
����������
�������

Citation: Yu, J.; Liu, G.; Xu, J.; Zhao,

Z.; Chen, Z.; Yang, M.; Wang, X.; Bai,

Y. A Hybrid Multi-Target Path

Planning Algorithm for Unmanned

Cruise Ship in an Unknown Obstacle

Environment. Sensors 2022, 22, 2429.

https://doi.org/10.3390/s22072429

Academic Editors: Xiaochun Cheng

and Daming Shi

Received: 5 February 2022

Accepted: 17 March 2022

Published: 22 March 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

A Hybrid Multi-Target Path Planning Algorithm for Unmanned
Cruise Ship in an Unknown Obstacle Environment
Jiabin Yu 1,2,3 , Guandong Liu 1,2,3, Jiping Xu 1,2,3,*, Zhiyao Zhao 1,2,3 , Zhihao Chen 1,2,3, Meng Yang 1,2,3,
Xiaoyi Wang 1,2,3 and Yuting Bai 1,2,3

1 School of Artificial Intelligence, Beijing Technology and Business University, Beijing 100048, China;
yujiabin@th.btbu.edu.cn (J.Y.); 1804010402@st.btbu.edu.cn (G.L.); zhaozy@btbu.edu.cn (Z.Z.);
2130062048@st.btbu.edu.cn (Z.C.); 2030602069@st.btbu.edu.cn (M.Y.); wangxy@btbu.edu.cn (X.W.);
baiyuting@btbu.edu.cn (Y.B.)

2 Beijing Laboratory for Intelligent Environmental Protection, Beijing Technology and Business University,
Beijing 100048, China

3 State Environmental Protection Key Laboratory of Food Chain Pollution Control,
Beijing Technology and Business University, Beijing 100048, China

* Correspondence: xujp@th.btbu.edu.cn

Abstract: To solve the problem of traversal multi-target path planning for an unmanned cruise
ship in an unknown obstacle environment of lakes, this study proposed a hybrid multi-target path
planning algorithm. The proposed algorithm can be divided into two parts. First, the multi-target
path planning problem was transformed into a traveling salesman problem, and an improved
Grey Wolf Optimization (GWO) algorithm was used to calculate the multi-target cruise sequence.
The improved GWO algorithm optimized the convergence factor by introducing the Beta function,
which can improve the convergence speed of the traditional GWO algorithm. Second, based on
the planned target sequence, an improved D* Lite algorithm was used to implement the path
planning between every two target points in an unknown obstacle environment. The heuristic
function in the D* Lite algorithm was improved to reduce the number of expanded nodes, so the
search speed was improved, and the planning path was smoothed. The proposed algorithm was
verified by experiments and compared with the other four algorithms in both ordinary and complex
environments. The experimental results demonstrated the strong applicability and high effectiveness
of the proposed method.

Keywords: unknown obstacle environment; improved D* Lite algorithm; improved grey wolf
optimization algorithm; unmanned cruise ship multi-target path planning

1. Introduction

In recent years, Unmanned Cruise Ships (UCSs) for water quality sampling have been
widely used in the field of water environment protection. Generally, a UCS needs to traverse
multiple target points for water sampling, but there are many unknown obstacles that can
move freely and dynamically change with the environment in the actual river or lake, so
the UCS is required to plan an optimization path traversing multiple sample points in a
short time and effectively avoid unknown obstacles to cruise safely. Therefore, multi-target
path planning of a UCS in an unknown obstacle environment is of great importance [1].

Since the 1970s, many studies on the path planning problem have been conducted. The
path planning methods can be roughly divided into several groups: the grid search meth-
ods, such as A* algorithm [2], Depth-First Search (DFS) [3], Breadth-first Search (BFS) [4],
and Dijkstra algorithm [5]; the sampling-based methods, such as Probabilistic Roadmap
(PRM) [6] and Rapidly Exploring Random Tree (RRT) [7]; heuristic or swarm intelligence
algorithms, such as Genetic Algorithm (GA) [8], Ant Colony Optimization (ACO) [9],
Particle Swarm Optimization (PSO) [10], and neural network-based algorithms [11]; the

Sensors 2022, 22, 2429. https://doi.org/10.3390/s22072429 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22072429
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-4261-1585
https://orcid.org/0000-0001-8565-4430
https://orcid.org/0000-0001-8047-1010
https://doi.org/10.3390/s22072429
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22072429?type=check_update&version=1

Sensors 2022, 22, 2429 2 of 26

potential field methods, such as Artificial Potential Field (APF) [12], optimal-control based
method [13], and geometry-based method [14]. The listed algorithms have certain advan-
tages and disadvantages. For instance, the A* algorithm can perform global path planning
in a short time, but it cannot be used in an unknown environment. The APF method has
the advantages of easy implementation in local path search, but it can easily fall into a local
minimum. It should be noted that complex path planning problems can hardly be solved
using a single algorithm. Therefore, hybrid algorithms that combine the advantages of
different algorithms have been proposed. For instance, the combination of the A* algorithm
and the APF method can achieve path planning in unknown regions [15]. The combination
of PSO and ACO can avoid the premature phenomenon of the PSO algorithm, and the
convergence speed is also improved [16]. The combination of fuzzy logic algorithm and
the dynamic window method can achieve unknown obstacle avoidance [17]. The above-
mentioned methods mostly focus on single-target path planning, but multi-target path
planning is more complex. Meanwhile, there was little research on the path planning in an
unknown obstacle environment.

In order to solve the problem of path planning in an unknown obstacle environment,
a hybrid path planning algorithm was proposed in this paper. The main contributions of
this work can be summarized as follows:

(i) A hybrid algorithm that combines the advantages of the GWO algorithm and
D* Lite algorithm, and thus effectively solves the multi-target path planning problem in an
unknown obstacle environment, was proposed.

(ii) An improved GWO algorithm, which optimizes the convergence factor of the
traditional GWO algorithm by introducing the Beta function to improve the convergence
speed of the algorithm, was developed.

(iii) An improved D* Lite algorithm was proposed. By improving the algorithm’s
heuristic function, the expanded nodes are reduced, and the search speed in an unknown
obstacle environment is improved. At the same time, the planning path is smoothed.

The rest of the paper is organized as follows. Section 2 presents the related works.
Section 3 provides the preliminaries of the grid method, general GWO algorithm, and
D* Lite algorithm and defines the UCS path planning problem. Section 4 presents the
proposed hybrid multi-target path planning algorithm. Section 5 presents and discusses
the experiment results. Finally, Section 6 concludes the paper.

2. Related Works
2.1. Multi-Target Path Planning

In recent research, the multi-target path planning problem has been mostly regarded
as a Traveling Salesman Problem (TSP). Gan et al. [18] introduced the scout strategy to
solve the problems of stagnation behavior and slow the convergence speed of the ACO
when it was used for the TSP. By adjusting the evaluation model and population size of the
algorithm, the search time of the algorithm was shortened. Guo et al. [19] proposed a hybrid
algorithm that combines the immune algorithm with the GA. This algorithm introduced a
dynamic mutation operator and cross-deletion strategy to solve the TSP, and it can improve
the convergence speed and accuracy of the immune algorithm. Liu et al. [20] proposed a
Chaos Multi-population Particle Swarm Optimization (CMPSO) algorithm for ship path
planning. This algorithm adopts a multi-population strategy to obtain a more accurate
global optimal value. Considering the nonlinear dynamics of a vehicle and the dynamic
constraint of the TSP, Jang et al. [21] proposed a sampling-based route map algorithm
embedded in the route generation process based on optimal control, which represents
an easy-to-process way to obtain the closest route planning solution. In recent years, the
Grey Wolf Optimization (GWO) algorithm was used to solve the TSP [22]. Compared with
the above-mentioned algorithms, such as the GA or PSO, the GWO algorithm has high
solution accuracy, simple algorithm operation, only a few parameters to be set, and high
robustness. Sopto et al. [23] used the GWO algorithm for numerical optimization in the
TSP. The exchange factor and sequence were added in the GWO algorithm. To improve

Sensors 2022, 22, 2429 3 of 26

GWO algorithm performance, Xu et al. [24] reconstructed the coding method and target
function of the GWO algorithm, and two-opt factor and dynamic, elite strategies were
added to obtain a suitable discrete TSP solution. However, the aforementioned GWO
algorithms have slow convergence speed and high calculation cost. In addition, solving the
TSP provides only an optimization sequence for traversing multiple target points, and for
completing multi-target path planning it needs to be combined with other algorithms in
the face of unknown obstacles in an actual environment.

2.2. Unknown Obstacles Environment

To solve the problem of unknown obstacles in an actual environment, Hossain et al. [25]
proposed a method based on bacterial foraging optimization. This method improved the
selection criteria of particles, and advanced decision-making strategies were used for
particle selection, so the length of the planning path was shortened. To reduce calculation
complexity, Hosseininejad et al. [26] used the cuckoo search algorithm for path planning.
The dimension of the feature vector was reduced to improve the performance of finding
an optimization path, security, and smoothness. Faridi et al. [27] proposed an improved
Artificial Bee Colony (ABC) algorithm. The free collocation point and mutation operator
were introduced into the ABC algorithm, which effectively improved the obstacle avoidance
accuracy in the environment with unknown obstacles. To solve the path planning problem
of an Unmanned Aerial Vehicle (UAV), Ma et al. [28] proposed a dynamic augmented
multi-target PSO method. The trade-off analysis of different environment targets was
implemented to improve the accuracy of the proposed method. To solve the problem of
the basic GA in path planning, Liu et al. [29] proposed the concept of visual graphics and
safety factors, and the hill climbing algorithm was employed to search better individuals.
The dynamic search efficiency of the algorithm was effectively improved. The D* Lite
algorithm is an efficient path planning method with the characteristics of flexible change
in a dynamic environment. This algorithm has been widely used in an unknown obstacle
environment. Huang et al. [30] proposed an improved D* Lite algorithm. This algorithm
introduced the concept of a combination of lazy line-of-sight and distance transformation
so that the re-planned path can avoid sudden obstacles. To improve the dynamic search
efficiency of the D* Lite algorithm, Khalid et al. [31] proposed a concept of predictable
obstacles and introduced priority measures to improve the actual search performance of the
D* Lite algorithm. However, when an environment map is complex, the above-mentioned
D* Lite algorithms have many expanded nodes, so the search efficiency is relatively low,
the time cost of the algorithm is high, and the planning path has many inflection points.

Considering the above deficiencies, a hybrid path planning algorithm is proposed
in this paper. The proposed algorithm can be divided into two parts. First, based on the
environmental map modeling by the grid method, the multi-target planning problem is
transformed into a TSP, and the improved GWO algorithm is used to plan a multi-target
cruise sequence. Second, based on the obtained sequence, the improved D* Lite algorithm
is used for path planning between every two target points. Thus, a circular path that starts
from the start point, traverses multiple sampling points, and finally returns to the start
point in an unknown obstacle environment is obtained.

