of predic-

tive scheduling is to achieve efficient performance of the shop

floor and can be measured using, for example, makespan,

flow time, total tardiness and machine utilization criteria.

Every schedule modification can affect values of the crite-

ria. The second function of predictive scheduling is to obtain

stable and robust schedules for the shop floor and can be

measured using solution robustness and quality robustness

criterion respectively.

A schedule robustness means that the performance of the

schedule is insensitive to the disturbance (Leon et al. 1994;

Policella et al. 2004). A schedule stability can be understood

as the schedule nervousness. Schedule stability can be mea-

sured using the number of revisions or changes which are

done for a schedule (Wu et al. 1993). Building a stable sched-

ule requires the performance of a sensitivity analysis in order

to answer the question “what” happens to the schedule “if”

a disturbance appears (Goren and Sabuncuoglu 2008). Leon

et al. (1994) noticed that the stability of a schedule is, in fact,

the definition of the flexibility of a schedule. In other words,

a schedule is flexible if it can respond efficiently to chang-

ing circumstances (Policella et al. 2004). The most popular

criterion used for stability is the sum of absolute deviations

between completion/start times of planned jobs and those

performed (Table 1). In the approach proposed by the authors

of this paper, the criterion SR (6) is used as well—in this case

for operations. The model involves the use of the criterion

QR (7) for robustness evaluation. In the QR it is possible to

use any combination of criteria popular in the related litera-

ture: Cmax, F , T . Moreover, the use of machine utilization I

criterion can be used as well.

f r1 (x) = SR =

J
∑

j=1

V j
∑

v j =1

∣

∣st j,v j (PS) − st j,v j (RS)
∣

∣ (6)

st j,v j (PS)—start time of operation v j of job j in the PS;

st j,v j (RS) —start time of operation v j of job j in the RS;

f r2 (x) = QR =

N
∑

j=1

∣

∣ f (x)P S − f (x)RS

∣

∣ (7)

f (x)P S—scalar objective function of the PS; f (x)RS—

scalar objective function of the RS.

6 Flow shop and job shop with interruptions

This section presents a flow shop (FS) and a job shop

(JS) scheduling problem with interruptions for experimen-

tal study, as well as a schedule of research.

Predictive and reactive methods are applied to two

scheduling problems, 8 jobs have to be performed on 5

machines (5x8) in the FS and 5 jobs have to be performed

on 10 machines (5x10) in the JS. The complexity of the

flow shop scheduling problem (5x8) equals 40320 possible

schedules and is sufficient to perform a comparative analy-

sis. The input data for the FS scheduling problem (5x8) are

presented in Fig. 6. The objective is to obtain a solution
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Fig. 6 Input data of the flow

shop scheduling problem (5×8) MPR0     1   2   3   4   5 

MPR1     1   2   3   4   5 

MPR2     1   2   3   4   5 

MPR3     1   2   3   4   5 

MPR4     1   2   3   4   5 

MPR5     1   2   3   4   5 

MPR6     1   2   3   4   5 

MPR7     1   2   3   4   5 

MOT0     5   2   1   4   1 

MOT1     5   3   2   4   1 

MOT2     5   4   1   4   1 

MOT3     5   2   4   4   1 

MOT4     5   1   2   4   1 

MOT5     4   1   1   4   2 

MOT6     5   1   2   4   1 

MOT7     4   1   1   4   2 

        VBS = [2 2 1 1 2 1 1 1] 

VDD = [110 100 50 110 110 50 110 110] 

