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A hybrid neural network-first principles modeling scheme is developed and used 

to model a fedbatch bioreactor. The hybrid model combines a partial first principles 
model, which incorporates the available prior knowledge about the process being 
modeled, with a neural network which serves as an estimator of unmeasuredprocess 
parameters that are difficult to model from first principles. This hybrid model has 
better properties than standard “black-box” neural network models in that it is able 
to interpolate and extrapolate much more accurately, is easier to analyze and in- 
terpret, and requires significantly fewer training examples. Two alternative state and 
parameter estimation strategies, extended Kalman filtering and NLP optimization, 
are also considered. When no a priori known model of the unobserved process 
parameters is available, the hybrid network model gives better estimates of the 
parameters, when compared to these methods. By providing a model of these zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAun- 
measured parameters, the hybrid network can also make predictions and hence can 
be used for process optimization. These results apply both when full and partial 
state measurements are available, but in the latter case a state reconstruction method 
must be used for the first principles component of the hybrid model. 

Introduction 

The term “artificial neural networks” is a generic description 
for a wide class of connectionist representations inspired by 
the models for brain activity. The most common task of these 
models is to perform a mapping from an input space to an 
output space. A typical multilayered feedforward neural net- 
work (Rumelhart et al., 1986) is shown in Figure 1. It consists 
of massively interconnected simple processing elements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(‘ ‘neu- 
rons” or “nodes”) arranged in a layered structure, where the 
strength of each connection is given by an assigned weight; 
these weights are the internal parameters of the network. The 
input neurons are connected to the output neurons through 
layers of hidden nodes. Each neuron receives information in 
the form of inputs from other neurons or the world and proc- 
esses it through some-typically nonlinear-function (the “ac- 
tivation’’ function); in this way the network can perform a 
nonlinear mapping. It has been shown that, under some mild 
assumptions, such networks, if sufficiently large, can approx- 
imate any nonlinear continuous function arbitrarily accurately 
(Stinchcombe and White, 1989). 

Correspondence concerning this article should be addressed to L. H. Ungar. 

These connectionist models have the ability to “learn” the 
frequently complex dynamic behavior of a physical system. 
Learning is the process where the network approximates the 
function mapping from system inputs to outputs, given a set 
of observations of its inputs and corresponding outputs. This 
is done by adjusting the network’s internal parameters, typi- 
cally in such a way as to minimize the squared error between 
the network’s outputs and the desired outputs. One such 
method is the error back-propagation algorithm (Werbos, 1974; 

Rumelhart et al., 1986), which is essentially a first-order gra- 
dient descent method. The ability to approximate unknown 
functions through presentation of their instances makes neural 
networks a useful and potentially powerful tool for modeling 
in engineering applications. 

Neural networks have typically been used as “black-box” 
tools, that is, no prior knowledge about the process was as- 
sumed; the goal was to develop a process model based only 
on observations of its input-output behavior. Modeling with- 
out using zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAapriori knowledge has often proved successful (Bhat 
and McAvoy, 1990; Psichogios and Ungar, 1991; Willis et al., 
1991) and is the only possible method when no process knowl- 
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Figure 1. Multilayered feedforward neural network. 

edge is available. The ability of neural networks to learn non- 
parametric (structure-free) approximations to  arbitrary 
functions is their strength, but it is also a weakness. A typical 
neural network involves hundreds of internal parameters, which 
can lead to “overfitting”-fitting of the noise as well as the 
underlying function-and poor generalization. Furthermore, 
interpretation of such models is difficult (Mavrovouniotis, 
1992). 

As a result, there has been an increasing interest in devel- 
oping modeling methods that address these problems. Since 
redundancy (excess degrees of freedom) may result in poor 
models, one approach has been to decrease the redundancy of 
the neural network model by developing algorithms that 
“prune” the weights that have no significant effect on the 
network’s performance (McAvoy and Bhat, 1990; Karnin, 
1990; Mozer and Smolensky, 1989). These methods either pen- 
alize model complexity or examine the sensitivity of the pre- 
diction error to the network’s weights, and eliminate these 
weights (connections) that least affect the fit. However, they 
do not address the issue of lack of internal model structure 
and do not use prior knowledge about the process being mod- 
eled. 