3. Preliminaries and Problem Formulation
3.1. Map Construction

The basic principle of the grid method is that an environment map is divided into
independent grid units of the same size according to a certain resolution [32]. In an actual
environment, each position is represented by a grid, and a grid has the respective status.
In this study, the grid method was used to construct the public water environment map,
which denotes a two-dimensional coordinate map. In the grid map, the passable area
was represented by a white grid, and the obstacle area was represented by a black grid.
When the environment changes, for instance, due to the appearance and disappearance of

Sensors 2022, 22, 2429 4 of 26

obstacles or their movement, the grid color corresponding to the changed area also changed
accordingly.

3.2. GWO Algorithm

The GWO is a heuristic intelligent optimization algorithm proposed by Mirjalili in
2014. The hierarchy of the grey wolf and the search process for prey are simulated in this
algorithm. In a group of grey wolves, the level, which is determined by the leadership, is
divided into four levels: α, β, δ, and ω in a pyramid shape, as shown in Figure 1.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 26

In this study, the grid method was used to construct the public water environment map,
which denotes a two-dimensional coordinate map. In the grid map, the passable area was
represented by a white grid, and the obstacle area was represented by a black grid. When
the environment changes, for instance, due to the appearance and disappearance of ob-
stacles or their movement, the grid color corresponding to the changed area also changed
accordingly.

3.2. GWO Algorithm
The GWO is a heuristic intelligent optimization algorithm proposed by Mirjalili in

2014. The hierarchy of the grey wolf and the search process for prey are simulated in this
algorithm. In a group of grey wolves, the level, which is determined by the leadership, is
divided into four levels: α, β, δ, and ω in a pyramid shape, as shown in Figure 1.

Figure 1. Wolf social hierarchy pyramid.

The hierarchy of wolves decreases gradually from top to bottom. Wolves in the upper
part have the leadership over wolves in the lower hierarchy, and the wolves in the lower
hierarchy generate feedback based on the order of the wolves in the upper hierarchy. By
calculating the fitness function of the GWO, the top-three fitness functions are wolves α,
β, and δ, and the rest of the wolves are ω. According to the position information provided
by wolves α, β, and δ, wolves ω update their position and move to the prey. According to
the related literature [22], the mathematical expressions of the search process are as fol-
lows:

()(1) () () ()P PX t X t A C X t X t+ = − ⋅ ⋅ −
 , (1)

where X

 is the position vector of a grey wolf, t is the current iteration, PX

 is the posi-
tion vector of the prey, A = 2a∙r1 − a and C = 2∙r2 are coefficients, where r1 and r2 are the
random numbers in [0, 1], respectively, and a is linearly decreased from 2 to 0 over the
course of iterations:

2() 2 ta t
MaxIter

= −
,

(2)

where t indicates the current iteration, and MaxIter indicates the total number of iterations.
The other wolves update their positions according to the positions of α, β, and δ as

follows:

()1 1 1α αX X A C X X= − ⋅ ⋅ −
 , (3)

()2 2 2β βX X A C X X= − ⋅ ⋅ −
 , (4)

()3 3 3δ δX X A C X X= − ⋅ ⋅ −
 , (5)

 α

β

δ

ω
Figure 1. Wolf social hierarchy pyramid.

The hierarchy of wolves decreases gradually from top to bottom. Wolves in the upper
part have the leadership over wolves in the lower hierarchy, and the wolves in the lower
hierarchy generate feedback based on the order of the wolves in the upper hierarchy. By
calculating the fitness function of the GWO, the top-three fitness functions are wolves α, β,
and δ, and the rest of the wolves are ω. According to the position information provided by
wolves α, β, and δ, wolves ω update their position and move to the prey. According to the
related literature [22], the mathematical expressions of the search process are as follows:

→
X(t + 1) =

→
XP(t)− A ·

(
C ·
→
XP(t)−

→
X(t)

)
, (1)

where
→
X is the position vector of a grey wolf, t is the current iteration,

→
XP is the position

vector of the prey, A = 2a·r1 − a and C = 2·r2 are coefficients, where r1 and r2 are the random
numbers in [0, 1], respectively, and a is linearly decreased from 2 to 0 over the course of
iterations:

a(t) = 2− 2t
MaxIter

, (2)

where t indicates the current iteration, and MaxIter indicates the total number of iterations.
The other wolves update their positions according to the positions of α, β, and δ as

follows:
→
X1 =

→
Xα − A1 ·

(
C1 ·

→
Xα −

→
X
)

, (3)

→
X2 =

→
Xβ − A2 ·

(
C2 ·

→
Xβ −

→
X
)

, (4)

→
X3 =

→
Xδ − A3 ·

(
C3 ·

→
Xδ −

→
X
)

, (5)

→
X(t + 1) =

→
X1(t) +

→
X2(t) +

→
X3(t)

3
. (6)

The pseudo code of GWO is detailed in literature [22].

Sensors 2022, 22, 2429 5 of 26

3.3. D* Lite Algorithm

The D* Lite algorithm is a path planning algorithm proposed by Koenig and Likhachev.
It is based on the LPA* algorithm [33]. The D* Lite algorithm represents a heuristic algorithm
that can solve the path planning problem in an unknown obstacle environment. Unlike the
forward search method of the LPA* algorithm, the D* Lite algorithm uses the reverse search
method. Due to the incremental planning, the D* Lite algorithm has a short re-planning
time, which makes it suitable for environment maps with unknown obstacles.

Assume that S denotes the finite set of nodes in a graph, and Succ ⊂ S denotes the set
of successors of a node s, s∈S. The path cost rhs(s) from the current node s to the goal node
sgoal is calculated by:

rhs(s) =

{
0 if s = sgoal

min
s′∈Succ(s)

(c(s, s′) + g(s′)) otherwise , (7)

where c(s, s’) denotes the cost of moving from node s to node s’∈Succ(s); g(s’) is the actual
path cost from the current extension node s’ to node sgoal. rhs(s) is updated earlier than
g(s), and all rhs(s) of the expanded nodes are updated as obstacles appear or disappear, but
not all g(s) of the nodes need to update with rhs(s). A detailed description of the above
variables can be found in literature [34].

3.4. Problem Formulation

The aim of multi-target path planning is to find a path for a UCS that traverses all
non-repeating target points. The UCS starts from the start point, traverses all target points,
and finally returns to the start point; the path is a circular route. In actual lakes, there are
many unknown obstacles, such as ships, moving creatures, floating objects, and various
submerged reefs. Therefore, a UCS needs to detect these unknown obstacles and avoid
them in time; meanwhile, the planning path needs to be as short as possible to reduce the
probability of accidents.

The overall framework of multi-target path planning consists of two modules. The first
module aims to obtain a multi-target cruise sequence, which provides a path traversing all
non-repeating target points with the criterion of minimum path length. In this process, the
unknown obstacles are not considered. Based on the planned target sequence, the second
part re-plans the obtained path between every two target points independently using the
criterion of the minimum path length and constraint of unknown obstacle avoidance, so a
closed path that can guide a UCS traversing all target points safely through an unknown
obstacle environment is obtained.

Assume a set of d target points, D = {1, 2, . . . , d}. The element in D represents the serial
number of d target points. The number of permutations of elements in D is d!. Let I = {l1, l2,
. . . , ld} be a permutation of D. A set of all permutations for d target points is denoted as
V = {I1, I2, . . . , Id!} and an element in V represents a cruise sequence for d target points. The
object is to find a set Ii (i∈{1,2, . . . , d!}) to minimize the following objective function F(I):

F(I) = min
Ii

(
d−1

∑
i=1

L(li, li+1) + L(ld, l1)

)
, i ∈ {1, 2, . . . d!}, (8)

where L(li, lj) is the Euclidean distance between targets li and lj, and the obtained Ii is the
optimized target cruise sequence.

Then, based on Ii, the path between every two target points is re-planned based on
the constraint of unknown obstacle avoidance. This paper considered an area of unknown
obstacles, such as ships, moving creatures, floating objects, and various submerged reefs,
as a forbidden area that a UCS must avoid. Sf is a set of the paths through the forbidden
area. The closed-path P is expressed as follows:

P = {P(l1, l2), . . . , P(li, li+1) . . . , P(ld, l1)}, s.t.P /∈ S f , (9)

Sensors 2022, 22, 2429 6 of 26

where P(li, lj) is the re-planned path between targets li and lj, and 1 ≤ i ≤ d − 1.

4. Traversal Multi-Target Path Planning
4.1. Improved GWO

According to the problem formulation, the considered multi-target path planning
problem is similar to the TSP, so it can be transformed into the TSP. The GWO algorithm
has been widely used for solving the TSP due to the advantages of few parameters and
easy implementation, but it suffers from slow convergence speed. Therefore, this paper
first constructed a multi-target coding method according to the optimization path planning
requirements of traversing multiple target points. Then, to solve the problem of a slow
convergence speed of the GWO algorithm, the convergence factor was improved to increase
the convergence speed.

4.1.1. Multi-Target Encoding Construction

The solution range of the traditional GWO algorithm is a two-dimensional continuous
space, and the optimization solution can be obtained by determining the value ranges of
the target function and independent variables. To solve the TSP of a multi-target cruise
sequence, it is necessary to construct a multi-target coding method suitable for the GWO
algorithm.

The parameters of the GWO algorithm are as follows: n is the number of grey wolves, d
is the number of target points, and Xi is the position sequence of the ith grey wolf traversing
d target points. The formula of Xi is as follows:

Xi = {xi1, xi2, . . . , xid}, i ∈ {1, 2, . . . , n}, (10)

where xid implies the ith grey wolf located at the dth target; n grey wolves search the
optimization sequence in the d-dimensional space, and a spatial domain matrix X of n × d
can be obtained as follows:

X =

x11 x12 · · · x1m · · · x1d
x21 x22 · · · x2m · · · x2d

...
...

...
...

...
...

xi1 xi2 · · · xim · · · xid
...

...
...

...
...

...
xn1 xn2 · · · xnm · · · xnd

, (11)

where xim implies the ith grey wolf located at the mth target, and Xi is the ith row of matrix
X and it can be regarded as a sequence to visit d target points of the ith wolf.

When the number of target points is d, the distance between each target can be
represented as a d-dimensional matrix P, which is expressed as:

P =

s11 s12 . . . s1m · · · s1d
s21 s22 . . . s2m · · · s2d
...

...
. . .

...
. . .

...
sj1 sj2 . . . sjm · · · sjd
...

...
. . .

...
. . .

...
sd1 sd2 . . . sdm . . . sdd

, (12)

where sjm denotes the Euclidean distance between the jth and mth targets. The diagonal
points of the matrix denote the distance from each target to itself, which is why the values
of the diagonal points are all zero.