MPM0     1   0   1   0   1 

MPM1     0   1   1   0   0 

MPM2     1   0   1   0   0 

MPM3     0   1   1   1   0 

MPM4     0   1   0   0   1 

MPM5     1   0   0   1   1 

MPM6     0   1   1   1   0 

MPM7     1   0   1   1   0 

MPM8     0   1   1   1   0 

MPM9     0   0   1   0   1 

MPM10    1   1   1   0   0 

MPM11    1   1   1   0   0 

MPM12    0   0   1   0   1 

MPM13    0   0   1   1   1 

MPM14    0   0   1   1   1 

MPM15    1   0   0   1   1 

MPM16    0   1   1   0   1 

MPM17    0   1   1   0   1 

MPM18    1   0   0   1   1 

MPM19    1   0   1   0   1 

MPM20    1   0   1   0   1 

MPM21    0   1   1   0   0 

MPM22    1   0   1   0   0 

MPM23    0   1   1   1   0 

MPM24    0   1   0   0   1 

MPM25    1   0   0   1   1 

MPM26    0   1   1   1   0 

MPM27    1   0   1   1   0 

MPM28    0   1   1   1   0 

MPM29    0   0   1   0   1 

MPM30    1   1   1   0   0 

MPM31    1   1   1   0   0 

MPM32    0   0   1   0   1 

MPM33    0   0   1   1   1 

MPM34    0   0   1   1   1 

MPM35    1   1   1   0   0 

MPM36    1   1   1   0   0 

MPM37    0   0   1   0   1 

MPM38    0   0   1   1   1 

MPM39    0   0   1   1   1 

Fig. 7 Input data of the job

shop scheduling problem

(5×10)

MPR0     1   2   3   4   5 

MPR1     1   2   3   4   5 

MPR2     1   2   3   4   5 

MPR3     1   2   3   4   5 

MPR4     1   2   3   4   5 

MPR5     1   2   3   4   5 

MPR6     1   2   3   4   5 

MPR7     1   2   3   4   5 

MPR8     5   2   3   1   4 

MPR9     3   4   2   5   1 

MT0     5   4   1   4   1 

MT1     5   2   4   4   1 

MT2     5   1   2   4   1 

MT3     4   1   1   4   2 

MT4     5   1   2   4   1 

MT5     4   1   1   4   2 

MT6     5   1   2   4   1 

MT7     4   1   1   4   2 

MT8     5   2   1   4   1 

MT9     5   3   2   4   1 

VBS =[2 2 1 1 2 1 1 1 2 2] 

VDD = [110 100 50 110 110 50 110 110 

120 120] 

MPM0     1   0   1   0   1 

MPM1     0   1   1   0   0 

MPM2     1   0   1   0   0 

MPM3     0   1   1   1   0 

MPM4     0   1   0   0   1 

MPM5     1   0   0   1   1 

MPM6     0   1   1   1   0 

MPM7     1   0   1   1   0 

MPM8     0   1   1   1   0 

MPM9     0   0   1   0   1 

MPM10    1   1   1   0   0 

MPM11    1   1   1   0   0 

MPM12    0   0   1   0   1 

MPM13    0   0   1   1   1 

MPM14    0   0   1   1   1 

MPM15    1   0   0   1   1 

MPM16    0   1   1   0   1 

MPM17    0   1   1   0   1 

MPM18    1   0   0   1   1 

MPM19    1   0   1   0   1 

MPM20    1   0   1   0   1 

MPM21    0   1   1   0   0 

MPM22    1   0   1   0   0 

MPM23    0   1   1   1   0 

MPM24    0   1   0   0   1 

MPM25    1   0   0   1   1 

MPM26    0   1   1   1   0 

MPM27    1   0   1   1   0 

MPM28    0   1   1   1   0 

MPM29    0   0   1   0   1 

MPM30    1   1   1   0   0 

MPM31    1   1   1   0   0 

MPM32    0   0   1   0   1 

MPM33    0   0   1   1   1 

MPM34    0   0   1   1   1 

MPM35    1   1   1   0   0 

MPM36    1   1   1   0   0 

MPM37    0   0   1   0   1 

MPM38    0   0   1   1   1 

MPM39    0   0   1   1   1 

MPM40    1   1   1   1   1 

MPM41    1   1   1   1   1 

MPM42    1   1   1   1   1 

MPM43    1   1   1   1   1 

MPM44    1   1   1   1   1 

MPM45    1   1   1   1   1 

MPM46    1   1   1   1   1 

MPM47    1   1   1   1   1 

MPM48    1   1   1   1   1 

MPM49    1   1   1   1   1 

for two objective functions: Cmax, T with equal priorities:

w1 = 0.5, w2 = 0.5. The input data for the JS scheduling

problem (5x10) are presented in Fig. 7. The objective is to

obtain a solution to four objective functions: Cmax, F , T , I

with priorities: w1 = 0.3 for Cmax, w2 = 0.2 for F , w3 = 0.3

for T ,w4 = 0.2 for I .

