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ABSTRACT Human activity recognition (HAR) using body-worn sensors is an active research area in

human-computer interaction and human activity analysis. The traditional methods use hand-crafted features

to classify multiple activities, which is both heavily dependent on human domain knowledge and results

in shallow feature extraction. Rapid developments in deep learning have caused most researchers to switch

to deep learning methods, which extract features from raw data automatically. Most of the existing works

on human activity recognition tasks involve multimodal sensor data, and these networks mainly focus on

the top representation extracted from bottom-up feedforward process without reusing other features from

bottom layers. In this paper, we present a novel hybrid deep learning network for human activity recognition

that also employs multimodal sensor data; however, our proposed model is a ConvLSTM pipeline that

makes full use of the information in each layer extracted along the temporal domain. Thus, we propose

a dense connection module (DCM) to ensure maximum information flow between the network layers.

Furthermore, we employ a multilayer feature aggregation module (MFAM) to extract features along the

spatial domain, and we aggregate the features obtained from every convolutional layer according to the

importance of features in different spatial locations. The output of the MFAM is input into two LSTM layers

to further model the temporal dependencies. Finally, a fully connected layer and a softmax function are

used to compute the probability of each class. We demonstrate the effectiveness of our proposed model on

two benchmark datasets: Opportunity and UniMiB-SHAR. The results illustrate that our designed network

outperforms the state-of-the-art models. We also conduct experiments on efficiency, multimodal fusion and

different hyperparameters to analyze our proposed network. Finally, we carry out ablation and visualization

experiments to reveal the effectiveness of the two proposed modules.

INDEX TERMS Human activity recognition, deep learning, dense connection, multilayer feature aggrega-

tion, multimodal sensor data.

I. INTRODUCTION

The growing popularity of smart, wearable devices has

greatly expanded the availability of time-series sensor data

related to human activities. Therefore, wearable sensor-based

human activity recognition (HAR) has attracted consid-

erable research attention in the areas of pervasive com-

puting and artificial intelligence. The main goal of HAR

is to automatically detect and recognize activities based

on analyzing data acquired by sensors [1]. Applications

that benefit from HAR include health support [2], [3],

The associate editor coordinating the review of this manuscript and
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smart homes [4], [5] and rehabilitation [6]. Compared with

recognition using computer vision, wearable sensor-based

HAR approaches offer low cost, high performance, and

portability [7].

A typical HAR system includes data acquisition, data pre-

processing, segmentation, feature extraction, and classifica-

tion. Smartwatches, smartphones, and other devices supply

data from multiple sensors. Pre-processing consists of seg-

mentation (e.g., with sliding windows) and partitioning. Each

segment provides features that can be useful in identifying

different activities. The system then trains a classifier to make

predictions based on these features. Fig. 1 illustrates this

process.
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FIGURE 1. The processing flow of the human activity recognition system.

Most existing research focuses on feature extraction meth-

ods because the discriminative features are important for

ensuring the generalizability of the HAR system. There are

two primary ways to extract features from sensor-based data.

One employs hand-crafted features based on the statistical

knowledge, while the other automatically extracts features

using neural networks [8]. The extraction of meaningful

hand-crafted features from the time and frequency domains

relies heavily on human experience and domain knowledge.

In addition, hand-crafted features are usually designed for a

specific task and are not suited for more general environments

and tasks. Deep learning advances have been widely applied

in HAR [9] because deep learning models can automatically

extract high-dimensional features and are not dependent on

domain knowledge.

Convolutional neural networks (CNNs) [10] and recurrent

neural networks (RNNs) [11] are among the most popular

deep learning methods. When used for classifying large-scale

time-series data such as HAR, CNNs have the advantages

of local dependency and scale invariance, making them the

best candidates for use in classification problems. RNNs

additionally consider long-term time dependencies, which is

beneficial for time-series data. However, RNNs suffer from

gradient exploding or vanishing problems. To address these

problems, a variant of the standard neuron called the long

short-term memory (LSTM) cell was proposed [12]. Thus,

to obtain high-dimensional features that have both short- and

long-term time dependencies, we combine CNN and LSTM

networks to form a hybrid deep-learning architecture.

Most of the existing works on human activity recognition

use CNN models with 1D or 2D kernels. For multimodality

time series data, a 1D convolution operation captures only

local dependencies over time but does not make full use of the

dependency between different channels of multiple sensors.

CNNs with 2D kernels can capture local dependency along

time and spatial domains for unimodal sensor data, but they

require large numbers of parameters, making them unsuitable

formobile devices with limitedmemory. Inspired by [13], any

N × N convolution can be replaced by a 1 × N convolution

followed by a N× 1 convolution, and this two-layer solution

is considerably cheaper than the same square convolution.

Therefore, in this paper, we use a 3× 1 convolution followed

by a 1 × 3 convolution to replace the 3 × 3 convolution.

To prevent the decrease in accuracy caused by this operation,

we use a dense connection after each 3 × 1 convolution.

Then, the output of all the preceding layers is used as the

input to each layer, and its output is used as input into all the

subsequent layers. Dense connections help ensure maximum

information flow between layers in the network. In addi-

tion, networks designed for human activity recognition focus

mainly on the top representation extracted from the bottom-

up feedforward process and ignore other features from the

bottom layers. Therefore, we collect feature maps after each

1×3 convolution and aggregate these feature maps according

to their importance in different spatial locations. We demon-

strate the effectiveness of our method on two open human

activity datasets, Opportunity [14] and UniMiB-SHAR [15].