A different approach has focused on imposing internal struc- 
ture in the neural network model, typically by using some prior 
knowledge about the process. The common feature of methods 
that follow this approach is that clearly identifiable different 
parts of the resulting network model perform different tasks, 
and it is this interpretation that we give to the term internal 
structure in the remainder of the article. One possibility is to 
create a structured network that combines a known linear 
model with a nonlinear neural network (Haesloop and Holt, 
1990). The basic idea behind this technique is that the nonlinear 
part of the network will model the process nonlinearities, thus 
enabling the complete model to capture more complex dynamic 
behavior than the linear part of the network alone. An alter- 
native is to construct a neural network model which can be 
considered as a hierarchical, sparsely connected, network of 
smaller subnetworks that perform some local calculation. The 
task that each of these smaller networks is assigned to perform, 
as well as the connectivity among them, is based on empirical 
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guidelines and analysis of the system’s behavior (Mavrovou- 
niotis, 1992). 

We believe that it is advantageous to zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori structure the 
neural network models; in machine learning terminology, this 
is characterized as imposing “inductive bias” on the final 
model. In this article we follow a variation of this approach 
and develop a modeling strategy that combines first principles 
knowledge, in the form of equations such as mass and energy 
balances, with neural networks as nonparametric estimators 
of important process parameters. This approach provides hy- 
brid models with internal structure, where each part of the 
final model performs a different task. These clearly identifiable 
parts are the process parameter estimator (neural net) and the 
partial (first principles) model. The partial model provides a 
better starting point than “black-box” neural networks and, 
at the same time, allows for both structural and parametric 
uncertainty. Since neural networks can approximate arbitrary 
functions for which no a priori parameterization is known, 
they can ideally complement the basic model and account for 
the uncertainty. The resulting models can be thought of as 
structured neural networks which contain some known con- 
straints, such as mass and energy balances; alternatively, they 
can be thought of as equations which contain “process pa- 
rameters” whose dependence on state variables is modeled by 
neural networks. Our goal is to develop hybrid neural network 
process models which are more flexible than classical parameter 
estimation schemes and which generalize and extrapolate better 
than classical “black-box” neural networks, in addition to 
being more reliable and easier to interpret. 

We evaluate this hybrid neural network modeling scheme 
by comparing its prediction accuracy with standard neural 
networks. We also discuss and compare the performance of 
other estimation methods, such as extended Kalman filtering 
and nonlinear programming (NLP) techniques, under the as- 
sumption that proper parameterization of the process param- 
eters is not apriori available. Both Kalman filtering and NLP 
schemes are used to directly estimate the unknown parameters 
of the known first principles model, either in a stochastic 
problem formulation (Kalman filter) or in a least-squares min- 
imization approach (NLP estimation). 

This article comprises three parts: first, we compare the 
standard (“black-box”) and hybrid neural network modeling 
methods; secondly, we compare the hybrid modeling method 
to NLP estimation and Kalman filtering; and thirdly, we extend 
the concept of hybrid neural network modeling to the partial 
state information case. All competing methods were tested on 
the modeling of a fedbatch bioreactor. The bioreactor is dis- 
cussed as well as the challenges and inherent difficulties in- 
volved in modeling such systems. Then, the hybrid neural 
network and the standard neural network modeling approaches 
are explained, as well as the generation of a training data set 
and the training procedures for both methods. Subsequently 
presented are the method of parameter and state estimation 
through nonlinear optimization, and extended Kalman filtering 
combined with least-squares parameter estimation whose re- 
sults are compared with our approach. The assumption of full 
state accessibility is relaxed, and a nonlinear exponential ob- 
server is developed and incorporated in the hybrid neural net- 
work model, and results are discussed. Afterward, the 
application of nonlinear optimization modeling and extended 
Kalman filtering to the incomplete measurement case are pre- 
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sented, followed by an application of the hybrid model to 
process optimization, specifically to the calculation of optimal 
feed policies for fedbatch reactors. Further insight on the es- 
timation methods considered in this article and a summary of 
our results is given in the final section. 