In production systems, a number of jobs J, j = 1, 2, . . ., J

have to be performed on a number of machines W, w =

1, 2, . . .W . Each job consists of a number of operations V j ,

v j = 1, 2, . . ., V j ; aw,v j
denotes the execution time of oper-

ation v j of job j on machine w. The execution times of

operations aw,v j
are predefined in the Matrix of Operations

Times MOT. A production route is described in the Matrix of

Processes Routes MPR. The deadline d j of job j is predefined

and described in the Vector of Due Dates VDD. Batch size

s j of job j is predefined and described in the Vector of Batch

Size VBS. The interpretation of matrices and vectors was

presented by Paprocka and Kempa (2012). Each operation v j

can be executed on a machine, from a set of parallel machines

described in the Matrix of Parallel Machines MPM[c jwv j
,w∗ ]

with dimensions: J · W × w∗. w∗ is a machine parallel to

the basic machine w, w∗ = 1, 2, . . ., W . W ∗ = W . c jwv j
,w∗

represents the possibility of performing operation v j on par-

allel machine w∗, previously assigned to machine w in the

basic schedule (according to the processes routes described

in MPR). c jwv j
,w∗ = {0, 1}, 1 indicates that operation v j

can be performed on machine w∗, 0 means that operation v j

cannot be executed on machine w∗. Each row of the MPM

below describes a set of parallel machines for a single oper-

ation v j primarily assigned to machine w, and is calculated

from ( j − 1) · W + wv, (see Sect. 7).
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Table 2 The research schedule

Methods Scheduling problem

(5 × 8) (5 × 10)

Basic scheduling H-MOIA Cmax, T, F F y Cmax, F, T, I, F F y Criteria

Predictive scheduling H-MOIA + MIDOS

LFJ, LPT

ASM

Reactive scheduling H-MOIA + MIROS Cmax, T, F F y, SR, Q R Cmax, F, T, I, F F y, SR, Q R

LFJ, LPT

SGR

Table 3 Evaluation of basic schedules achieved using H-MOIA,

applied to the FS scheduling problem

No The priority rule Cmax T

1 {8, 3, 1, 6, 2, 4, 7, 5} 61 0

2 {1, 6, 3, 8, 4, 2, 5, 7} 61 0

3 {1, 8, 6, 3, 4, 7, 2, 5} 61 0

The schedule of the research is presented in Table 2. There

are three stages of the experiment, i.e. first—the generation of

a basic schedule, second-the generation of PS and third-the

generation of RS for two scheduling problems (described

in Figs. 6, 7) and the given criteria. The basic schedule is

generated in order to define which machine constitutes the

bottleneck. The PS is generated in order to meet the deadline.

The RS is generated if an unpredicted disturbance happens.

7 Approach to a solution

This section presents the application of the MOIA in solv-

ing the FS scheduling problem and discusses the influence

of failure-free time on the quality of the generated PS. The

mock problem with machines and job parameters presented

in Fig. 6 was generated to illustrate the proposed predictive

and reactive algorithms.

Three runs of simulation were generated for the FS prob-

lem (5 × 8) using the first stage of the H-MOIA. As a

result, three different basic schedules with the same qual-

ity: Cmax = 61, T = 0 were obtained. In the first simulation,

the best basic schedule was generated according to the rule of

{8,3,1,6,2,4,7,5}. The rules of the best basic schedules and

the quality of the achieved schedules are presented in Table 3.

Afterwards, the issue was analysed using the example of the

first rule. The schedule obtained is presented in Fig. 8. The

machine w = 1 is the bottleneck.

In the second stage of the H-MOIA, the MTTF of the

bottleneck was predicted to ensure that deadlines of jobs were

not exceeded. The additional goal was to obtain a schedule of

undelayed jobs with the minimal value of makespan criterion.

Every unpredicted failure of the bottleneck may disturb the

production process.