Our contributions are as follows.

• To design network with fewer parameters, we replace

3 × 3 convolutional operations in our proposed model

with a 3×1 convolution followed by a 1×3 convolution.

The 3×1 convolution and the 1×3 convolution capture

local dependencies along the temporal dimension of a

single sensor and among multiple sensors, respectively.

• We design a dense connection module to collect the

output of each 3 × 1 convolutional layer and promote

information flow in the model. To reuse the information

from each layer, we collect feature maps after each 1×3

convolution and employ a softmax function to aggregate

the feature maps of each layer according to their impor-

tance in each spatial location. The aggregation module

is called the multilayer feature aggregation module.

• By combining the dense connectionmodule and themul-

tilayer feature aggregation module, we propose a novel

hybrid network for human activity recognition based on

an underlying ConvLSTM network.

• We show that the proposed model outperforms other

state-of-the-art models designed for human activity

recognition on different recognition tasks on the Oppor-

tunity dataset under different data division methods
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(i.e., 5-fold cross-validation and leave-subject-out cross-

validation) on the UniMiB-SHAR dataset.

• We analyze the efficiency of our proposed network and

discuss the influence of different numbers of sensor

channels and hyperparameters on the network. In addi-

tion, we also conduct an ablation experiment and a

visualization experiment to show the effectiveness of the

two proposed modules.

The rest of this paper is organized as follows. Section II

provides a brief overview of related works on HAR, includ-

ing both traditional methods and deep learning methods.

In Section III, we introduce the three main parts of our

proposed network: a dense connection module, a multilayer

feature aggregation module and a fundamental ConvLSTM

framework. In Section VI, we introduce the two benchmark

datasets, the performance metrics, and the settings used for

model training. Section V provides a comparative analysis

of the proposed network. We present conclusions and future

work in Section VI.

II. RELATED WORK

Early research into HAR uses traditional sensor-based

HAR systems with hand-crafted features extracted from the

time and frequency domains to predict the class labels.

The most popular traditional methods applied to recog-

nize human activities include k-nearest neighbor (kNN),

support vector machine (SVM), and decision tree (DT)

models. Janidarmian et al. [16] conducted an extensive anal-

ysis among 293 classifiers, includingDTs, KNNs, and SVMs,

on the most complete dataset available, which includes data

from accelerometers and various heterogeneous sources. The

average classification accuracies achieved were 96.44% ±

1.62% with under 10-fold evaluation and 79.92% ś 9.68%

under leave-subject-out cross-validation. The results indicate

that KNN and its ensemblemethods yield stable results across

different positions and window sizes. Xie et al. [17] proposed

a multilayer strategy based on inertial sensors and barome-

ters to recognize eight human activities that adopted random

forests (RFs) and SVMs for different classifications, and in

which different feature sets were selected for the different

classifiers.

Many achievements have been made by deep learning in

fields such as visual object recognition, natural language

processing, and logical reasoning [18]. Generally, the deep

learning architectures for HAR fall into three categories.

The first category consists of CNNs. Panwar et al. [19]

designed a generalized CNN-based model to recognize

three fundamental human forearmmovements collected from

a single accelerometer sensor on the wrist. The exper-

imental results showed that the CNN-based model out-

performed SVM, K-means and latent Dirichlet allocation

(LDA). The authors of [20] investigated the effectiveness

of proposed CNN-extracted features compared with hand-

crafted features for the paroxysmal atrial fibrillation (PAF)

screening problem. The use of a CNN structure to extract

features in combination with other classifiers can signif-

icantly improve the resulting classification performance.

Andrey and Ignatov [21] presented a CNN model for online

HAR, and their experiments showed that a CNN combined

with hand-crafted features yields significantly improved per-

formance and can be executed on mobile phones in real time.

Wang et al. [22] proposed a novel attention-based human

activity recognition method to process weakly labeled activ-

ity data. Compared with a CNN and DeepConvLSTM, their

experiments showed that the designed model worked well on

the traditional UCI HAR dataset and outperformed them on

the weakly labeled dataset in terms of accuracy.

The second category uses RNN models to capture the

time dependencies of time-series data. Edel and Koppe

proposed a binarized long short-term memory network

(B-BLSTM-RNN) that is especially suitable for resource-

constrained environments; it outperforms other recent meth-

ods by large margins on three tested datasets [23]. To tackle

the challenges of imbalanced datasets and problematic data

quality, Guan and Ploetz [24] designed a model through

ensembles of deep LSTM networks that improved the recog-

nition accuracy on the Opportunity, PAMAP2 and Skoda

datasets. Inoue et al. [25] investigated several models and

then proposed a good architecture that can perform mobile

HAR with high throughput.