After constructing the distance matrix P, it is necessary to construct a fitness function f,
which represents the shortest sum of distances. The lower the value of the fitness function

Sensors 2022, 22, 2429 7 of 26

f is, the better the traversal sequence of the target points will be. The fitness function f is
defined as:

f = min
j
(

d

∑
m=1

sjm), j ∈ {1, 2, . . . , d}, (13)

where
d
∑

m=1
sjm is the sum of distances between every two target points on the path of the

wolf in the jth row. When the GWO algorithm reaches the maximum number of iterations,
the sequence Xi with the lowest fitness function value is selected as an optimization
sequence.

4.1.2. Convergence Factor Improvement

For swarm intelligence algorithms such as the GWO algorithm, it is very important
to improve the convergence speed. According to Equations (1) and (2), the convergence
factor a directly affects the convergence speed. a in the traditional GWO algorithm can
be expressed in the form of a linear function; it decreases from 2 to 0 as the number of
iterations increases. When the maximum number of iterations is reached, the value of a is
0, as shown in Figure 2. As the number of iterations increases, a is presented as a linear
descending line, so the convergence speed of the GWO algorithm is slow. Therefore, this
study aims to improve the convergence speed of a to increase the convergence speed of the
GWO algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 8 of 26

Step 4 Construct fitness function f using Equations (12) and (13)
Step 5 Calculate and update the target sequence using Equations (2)–(6) and (10)–(14), respectively
Step 6 if number of iterations < n
Step 7 Repeat Steps 5–7
Step 8 else Output the target sequence

As shown in Figure 2, the improved expression of a is a nonlinear decreasing curve.
As previously mentioned, a tended to be 0 when the maximum number of iterations was
reached. The convergence speed of a was faster than that in the traditional GWO algorithm.
Therefore, the convergence speed of the GWO algorithm can be increased, and the oper-
ation time of the algorithm can be reduced. According to Figure 2, the adjustment factor
(λ1 = 1, λ2 = 0.1) corresponding to the curve with the best convergence is chosen.

Traditional GWO
Improved GWO with λ1 = 1, λ2 = 0.1
Improved GWO with λ1 = 2, λ2 = 0.05
Improved GWO with λ1 = 5, λ2 = 0.01

Figure 2. The convergence comparison chart of a with different λ1 and λ2.

4.2. Improved D* Lite Algorithm
The traditional D* Lite algorithm is a heuristic algorithm based on the reverse search.

The advantage of this algorithm is that it can use previously searched path information to
improve the efficiency of the current search, so the calculation burden is reduced. When
an environment changes, only the heuristic value and the path cost from the target point
to the new start point should be updated, so this algorithm can adapt well to the environ-
ment map with unknown obstacles. However, in a complex environment map, due to the
rapid increase of the number of expanded nodes, the D * Lite algorithm takes a lot of time,
which leads to the low efficiency of the algorithm. Meanwhile, there are many inflection
points in the planning path, which is not conducive to the actual cruise. To overcome the
two problems, in this study, the heuristic function in the D* Lite algorithm was improved
to reduce the number of expanded nodes, so the search efficiency was improved. At the
same time, the planning path was smoothed.

Figure 2. The convergence comparison chart of a with different λ1 and λ2.

In order to make the initial value of a tend to 0, on the basis of the beta function [35], a
can be expressed as:

a(t) = µ1 · B(µ2,
t + λ1

tmax
) + λ2, (14)

where t is the current number of iterations, tmax is the maximum number of iterations, B(*)
is beta function, µ1 and µ2 are the position adjustment factors, and λ1 and λ2 are the speed
adjustment factors.

According to the related literature [36] the specific implementation process of the
improved GWO Algorithm is as follows.

Sensors 2022, 22, 2429 8 of 26

Algorithm: The Improved GWO Algorithm.

Step 1 Initialize parameters
Step 2 Construct matrix X using Equation (11)

Step 3 Construct matrix P and calculate
d
∑

m=1
sjm

Step 4 Construct fitness function f using Equations (12) and (13)

Step 5
Calculate and update the target sequence using Equations (2)–(6) and (10)–(14),
respectively

Step 6 if number of iterations < n
Step 7 Repeat Steps 5–7
Step 8 else Output the target sequence

As shown in Figure 2, the improved expression of a is a nonlinear decreasing curve.
As previously mentioned, a tended to be 0 when the maximum number of iterations was
reached. The convergence speed of a was faster than that in the traditional GWO algorithm.
Therefore, the convergence speed of the GWO algorithm can be increased, and the operation
time of the algorithm can be reduced. According to Figure 2, the adjustment factor (λ1 = 1,
λ2 = 0.1) corresponding to the curve with the best convergence is chosen.

4.2. Improved D* Lite Algorithm

The traditional D* Lite algorithm is a heuristic algorithm based on the reverse search.
The advantage of this algorithm is that it can use previously searched path information to
improve the efficiency of the current search, so the calculation burden is reduced. When an
environment changes, only the heuristic value and the path cost from the target point to
the new start point should be updated, so this algorithm can adapt well to the environment
map with unknown obstacles. However, in a complex environment map, due to the rapid
increase of the number of expanded nodes, the D* Lite algorithm takes a lot of time, which
leads to the low efficiency of the algorithm. Meanwhile, there are many inflection points
in the planning path, which is not conducive to the actual cruise. To overcome the two
problems, in this study, the heuristic function in the D* Lite algorithm was improved to
reduce the number of expanded nodes, so the search efficiency was improved. At the same
time, the planning path was smoothed.

4.2.1. Heuristic Function Improvement

The D* Lite algorithm introduces an evaluation function k(s). The node expands in
the priority queue with the smallest k(s). The k(s) contains two components [k1(s); k2(s)]
as follows: {

k1(s) = min(g(s), rhs(s)) + h(sstart, s) + km
k2(s) = min(g(s), rhs(s))

, (15)

where h(sstart, s) is the heuristic function that represents the path cost from the start node
sstart to the node s. k(s) is compared according to a lexicographic ordering. For example, k(s)
is less than or equal to k’(s), denoted by k(s) ≤ k’(s), if either k1(s) < k1

′(s) or (k1(s) = k1
′(s)

and k2(s) ≤ k2
′(s)). km is the superposition of node moving distance and km:= km + h(slast,

sstart). It is a variable that updates with a change in the environment. It has been shown
that the heuristic function h(s) directly affects the evaluation function k(s); the mathematical
expressions of h(sstart, s) are as follows:

h(sstart, s) =
{

0 if s = sstart
c(s, s′) + h(s′, sgoal) otherwise , (16)

where h(s’, sgoal) is the cost function from a node s’ to the node sgoal.
In the D* Lite algorithm, the number of expanded nodes directly affects its search

efficiency. The evaluation function k(s) determines whether a node is expanded. When
expanding a node, according to Equation (15), k1(s) of adjacent nodes will be compared

Sensors 2022, 22, 2429 9 of 26

preferentially, and k1(s) contains the heuristic function. Therefore, the search efficiency of
the algorithm is directly affected by the heuristic function.

Because the heuristic function h(s) in the traditional D* Lite algorithm uses the chess-
board distance, when expanding nodes near the goal node, it is easy to have multiple nodes
with the same value of k1(s). In Figure 3, the black grid represents an obstacle node, and
the light grey grid represents the current expanded node. When expanding a node from
the goal node, the first step is to initialize the node information. In Step 1, E3 is selected as
a goal node to expand its adjacent nodes, and there are three nodes with the same value of
k1(s), which are denoted as D2, D3, and D4, and k1(s) values of D2, D3, and D4 are all the
smallest value. Thus, the three nodes all need to be expanded gradually. After Step 2, four
nodes need to expand, which is represented by the grey grid. It can be observed that there
are at least four steps needed to expand the node at layer D. After expanding the three
nodes, there are three nodes with the same value of k1(s), which are nodes C1, C2, and C3,
and they are all the smallest among all surrounding expanded nodes. Therefore, the same
steps are repeated. If many multiple nodes are the same, more nodes need to be expanded,
which will increase the calculation time and reduce the search efficiency of the algorithm.

Sensors 2022, 22, x FOR PEER REVIEW 10 of 26

where x and y are the horizontal and vertical coordinates of the current node, respectively;
xstart and ystart are the horizontal and vertical coordinates of the start node, respectively; xgoal
and ygoal are the horizontal and vertical coordinates of the goal node, respectively; w is the
weight factor, and its range is [1, 2].

 h = 0 h = 1 h = 2 h = 3

 h = 1

 h = 2 h = 2

 h = 3

 h = 2 h = 3

 h = 3 h = 3 h = 3 h = 3

 h = 4 h = 4 h = 4 h = 4
 g = ∞
 rhs = 1

 k = [4:0]

 g = ∞
 rhs = ∞ rhs = ∞ rhs = ∞ rhs = ∞

 g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞

 g = 0 g = ∞ g = ∞

 g = ∞

 rhs = 0 rhs = 1 rhs = ∞

 rhs = ∞ rhs = 1 rhs = 1 rhs = 1

 k = [5:1] k = [5:1]

 k = [4:1] k = [4:1] k = [4:1]

 rhs = ∞

 rhs = ∞

 rhs = ∞

 rhs = ∞ rhs = ∞ rhs = ∞

A

B

C

D

E

1 2 3 4Start point

Step1

 h = 0 h = 1 h = 2 h = 3

 h = 1

 h = 2 h = 2

 h = 3

 h = 2 h = 3

 h = 3 h = 3 h = 3 h = 3

 h = 4 h = 4 h = 4 h = 4
 g = ∞

 rhs = 1
 k = [4:0]

 g = ∞
 rhs = ∞ rhs = ∞ rhs = ∞ rhs = ∞

 g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞ g = 1

 g = 0 g = ∞ g = ∞

 g = ∞

 rhs = 0 rhs = 1 rhs = 2

 rhs = 2 rhs = 1 rhs = 1 rhs = 1

 k = [5:1] k = [5:1]

 k = [4:1] k = [4:1] k = [4:1]

 rhs = ∞

 rhs = 2

 rhs = ∞

 rhs = 2 rhs = 2 rhs = ∞
 k = [4:2] k = [4:2] k = [4:2]

 k = [5:2]

 k = [6:2]

A

B

C

D

E

1 2 3 4

Goal point

Start point

Step2

Goal point
Figure 3. The specific process of the traditional D* Lite algorithm.

The specific process of the improved D* Lite algorithm is presented in Figure 4. First,
the node information is initialized, then the adjacent nodes of node E3 are expanded. In
Step 1, the node information is obtained by Equation (17). The node with the smallest
value of k1(s) is node D2, so the other two nodes, nodes D3 and D4, are no longer needed
to be expanded, and only one step is needed to expand the node at layer D. In Step 2, node
D2 is selected for expansion. Based on the expansion result, a node with the smallest value
of k1(s) is node C1, and there are no other nodes with the same values. Therefore, after
Step 2, the node expansion at layer D is completed and there are only two expansion nodes
(grey grid). However, by the traditional D* Lite algorithm in Figure 3, the number of ex-
pansion nodes is four, so the improved D* Lite algorithm of the heuristic function reduces
two expanded nodes, and therefore has a higher search efficiency.