Next, the PS is generated using the second stage of the H-

MOIA. The basic schedule generated according to the rule of

{8,3,1,6,2,4,7,5} is the input data to the second stage of the

H-MOIA + MIDOS. The authors made the assumption that

a = 30 and b = 42 and MTTF = 36, MTTR = 6 for machine

w = 1. It was predicted that at the time period [a, b+MTTR],

the first operation v̂2 = 1 of job ĵ = 2 of batch ŝ2 = 2 would

be disturbed. Therefore, it was expected that the following

operations would be disturbed, v̂4 = 1 of batch ŝ4 = 1,

v̂7 = 1 of batch ŝ7 = 1 and v̂5 = 1of batch ŝ5 = 1 (see

Fig. 8, highlighted jobs). Disrupted batches ŝ j were deleted

from the basic schedule (Fig. 9). The MIDOS was computed

for operations of disrupted batches, having the bottleneck

in a set of parallel machines. The set of parallel machines

for operation v̂ j first executed on machine w (in the basic

schedule, Fig. 8) is described by a row ( j − 1) · W + wv,

of the MPM (Fig. 6). In the case of job ĵ = 2, two oper-

ations can be performed on machine w = 1: v2 = 1 and

v2 = 3 [first column and row 6 of the MPM(2−1)·5+1=6 and

row 8 of the MPM(2−1)·5+3=8 (Fig. 6)]. Operation v̂2 = 1

is performed on machine wv, = 1 (the first column of row

1, M P R j−1=1 in Fig. 6). Operation v̂2 = 1 involves three

parallel machines columns no. 1, 4 and 5 (the sixth col-

umn of row MPM(2−1)·5+1=6 in Fig. 6). Thus, the number of

machines on which disrupted operation v̂2 = 1 can be alter-

natively performed equals Fv̂2
= 3. The number of changes

to perform after the occurrence of the disturbance of oper-

ation v̂2 = 1 performed at the bottleneck equals Rv̂2
= 5.

Finally, MIDOS12 = 5+ (5 − 3) = 7. For operation v2 = 3,

MIDOS32 = 3 + (5 − 3) = 5. Since MIDOS32 = 5 is less

than MIDOS12 = 7, the operation v2 = 3 is the most flexible

and its disruption causes the smallest changes in the sched-

ule. The operation v2 = 3 is first assigned to the bottleneck at

time period [a, b + MTTR = 30, 42 + 6]. For the remaining

operations of job ĵ = 2, backward and forward scheduling is
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Fig. 8 Basic Gantt chart generated at the first stage of H-MOIA ( j = {1, 2, . . . , 7}-no. of job), highlighted jobs j = {2, 4, 7, 5}-predicted to be

disrupted
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Fig. 9 Gantt chart with deleted batches (predicted to be disturbed) ( j = {1, 2, . . . , 7}-no. of job, 9-the machine predicted to be unavailable)
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Fig. 10 PS obtained at the second stage of H-MOIA in the first iteration ( j = {1, 2, . . . , 7}-no. of job, 9-predicted technical inspection at time 36)

Table 4 MIDOS for disrupted jobs after (a) first (b) second and (c)

third iteration related to the checking of the condition leading to the

starting time violation

(a) MIDOSi j
i = 1 i = 2 i = 3 i = 4 i = 5

ĵ = 2 7 0 5 0 0

ĵ = 4 7 0 0 4 3

ĵ = 7 7 6 0 0 0

ĵ = 5 7 0 6 0 0

(b) MIDOSi j
i = 1 i = 2 i = 3 i = 4 i = 5

ĵ = 2 7 0 5 0 0

ĵ = 4 7 0 0 4 0

ĵ = 7 7 6 0 0 0

ĵ = 5 7 0 6 0 0

(c) MIDOSi j
i = 1 i = 2 i = 3 i = 4 i = 5

ĵ = 2 7 0 5 0 0

ĵ = 4 7 0 0 4 0

ĵ = 7 7 6 0 0 0

ĵ = 5 7 0 0 0 0

applied (Fig. 10). MIDOSi j
are computed for operations of

disrupted job ĵ and disrupted batch ŝ j having the bottleneck

in a set of parallel machines (see Table 4a).

In the case of job ĵ = 4, operation i = 5 is the most flex-

ible and is first assigned to the bottleneck at the time period

[30,48]. Next, the condition of the starting time violation is

checked. Since operation i = 2 of job ĵ = 4 starts at time

4 and there is no place on machine w = 1 to perform oper-

ation i = 1, the starting time condition is not satisfied (see

Fig. 10). Therefore, MIDOS54 is deleted, in the second itera-

tion of predictive scheduling (Table 4b). In the third iteration

of predictive scheduling MIDOS35
is also deleted. Finally,

the PS obtained by the second stage of the H-MOIA is pre-

sented in Fig. 11. The quality of the PS obtained at the second

stage of H-MOIA is Cmax = 59, T = 0 and F F y = 29.5.