The third category consists of hybrid models that combine

deep models to address HAR tasks. Ordóñez and Roggen

showed that a hybrid architecture based on both convolutional

and LSTM recurrent units functions better than do deep non-

recurrent networks, and confirmed the improved performance

on two benchmark datasets [6]. Xi et al. [26] presented a

novel deep learning framework for human activity recogni-

tion problems. The model includes dilated CNN and SRU

networks that exponentially expand the receptive field with

no loss of resolution or coverage andmodel the long-temporal

dependencies. Yi et al. [27] designed a novel deep learning

framework called multi-channel deep convolutional neural

networks (MC-DCNN) that learns features from the individ-

ual univariate time series in each channel and then applies

the learned features in a multilayer perceptron (MLP) for

classification. Extensive experiments on real-world data sets

show that the model is competitive in accuracy. To improve

the performance of the HAR system and design a smaller

network for use in mobile devices, we propose using a novel

hybrid model that fully aggregates features along both tem-

poral and spatial domains; it also requires fewer parameters

when combined with a DeepConvLSTM [6].

III. ARCHITECTURE

To analyze multimodal sensor data and obtain multivariate

time series, the existing works on HAR using CNNs often

use large convolution kernels to enlarge the receptive field.

In addition, they primarily employ only the top-level infor-

mation extracted from the bottom-up feedforward process,

neglecting the use of other features from the lower-level lay-

ers and failing to consider the importance of multiple features
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FIGURE 2. An overview of the proposed model for human activity recognition. The numbers shown inside each convolutional layer
denote the conv kernel size, and the output channels. The architecture of the brown block is shown in the lower left corner.
‘‘FC’’ stands for ‘‘Fully Connected’’. We provide detailed descriptions of the dense connection module and the multilayer feature
aggregation module in Sections III-A and III-B, respectively.

in the same spatial location. Therefore, we propose a novel

hybrid network with two modules designed to address these

problems. The overall architecture of our network is shown

in Fig. 2. The network includes a base ConvLSTM pipeline,

a dense connection module (DCM) and a multilayer feature

aggregation module (MFAM). In this section, we introduce

these two modules and the underlying ConvLSTM in detail.

A. DENSE CONNECTION MODULE

Traditional convolutional networks with L layers only have L

connections. However, our dense connectionmodule includes
L(L+1)

2
direct connections. The output of the preceding layers

are used as the input to each layer, and the output from

each layer is sent into all subsequent layers. This operation

promotes information flow in the model and ensures that each

layer can directly access the gradients from the loss function.

CNN networks commonly consist of S layers; here, we

denote the output of each layer as li. In our dense connection

module, the s-th layer obtains the features from its preceding

layers as input and uses a nonlinear functionFd (·) to obtain ls.

The process is formulated as follows:

ls = Fd (

s−1∑

i=1

li, θd ), , (1)

where
∑s−1

i=1 is the addition of the feature maps obtained

from layers 1, . . . , s − 1. Inspired by [28], we define

Fd (·) as a block of three stacked layers: a 1 × 1 convo-

lutional layer, batch normalization [29] and rectified lin-

ear units (RELU) [30], and θd represents its parameters.

This block is illustrated in the lower-left corner of Fig. 2.

Compared with the concatenation operation, using addition

to aggregate information saves parameters, which reduces

the number of channels and achieves better results in our

experiments.

Considering the computational efficiency of the human

activity recognition task, we use only two dense connection

operations in our network. Along the temporal domain of

multivariate time series data, both dense layers collect infor-

mation produced by their preceding layers and pass on their

own features to the next 3 × 1 convolutional layers. Over

time, this model can acquire rich information via the dense

connection module.

B. MULTILAYER FEATURE AGGREGATION MODULE

We propose a multilayer feature aggregation module to col-

lect the features from each convolutional layer and aggregate

them in different spatial locations according to their impor-

tance, as illustrated in Fig. 3.

Specifically, we formulate the forward process in the mul-

tilayer feature aggregation module as follows. We denote

LS = {l1, l2, l3} as the set of feature maps obtained by

the three 3 × 1 convolutional layers, where li is the i-th

feature map, which has 64 channels. For each li, we capture

the spatial dependency among the sensors by generating the

feature maps Ii:

Ii = Fs(li, θs), (2)

where Fs is a composite function of two layers (a 1 × 3

convolutional layer and a RELU), and θs is its parameters.

To aggregate information from different layers, we concate-

nate the outputs of Fs. After concatenation, we apply a 1× 1

convolutional layer to reduce the number of channels. The

output of the 1 × 1 convolutional layer contains 3 channels,

corresponding to the number of LS . The concatenation and

the 1 × 1 convolutional layer calculation is as follows:

H = Fr ([I1, I2, I3], θr ), (3)

where [I1, I2, I3] refers to the concatenation operation, Fr is

the 1 × 1 convolutional layer, and θr is its parameters. Next,

H is normalized to A = {a1, a2, a3} along the channel

dimension by a softmax function:

ai =
exp(Hi)∑3
j=1 exp(Hj)

. (4)
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FIGURE 3. The multilayer feature aggregation module: the first stage of MFAM extracts features along the spatial domain and
concatenates features along the channel dimension. Then, the second stage aggregates these features in different spatial
locations according to their importance.

Finally, the normalized compatibility scores A and the feature

maps {I1, I2, I3} are used to produce the output It by elemen-

twise weighted averaging:

It = I1 · a1 + I2 · a2 + I3 · a3. (5)

A small value in position p of feature map ai means that

the information is irrelevant and should be suppressed. There-

fore, the softmax function controls the contribution made by

each of the three feature maps to the global feature map.

Throughweighted aggregation, themodel learns to extract the

rich features of both the temporal and spatial domains from

multimodal data.