The comparison results of the traditional D* Lite algorithm and the proposed D* Lite
algorithm were shown in Figure 5, where the black grid represented an obstacle, the grey
grid represented the expanded node, and the red grid represented the final path. It was
shown that, in the case of the same obstacles, although the planning paths of the two
methods were the same, the number of expanded nodes in the improved D* Lite algorithm
were obviously less than in the traditional D* Lite algorithm. Thus, the search efficiency
was improved, and the calculation time of the algorithm was effectively reduced.

Figure 3. The specific process of the traditional D* Lite algorithm.

To reduce the number of expanded nodes and increase the search efficiency of the
algorithm, according to the related literature [37], an improved heuristic function is pro-
posed. The specific improvements are as follows: horizontal or vertical unit movement cost
is defined as one, and the diagonal unit movement cost is defined as

√
2. On this basis,

a weight function is added, wherein the greater the value of the weight function is, the
farther a node will be from the start node. Therefore, values of k1(s) and k2(s) of multiple
nodes are less likely to be equal, the number of expanded nodes is reduced, and the search
efficiency is improved. The improved heuristic function h’ is defined as follows:

h′ =
√

2w ·min(|xstart − x|, |ystart − y|) + w · ||xstart − x| − |ystart − y||

w =

√
(xstart−x)2+(ystart−y)2√

(xstart−xgoal)
2
+(ystart−ygoal)

2 + 1
, (17)

Sensors 2022, 22, 2429 10 of 26

where x and y are the horizontal and vertical coordinates of the current node, respectively;
xstart and ystart are the horizontal and vertical coordinates of the start node, respectively;
xgoal and ygoal are the horizontal and vertical coordinates of the goal node, respectively; w
is the weight factor, and its range is [1, 2].

The specific process of the improved D* Lite algorithm is presented in Figure 4. First,
the node information is initialized, then the adjacent nodes of node E3 are expanded. In
Step 1, the node information is obtained by Equation (17). The node with the smallest value
of k1(s) is node D2, so the other two nodes, nodes D3 and D4, are no longer needed to be
expanded, and only one step is needed to expand the node at layer D. In Step 2, node D2 is
selected for expansion. Based on the expansion result, a node with the smallest value of
k1(s) is node C1, and there are no other nodes with the same values. Therefore, after Step 2,
the node expansion at layer D is completed and there are only two expansion nodes (grey
grid). However, by the traditional D* Lite algorithm in Figure 3, the number of expansion
nodes is four, so the improved D* Lite algorithm of the heuristic function reduces two
expanded nodes, and therefore has a higher search efficiency.

Sensors 2022, 22, x FOR PEER REVIEW 11 of 26

h = 0 h = 1.22 h = 2.89 h = 5.01

h = 4.62h = 3.62

h = 5.83

h = 6.91

 h = 8.27

 h = 7.58 h = 8.48 h = 9.66 h = 11.10
 g = ∞
 rhs = 1

 k = [9.66:0]

g = ∞

rhs = ∞ rhs= ∞ rhs = ∞ rhs = ∞

g = ∞ g = ∞ g = ∞

g = ∞ g = ∞

g = ∞ g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞

 g = 0 g = ∞ g = ∞

 g = ∞

 rhs = 0 rhs = 1
 rhs = ∞

 rhs = ∞
 rhs = 1 rhs = 1 rhs = 1

 k = [9.48:1] k = [12.10:1]

k = [6.83:1] k = [7.91:1] k = [9.27:1]

rhs = ∞

rhs = ∞

rhs = ∞

rhs = ∞ rhs = ∞ rhs = ∞

A

B

C

D

E

1 2 3 4

h = 1.22

h = 2.89

 h = 5.01 h = 5.83 h = 6.91

 h = 0 h = 1.22 h = 2.89 h = 5.01

 h = 4.62 h = 3.62

 h = 5.83

 h = 6.91

 h = 8.27

 h = 7.58 h = 8.48 h = 9.66 h = 11.10
 g = ∞
 rhs = 1

 k = [9.66:0]

g = ∞

 rhs = ∞ rhs = ∞ rhs = ∞ rhs = ∞

 g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞ g = 1

 g = 0 g = ∞ g = ∞

 g = ∞

 rhs = 0 rhs = 1 rhs = 2

 rhs = 2 rhs = 1 rhs = 1 rhs = 1

 k = [9.48:1] k = [12.10:1]

 k = [6.83:1] k = [7.91:1] k = [9.27:1]

 rhs = ∞

 rhs = 2

 rhs = ∞

 rhs = 2 rhs = 2
 rhs = 2

A

B

C

D

E

1 2 3 4

h = 1.22

 h = 2.89

 h = 5.01 h = 5.83 h = 6.91
k = [5.62:2] k = [6.62:2] k = [4.89:2]

 k = [7.01:2]

 k = [9.58:2]

Start point Start point

Step1 Step2

Goal point Goal point

Figure 4. The specific process of the improved D* Lite algorithm.

(a) (b)

O O

Figure 5. (a) The traditional D* Lite algorithm. (b) The improved D* Lite algorithm.

4.2.2. Path Smoothing
When the traditional D* Lite algorithm is used for path planning, there are many

inflection points in the planned path. The inflection points will increase the path length,
as well as the control difficulty and power consumption of the UCS. Therefore, it is nec-
essary to smooth the planning path by eliminating inflection points. According to the re-
lated literature [38], the specific implementation process of path smoothing is as follows.

Algorithm : Path smoothing
Step 1 Label each point on the planning path from one to n
Step 2 Connect points 1 and 2 and check whether the connection passes through the obstacles
Step 3 Check until the connection between points 1 and k (k < n) passes through the obstacle
Step 4 Connect point 1 and (k − 1) and replace the previous path from point 1 to (k − 1)
Step 5 Use point (k − 1) as a new start point and repeat the above steps until the target is reached

Based on Sections 4.2.1 and 4.2.2., according to the related literature [33], the specific
implementation process of the improved D* Lite Algorithm is as follows.

Figure 4. The specific process of the improved D* Lite algorithm.

The comparison results of the traditional D* Lite algorithm and the proposed D* Lite
algorithm were shown in Figure 5, where the black grid represented an obstacle, the grey
grid represented the expanded node, and the red grid represented the final path. It was
shown that, in the case of the same obstacles, although the planning paths of the two
methods were the same, the number of expanded nodes in the improved D* Lite algorithm
were obviously less than in the traditional D* Lite algorithm. Thus, the search efficiency
was improved, and the calculation time of the algorithm was effectively reduced.

4.2.2. Path Smoothing

When the traditional D* Lite algorithm is used for path planning, there are many
inflection points in the planned path. The inflection points will increase the path length, as
well as the control difficulty and power consumption of the UCS. Therefore, it is necessary
to smooth the planning path by eliminating inflection points. According to the related
literature [38], the specific implementation process of path smoothing is as follows.

Sensors 2022, 22, 2429 11 of 26

Sensors 2022, 22, x FOR PEER REVIEW 11 of 26

h = 0 h = 1.22 h = 2.89 h = 5.01

h = 4.62h = 3.62

h = 5.83

h = 6.91

 h = 8.27

 h = 7.58 h = 8.48 h = 9.66 h = 11.10
 g = ∞
 rhs = 1

 k = [9.66:0]

g = ∞

rhs = ∞ rhs= ∞ rhs = ∞ rhs = ∞

g = ∞ g = ∞ g = ∞

g = ∞ g = ∞

g = ∞ g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞

 g = 0 g = ∞ g = ∞

 g = ∞

 rhs = 0 rhs = 1
 rhs = ∞

 rhs = ∞
 rhs = 1 rhs = 1 rhs = 1

 k = [9.48:1] k = [12.10:1]

k = [6.83:1] k = [7.91:1] k = [9.27:1]

rhs = ∞

rhs = ∞

rhs = ∞

rhs = ∞ rhs = ∞ rhs = ∞

A

B

C

D

E

1 2 3 4

h = 1.22

h = 2.89

 h = 5.01 h = 5.83 h = 6.91

 h = 0 h = 1.22 h = 2.89 h = 5.01

 h = 4.62 h = 3.62

 h = 5.83

 h = 6.91

 h = 8.27

 h = 7.58 h = 8.48 h = 9.66 h = 11.10
 g = ∞
 rhs = 1

 k = [9.66:0]

g = ∞

 rhs = ∞ rhs = ∞ rhs = ∞ rhs = ∞

 g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞

 g = ∞ g = ∞ g = ∞ g = ∞

 g = ∞ g = ∞ g = 1

 g = 0 g = ∞ g = ∞

 g = ∞

 rhs = 0 rhs = 1 rhs = 2

 rhs = 2 rhs = 1 rhs = 1 rhs = 1

 k = [9.48:1] k = [12.10:1]

 k = [6.83:1] k = [7.91:1] k = [9.27:1]

 rhs = ∞

 rhs = 2

 rhs = ∞

 rhs = 2 rhs = 2
 rhs = 2

A

B

C

D

E

1 2 3 4

h = 1.22

 h = 2.89

 h = 5.01 h = 5.83 h = 6.91
k = [5.62:2] k = [6.62:2] k = [4.89:2]

 k = [7.01:2]

 k = [9.58:2]

Start point Start point

Step1 Step2

Goal point Goal point

Figure 4. The specific process of the improved D* Lite algorithm.

(a) (b)

O O

Figure 5. (a) The traditional D* Lite algorithm. (b) The improved D* Lite algorithm.

4.2.2. Path Smoothing
When the traditional D* Lite algorithm is used for path planning, there are many

inflection points in the planned path. The inflection points will increase the path length,
as well as the control difficulty and power consumption of the UCS. Therefore, it is nec-
essary to smooth the planning path by eliminating inflection points. According to the re-
lated literature [38], the specific implementation process of path smoothing is as follows.

Algorithm : Path smoothing
Step 1 Label each point on the planning path from one to n
Step 2 Connect points 1 and 2 and check whether the connection passes through the obstacles
Step 3 Check until the connection between points 1 and k (k < n) passes through the obstacle
Step 4 Connect point 1 and (k − 1) and replace the previous path from point 1 to (k − 1)
Step 5 Use point (k − 1) as a new start point and repeat the above steps until the target is reached

Based on Sections 4.2.1 and 4.2.2., according to the related literature [33], the specific
implementation process of the improved D* Lite Algorithm is as follows.

Figure 5. (a) The traditional D* Lite algorithm. (b) The improved D* Lite algorithm.

Algorithm: Path smoothing.