The authors made the assumption that real MTTF of the

bottleneck equals 45. In H-MOIA + MIROS, if the bottleneck

fails, disrupted jobs are rescheduled according to two heuris-

tics, i.e. the RSh and the RDO. From the two schedules (y =

I, y = II) generated using two heuristics, i.e. the RSh and the

RDO (Figs. 12, 13), the best solution is selected using the

MIROS rule (4). There are two sub-functions, when p = 1

is QR and p = 2 is SR, with equal priorities: wp1 = 0.5,

wp2 = 0.5. Since the quality of the schedule generated using

the RSh is fr1(I ) = QR = 4.5, f r2(I ) = SR = 90

(Table 6), and the quality of the schedule generated using

RDO is f r1(I I ) = QR = 2, f r2(II) = QR = 100 the

following equations are obtained:

MIROS (I ) =
4.5

4.5
· 0.5 +

90

90
· 0.5 = 1 (8)

MIROS (I I ) =
0

4.5
· 0.5 +

20

90
· 0.5 = 0.11 (9)

Since MIROS(II) < MIROS(I), the best schedule is generated

using the RDO. The quality of the RS generated using the H-

MOIA + MIROS is Cmax = 59, T = 0, F F y = 29.5, S R =

20, Q R = 0 (Fig. 13).

8 Experimental study and results

The objective of the experimental study is to determine which

method of predictive and reactive scheduling provides better

results considering the following sets of objectives:

– makespan, flow time, total tardiness and idle time for

predictive scheduling,
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Fig. 11 PS obtained at the second stage of H-MOIA + MIDOS after the third iteration related to the check of the condition which causes the starting

time violation ( j = {1, 2, . . . , 7}-no. of job, 9-predicted technical inspection at time 36)
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Fig. 12 RS obtained using RSh (predicted a = 30, predicted MTTF = 36, MTTR = 6, real MTTF = 45, j = {1, 2, . . . , 7}-no. of job). Input data

consists of the PS generated by the H-MOIA + MIDOS
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Fig. 13 RS obtained using RDO (predicted a = 30, predicted MTTF = 36, MTTR = 6, real MTTF = 45, j= {1,2,…,7}-no. of job). Input data

consists of the PS generated by the H-MOIA + MIDOS

– solution robustness and quality robustness for reactive

scheduling,

for the FS and JS.

8.1 The flow shop scheduling problem

In the previous section, the experiment for the FS scheduling

problem was run using the H-MOIA. The quality of the PS

obtained at the second stage of the H-MOIA is Cmax = 59,

T = 0. Next, the PSs using algorithms identified in the liter-

ature, ASM, LFJ/LPT, were generated.

The permutation flow, according to the rule of {5,2,1,6,8,

4,3,7} constitutes the input data to the ASM searching proce-

dure. The PS generated using the ASM is a permutation flow

according to the rule of {5,2,6,8,3,1,4,7}. The PS generated

using the LFJ/LPT is the permutation flow according to the

rule of {8,7,6,5,4,3,2,1}. The quality of the PSs generated

for the scheduling problem (5 × 8) using various algorithms

is summed up in Table 5.

Taking into account two criteria, Cmax, T , the best solu-

tion is obtained at the second stage of the H-MOIA. The

technical inspection of the bottleneck planned at time 36

and performed in accordance with the method proposed in

the paper can generate failure-free production. The question

arising, on this occasion, is concerned with what happens if

the failure of the bottleneck occurs, even though the mainte-

nance has been performed? In order to assess the predictive

scheduling algorithms performance, two breakdown cases

were set, (1) real MTTF = 36 and (2) real MTTF = 45. RSs

were evaluated using the solution robustness criterion SR (6)

and quality robustness QR (7).

In the case where real MTTF = 36, the PS generated by

the MOIA + MIDOS is robust and stable. When the machine

unavailability is known in advance, the effect on the RS is

very small compared with the RS generated by the ASM

or the LFJ/LPT. Thus, the experiment was run for the real

MTTF = 45. For each PS obtained using three methods,

H-MOIA + MIDOS, ASM and LFJ/LPT, the RSs were gen-

erated using the methods of the H-MOIA + MIROS, HI, HII,

LFJ/LPT and SGR (Table 2).

As indicated in Sect. 7, the quality of the RS generated

using the H-MOIA + MIROS is Cmax = 59, T = 0, F F y =

29.5, S R = 20, Q R = 0 (Fig. 13). The quality of RSs

achieved using LFJ/LPT and SGR is presented in Table 5.