C. FUNDAMENTAL ConvLSTM

The fundamental model on which the DCM and MFAM are

based is a ConvLSTM pipeline that consists of convolutional,

LSTM and fully connected layers. The fundamental model is

similar to the network in [6], but our model has fewer parame-

ters. The input data are extracted frommultimodal time series

data using a sliding window approach and then turned into a

two-dimensional matrix. The input data are passed into a 1×1

convolutional layer that can cast input into hidden spaces to

create better information representations. Next are three 3×1

convolutional layers that capture dependency over time. The

input to each of the three convolutional layers comes from

the DCM, and the output of every layer is passed into the

MFAM. Thus, the feature maps of MFAM include rich global

information regarding both the time and spatial dimensions.

We use RELU as the activation function after each of the three

convolutional layers. Based on the experiments in [31], two

stacked LSTM layers are beneficial for processing sequential

data. Therefore, we employ two LSTM layers to process the

output of MFAM. The last layer is a fully connected layer

that maps the features obtained from the last LSTM layer

into the output classes. After this layer, we apply a softmax

function to obtain model output. Following the expression in

[32], the shorthand description of our fundamental model is

C(1) − C(64) − C(64) − C(64) − R(64) − R(64) − D(64),

where C(nc) denotes a convolutional layer with nc feature

maps,R(nl) is an LSTM layer with nl cells andD(nd ) is a fully

connected layer with nd units. Moreover, we include three

dropout layers before the two LSTM and fully connected

layers for regularization.

IV. EVALUATION

In this section, we first introduce two benchmark datasets.

Then, to address the problem of the imbalanced classes, we

adopt weighted F1 score and macro average accuracy as

our metrics to assess the model performances. Finally, we

describe the training parameters for our network.

A. BENCHMARK DATASET

Human activities are commonly defined as periodic (e.g., run-

ning and jumping), static (e.g., standing still), or sporadic

(e.g., watching TV or driving a car) motions. A bench-

mark dataset should include all these types of activities.

Researchers have created several datasets for HAR, including

the Opportunity [14], UniMiB-SHAR [15], PAMAP2 [33],

and Skoda [34] datasets. The two datasets we employ to

evaluate the performance of our model are described below.

The Opportunity Dataset contains data from several on-

body sensors of 17 different activities performed by 4 subjects

in a kitchen scenario. It also includes a Null class, which

is unrelated to any of the other activities, for a total of 18

classes. The data were acquired from 12 body parts at a

frequency of 30 Hz. Each subject was asked to perform

each action 6 times to record the data. All the subjects in

the first 5 trials performed all the activities according to a

script and then repeated each activity 20 times in the final

trial. The data are stored in 5 ADL files and 1 drill file.

We used 113-dimensional data for our experiments; missing

values were inserted using linear interpolation. We chose

runs 4 and 5 from subjects 2 and 3 as the testing dataset, and

used the remaining data for training. For the frame-by-frame
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analysis, the length of the sliding windows was 0.8 s and the

sliding stride was 0.4 s. The resulting training set included

approximately 61k frames.

The UniMiB-SHAR Dataset consists of annotated data

obtained by a Samsung Galaxy Nexus I9250 smartphone

from 30 volunteers (6 males and 24 females). Data from

the smartphone’s 3-axis accelerometer were captured at a

constant rate of 50 Hz. Each subject placed the smartphone

in his or her left or right pocket and performed 17 activities.

For this dataset, the data were sliced with a fixed-width

sliding window of approximately 3 s using a segmentation

technique [15]. The total dataset includes approximately

11k frames. For the experiments with the UniMiB-SHAR

dataset, we conducted both 5-fold and leave-subject-out

cross-validation [15].

B. PERFORMANCE METRICS

Because human activity datasets often have unbalanced

classes, reasonable performance metrics are required to mea-

sure human activity recognition algorithms. For example, the

NULL class of the Opportunity dataset represents over 75%

of the data. Therefore, when using classification accuracy as

a performance assessment metric, the majority class will have

a significant influence on the total accuracy. For this reason,

we assess models using the weighted F1 score, which is the

harmonic mean of precision and recall that provides a better

evaluation than can precision alone. Precision and recall are

defined as TP
TP+FP

and TP
TP+FN

, respectively, where TP, FP, and

FN represent the number of true positives, false positives,

and false negatives, respectively. The weighted F1 score

calculates the F1 score for each class and then multiplies it

by a weight value. We compute the weighted F1 score using

Fw =
∑

c

2 ∗ wc
precisionc · recallc

precisionc + recallc
, (6)

where c represents the class index, andwc = nc/N designates

the proportion of samples belonging to the c-th class. We

also use macro average accuracy (MAA) to evaluate the

classification performances. The MAA is defined as follows:

MAA =
1

c

∑

c

TPc

nc
. (7)

C. MODEL TRAINING

We implemented our deep-learning models in Python using

the PyTorch [35] framework, trained fully supervised models

with the time-series data and calculated gradients by back-

propagation from the softmax layers. We then employed the

Adadelta optimizer and the gradient descent algorithm for all

the trainable parameters. The recorded data were sampled as

mini-batches with a size of 100 in the training and testing

phases. We used the categorical cross-entropy function to

calculate the loss between predictions and targets. In addition,

all the parameters were randomly orthogonally initialized.