Step 1 Label each point on the planning path from one to n

Step 2
Connect points 1 and 2 and check whether the connection passes through the
obstacles

Step 3 Check until the connection between points 1 and k (k < n) passes through the obstacle
Step 4 Connect point 1 and (k − 1) and replace the previous path from point 1 to (k − 1)

Step 5
Use point (k − 1) as a new start point and repeat the above steps until the target is
reached

Based on Sections 4.2.1 and 4.2.2, according to the related literature [33], the specific
implementation process of the improved D* Lite Algorithm is as follows.

Algorithm: Improved D* Lite algorithm.

Step 1 Parameter initialization
Step 2 Expand adjacent nodes from sgoal

Step 3
Compare current k(s) values and select the node with the smallest k(s) as the next
expanded node

Step 4 Expand the nodes constantly until reach sstart
Step 5 Calculate the values of rhs(s) and move to the node with the smallest rhs(s)
Step 6 If the surrounding environment has changed
Step 7 update adjacent nodes and return to Step 2
Step 8 else the current node is the new start node s’start
Step 9 If node s’start is node sgoal

Step 10 Perform path smoothing
Step 11 else return to Step 2
Step 12 Complete path planning between every two target points

4.3. Algorithm Overview

The specific process of the proposed hybrid multi-target path planning algorithm is
as follows. First, a UAV is used to obtain an image of the water environment, which is
then transformed into a two-dimensional coordinate map by the grid method, and the
coordinates of multiple target points are set on the map. Second, the proposed improved
GWO algorithm is used to obtain the sequence of multiple target points, and the serial
number of target points is marked on the grid map according to the planned sequence.
Third, the improved D* Lite algorithm is used to calculate a path between every two target
points in the grid map, and the planning path is smoothed. Finally, a closed path, which

Sensors 2022, 22, 2429 12 of 26

starts from the start point, traverses multiple target points, and returns to the start point, is
obtained.

Algorithm: The proposed multi-target hybrid path planning algorithm.

Step 1 Parameter initialization
Step 2 Introduce improved convergence factor
Step 3 Calculate fitness function
Step 4 Determine target sequence of α, β, δ, and ω

Step 5 If the maximum number of iterations is reached
Step 6 Output the target sequence
Step 7 else Update adjacent nodes and return to Step 2
Step 8 Perform path planning between two target points by the improved D* Lite algorithm
Step 9 If the surrounding environment has not changed

Step 10 If the new start point s’start is the target point
Step 11 If it is the final target point
Step 12 return to the start point
Step 13 else return to Step 8
Step 14 else return to Step 8
Step 15 else return to Step 8
Step 16 Perform path smoothing
Step 17 Complete multi-target path planning

5. Simulation Experiments

To verify the advantages of the proposed hybrid algorithm, several simulation ex-
periments were performed. Windows 10 was used as an operating system and MATLAB
R2017b as a simulation tool. The hardware platform was an Intel Core E5-2620 V3 processor
with a frequency of 2.4 GHz and a memory of 32 GB. The simulation environment map
was created based on the public water area of Douhu, southwest of Hongze Lake, located
in Jiangsu Province. The simulation environment map was created by grid method [32].
The simulation experiments were divided into two groups, experiments in ordinary and
complex environments, mainly based on the grid map size and the number of target points.

5.1. Simulations in Ordinary Environments

A 50 × 50 grid map model was created in an ordinary environment. The scale of the
map was one, and a grid length corresponded to 10 m in the actual environment. The UCS
used a laser detector that could detect the surrounding obstacles in time, and the detection
distance was 5 × 5 grid. The speed of the UCS was 10 m/s. The target coordinates were
set randomly; four sets of the target coordinates were randomly chosen, and they were
denoted as Cases 1–4 in Table 1. The number of target points was 10, and the serial number
of the start point was marked as one. In the map, the randomly-distributed obstacle density
was 10%, and the settings were as follows: each grid had two states, white or black, where
the white grid represented the passable area, and the black grid represented the obstacle
area. The state of each grid had a certain probability of changing. In this experiment, the
change probability of the grid state was set to 3%, so when the UCS moved to a grid, the
probability of a white grid changing to a black grid was 3%, and the probability of a black
grid changing to a white grid was also 3%.

Table 1. Target Coordinates in Ordinary Environments.

Case Target Coordinate

1 (4, 46), (8, 28), (6, 19), (14, 10), (17, 22), (26, 29), (29, 11), (41, 4), (39, 26), (37, 41)

2 (37, 26), (38, 3), (26, 9), (11, 8), (2, 18), (3, 24), (6, 27), (16, 28), (25, 32), (36, 30)

3 (17, 23), (31, 22), (8, 9), (11, 11), (19, 18), (5, 14), (38, 17), (26, 18), (14, 33), (35, 37)

4 (26, 24), (13, 31), (6, 9), (15, 7), (12, 28), (33, 24), (6, 4), (36, 33), (16, 37), (6, 13)

Sensors 2022, 22, 2429 13 of 26

To verify the performance of the proposed hybrid algorithm, comparative experiments
with the other four algorithms were performed. The comparison algorithms were denoted
as Algorithms 1–4. Algorithm 1 used the ACO to determine the cruise sequence of target
points. According to the planned sequence, the ACO was used again to achieve path
planning between two target points. Similarly, Algorithm 2 used the GA to complete the
multi-target path planning. Algorithm 3 used the CMPSO to complete the multi-target path
planning. Algorithm 4 used the traditional GWO algorithm–traditional D* Lite algorithm
to complete the multi-target path planning. The proposed hybrid algorithm used the
improved GWO algorithm to determine the cruise sequence of target points, and the
improved D* Lite algorithm was used for the single-target path planning. According to [39],
the parameters of the ACO in Algorithm 1 were set as follows: the information priming
factor was set to α = 1, the expected heuristic factor was set to β = 5, the volatilization
factor was set to ρ = 0.1, the pheromone intensity was set to Q = 1, the number of ants
was set to m = 200, and the maximum number of iterations was set to k = 100. According
to [40], the parameters of the GA in Algorithm 2 were set as follows: the maximum number
of evolution times was set to max = 50, the crossing probability was set to pc = 0.8, the
mutation probability was set to pm = 0.2, the path length proportion was set to a = 1, and
the path smoothness proportion was set to b = 7. According to [20], the parameters of the
CMPSO in Algorithm 3 were set as follows: the inertia weight was set to ω = 0.4, and the
learning factor was set to c1 = c2 = 2. The simulation parameters of Algorithm 4 and the
proposed hybrid algorithm were presented in Table 2. The adjustment factors λ1 and λ2
were chosen according to the better convergence curve through a series of experiments, as
shown in Figure 3.

Table 2. Simulation Parameters of Algorithm 4 and Proposed Hybrid Algorithm.

Symbol Definition Numerical Value

nw Number of grey wolves 20

tmax
Maximum number of

iterations 200

µ1, µ2 Position adjustment factors 0.01, 0.1

λ1, λ2 Speed adjustment factors 1, 0.1

U Priority list ∅

ks Initial value of km 0

rhs(s) Path cost of node s ∞

rhs(sgoal) Path cost of node sgoal 0

g(s) Actual path cost of node s ∞

The five algorithms were used for comparison experiments in Case 1, and when the
UCS returned to the start point, the obtained simulation results were shown in Figures 6–10.
All five algorithms could complete the multi-target path planning; the planned target se-
quence was the same, but the planning path was different. The red numbers in Figures 6–15
represent the traversal sequence between every two target points. The detection area in
path planning in Figure 10 was obviously smaller than that in Figure 9, which indicated the
effect of the proposed algorithm.

Sensors 2022, 22, 2429 14 of 26

Sensors 2022, 22, x FOR PEER REVIEW 14 of 26

nw Number of grey wolves 20
tmax Maximum number of iterations 200
μ1, μ2 Position adjustment factors 0.01, 0.1
λ1, λ2 Speed adjustment factors 1, 0.1

U Priority list ∅
ks Initial value of km 0

rhs(s) Path cost of node s ∞
rhs(sgoal) Path cost of node sgoal 0

g(s) Actual path cost of node s ∞

The five algorithms were used for comparison experiments in Case 1, and when the
UCS returned to the start point, the obtained simulation results were shown in Figures 6–
10. All five algorithms could complete the multi-target path planning; the planned target
sequence was the same, but the planning path was different. The red numbers in Figures
6-15 represent the traversal sequence between every two target points. The detection area
in path planning in Figure 10 was obviously smaller than that in Figure 9, which indicated
the effect of the proposed algorithm.

Figure 6. Multi-target path planning results of Algorithm 1 in ordinary environments.

Figure 6. Multi-target path planning results of Algorithm 1 in ordinary environments.

Sensors 2022, 22, x FOR PEER REVIEW 15 of 26

Figure 7. Multi-target path planning results of Algorithm 2 in ordinary environments.

Figure 8. Multi-target path planning results of Algorithm 3 in ordinary environments.

Figure 7. Multi-target path planning results of Algorithm 2 in ordinary environments.

Sensors 2022, 22, 2429 15 of 26

Sensors 2022, 22, x FOR PEER REVIEW 15 of 26

Figure 7. Multi-target path planning results of Algorithm 2 in ordinary environments.

Figure 8. Multi-target path planning results of Algorithm 3 in ordinary environments.

Figure 8. Multi-target path planning results of Algorithm 3 in ordinary environments.

Sensors 2022, 22, x FOR PEER REVIEW 16 of 26

Figure 9. Multi-target path planning results of Algorithm 4 in ordinary environments.

Figure 10. Multi-target path planning results of the proposed hybrid algorithm in ordinary environ-
ments.

To avoid contingency and verify the robustness of the proposed algorithm, 50 simu-
lation experiments were performed for Case 1 using the five algorithms in Table 3. Ac-
cording to the related literature [41], the t-test was used to verify whether the proposed
hybrid algorithm significantly improved the path planning performance. The data of the

Figure 9. Multi-target path planning results of Algorithm 4 in ordinary environments.

Sensors 2022, 22, 2429 16 of 26

Sensors 2022, 22, x FOR PEER REVIEW 16 of 26

Figure 9. Multi-target path planning results of Algorithm 4 in ordinary environments.

Figure 10. Multi-target path planning results of the proposed hybrid algorithm in ordinary environ-
ments.

To avoid contingency and verify the robustness of the proposed algorithm, 50 simu-
lation experiments were performed for Case 1 using the five algorithms in Table 3. Ac-
cording to the related literature [41], the t-test was used to verify whether the proposed
hybrid algorithm significantly improved the path planning performance. The data of the

Figure 10. Multi-target path planning results of the proposed hybrid algorithm in ordinary
environments.

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26

Figure 11. Multi-target path planning results of Algorithm 1 in complex environments.

Figure 12. Multi-target path planning results of Algorithm 2 in complex environments.

Figure 11. Multi-target path planning results of Algorithm 1 in complex environments.

Sensors 2022, 22, 2429 17 of 26

Sensors 2022, 22, x FOR PEER REVIEW 19 of 26

Figure 11. Multi-target path planning results of Algorithm 1 in complex environments.