The next step involved the generation of RSs using the

methods of the LFJ/LPT and SGR based on the PS generated

using the ASM. The PS generated using the ASM is the

permutation flow according to the rule of {5,2,6,8,3,1,4,7}.

The detailed results achieved using different methods are

presented in Table 5. Taking into account the criteria of SR

and QR, the best RS is achieved using the MIROS (Fig. 14).

The subsequent step was concerned with the generation of

the RSs using the methods of LFJ/LPT, H-MOIA + MIROS

and SGR based on the PS generated using the LFJ/LPT.

The PS generated using the LFJ/LPT is the permutation flow

according to the rule of {7,6,5,4,3,2,1}. The detailed results

achieved using different methods are presented in Table 6.

Taking into account the criteria of SR and QR, the best RS

is generated using the MIROS. The best RS is presented in

Fig. 15.

Table 5 Evaluation of

predictive scheduling methods

for a flow shop problem

Flow shop (5 × 8)

Cmax T FFy

H-MOIA 59 0 29.5

LFJ, LPT 62 0 31

ASM 63 0 31.5
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Fig. 14 RS obtained using the MIROS (predicted a = 30, predicted MTTF = 36, MTTR = 6, real MTTF = 45, j = {1, 2, . . . , 7}-no. of job). Input

data consists of the PS generated by the ASM
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Fig. 15 RS obtained using the MIROS (predicted a = 30, predicted MTTF = 36, MTTR = 6, real MTTF = 45, j = {1, 2, . . . , 7}-no. of job). Input

data consists of the PS generated by the LFJ/LPT

The quality of the RSs generated for scheduling problem

(5 × 8) using different algorithms is summed up in Table 6.

Three different PSs are generated by three different algo-

rithms. Taking into account the criteria of Cmax and T , the

best PS is generated using the MOIA + MIDOS. Although the

additional maintenance task is introduced in the PS (Fig. 11),

the MOIA achieves a better quality solution than the tabu

search algorithm ASM and the algorithm based on heuristic

LFJ/LPT. Taking into account the criteria ofSR and QR, the

best RSs are generated using the MIROS. The MIROS selects

which RS is better for a given set of priorities of criteria, from

the two schedules generated by the RSh and the RDO. The

disadvantage of the SGR is the fact that the algorithm is based

mainly on right shifting. Indeed, the gap can be filled even

if it is smaller than the operation duration provided that the

missing time is restricted within predefined tolerance limits.

The operation(s) following the gap is/are shifted to the right

by the missing time. However, the method may prove prob-

lematic due to the difficulty related to the determination of

the tolerance limit.

8.2 The job shop scheduling problem

This section is concerned with the job shop scheduling prob-

lem (5 × 10) described in Fig. 7. The search was focused on

a schedule, which is robust enough for disturbance and with

good quality with criteria Cmax, F , I , T . Machine w = 1 is

Table 7 Evaluation of basic schedules achieved after running three

simulations of H-MOIA applied to the JS scheduling problem

No The priority rule Cmax F I T

1 {8,7,4,3,10,6,2,1,5,9} 72 218 154 4

2 {10,3,6,1,2,7,4,5,8,9} 72 222 154 0

3 {7,4,10,8,3,2,6,1,5,9} 72 225 154 4

the most loaded one in the job shop scheduling problem. The

assumption is as follows a = 30 and b = 42 and MTTF =

36, MTTR = 6 for machine w = 1.

In order to achieve the basic schedule for the job shop

problem (5×10) using the H-MOIA, three simulations were

generated. The best basic schedules and the quality of the

achieved schedules are presented in Table 7. The best basic

schedule was generated in the second simulation. Therefore,

the issue was analysed using the example of the second rule.

PSs were generated using the methods of H-MOIA +

MIDOS, ASM and LFJ/LPT.