The dropout probability was set to 0.5. Each model was

trained for 150 epochs. All the experiments were performed

on aworkstation equippedwith an Intel E5-2620 at 2.10 GHz,

9.6 GB RAM and a 11 GB NVIDIA 1080 Ti GPU.

V. RESULTS

A. CLASSIFICATION PERFORMANCE

To evaluate the recognition performances, we compared our

proposed model with some other recognition models on the

Opportunity and UniMiB-SHAR datasets in terms of the

weighted F1 score (Fw) and performed leave-subject-out

cross-validation on the UniMiB-SHAR dataset. We evaluated

the following recognition models.

1) CONVOLUTIONAL NEURAL NETWORKS WITH A 1D

KERNEL (1D CNN) [1]

In this model, each convolutional layer uses a 1D convolution

operation along the temporal axis of an individual channel.

In addition, the layer adopts RELU as its activation function

and includes a max pooling operation. The shorthand descrip-

tion is C(50) − C(40) − C(30) − D(1000) − Sm, where Sm

is a softmax layer.

2) LSTM [1]

Thismodel, which is based on previous experiments, uses two

stacked LSTM layers. Similar to a CNNmodels, the output of

the second LSTM layer is sent to dense and softmax layers.

The LSTM cells use a sigmoid function for gate activations

and a hyperbolic tangent for other activations. The shorthand

description is R(64) − R(64) − D(512) − Sm.

3) HYBRID NETWORKS AND DEEPCONVLSTM [1], [6]

This is a combined architecture consisting of several con-

volutional layers and LSTM layers. In [1], the author calls

the model the Hybrid Network but name it DeepConvLSTM

in [6]. Both models use convolutional layers with 1D kernels.

The shorthand descriptions are C(50) − R(27) − R(27) −

D(512)−Sm and C(64)−C(64)−C(64)−C(64)−R(128)−

R(128) − Sm.

4) DilatedSRU NETWORK [26]

This is a novel model for human activity recognition that

introduces a dilated convolutional layer to avoid the informa-

tion loss caused by pooling and padding operations. In addi-

tion, a novel RNN model called the dilatedSRU is proposed

to model the temporal dependencies at different time scales.

The results of our model and the mentioned recognition

models are listed in Table 1. We highlight the best score in

bold. In terms of performance, the proposed model achieves

the highest scores on both datasets. Our proposed model

outperforms the other models with a 92.2% weighted F1

score on the Opportunity dataset and achieves the best per-

formance with a 78.4% on the UniMiB-SHAR dataset. The

DilatedSRU network also achieves a Fw score above 92%,

but we find that the dilated convolutional operation reduces

the time efficiency, which is an important aspect of online

real-time sensor-based human activity recognition. To further
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TABLE 1. Weighted F1 score performances of different recognition
models on the Opportunity and UniMiB-SHAR datasets.

illustrate the effectiveness of our network, we conducted

experiments on both tasks of the Opportunity challenge,

either including or ignoring the Null class. The performances

are shown in Table 2. Our proposed model outperforms

DeepConvLSTM on all the tasks except modes of locomotion

without the Null class. This result occurs because the loco-

motion task has fewer classes and is easier to recognize than

the gesture recognition task; consequently, our novel modules

cannot realize their potential.

FIGURE 4. Weighted F1 scores on different classes of the Opportunity
dataset. The blue line shows the percentage of each class in the dataset,
and the orange line represents the performance on every class. The
horizontal axis represents the number of gestures in the Opportunity
dataset. 1: ‘‘Null’’, 2: ‘‘Open Door 1’’, 3: ‘‘Open Door 2’’, 4: ‘‘Close Door 1’’,
5: ‘‘Close Door 2’’, 6: ‘‘Open Fridge’’, 7: ‘‘Close Fridge’’, 8: ‘‘Open
Dishwasher’’, 9: ‘‘Close Dishwasher’’, 10: ‘‘Open Drawer 1’’, 11: ‘‘Close
Drawer 1’’, 12: ‘‘Open Drawer 2’’, 13: ‘‘Close Drawer 2’’, 14: ‘‘Open Drawer
3’’, 15: ‘‘Close Drawer 3’’, 16: ‘‘Clean Table’’, 17: ‘‘Drink from Cup’’, and 18:
‘‘Toggle Switch’’.

For the gesture recognition task, we depict the Fw for

each gesture to reveal the influence of training data size

on the recognition performance. As shown by the blue line

in Fig. 4, the Opportunity dataset has a serious imbalance

problem. The Null class (class 0) represents almost 70% of

the items in the dataset, while the other classes rarely repre-

sent more than 2%. This phenomenon reveals that most of this

dataset involves uninteresting human activities. Although the

dataset is imbalanced, the performances on these classes are

quite different. As shown by the orange line plots in Fig. 4,

the Null class achieves the best performance (above 95%).

Surprisingly, however, we find that the ‘‘Open Door 2’’ class

(class 3) and ‘‘Close Door 2’’ class (class 5) achieve high

performances (above 88%), while class 5 even achieves anFw
of 90%. This experiment shows good human activity recogni-

tion performance can be achieved from only a small amount

of training data, which motivates us to seek even better deep

learning models for HAR. We also compare our model’s per-

formance in this experiment with that of [26]. That model’s

worst performance on this dataset is below 40%, while our

model’s worst performance is approximately 50%, further

demonstrating the effectiveness of our proposed model.