Figure 12. Multi-target path planning results of Algorithm 2 in complex environments. Figure 12. Multi-target path planning results of Algorithm 2 in complex environments.

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26

Figure 13. Multi-target path planning results of Algorithm 3 in complex environments.

Figure 14. Multi-target path planning results of Algorithm 4 in complex environments.

Figure 13. Multi-target path planning results of Algorithm 3 in complex environments.

Sensors 2022, 22, 2429 18 of 26

Sensors 2022, 22, x FOR PEER REVIEW 20 of 26

Figure 13. Multi-target path planning results of Algorithm 3 in complex environments.

Figure 14. Multi-target path planning results of Algorithm 4 in complex environments. Figure 14. Multi-target path planning results of Algorithm 4 in complex environments.

Sensors 2022, 22, x FOR PEER REVIEW 21 of 26

Figure 15. Multi-target path planning results of the proposed hybrid algorithm in complex environ-
ments.

Table 6. Statistical Results Analysis of the Five Algorithms in Complex Environments.

Performance In-
dicator Statistics Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4

Proposed Al-
gorithm

Planning time (s)

Best 69.319 22.216 21.037 29.200 20.742
Mean 76.248 25.635 23.714 31.234 22.891
Worst 82.667 27.531 24.311 35.334 23.921

Std. Dev. 4.387 1.532 1.472 1.989 1.121
t-test 5.1372 × 10−25 (+) 0.000084(+) 0.000454(+) 6.8413 × 10−8 (+) ---

Planning length
(m)

Best 4945.233 5186.258 5166.254 4998.402 4804.200
Mean 5034.751 5262.745 5219.564 5048.473 4841.964
Worst 5141.769 5402.847 5287.889 5109.630 4897.646

Std. Dev. 52.138 103.700 64.732 47.351 33.136
t-test 1.8643 × 10−8 (+) 1.931 × 10−7 (+) 2.6843 × 10−12 (+) 4.2784 × 10−6 (+) ---

Numbers of in-
flection points

Best 103.000 136.000 106.000 92.000 74.000
Mean 115.460 150.200 126.780 104.760 80.640
Worst 130.000 184.000 154.000 117.000 93.000

Std. Dev. 12.568 20.183 23.976 10.806 8.585
t-test 3.3506 × 10−19 (+) 1.746 × 10−11 (+) 8.1961 × 10−21 (+) 7.1776 × 10−15 (+) ---

Table 7. Performance Comparison in Complex Environments for Four Cases.

Case
Performance

Indicator Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4
Proposed Algo-

rithm

1
Planning time (s) 78.278 25.680 23.714 31.564 22.891

Planning length (m) 5012.741 5292.691 5263.574 5054.457 4830.673

Figure 15. Multi-target path planning results of the proposed hybrid algorithm in complex
environments.

To avoid contingency and verify the robustness of the proposed algorithm, 50 simula-
tion experiments were performed for Case 1 using the five algorithms in Table 3. According
to the related literature [41], the t-test was used to verify whether the proposed hybrid
algorithm significantly improved the path planning performance. The data of the proposed

Sensors 2022, 22, 2429 19 of 26

hybrid algorithm were taken as the total samples, the other four algorithms were used
as test samples, and the significance difference was 0.05. When the t-test value was less
than 0.05, it meant that the test performance of the algorithm was significantly different
from that of the proposed algorithm, and the significant improvement was indicated by
‘+’. In addition to the planning time and length, the number of inflection points was also
used as an evaluation metric of algorithm performance since it can reflect the smoothness
of the path. Too many inflection points would increase the UCS’s energy consumption
and reduce its safety. The statistical analysis of the results are shown in Table 3, where
it can be seen that the proposed hybrid algorithm always found an optimal solution and
converged to the stable state, and its performance was better than those of the other four
comparative algorithms.

Table 3. Statistical Results Analysis of the Five Algorithms in Ordinary Environments in Case1.

Performance
Indicator Statistics Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Proposed

Algorithm

Planning time
(s)

Best 21.562 10.185 9.667 12.927 9.746

Mean 30.112 10.671 10.470 13.823 10.356

Worst 37.608 11.145 11.293 14.773 11.106

Std. Dev. 5.134 0.626 1.015 1.035 0.483

t-test 2.1233 × 10−10

(+)
0.779 4.7421 × 10−5

(+)
5.7973 × 10−6

(+)
—

Planning length
(m)

Best 1677.354 1769.300 1695.650 1698.624 1669.643

Mean 1693.280 1812.457 1728.564 1708.821 1678.002

Worst 1720.697 1855.835 1760.541 1721.100 1691.8235

Std. Dev. 12.171 30.153 15.851 7.511 5.981

t-test 0.000067
(+)

8.5439 × 10−6

(+)
6.8328 × 10−9

(+)
5.8455 × 10−8

(+)
—

Number of
inflection

points

Best 54.000 53.000 48.000 38.000 35.000

Mean 56.360 62.560 51.540 42.020 36.740

Worst 59.000 79.000 56.000 44.000 38.000

Std. Dev. 1.764 7.919 2.566 1.937 0.906

t-test 4.7190 × 10−13

(+)
6.9541 × 10−7

(+)
2.7559 × 10−10

(+)
3.3352 × 10−9

(+)
—

In addition, to verify the efficiency and generalizability of the proposed algorithm,
the other three cases were simulated using different target coordinates. The algorithm
performance comparison was given in Table 4, where it can be seen that in terms of
planning time, planning length, and the number of inflection points, the proposed hybrid
algorithm performed better than the other four comparative algorithms. Consequently, the
proposed hybrid algorithm had stronger applicability and higher performance than the
other four algorithms.

Sensors 2022, 22, 2429 20 of 26

Table 4. Performance Comparison of the Five Algorithms in Ordinary Environments in Four Cases.

Case Performance
Indicator Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Proposed

Algorithm

1

Planning time (s) 29.583 11.176 10.740 13.823 10.338

Planning length (m) 1695.393 1816.817 1731.559 1708.821 1679.052

Number of inflection
points 56 61 52 39 35

2

Planning time (s) 25.235 10.861 9.198 11.043 8.977

Planning length (m) 1468.860 1647.985 1502.314 1532.208 1443.670

Number of inflection
points 36 54 40 32 26

3

Planning time (s) 26.402 12.400 11.271 13.043 9.853

Planning length (m) 1566.704 1691.964 1629.008 1630.361 1542.882

Number of inflection
points 51 70 49 42 34

4

Planning time (s) 21.743 8.671 8.231 11.562 8.174

Planning length (m) 1230.362 1339.065 1276.521 1298.388 1210.675

Number of inflection
points 32 44 39 29 26

5.2. Simulations in Complex Environments

In complex environments, a 100 × 100 grid map model was created. The number of
target points was 20, and the serial number of the start point was marked as one. In this
map, the randomly-distributed obstacle density was 12%. The target coordinates were set
randomly; four sets of the target coordinates were randomly selected, and they are denoted
as Cases 1–4 in Table 5.

Table 5. Target Coordinates in Complex Environments.

Case Target Coordinates

1
(4, 9), (39, 8), (65, 16), (75, 26), (93, 9), (89, 53), (95, 70), (82, 74), (88, 95), (52, 72), (68, 69),

(65, 55), (58, 35),
(43, 42), (30, 42), (35, 82), (8, 91), (5, 54), (18, 40), (25, 25)

2
(3, 19), (4, 38), (8, 28), (13, 10), (14, 75), (17, 22), (22, 32), (25, 50), (28, 11), (30, 30), (38, 25),

(38, 51), (39, 5),
(39, 64), (53, 76), (58, 40), (63, 60), (70, 13), (75, 77), (76, 42)

3 (17, 54), (56, 82), (21, 25), (26, 28), (31, 10), (30, 72), (36, 15), (36, 36), (40, 92), (45, 34), (98,
72), (56, 23), (53, 54), (49, 29), (60, 61), (67, 20), (69, 77), (74, 37), (23, 58), (93, 61)

4
(56, 3), (46, 34), (12, 67), (6, 28), (61, 45), (90, 12), (46, 87), (61, 63), (64, 72), (87, 34), (58, 52),

(46, 43), (33, 51),
(39, 39), (65, 61), (87, 70), (19, 87), (4, 35), (7, 5), (50, 94)

The parameters of the five algorithms were the same as in the previous experiments.
The experimental results were shown in Figures 11–15. In complex environments, the five
algorithms could complete the multi-target path planning, but the planned sequence of
the target points presented in Figures 11–13 were different from those in Figures 14 and 15.
Obviously, the grey detection area in Figure 14 was larger than that in Figure 15 and the
paths in Figure 15 were smoother than those of the other four algorithms.

Fifty simulation experiments of the five algorithms in Case 1 were performed in
complex environments. The statistical analysis of the experimental results was shown in
Table 6. The results in Table 6 further validated the robustness of the proposed algorithm in

Sensors 2022, 22, 2429 21 of 26

complex environments. In the t-test, the proposed algorithm performed significantly better
than the other four hybrid algorithms. Compared with the ordinary environments, the
proposed hybrid algorithm showed more obvious advantages in complex environments.
The other three cases were also simulated using different target coordinates, and the results
were presented in Table 7. Similarly, the performance of the proposed hybrid algorithm
was better than of the other four comparison algorithms.

Table 6. Statistical Results Analysis of the Five Algorithms in Complex Environments.

Performance
Indicator Statistics Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Proposed

Algorithm

Planning time
(s)

Best 69.319 22.216 21.037 29.200 20.742

Mean 76.248 25.635 23.714 31.234 22.891

Worst 82.667 27.531 24.311 35.334 23.921

Std. Dev. 4.387 1.532 1.472 1.989 1.121

t-test 5.1372 × 10−25

(+)
0.000084

(+)
0.000454

(+)
6.8413 × 10−8

(+)
—

Planning length
(m)

Best 4945.233 5186.258 5166.254 4998.402 4804.200

Mean 5034.751 5262.745 5219.564 5048.473 4841.964

Worst 5141.769 5402.847 5287.889 5109.630 4897.646

Std. Dev. 52.138 103.700 64.732 47.351 33.136

t-test 1.8643 × 10−8

(+)
1.931 × 10−7

(+)
2.6843 × 10−12

(+)
4.2784 × 10−6

(+)
—

Numbers of
inflection

points

Best 103.000 136.000 106.000 92.000 74.000

Mean 115.460 150.200 126.780 104.760 80.640

Worst 130.000 184.000 154.000 117.000 93.000

Std. Dev. 12.568 20.183 23.976 10.806 8.585

t-test 3.3506 × 10−19

(+)
1.746 × 10−11

(+)
8.1961 × 10−21

(+)
7.1776 × 10−15

(+)
—

Table 7. Performance Comparison in Complex Environments for Four Cases.

