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Abstract 

This paper describes a neural network model for the study 
of spatial language. It deals with both geometric and 
functional variables, which have been shown to play an 
important role in the comprehension of spatial prepositions. 
The network is integrated with a virtual reality interface for 
the direct manipulation of geometric and functional factors. 
The training uses experimental stimuli and data. Results 
show that the networks reach low training and 
generalization errors. Cluster analyses of hidden activation 
show that stimuli primarily group according to extra-
geometrical variables. 

1 Introduction 

The aim of this work is to develop a hybrid neural network 
(NN) and virtual reality (VR) system for the study of spatial 
language and cognition. It will also be tested as a prototype 
natural language interface for virtual environments.  

Spatial language, and in particular the use and 
understanding of spatial terms such as over, above, under, 
and below, has proven to be an important experimental field 
for the investigation of cognition [3,13]. The use of an 
expression involving a spatial preposition in English 
conveys to a hearer where one object (figure) is located in 
relation to a reference object (ground). Understanding the 
meaning of spatial prepositions is of particular importance 
in semantics as they are among the set of closed class terms 
which are generally regarded as having the role of acting as 
organizing structure for further conceptual material [14]. 
Recently, both experimental research and computational 
models have investigated the use of spatial prepositions, 
and their role in spatial cognition.  

1.1 Psychological L iterature on Spatial Language and 
Function 
In the experimental psychological literature it has been 
shown that both geometric (e.g., the distance between two 
objects and their relative orientation) and extra-geometric 
variables (e.g., the function of an object and its size and 

shape) play an important role in the comprehension of 
spatial prepositions.  

Traditionally, geometric constructs have been invoked to 
underpin prepositions’  lexical entries (e.g., [10,11]). For 
example, in the sentence, “The pear is in the bowl,”  the 
figure (the pear) is located in the region described by the 
prepositional phrase “ in the bowl” , with the spatial relation 
expressed by in corresponding to “contained interior to the 
reference object.”   

Clearly, while geometry is important in the use and 
comprehension of spatial prepositions, other extra-
geometric variables need to be invoked in order to account 
for use and comprehension. For example the expression, the 
man is at the piano, implies that the man is playing the 
piano, not just that he is in close proximity to it. There have 
been a number of empirical demonstrations showing that 
extra-geometric factors play an important role in the use 
and comprehension of spatial prepositions. Functional 
relations have been postulated as key components 
underlying the meaning of the spatial prepositions in, on 
and at [1, 3, 4].  

Functional relations have to do with how objects interact 
with each other, and what the functions of objects are. For 
example, with in, Garrod and Sanford [7] and Coventry [3] 
propose that the lexical entry is: in [functional containment 
- in is appropriate if the ground is conceived of as fulfilling 
its containment function]. Whether or not in is appropriate 
depends on a number of factors which determine whether 
the container is fulfilling its function. Empirical evidence 
for the importance of this functional analysis has been 
forthcoming for topological prepositions.  

It has also recently been shown that prepositions are 
influenced differentially by geometric and extra-geometric 
variables. Coventry, Prat-Sala and Richards [5] found that 
the comprehension of over and under was more influenced 
by function than above and below, while the comprehension 
of above and below was better predicted by geometry than 
over and under. In addition, effects of extra-geometric 
variables have been shown to influence use and 
comprehension even when the prototypical geometric 
constraint holds. For example, they found that 
appropriateness ratings of expressions such as the umbrella 



is over the man to describe a picture of a man holding an 
umbrella were reduced when rain was depicted as falling on 
the man even when the umbrella was depicted directly 
above the man’s head [5]. 

1.2 Neural Network Models of Spatial Language 
There is some computational work that has modeled the 
acquisition and use of spatial terms using neural networks 
with a psychologically and linguistically plausible 
approach. Harris [9] used neural networks to model the 
polysemy of the preposition over, that is the fact that the 
term over appears to have many different senses, such as 
"being above", "up", "across", etc. Harris's model used 
feedforward neural networks trained through back 
propagation to learn to associate the correct meaning of 
over with different sentences. All input sentences contained 
the term over to relate the position of a figure object with 
respect to a ground object. After learning the correct 
mapping of the meanings of over, the activity of some of 
the hidden units auto-organizes in a way that units become 
sensitive to certain features of the object set used in the 
training sentences. There are units whose activation 
distinguishes between objects which are or are not normally 
in contact with a surface, and other units that are sensitive 
to the size and shape of the objects.  