FIGURE 5. Five-fold cross-validation evaluation results of different
models on the UniMiB-SHAR dataset.

To further examine the effectiveness of our proposed

method, we performed a 5-fold cross-validation on the

UniMiB-SHAR dataset and compared its results with the

TriPSDRNN [36], LSTM [25] and Hybrid [1] models, as

shown in Fig. 5. The proposed model achieves the highest

weighted F1 score and MAA (97.3% and 95.3%, respec-

tively). Compared with the TriPSDRNN, whose hand-crafted

features include both time and frequency characteristics, our

proposed network extracts discriminative features from accel-

eration data and outperforms TriPSDRNN by a margin of

0.8% on weighted F1 score and 0.6% on the MAA. We can

also see that our proposed model outperforms the LSTM and

Hybrid models, which further demonstrates the effectiveness

of the two proposed modules.

B. EFFICIENCY

Because collecting data from body-worn sensors typically

has high temporal resolution, human activity recognition is

a time-critical issue. Therefore, we analyzed the recognition

efficiency of our model compared to the DeepConvLSTM

model from three aspects: the number of parameters, the com-

putational complexity, and the recognition time per activity.

Table 3 presents the numbers and sizes of the parameters

required by our model and by the DeepConvLSTM model.

Both models have 8 fundamental layers: one input layer, four

convolutional layers, two LSTM layers and a single fully

connected layer. In addition, our network includes the two

proposed modules; we also count their parameters. The last

row of Table 3 lists the total number of parameters. Ourmodel
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TABLE 2. Weighted F1 scores of the proposed model and DeepConvLSTM on the Opportunity dataset for the gesture and modes of locomotion
recognition tasks when including or omitting the Null class.

TABLE 3. The numbers and sizes of parameters required by the DeepConvLSTM model and our proposed model. The final number of parameters depends
on the number of classes in the classification task, denoted as nc.

FIGURE 6. FLOPs of the proposed network and deepConvLSTM on the
Opportunity dataset and UniMiB-SHAR dataset.

requires approximately 2 times fewer parameters than those

of DeepConvLSTM, which indicates that the proposed net-

work is more suitable for devices with limited memory.

To further reveal the computational complexity and the

time efficiency, we calculated the floating-point operations

(FLOPs) and the inference time of our network and deep-

ConvLSTM. Measuring FLOPs can help reveal the compu-

tational complexity, while inference time is the time that

models require to recognize a data segment on a computing

FIGURE 7. Inference times for CPU and GPU versions of the proposed
network and deepConvLSTM on the Opportunity and UniMiB-SHAR
datasets.

device.We conducted this experiment on an Intel(R) Xeon(R)

Gold 6130 CPU and a RTX 2080 Ti GPU. The results are

shown in Fig. 6 and Fig. 7. As shown in Fig. 6, the total

FLOPs are given at the top of each bar. The FLOP values

for our proposed model are further individually divided into

those used by the fundamental ConvLSTM, the DCM and the

MFAM. Compared with the deepConvLSTM, our fundamen-

tal ConvLSTM (whose architecture is similar to that of the

deepConvLSTM) achieves inconsistent performances on the
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two datasets. This inconsistency is caused by the following

two factors. On the one hand, our proposed model uses a

1 × 1 convolutional layer and a padding operation, which

helps align the output size of the multilayer features in the

3 × 1 and 1 × 3 convolutional layers. However, the input

data matrix of the Opportunity dataset is larger than that of

the UniMiB-SHAR dataset, and the FLOPs are more affected

by the 1 × 1 convolutional layer and padding operation,

which increases the number of FLOPs required by the funda-

mental ConvLSTM on the Opportunity dataset. On the other

hand, the longer the input time steps of the data segment

on the UniMiB-SHAR dataset, the smaller are the FLOPs

of the fundamental ConvLSTM compared with those of the

deepConvLSTM, because the LSTM layers require fewer

parameters. Regarding the two modules, the MFAM FLOP

values are larger than those of the DCM because the MFAM

includes more convolutional layers. On CPU, the inference

time performance is consistent with the results of the FLOPs.

However, on the GPU, which is more suitable for parallel

computing, the proportion of inference time spent in theDCM

and MFAM modules is small. Overall, although our model’s

human activity recognition speed is slower than that of the

DeepConvLSTM, our model is still fast enough to meet the

application requirements because the sliding window lengths

of the Opportunity dataset and the UniMiB-SHAR dataset are

800 ms and 3,000 ms, respectively.

C. MULTIMODAL FUSION ANALYSIS

Sensor-based human activity recognition often uses multi-

modal sensor data with many sensor channels, which makes

device setups complex. It is important for a network designed

for human activity recognition to be robust to variations of

different modalities and different sensor channels. Therefore,

we conducted experiments with various modalities and var-

ious sensor channels. In Fig. 8, we show the weighted F1

FIGURE 8. Performances using different sensor modalities on the
Opportunity dataset. The blue histogram represents the weighted F1

scores by the proposed model when employing different sensor
modalities. The green line represents the total number of sensor
channels. ‘‘A’’, ‘‘G’’ and ‘‘M’’ represent accelerometer, gyroscope and
magnetic data, respectively. The ‘‘Total’’ represents the complete
Opportunity sensor set, which includes 113 channels.

score of our model on the Opportunity dataset for different

modalities. In this experiment we used all the classes in this

dataset except the Null class to match the setting of [26].