function of the biochemical, biological, and physicochemical 
variables of the system. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, a large number of models 
has been proposed to describe these kinetics and so the choice 
of a growth model for a particular fedbatch fermentation proc- 
ess is not at all straightforward. In the following we will assume 
that the “true” but unknown and unmeasured growth rate is 
described by the Haldane model: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

Modeling Problem: Fedbatch Bioreactor 

Biological reactors exhibit a wide range of dynamic behav- 
iors and offer many challenges to modeling, as a result of the 
presence of living organisms (cells) whose growth rate is de- 
scribed by complex kinetic expressions. We will illustrate the 
hybrid modeling method on the identification of such a system. 

Consider the dynamic system which can be described by the 
following general representation: 

where x denotes the state vector of the system, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAu the control 
vector andp a vector of process parameters. These parameters 
p essentially represent the process kinetics and are related to 
the system variables through the set of equations zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg( zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA). The 
functionality that relates the process parameters to state vari- 
ables and control variables, such as the reactor pH and tem- 
perature (Rivera and Karim, 1990), is difficult to derive from 
first principles reasoning and typically unknown; however, it 
is the presence of this complex unknown functionality that 
makes biological reactions highly nonlinear systems. In other 
systems, the parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp might be reaction kinetics or vis- 
cosities which vary in complex ways with temperature and 
chemical composition. 

Bioreactors operating in a fedbatch (nonstationary) mode 
can achieve high product concentrations (Gostomski et al., 
1990) and are quite difficult to model, since their operation 
involves microbial growth under constantly changing condi- 
tions. Nevertheless, knowledge of process parameters (such as 
growth rate kinetics) under a wide range of operating condi- 
tions is very important in efficiently designing optimal reactor 
operation policies. 

A fedbatch stirred bioreactor can be described by the fol- 
lowing equations (Dochain and Bastin, 1990): 

(3) 

(4) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAdS 
-= - k, . p  ( t )  . X ( t )  +%.[Sin( t )  - S ( t ) ]  
dt V (  t )  

dV 
- = F ( t )  
dt 

where X (  t )  is the biomass concentration and S (  t )  is the sub- 
strate concentration. These mass balances on the reacting spe- 
cies provide a partial model. The kinetics of the process are 
lumped in the term p(t)  which accounts for the conversion of 
substrate to biomass. This term, known as specific growth rate 
is, as noted by Dochain and Bastin (1990), typically a complex 

This expression will only be used to simulate the “true” process 
model; for all modeling techniques described in the remainder 
of the article, the above expression describing the cell growth 
rate will be completely unknown. Furthermore, the inlet sub- 
strate feed concentration Sin will be the manipulated input, 
and the flow rate F ( t )  will be held constant. 

Standard and Hybrid Neural Network Models 

Neural networks have been successfully used as “black-box” 
models of dynamic systems and, more specifically, as process 
variable estimators in bioreactor modeling applications (Lant 
et al., 1990; Thibault et al., 1990). In these efforts the process 
was operating in a continuous mode; however, identification 
of batch processes is much more difficult, since a wide range 
of operating regimes is involved and less data may be available. 
This section discusses the advantages of structured neural net- 
work modeling and describes the development of both a stand- 
ard and a hybrid neural network model of the bioreactor system. 

As discussed in the previous section, it is quite straightfor- 
ward to derive an approximate model of the bioreactor (Eqs. 
3-5) from simple first principles considerations such as mass 
balances on the process variables. However, the critical factor 
in determining the dynamic behavior of the process is the 
unknown kinetics (growth rate model) of the conversion of 
substrate to biomass. The central idea of this article, then, is 
to integrate the available approximate model with a neural 
network which approximates the unknown kinetics, in order 
to form a combined model structure which can be characterized 
as a hybrid (or structured) neural network process model. 