The model introduces the problem of polysemy and 
openness of the meaning of some spatial terms [9]. It shows 
the emergence of the role of object-knowledge effects for 
spatial language using auto-organization systems, such as 
neural networks. However, this work lacks any reference to 
the role of geometrical features in the learning and use of 
spatial prepositions. The encoding of input in only linguistic 
terms does not allow any processing of geometrical 
properties between objects. The neural network model is 
subject to the problem of symbol grounding in cognitively 
plausible models [8].  

Terry Regier [12] has proposed a computational model 
for spatial prepositions using a method called "constrained 
connectionism" [6]. The model is trained on the use of 
various spatial prepositions for static (e.g. over and above) 
and moving (e.g. through) objects, and makes explicit use 
of the processing of geometrical information. The model 
consists of a complex neural network in which the units' 
layers and connection patterns are structured according to 
neuropsychological and cognitive evidence; only a few 
units are based on unstructured parallel distributed 
processing. An image of two objects (ground and figure) is 
input to the lower layer of the network. Then the image 
goes through several levels of geometrical processing. The 
output units, corresponding to spatial prepositions, are 
activated according to the geometrical position of the figure 
object with respect to the central ground. Regier [12] tested 
this model for various cognitive and cross-linguistic spatial 
language phenomena. For example, the model proved 
suitable for reproducing the experimental data of Logan & 

Sadler's [11] spatial templates for the prepositions over, 
above, under and below.  

The Regier model, even though it is able to reproduce 
many of the experimental and cross-linguistic data on the 
use and learning of spatial terms, has the limitations of 
relying only on geometrical-based processing and only 
deals with abstract objects. The network uses different 
geometrical indices, such as the center of mass between the 
two objects, their minimal distance, and the overlapping of 
their shapes. Although the use of these geometric 
components does allow the system to deal with change over 
time, no other information is extracted and used, such as 
that of the objects' functionality.  

Recently, a new computational model for spatial 
language has been proposed by Regier & Carlson [13]. This 
does not use connectionist techniques. It is based both on 
attentional factors on the processing of geometrical features 
of abstract objects. 

2 Method 

The prototype of a hybrid NN and VR system has been 
developed. The NN learns to use spatial prepositions in 
response to input stimuli describing geometrical and 
functional relationships between two objects. The NN 
module is integrated with a VR interface, where a user can 
directly manipulate geometric and extra-geometric factors.  
This system can be used as an experimental tool for spatial 
language and for natural language interfacing in VR 
environments. 

2.1 Neural Network 
The NN architecture consists of a multi-layer perceptron. 
The input layer receives information about a visual scene 
depicting specific spatial configurations of objects. The 
output units activate the correct spatial preposition(s) 
describing the scene. The network has four output units, 
respectively for the prepositions over, above, under and 
below. The activation of each unit corresponds to the level 
of agreement for the use of a specific term. After training, 
the activation must correspond to the subjective ratings 
collected in experimental studies. The hidden layer contains 
five units, a number sufficient for the network to learn the 
training data. The number of input units varies according to 
the explicit/implicit encoding of some of the properties of 
the objects and the scene. 

The training and testing task utilize the stimuli and data 
from an experiment on the role of functional factors in the 
rating of the spatial prepositions over/above/under/below 
(experiment 2 in [5]). In this study, subjects used a 7-point 
Likert scale to rate the use of the four spatial prepositions 
for 72 scenes. A scene always depicted a man 
holding/wearing an object (e.g. umbrella, visor) to protect 
himself from another object (e.g., rain, spray). In this 
experiment four independent variables were manipulated: 
ORIENTATION of the protecting object (3 levels: an umbrella  



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
can be rotated at 90, 45, and 0 degrees) FUNCTION 
fulfillment of protection from the rain (3 levels: yes, no, 
control), APPROPRIATENESS of object for protection 
function, e.g. umbrella or suitcase (2 levels: yes, no) and 
OBJECT type (4 levels). This results in 72 experimental 
scenes/conditions. An example of three scenes is presented 
in Figure 1. The scenes differ in the level of the variable 
FUNCTION. 