The results show that when using only several accelerom-

eters with 15 channels, our model achieves a performance

of 74%, and it improves the Fw by 6% when using gyro-

scopes with 15 channels. The performance exceeded 85%

when we combined accelerometers and gyroscopes. When

magnetic sensors are also added, the Fw is decreased slightly.

In addition, we tested using all sensors (113 channels), but

the performance improved by only 3%. This result reveals

that model performance is not linear based on the number of

sensor modalities.

We also conducted experiments with different subsets of

the 113 sensor channels on the Opportunity dataset. We used

the minimal-redundancy maximal-relevance (mRMR) algo-

rithm [37], which selects a sensor channel based on mutual

information, to select different sensor channel subsets, and

we set the channel number to 5, 10, 20, 50, 80, and 113.

The experimental settings are the same as those used in the

experiment with various modalities. The results are shown in

Fig. 9. As expected, increasing the number of sensor chan-

nels can achieve better performances. The best performance

occurs when using all the sensor channels. However, because

the amount of redundant information also increases, the rate

of classification performance growth decreases.

D. HYPERPARAMETER EVALUATION

We conducted experiments on the influences of the four

key hyperparameters in our network: sliding window length,

kernel size of the convolutional layers, fusion mode of the

DCM, and the number of convolutional layers. We performed

5-fold cross-validation for these hyperparameter evaluation

experiments, which were conducted on the UniMiB-SHAR

dataset.

1) SLIDING WINDOW LENGTH

To enable a fair comparison with the DeepConvLSTM, the

default sliding window length on the Opportunity dataset was

FIGURE 9. Performances using different numbers of sensor channels on
the Opportunity dataset (selected by the mRMR algorithm).
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set to 0.8 s. The UniMiB-SHAR dataset was sliced using

a fixed-width sliding window of approximately 3 s. How-

ever, regarding different sliding window lengths, a too-short

window is insufficient to extract effective features, while a

too-long window leads to excessive amounts of redundant

information. Therefore, we wanted to reveal the influences

of various sliding window lengths. We conducted the experi-

ments with length sequences of 0.4 s, 0.8 s, 1 s, and 1.5 s on

the Opportunity dataset and 1.5 s, 2 s, 2.5 s, and 3 s on the

UniMiB-SHAR dataset.

FIGURE 10. Weighted F1 scores of the proposed network on the
Opportunity dataset and the UniMiB-SHAR dataset with different sliding
window lengths. The green and orange histograms represent the
classification performances for sliding window lengths of 0.4 s, 0.8 s, 1 s,
and 1.5 s and 1.5 s, 2 s, 2.5 s, and 3 s, respectively.

Fig. 10 illustrates the performances under different

sequence lengths on the Opportunity and UniMiB-SHAR

datasets. Lengths of 0.8 s and 3 s achieve the best weightedF1

scores (92.2% and 97.3%) for the two datasets, respectively.

For the Opportunity dataset, when the sliding window length

is longer or shorter than 0.8 s, the performance begins to

decrease. For the 0.4 s and 1.5 s cases, the weighted F1

scores fell below 91.5%. On the UniMiB-SHAR dataset, the

performance decreases when the sliding window length is

shorter than 3 s, and the worst performance (96.0%) occurs

at a window length of 2 s. From these results we can observe

that the recognition performance of the network for human

activity recognition is strongly affected by the slidingwindow

length setting.

2) KERNEL SIZES OF CONVOLUTIONAL LAYERS

We know that large convolution kernels for CNNs can enlarge

receptive field; thus, intuitively they should extract better

features. Using a square (N × N) convolution simultane-

ously captures local dependencies along the time and spatial

domains for unimodal sensor data, but this setting requires

high numbers of parameters. A two-layer convolution oper-

ation (a N × 1 convolution followed by a 1 × N convo-

lution), can also capture local dependency along time and

spatial domains but requires fewer parameters. Therefore,

we conducted experiments to reveal the classification perfor-

mances of our proposed model under different kernel sizes

FIGURE 11. Different fusion modes of the DCM.

FIGURE 12. Classification performances of our proposed network on the
Opportunity dataset and the UniMiB-SHAR dataset with different
numbers of convolutional layers.

on the Opportunity dataset and the UniMiB-SHAR dataset.

We embedded different kernel sizes in the fundamental Con-

vLSTM and the MFAM, which use 3 × 1 and 1 × 3 kernel

sizes, respectively, in our proposed network. TheMFAMuses

a 1 × 3 kernel size on the UniMiB-SHAR dataset because it

includes data only from a 3-axis accelerometer.

TABLE 4. Weighted F1 score performance of the proposed network on
the Opportunity dataset and the UniMiB-SHAR dataset with different
kernel sizes. ’F’ and ’M’ represent the fundamental ConvLSTM and the
MFAM, respectively.

As Table 4 shows, we can observe that the kernel sizes

(3 × 1 and 1 × 3) on the Opportunity dataset and the kernel

sizes (5×1 and 1×3) on the UniMiB-SHAR dataset achieve

the best weightedF1 scores (92.2% and 97.4%, respectively).