First, the PS was generated using the second stage of the

H-MOIA. The basic schedule generated according to the rule

of {10,3,6,1,2,7,4,5,8,9} was the input data to the second

stage of H-MOIA + MIDOS. It was predicted that in the

time period [a, b+MTTR] operations performed on machine

w = 1 could be disturbed. Disrupted batches ŝ j were deleted

from the basic schedule. First, the most flexible operation of

Table 6 Evaluation of reactive

scheduling methods for the flow

shop problem (5 × 8)

Predictive method Reactive scheduling Cmax T F F y SR QR

H-MOIA + MIDOS LFJ, LPT 68 0 34 90 4.5

MIROS 59 0 29.5 20 0

SGR 68 0 34 90 4.5

ASM LFJ, LPT 71 0 35.5 66 4

MIROS 66 0 33 42 1.5

SGR 70 0 35 70 3.5

LFJ, LPT LFJ, LPT 68 6 37 76 6

MIROS 63 6 34.5 45 3.5

SGR 68 6 37 76 6
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Table 8 Evaluation of predictive schedules achieved after running three

simulations of ASM

No The priority rule Cmax F I T

1 {1, 2, 7, 10, 3, 6, 9, 4, 5, 8} 89 285 239 15

2 {10, 3, 6, 9, 1, 2, 7, 4, 5, 8} 90 242 244 0

3 {10, 3, 7, 4, 5, 8, 6, 9, 1, 2} 94 258 264 10

each deleted job in the time period [a, b+MTTR] was sched-

uled. For the remaining operations, backward and forward

scheduling algorithms were applied. In the PS, in the time

period [MTTF, MTTF+MTTR], the technical inspection of

the bottleneck was scheduled. The quality of the PS obtained

at the second stage of the H-MOIA is Cmax = 82, F = 264,

I = 203 and T = 0.

The following step involved the generation of PSs using

the algorithms of ASM, LFJ/LPT.

In order to achieve the PS using the ASM, three simula-

tions were generated (the number of iteration = 30 and was

the same as in the first stage of the MOIA). The best pre-

dictive schedules and the quality of the achieved schedules

are presented in Table 8. The best PS was generated in the

second simulation. Thus, the issue was analysed using the

example of the second rule.

Afterwards, the efficiency of two algorithms, the MOIA

and the ASM in searching a solution space was compared.

Therefore, the input data to the neighbourhood searching

heuristic (ASM) was the permutation of jobs obtained at the

first stage of the H-MOIA. After running the experiment, the

PS generated using the ASM is the flow according to the rule

of {10,3,6,1,2,7,4,5,8,9}. The quality of the PS obtained by

the ASM is presented in Table 9. The ASM does not achieve

a better quality solution than that generated at the first stage

of the H-MOIA.

The PS generated using the LFJ/LPT is the flow accord-

ing to rule of {8,7,6,5,4,3,2,1,10,9}. The detailed results

achieved using LFJ/LPT are presented in Table 9.

Taking into account the criteria of Cmax, F , I , and T

(Table 9), the solutions generated using the LFJ/LPT are

better than those generated using the MOIA + MIDOS. How-

ever, it should be noted that the algorithms of ASM and

LFJ/LPT do not insert the maintenance task into a sched-

ule. The basic schedule generated using the MOIA enables

the achievement of solutions close to the best quality basic

schedule: Cmax = 72, F = 233, I = 154, T = 0, excluding

the technical inspection of the bottleneck at time 36. How-

ever, undelayed jobs are still generated in the PS using the

MOIA + MIDOS. The main advantage is the minimization of

the probability of the bottleneck breaking down due to the

insertion of the additional task, i.e. planned technical inspec-

tion into the basic schedule.

Table 9 Evaluation of predictive scheduling methods for a job shop

problem

Cmax F T I FFy

H-MOIA 82 264 0 203 118.3

LFJ, LPT 72 279 0 154 108.2

ASM 90 242 0 244 124.2

The question which arises in such a situation is what hap-

pens if the bottleneck fails even though the maintenance has

performed?. In order to answer the question, for each PS

obtained using three methods, i.e. the H-MOIA + MIDOS,

ASM and LFJ/LPT RSs were generated using the methods

H-MOIA + MIROS, LFJ/LPT and SGR (Table 2). RSs were

evaluated using the solution robustness criterion SR (6) and

the quality robustness QR (7).

For the assumption that the real MTTF of the bottleneck

equals 45, the detailed results generated for job shop schedul-

ing problem (5×10) using different algorithms are presented

in Table 10

Taking into account criteria ofCmax, F , T and I , the best

PS seems to be generated by the LFJ/LPT (Table 9). How-

ever, further analysis indicated that the PS generated by the

H-MOIA + MIDOS absorbs the effect of the bottleneck fail-

ure more efficiently (Table 10). The PS generated by the

H-MOIA + MIDOS is robust and the most stable with SR =

35 and QR = 0.2.