Three network architectures are used. They only differ in 
the number of input units and the way input scenes are 
encoded. The five hidden units and the four output units are 
the same in all networks (Figure 2). 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Network A: Localist experiment encoding 
In this network, the number of input units exactly reflects 
the number and levels of the four experimental variables. 
This architecture has a total of 12 localist input units. We 
use the term localist to indicate that for each variable only 
one unit is active.  

Three input units are used to encode the three levels of 
ORIENTATION of the protecting object. Three localist units 
are used for the three levels of the FUNCTION independent  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
variable. Two units encode the levels of APPROPRIATENESS, 
and four units the types of OBJECT. 

Network B: Localist Object Encoding 
This network does not have an explicit representation of the 
object appropriateness, because eight localist units are used 
to represent all objects. There are also three localist units 
for ORIENTATION and three for FUNCTION. This architecture 
has a total of 14 input units. 

Network C: Feature-based Object Encoding 
In this network the objects are encoded according to their 
geometrical and functional features. Each object is 
represented using eight feature-based units. Three units 
encode the dimension of the object in the three dimensions 
(x, y, z) and three encode the major shape components 
(hemispherical, conical, cuboid). Two units refer to the 
lexicalized function of the object (i.e. APPROPRIATENESS). 
For example, the object umbrella is encoded as x=1, y=1, 
z=.67, hemispherical=1, conical=0, cuboid=0, 
appropriate=1, inappropriate=0. 
There are three localist units for ORIENTATION and three for 
FUNCTION. This architecture has a total of 14 input units. 

Training 
A standard error backpropagation algorithm was used, with 
a learning rate of .01, momentum of .9 and 10000 epochs. 
Of the total of 72 scenes, 71 were used for each training 
epoch, and 1 for the generalization test. The training of each 
network type A/B/C was replicated ten times, by varying 
the initial random weights and the stimulus randomly taken 
out for the generalization test. 

The subjects’  mean ratings for the use of the four 
prepositions were normalized in the range 0-1 and were 
used as teaching input for the backpropagation training. 

2.2 Vir tual Reality Environment 
The VR module consists of an interface for the 
manipulation of 3D objects in the scene. For example, in 
the umbrella scene there are three objects that the user can 
manipulate: the man, the protecting object (e.g. umbrella or 

 
Figure 2: Neural network architecture 

 

Figure 1: Examples of experimental conditions in the second experiment of Coventry et al. [5]. The three scenes differ in the level of 
variable FUNCTION. In the control condition (left) there is not rain, in the non-functional condition (center) the umbrella does not protect 
the man from the rain, and in the functional condition (right) the umbrella is fulfilling its function of protection the man from the rain.



suitcase), and the rain. For the protecting objects, the user 
can edit some of their features, such as the size and rotation. 
The program starts by showing an almost full-screen 
window with eleven buttons and displays a man with his 
right hand up. This man is rotated 60 degrees around his Y-
axis. The user can then display/hide an object and edit its 
features. Once all the attributes are ready, the user can click 
on the “NNAnswer”  button to ask the NN module to 
provide the rating for the four prepositions (Figure 3).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This VR module was developed in Java using Borland’s 
Builder Java3D library. Through the Java3D API is possible 
to create simple virtual reality worlds. The Java program 
also controlled the communication with the NN module 
running in Mathlab.  

3 Results 

3.1 Training and generalization 
The training task was relatively easy to learn for a 
multiplayer perceptron, mainly due to the limited set of 
training data (71 training stimuli). The final error for all 
different architectures resulted in an average SSE 0.05. The 
networks were also able to generalize well to the stimulus 
taken out from the training set. The average generalization 
error for all architectures was 0.04. Table 1 reports the 
detailed average errors for each architecture. The results are 
similar in the three conditions, with a tendency for the 
feature-based object encoding network to reach lower 
training error. 

The whole VR and NN system was also successfully 
tested. After manipulating the properties of objects in the 
VR interface, the network produced the correct rating for 

each preposition that were passed back to the VR interface 
and shown to the user.  
 
Table 1: Average training and generalization errors for the three 

network architectures. 
 