Case Performance
Indicator Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Proposed

Algorithm

1

Planning time (s) 78.278 25.680 23.714 31.564 22.891

Planning length (m) 5012.741 5292.691 5263.574 5054.457 4830.673

Numbers of
inflection points 107 150 106 104 79

2

Planning time (s) 66.327 24.010 23.207 25.347 22.355

Planning length (m) 4051.769 4511.827 4309.645 4109.230 3989.236

Numbers of
inflection points 114 146 102 99 76

3

Planning time (s) 64.283 25.738 25.211 28.576 24.336

Planning length (m) 4366.763 4685.202 4554.248 4568.221 4279.043

Numbers of
inflection points 99 133 110 101 84

Sensors 2022, 22, 2429 22 of 26

Table 7. Cont.

Case Performance
Indicator Algorithm 1 Algorithm 2 Algorithm 3 Algorithm 4 Proposed

Algorithm

4

Planning time (s) 92.273 28.472 27.393 36.371 26.284

Planning length (m) 5264.147 5668.923 5554.954 5461.986 5093.817

Numbers of
inflection points 134 180 156 143 122

5.3. Performance Testing of the Proposed Algorithm

To investigate the performance of the proposed algorithm further, according to [42],
four benchmark test functions were chosen for comparison experiments, and they have
been given in Table 8.

Table 8. Test Functions Used in Experiments.

Function Type Function Name Function Formula Dimension Search Range f min

Unimodal function

Sphere f1(x) =
n
∑

i=1
xi

2 30 [−100, 100] 0

Schwefel’s 2.21 f2(x) =
maxi{|xi|, 1 ≤ i ≤ n} 30 [−100, 100] 0

Multimodal function

Rastrigin
f3(x) =

n
∑

i=1

[
xi

2 − 10 cos(2πxi) + 10
] 30 [−5.12, 5.12] 0

Alpine
f4(x) =

n
∑

i=1
|xi sin(xi) + 0.1xi|

30 [−10, 10] 0

The four benchmark test functions were solved by the Improved Grey wolf optimiza-
tion algorithm (IGWO) and compared with the numerical calculation results of the Ant
colony optimization, Genetic algorithm, Chaos multi-population particle swarm optimiza-
tion, and Grey wolf optimization algorithms. The parameters of these algorithms were the
same as in the above-mentioned experiments. The experiments with each of the functions
were run independently 30 times, and the mean and standard deviation of the algorithms
were recorded. The comparison results of five algorithms for the optimization of f 1–f 4
were shown in Table 9. For function f 3, the results of the proposed Improved Grey wolf
optimization algorithm tended to converge to the theoretical optimal value of zero. For
functions f 1, f 2, and f 4, the experimental results of the Improved Grey wolf optimization
algorithm were also close to the optimal value. In terms of solution accuracy (mean value)
and robustness (standard deviation), the performance of the proposed Improved Grey wolf
optimization algorithm was significantly superior to those of the other four algorithms.

The iterative average convergence curves of the five algorithms for the four functions
are shown in Figure 16, where it can be seen that the IGWO had a faster convergence rate
than the other algorithms.

Sensors 2022, 22, 2429 23 of 26

Table 9. Experimental Results Obtained by the Five Algorithms for Four Test Functions.

Test Function Statistics Ant Colony
Optimization

Genetic
Algorithm

Chaos Multi-
Population

Particle Swarm
Optimization

Grey Wolf
Optimization

Proposed
Algorithm

f 1
Mean 4.62 × 10−16 5.01 × 10−22 2.58 × 10−43 1.21 × 10−69 3.23 × 10−93

Std. Dev. 3.49 × 10−16 1.87 × 10−22 2.12 × 10−43 7.38 × 10−69 4.66 × 10−93

f 2
Mean 9.28 × 10−20 9.31 × 10−42 9.35 × 10−77 3.66 × 10−135 7.57 × 10−191

Std. Dev. 5.72 × 10−20 7.63 × 10−42 6.27 × 10−77 2.98 × 10−135 8.43 × 10−191

f 3
Mean 1.24 × 10−2 5.78 × 10−4 6.95 × 10−9 1.71 × 10−15 0

Std. Dev. 9.36 × 10−2 2.33 × 10−4 3.25 × 10−9 0.62 × 10−15 0

f 4
Mean 5.32 × 10−7 4.23 × 10−9 1.09 × 10−24 9.54 × 10−34 1.95 × 10−49

Std. Dev. 7.14 × 10−7 2.11 × 10−9 1.87 × 10−24 6.03 × 10−34 5.82 × 10−49

Sensors 2022, 22, x FOR PEER REVIEW 23 of 26

Table 9. Experimental Results Obtained by the Five Algorithms for Four Test Functions.

Test Function Statistics Ant Colony Op-
timization

Genetic Algo-
rithm

Chaos Multi-Pop-
ulation Particle

Swarm Optimiza-
tion

Grey Wolf Opti-
mization

Proposed
Algorithm

f1 Mean 4.62 × 10−16 5.01 × 10−22 2.58 × 10−43 1.21 × 10−69 3.23 × 10−93
Std. Dev. 3.49 × 10−16 1.87 × 10−22 2.12 × 10−43 7.38 × 10−69 4.66 × 10−93

f2
Mean 9.28 × 10−20 9.31 × 10−42 9.35 × 10−77 3.66 × 10−135 7.57 × 10−191

Std. Dev. 5.72 × 10−20 7.63 × 10−42 6.27 × 10−77 2.98 × 10−135 8.43 × 10−191

f3
Mean 1.24 × 10−2 5.78 × 10−4 6.95 × 10−9 1.71 × 10−15 0

Std. Dev. 9.36 × 10−2 2.33 × 10−4 3.25 × 10−9 0.62 × 10−15 0

f4 Mean 5.32 × 10−7 4.23 × 10−9 1.09 × 10−24 9.54 × 10−34 1.95 × 10−49
Std. Dev. 7.14 × 10−7 2.11 × 10−9 1.87 × 10−24 6.03 × 10−34 5.82 × 10−49

The iterative average convergence curves of the five algorithms for the four functions
are shown in Figure 16, where it can be seen that the IGWO had a faster convergence rate
than the other algorithms.

(a) (b)

(c) (d)
Ant colony optimization Genetic algorithm Grey wolf optimization

Chaos multi-population particle swarm optimization Improve grey wolf optimization

Figure 16. (a) Convergence curves of the five algorithms for f1 function. (b) Convergence curves
of the five algorithms for f 2 function. (c) Convergence curves of the five algorithms for f 3 function.
(d) Convergence curves of the five algorithms for f 4 function.

Sensors 2022, 22, 2429 24 of 26

6. Conclusions

In this paper, a hybrid algorithm based on the improved GWO-D* Lite algorithm was
proposed. First, the multi-target planning problem was transformed into a TSP, and the
improved GWO algorithm was used to plan a multi-target cruise sequence. Second, based
on the obtained sequence, the improved D* Lite algorithm was used for path planning
between every two target points. The simulation verification of the proposed algorithm
was conducted in both ordinary and complex environments. The comparative simulation
experiments with the other four algorithms were also implemented. To avoid contingency
and verify the efficiency and generalizability of the proposed algorithm, a detailed statistical
analysis based on multiple experiments and a performance comparison with different target
coordinates were performed. The simulation results show that, in terms of planning time,
planning distance and number of inflection points, the proposed algorithm has obvious
advantages over the other four algorithms. Meanwhile, the results of four standard test
functions show that the proposed algorithm has strong optimization ability. The proposed
algorithm can provide important guidance for multi-target path planning of UCS in an
unknown obstacle environment and promote the development of intelligent technology
of UCS.

In future research, the proposed algorithm could be improved in two aspects. First, a
number of the proposed algorithm’s parameters were obtained by experience, so they were
influenced by subjective factors. Therefore, these parameters could be optimized by certain
methods. Second, the grid map was a 2D model, so it had limitations in reflecting an actual
environment. In future research, a 3D map model could be built for an actual environment,
which can more accurately reflect the actual shape of a UCS and obstacles. In addition, the
currents in the lake, the health status, dynamic behavior, and motion limitation of a UCS
could also be constraints of the path optimization problem.

Author Contributions: Conceptualization, J.Y. and G.L.; methodology, J.X. and Z.Z.; formal analysis,
J.Y., Z.C. and M.Y.; simulation experiments, G.L. and Z.C.; writing—original draft preparation, J.Y.
and G.L.; writing—review and editing, M.Y., X.W. and Y.B.; funding acquisition, J.X., Z.Z. and X.W.
All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the National Natural Science Foundation of China (No. 61903008),
Beijing Excellent Talent Training Support Project for Young Top-Notch Team (No. 2018000026833TD01),
Beijing Talents Project (No. 2020A28).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Felski, A.; Zwolak, K. The ocean-going autonomous ship—Challenges and threats. J. Mar. Sci. Eng. 2020, 8, 41. [CrossRef]
2. Chen, T.; Zhang, G.; Hu, X.; Xiao, J. Unmanned aerial vehicle route planning method based on a star algorithm. In Proceedings of

the 13th IEEE Conference on Industrial Electronics and Applications (ICIEA), Wuhan, China, 31 May–2 June 2018; pp. 1510–1514.
[CrossRef]

3. Jose, S.; Antony, A. Mobile robot remote path planning and motion control in a maze environment. In Proceedings of the 2016
IEEE International Conference on Engineering and Technology (ICETECH), Coimbatore, India, 17–18 March 2016; pp. 207–209.
[CrossRef]

4. Akram, V.; Dagdeviren, O. Breadth-First Search-Based Single-Phase algorithms for bridge detection in wireless sensor networks.
Sensors 2013, 13, 8786–8813. [CrossRef] [PubMed]

5. Dawid, W.; Pokonieczny, K. Methodology of using terrain passability maps for planning the movement of troops and navigation
of unmanned ground vehicles. Sensors 2021, 21, 4682. [CrossRef]

6. Xu, Z.; Deng, D.; Shimada, K. Autonomous UAV exploration of dynamic environments via incremental sampling and probabilistic
roadmap. IEEE Robot. Autom. Lett. 2021, 6, 2729–2736. [CrossRef]

7. Chen, Z.; Wang, D.; Chen, G.; Ren, Y.; Du, D. A hybrid path planning method based on articulated vehicle model. Comput. Mater.
Contin. 2020, 65, 1781–1793. [CrossRef]

http://doi.org/10.3390/jmse8010041
http://doi.org/10.1109/ICIEA.2018.8397948
http://doi.org/10.1109/ICETECH.2016.7569242
http://doi.org/10.3390/s130708786
http://www.ncbi.nlm.nih.gov/pubmed/23845930
http://doi.org/10.3390/s21144682
http://doi.org/10.1109/LRA.2021.3062008
http://doi.org/10.32604/cmc.2020.010902

Sensors 2022, 22, 2429 25 of 26

8. Gil, J.M.; Han, Y.H. A target coverage scheduling scheme based on genetic algorithms in directional sensor networks. Sensors
2011, 11, 1888–1906. [CrossRef] [PubMed]