Taking into consideration the criteria ofSR and QR

(Table 10), the best RSs are generated using the MIROS

regardless of the method used for predictive scheduling.

The LFJ/LPT is less effective than the H-MOIA and the

ASM comparing results achieved for two scheduling prob-

lems, the flow shop and the job shop (Tables 6 and 10). This

is because the LFJ/LPT is based on heuristics and no solution

space is searched. The information that jobs least flexible and

jobs with the longest processing time should be performed

first proves insufficient to generate robust and stable sched-

ules.

In the ASM the uncertainty is handled by proposing the

initial schedule with the best performance in the case of a dis-

ruption. In the MOIA the most flexible operations and those

whose disruptions cause the least changes are scheduled for

the bottleneck at time period of increased probability of a

failure. Comparing the performance of schedules generated

by two algorithms, the H-MOIA and the ASM applied to two

scheduling problems (Table 6 and 10) it can be noticed that

the H-MOIA performs better when the MIROS is applied as

the rescheduling procedure. The ASM performs better when

the rescheduling procedure based on right shifting (LFJ/LPT

and SGR) is applied. Therefore, in the case of unpredicted

failure, it is more convenient to apply the MIROS rule.

123



J Sched (2017) 20:165–182 181

Table 10 Evaluation of reactive

scheduling methods for the job

shop problem

Predictive method Reactive scheduling Cmax F T I FFy SR QR

H-MOIA + MIDOS LFJ, LPT 92 314 0 245 139.4 333 21.1

MIROS 83 271 0 197 118.5 35 0.2

SGR 92 297 0 242 135.4 280 17.1

LFJ, LPT LFJ, LPT 89 264 78 234 149.7 319 41.5

MIROS 70 306 0 138 109.8 253 1.6

SGR 90 265 80 238 151.6 329 43.4

ASM LFJ, LPT 89 212 0 235 116.1 326 8.1

MIROS 83 204 0 203 106.3 93 17.9

SGR 87 189 0 223 108.5 175 15.7

9 Conclusion

The paper presents an innovative scheduling algorithm con-

sisting of three stages. The first stage is used for the

generation of the basic schedule, the second stage is used

for predictive scheduling, whereas the third stage is used

for reactive scheduling. The objective of the first stage of

the H-MOIA is to obtain a good quality basic schedule

which is modified to create a robust schedule. The robust

schedule is generated using the novel heuristic, the mini-

mal impact of disrupted operation on the schedule (MIDOS)

presented in the paper. The minimal impact of rescheduled

operation on the schedule (MIROS) is used for reactive

scheduling.

The approach presented is efficient if a real failure-free

time belongs to a time period [a, b]. Technical inspec-

tions of the bottleneck planned in the time period [a, b]

can result in failure-free production. In order to assess the

predictive scheduling algorithms performance, two break-

down cases were set, (1) the real MTTF belonging to [a, b]

and (2) the real MTFF not belonging to [a, b]. Reactive

schedules were evaluated using the solution robustness and

the quality robustness criterion. The algorithm presented

in the paper obtains of the predictive schedules which

are robust and the most stable for both scheduling prob-

lems.

The MIDOS rule for predictive scheduling was compared

with the algorithms identified in the related literature, (1) the

algorithm based on priority rules, i.e. the least flexible job

first (LFJ) and the longest processing time (LPT) and (2)

the Average Slack Method. The MIROS was compared with

algorithms (1) based on priority rules, i.e. the LFJ and LPT

and (2) the Shifted Gap-Reduction. Related analyses were

performed for two scheduling problems, i.e. the flow shop

and the job shop.

The LFJ/LPT has proved to be a less effective predictive

scheduling method than the H-MOIA and the ASM. This

can be ascribed to the fact that the LFJ/LPT is based on

heuristics and no solution space is searched. Information that

jobs least flexible and with the longest processing time should

be performed first is insufficient to generate robust and stable

schedules.

In the ASM the uncertainty is handled by proposing an

initial schedule with the best performance in the case of a dis-

ruption. In the MOIA the most flexible operations, and those

whose disruptions cause the least changes, are scheduled for

the bottleneck at a time period of increased probability of a

failure. The H-MOIA performs better when the MIROS is

applied as the rescheduling procedure. The ASM performs

better when rescheduling procedures based on right shifting

(LFJ/LPT and SGR) are applied.
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