 
 

SSE error 

Net A: 
Localist 

experiment 

Net B: 
Localist 
object 

Net C: 
Feature 
object 

Training 0.051 0.055 0.046 
Generalization 0.041 0.046 0.044 

 

3.2 Analysis of Internal Representations 
To understand the way geometrical and extra-geometrical 
factors are processed by the networks, a cluster analysis of 
the hidden activation was performed. This informs us about 
the major criteria used by the network to perform the spatial 
language task. A greater distance between clusters indicates 
which variables are used first to process (i.e. separate) 
stimuli and experimental conditions. 

For each of the three network architectures, we chose the 
five out of the ten replications with the best learning 
performance. The connection weights of the fifteen selected 
networks after epoch 10000 were used to calculate the 
hidden activation. The activation values of the five hidden 
units for each of the 72 input scenes were saved and used to 
perform a cluster analysis. Subsequently, we studied the 
cluster diagrams to identify the order in which some 
functional and/or geometrical factors are used to separate 
clusters of experimental scenes. Although there was 
variability between the five cluster analyses of each 
architecture, it was possible to identify some common 
clustering strategies for each condition. 

Diagrams of network A 
With the experiment encoding architecture there are three 
diagrams that share the use of common and consistent 
clustering criteria. In these networks, clusters are created 
early according to a geometrical factor, i.e. the 
ORIENTATION variable. The first divisions group input 
scenes according to the degree of rotation (0, 45, 90) of the 
protecting object. The second consistent clustering criterion 
groups scenes according to the type of objects falling on the 
man (e.g. rain or spray). In the fourth diagram, the early 
clustering criteria are a mix of the FUNCTION fulfillment and 
the ORIENTATION variables. The fifth diagram does not 
have an identifiable clustering criterion. 

Diagrams of network B 
In the five diagrams for the architecture with localist object 
encoding, the early divisions into clusters are determined by 
the variables ORIENTATION and by that of the falling object. 
There is not clear and consistent prioritization of these two 
factors.  

Diagrams of network C 
The condition with feature-based encoding of objects has 
four diagrams that share the same clustering criteria. The 

 
Figure 3: Interface of the VR system. The user can choose the 
protecting object to display and edit its features. After the NN 
processes the scene, the ratings for the four spatial prepositions
are shown in the bottom right corner of the interface. 



first factor determining the early clusters is the 
APPROPRIATENESS of objects for the protection function. 
Secondly, the clusters are then subdivided according to the 
type of falling objects. Thirdly, scenes group into clusters 
that have similar dimensions or shape components. Figure 4 
shows a cluster diagram for this condition. A major 
difference between this condition and the other two is that 
up to the last level of clustering the appropriate and 
inappropriate objects are always kept separate. In networks 
A and B only at the level of the final clusters the two 
objects are separated. Finally, one cluster out of five uses an 
unclear and inconsistent grouping strategy. 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Overall, the results of hidden activation clustering show 

that with architectures using localist encodings (networks A 
and B), geometrical factors such as the orientation of the 
protecting object prevail. When an explicit encoding of 
extra-geometrical factors is used, as with architecture C, the 
stimuli tend to primarily group according to variables 
related to the function of objects. Most of these extra-
geometrical variables, such as the object’s lexical functional 
appropriateness and its size, have been proven to greatly 

affect the use and comprehension of spatial terms [2]. 
Therefore, the explicit encoding of objects’  extra-
geometrical properties (e.g. through feature-based input unit 
of network C) and its subsequent effect on the network 
processing strategies seem to more adequately reflect the 
phenomena observed in experimental subjects. This better 
match between the network and experimental data favors 
the use of such a type of architecture for the further 
development of a computational model of spatial language 
and cognition. 

4 Conclusion 

This hybrid NN and VR system allowed us to model the 
effects of functional and geometrical factors on the 
comprehension of spatial prepositions. Moreover, it 
provides a prototype NLP interface for interactive VR 
applications.  

Further research is being conducted in order to develop a 
psychologically plausible neural network model for the 
processing of spatial language. The current prototype model 
shows the importance of explicitly encoding and inputting 
the extra-geometrical features of objects, as well as their 
geometrical properties. However, the use of a pre-defined 
set of functional features and its distributed and explicit 
encoding in the input units is not yet satisfactory. A 
computational model of spatial language and cognition 
should be able to derive, on-demand, and use the right set of 
properties that are salient to the scene and its context. This 
is the direction that we are following in our on-going 
research. 
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