From this experiment, we can make two inferences. First, the

two-layer convolution operation is suitable for our proposed
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FIGURE 13. Probability estimations of I1, I2, I3, It for the true class of 40 sample data
on the Opportunity dataset (I1, I1, I3, It are illustrated in Fig. 3). Each row represents
the probability estimation for the corresponding true class of each Ii, and each column
represents the probability estimation for each sample.

network and has fewer parameters. Second, compared with

the Opportunity dataset, the longer input time steps of the

UniMiB-SHAR dataset require a relatively larger kernel size

to extract the most effective features along the temporal

dimension.

3) FUSION MODE OF THE DCM

The fusion mode of the features extracted by multilay-

ers networks affects their classification performances; their

architectures are designed to aggregate multilayer features.

Therefore, we conducted an experiment to investigate the

influence of using different fusion modes in the DCM. Our

proposed network uses mode A of Fig. 11, which also cor-

responds to Equation 1. For comparisons with mode A, we

employ three other fusion modes. Mode B is an average

weighted fusion mode similar to mode A. Mode C is the

fusion method we use in the MFAM, and mode D is similar

to mode C except for the concatenation operation.

TABLE 5. Weighted F1 score performance of the proposed network on
the Opportunity and UniMiB-SHAR datasets when using different fusion
modes in the DCM.

As Table 5 illustrates, the proposed network simultane-

ously achieves its best performances on both the Opportunity

and UniMiB-SHAR datasets when using mode C (92.3% and

97.3%, respectively), illustrating the following three points.

First, using a better fusion mode for the DCM improves the

classification performance of our proposed network. Second,

the results further prove the effectiveness of the aggregation

method designed for the MFAM. Third, because the perfor-

mance of mode D is lower than that of mode C on the two

datasets, in our proposed model, the addition operation is

more suitable for aggregating information than is the concate-

nation operation.

4) THE NUMBER OF CONVOLUTIONAL LAYERS

We also show how the performance of our model changes

when using different numbers of convolutional layers.

Because the DCM and MFAM require at least two 3 × 1

convolutional layers, we set the range for the number of

layers to [2, 5]. As the results in Fig. 12 show, the Fw score

improves by 0.7% and 0.2%, respectively, on the Oppor-

tunity dataset and the UniMiB-SHAR dataset when a new

layer is added to the two-convolutional-layer model. The

recognition performance was highest when using 3 and 4

convolutional layers on the Opportunity and UniMiB-SHAR

datasets, respectively.

We conducted an ablation experiment to show the effec-

tiveness of the two proposed modules on the final recognition

performance on the two datasets. As listed in Table 6, we

achieved Fw scores of 91.4% and 96.6%, respectively when

employing the fundamental ConvLSTM (M1). Then, when

we added the DCM to the baseline model (M2), the Fw scores

improved to 91.8% and 97.0%, respectively, as listed in the

second row in Table 6. Next, we added only the MFAM to

the model, and the performance decreased slightly, as shown

in the M3 row. Finally, our complete network obtains Fw
scores of 92.2% and 97.3% on the two datasets, respectively.

These results demonstrate that the DCM and MFAM both

help improve the recognition performance.

E. MULTILAYER FEATURE AGGREGATION ANALYSIS

To further clarify the effectiveness of the MFAM, we choose

40 sample data points and extracted feature maps from I1,

I2, I3, It (see Fig. 3). Then, we separately input these feature

TABLE 6. Weighted F1 scores on the Opportunity and the UniMiB-SHAR
datasets for our complete proposed model and three ablated models: the
fundamental ConvLSTM and the fundamental ConvLSTM with either the
DCM or the MFAM.
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maps into the two LSTM layers and the fully connected layer

of our model to obtain output probability estimations for each

sample representation. Each column of Fig. 13 reflects one

data sample, and the four rows for each data point represent

the probability estimations of I1, I2, I3, It for the true class.

We intuitively observe from Fig. 13 that multilayer feature

aggregation (It ) can select the most discriminant weighted

feature maps and prevent incorrect predictions. For example,

the probability of I1, I2, I3 for No.16 is approximately 0%;

however, themultilayer feature aggregation (It ) extracts fused

information from the other three feature maps and obtains a

probability of 95%. Although multilayer feature aggregation

may reduce the probability of the true class for some samples

(such as No.18 and No.23), it still produces a reasonable

correct probability for these samples.

VI. CONCLUSION

For multimodal sensor-based human activity recognition

applications, most existing works use large convolution ker-

nels and employ only the top-level information extracted by

the bottom-up feedforward process. These operations often

achieve only low recognition efficiency and ignore consider-

able amounts of rich information. In this paper, we propose

a novel hybrid network by designing a fundamental Con-

vLSTM pipeline with a dense connection module (DCM)

and a multilayer feature aggregation module (MFAM). The

DCM promotes information flow in the model and ensures

that each layer can directly access the gradients of the loss

function. The MFAM collects the features of each layer and

aggregates them according to their importance. Compared

with DeepConvLSTM and other state-of-the-art methods, our

proposed network achieves the best performances on the

Opportunity and UniMiB-SHAR datasets. To fully reveal

the effectiveness of our network, we conducted experiments

to test its efficiency and the effects of multimodal fusion

and hyperparameter settings on the two datasets. In addition,

we show the performances of the two modules on the two

datasets separately and visualize the probability output by the

MFAM for some samples.

In future work, to verify the robustness and practicality

of our model, we plan to conduct experiments on additional

datasets and apply our modules to other state-of-the-art deep

learning models.
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