9. Çil, Z.A.; Mete, S.; Serin, F. Robotic disassembly line balancing problem: A mathematical model and ant colony optimization
approach. Appl. Math. Model. 2020, 86, 335–348. [CrossRef]

10. Dabiri, N.; Tarokh, M.J.; Alinaghian, M. New mathematical model for the bi-objective inventory routing problem with a step cost
function: A multi-objective particle swarm optimization solution approach. Appl. Math. Model. 2017, 49, 302–318. [CrossRef]

11. Yoo, Y.J. Hyperparameter optimization of deep neural network using univariate dynamic encoding algorithm for searches.
Knowl.-Based Syst. 2019, 178, 74–83. [CrossRef]

12. Lin, N.; Tang, J.; Li, X.; Zhao, L. A Novel Improved Bat Algorithm in UAV Path Planning. Comput. Mater. Contin. 2019, 61,
323–344. [CrossRef]

13. Bai, X.; Yan, W.; Cao, M. Clustering-based algorithms for multivehicle task assignment in a time-invariant drift field. IEEE Robot.
Autom. Lett. 2017, 2, 2166–2173. [CrossRef]

14. Yao, P.; Xie, Z.; Ren, P. Optimal UAV route planning for coverage search of stationary target in river. IEEE Trans. Control. Syst.
Technol. 2017, 27, 822–829. [CrossRef]

15. Yu, J.; Deng, W.; Zhao, Z.; Wang, X.; Xu, J.; Wang, L.; Sun, Q.; Shen, Z. A hybrid path planning method for an unmanned cruise
ship in water quality sampling. IEEE Access 2019, 7, 87127–87140. [CrossRef]

16. Khaksar, W.; Vivekananthen, S.; Saharia, K.S.M.; Yousefi, M.; Ismail, F.B. A review on mobile robots motion path planning in
unknown environments. In Proceedings of the 2015 IEEE International Symposium on Robotics and Intelligent Sensors (IRIS),
Langkawi, Malaysia, 18–20 October 2015; pp. 295–300. [CrossRef]

17. Abubakr, O.A.; Jaradat, M.A.K.; Hafez, M.A. A reduced cascaded fuzzy logic controller for dynamic window weights optimization.
In Proceedings of the 2018 11th International Symposium on Mechatronics and its Applications (ISMA), Sharjah, United Arab
Emirates, 4–6 March 2018; pp. 1–4. [CrossRef]

18. Gan, R.; Guo, Q.; Chang, H.; Yi, Y. Improved ant colony optimization algorithm for the traveling salesman problems. J. Syst. Eng.
Electron. 2010, 21, 329–333. [CrossRef]

19. Pan, G.; Li, K.; Ouyang, A.; Li, K. Hybrid immune algorithm based on greedy algorithm and delete-cross operator for solving TSP.
Soft Comput. 2016, 20, 555–566. [CrossRef]

20. Yujie, L.; Yu, P.; Yixin, S.; Huajun, Z.; Danhong, Z.; Yong, S. Ship path planning based on improved particle swarm optimization.
In Proceedings of the 2018 Chinese Automation Congress (CAC), Xi’an, China, 30 November–2 December 2018; pp. 226–230.
[CrossRef]

21. Jang, D.-S.; Chae, H.-J.; Choi, H.-L. Optimal control-based UAV path planning with dynamically-constrained TSP with neighbor-
hoods. In Proceedings of the 17th International Conference on Control, Automation and Systems (ICCAS), Jeju, Korea, 18–21
October 2017; pp. 373–378. [CrossRef]

22. Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [CrossRef]
23. Sopto, D.S.; Ayon, S.I.; Akhand, M.A.H.; Siddique, N. Modified grey wolf optimization to solve traveling salesman problem. In

Proceedings of the 2018 International Conference on Innovation in Engineering and Technology (ICIET), Dhaka, Bangladesh,
27–28 December 2018; pp. 1–4. [CrossRef]

24. Xu, R.; Cao, M.; Huang, M.X.; Zhu, Y.H. Research on the Quasi-TSP problem based on the improved grey wolf optimization
algorithm: A case study of tourism. Geogr. Geo-Inf. Sci. 2018, 34, 14–21. (In Chinese)

25. Hossain, M.A.; Ferdous, I. Autonomous robot path planning in dynamic environment using a new optimization technique
inspired by bacterial foraging technique. Robot. Auton. Syst. 2015, 64, 137–141. [CrossRef]

26. Hosseininejad, S.; Dadkhah, C. Mobile robot path planning in dynamic environment based on cuckoo optimization algorithm.
Int. J. Adv. Robot. Syst. 2019, 16, 1–13. [CrossRef]

27. Faridi, A.Q.; Sharma, S.; Shukla, A.; Tiwari, R.; Dhar, J. Multi-robot multi-target dynamic path planning using artificial bee colony
and evolutionary programming in unknown environment. Intell. Serv. Robot. 2018, 11, 171–186. [CrossRef]

28. Ma, Y.; Hu, M.; Yan, X. Multi-objective path planning for unmanned surface vehicle with currents effects. ISA Trans. 2018, 75,
137–156. [CrossRef] [PubMed]

29. Liu, C.; Yan, X.; Liu, C.; Guodong, L.I. Dynamic path planning for mobile robot based on improved genetic algorithm. Chin. J.
Electron. 2020, 19, 245–248. (In Chinese)

30. Huang, L.; Zhou, F.T. Mobile robot path planning based on path optimization D* lite algorithm. J. Control. Decis. 2020, 35, 112–119.
(In Chinese)

31. Al-Mutib, K.; AlSulaiman, M.; Emaduddin, M.; Ramdane, H.; Mattar, E. D* lite based real-time multi-agent path planning in
dynamic environments. In Proceedings of the 2011 Third International Conference on Computational Intelligence, Modelling &
Simulation, Langkawi, Malaysia, 20–22 September 2011; pp. 170–174. [CrossRef]

32. Barillas, F.; Fernández-Villaverde, J. A generalization of the endogenous grid method. J. Econ. Dyn. Control. 2007, 31, 2698–2712.
[CrossRef]

33. Koenig, S.; Likhachev, M.; Furcy, D. Lifelong planning A*. Artif. Intell. 2004, 155, 93–146. [CrossRef]
34. Koenig, S.; Likhachev, M. Fast replanning for navigation in unknown terrain. IEEE Trans. Robot. 2005, 21, 354–363. [CrossRef]
35. Rehman, A.; Mubeen, S.; Safdar, R.; Sadiq, N. Properties of k-beta function with several variables. Open Math. 2015, 13, 308–320.

[CrossRef]

http://doi.org/10.3390/s110201888
http://www.ncbi.nlm.nih.gov/pubmed/22319387
http://doi.org/10.1016/j.apm.2020.05.006
http://doi.org/10.1016/j.apm.2017.03.022
http://doi.org/10.1016/j.knosys.2019.04.019
http://doi.org/10.32604/cmc.2019.05674
http://doi.org/10.1109/LRA.2017.2722541
http://doi.org/10.1109/TCST.2017.2781655
http://doi.org/10.1109/ACCESS.2019.2925894
http://doi.org/10.1109/IRIS.2015.7451628
http://doi.org/10.1109/ISMA.2018.8330141
http://doi.org/10.3969/j.issn.1004-4132.2010.02.025
http://doi.org/10.1007/s00500-014-1522-3
http://doi.org/10.1109/CAC.2018.8623037
http://doi.org/10.23919/iccas.2017.8204468
http://doi.org/10.1016/j.advengsoft.2013.12.007
http://doi.org/10.1109/CIET.2018.8660872
http://doi.org/10.1016/j.robot.2014.07.002
http://doi.org/10.1177/1729881419839575
http://doi.org/10.1007/s11370-017-0244-7
http://doi.org/10.1016/j.isatra.2018.02.003
http://www.ncbi.nlm.nih.gov/pubmed/29455891
http://doi.org/10.1109/CIMSim.2011.38
http://doi.org/10.1016/j.jedc.2006.08.005
http://doi.org/10.1016/j.artint.2003.12.001
http://doi.org/10.1109/TRO.2004.838026
http://doi.org/10.1515/math-2015-0030

Sensors 2022, 22, 2429 26 of 26

36. Li, J.; Yang, F. Task assignment strategy for multi-robot based on improved Grey Wolf Optimizer. J. Ambient. Intell. Humaniz.
Comput. 2020, 11, 6319–6335. [CrossRef]

37. Jun, L.; Zhibing, S. Research on Path Planning Based on Improved D* Lite Genetic Algorithm. Mach. Tool Hydraul. 2019, 47, 39–42.
(In Chinese)

38. Wang, J.; Garratt, M.; Anavatti, S. Dynamic path planning algorithm for autonomous vehicles in cluttered environments. In
Proceedings of the 2016 IEEE International Conference on Mechatronics and Automation, Harbin, China, 7–10 August 2016;
pp. 1006–1011. [CrossRef]

39. Asghari, S.; Navimipour, N.J. Cloud service composition using an inverted ant colony optimization algorithm. Int. J. Bio. Inspired
Comput. 2019, 13, 257–268. [CrossRef]

40. Drezner, Z.; Drezner, T.D. Biologically Inspired Parent Selection in Genetic Algorithms. Ann. Oper. Res. 2020, 287, 161–183.
[CrossRef]

41. Qu, Y.; Cai, Z. Identification of singular samples in near infrared spectrum of starch water content prediction by using Monte
Carlo cross validation combined with T test. IOP Conf. Ser. Earth Environ. Sci. 2018, 186. [CrossRef]

42. Long, W.; Jiao, J.; Liang, X.; Tang, M. An exploration-enhanced grey wolf optimizer to solve high-dimensional numerical
optimization. Eng. Appl. Artif. Intell. 2018, 68, 63–80. [CrossRef]

http://doi.org/10.1007/s12652-020-02224-3
http://doi.org/10.1109/ICMA.2016.7558700
http://doi.org/10.1504/IJBIC.2019.100139
http://doi.org/10.1007/s10479-019-03343-7
http://doi.org/10.1088/1755-1315/186/3/012035
http://doi.org/10.1016/j.engappai.2017.10.024

	Introduction
	Related Works
	Multi-Target Path Planning
	Unknown Obstacles Environment

	Preliminaries and Problem Formulation
	Map Construction
	GWO Algorithm
	D* Lite Algorithm
	Problem Formulation

	Traversal Multi-Target Path Planning
	Improved GWO
	Multi-Target Encoding Construction
	Convergence Factor Improvement

	Improved D* Lite Algorithm
	Heuristic Function Improvement
	Path Smoothing

	Algorithm Overview

	Simulation Experiments
	Simulations in Ordinary Environments
	Simulations in Complex Environments
	Performance Testing of the Proposed Algorithm

	Conclusions
	References