This approach offers significant advantages over a “black- 
box” neural network modeling methodology. The hybrid neural 
network model has internal stiucture which clearly determines 
the interaction among process variables and process parame- 
ters, and as a result is easier to analyze than standard neural 
networks. The first principles partial model specifies process 
variable interactions from physical considerations; the neural 
network complements this model by estimating unmeasured 
process parameters in such a way as to satisfy the first principles 
constraints; nonparametric estimation is needed since no 
knowledge is available about these parameters. Such structured 
models are expected to perform better than “black-box’’ neural 
network models in process identification tasks, since gener- 
alization and extrapolation are confined only to the uncertain 
parts of the process while the basic model is always consistent 
with first principles and does not allow aphysical variable in- 
teractions. 

Furthermore, in data reconciliation and adaptive modeling 
and control it is very important to be able to correctly identify 
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I f  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
First Principles zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAY Model 

Figure 2. Hybrid (structured) neural network model; the 
neural network component estimates the 
process parameters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, which are used as input 
to the first principles model. 

which part (or parts) of the process model are responsible for 
erroneous predictions and thus need to be updated. Traditional 
neural network process models can be adapted as new data 
become available, but the generality of such an adapted model 
is questionable (Hernandez and Arkun, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1990) because all of 
the model’s internal parameters are updated since all are con- 
sidered partially responsible for the error. In contrast, the 
internal structure of a hybrid neural network model clearly 
identifies the contribution of each part of the model to its 
predictions. As a result, the number of potential error sources 
can be drastically reduced and the adaptation can be more 
focused. 

A schematic representation of the hybrid neural network 
model is shown in Figure 2. The neural network component 
receives as inputs the process variables and provides an estimate 
of the current parameter values, in this case the cell growth 
rate. The network’s output serves as an input to the first prin- 
ciples component, which produces as output the values of the 
process variables at the end of each sampling time. The com- 
bination of these two building blocks yields a complete hybrid 
neural network model of the bioreaction system. 

For the standard neural network modeling approach, de- 
velopment of a process model for the bioreactor is straight- 
forward. Given as inputs observations of the process variables 
(state) and the manipulated inputs, the neural network model 
predicts the state of the system at the next sampling instant. 
Since a set of target outputs is available for every set of inputs 
presented to the neural network model, a supervised training 
method can be used to calculate the error signal used to change 
the model’s internal parameters (weights). 

However, for the hybrid neural network model target out- 
puts are not directly available, as the cell growth rate is not 
measured. In this case, the known partial process model can 
be used to calculate a suitable error signal that can be used to 
update the network’s weights. The observed error between the 
structured model’s predictions and the actual state variable 
measurements can be “back-propagated” through the known 
set of equations, essentially by using the partial model’s Ja- 
cobian, and translated into an error signal for the neural net- 
work component. The intuition behind this is that the process 
parameters should be changed proportionally to their effect 
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on the state variable predictions, multiplied by the observed 
error in the state predictions. 

The generation of a training data set and details of the 
training procedure for both structured and standard neural 
network models will be addressed in the following section. 

Training of Standard and Hybrid Neural Network 
Models 

A standard neural network model was developed which, 
given as inputs observations of the state and manipulated vari- 
ables, predicted the state of the system at the next sampling 
time. The state variables, particularly the biomass concentra- 
tion, undergo changes of over an order of magnitude. This 
large variation can cause problems when using neural net- 
works, so we defined dimensionless biomass concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAx 
and dimensionless substrate concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAIJ as: 

where zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS,, is the average value of the substrate feed concen- 
tration Sin. Note that the scaling is linear, and should therefore 
have no effect on a squared error criterion. The inputs to the 
neural network were the natural logarithm of the biomass 
concentration X and the substrate concentration S ,  and a scaled 
value of the manipulated variable Sin. The desired network’s 
outputs were the dimensionless biomass concentration and sub- 
strate concentration x and u respectively. A sigmoid with out- 
put ranging from ( -  1, + 1) as given by 

was chosen as activation function. Here, o& represents the 
output of neuron k,  Wjk the weight from neuron j to neuron 
k which multiplies neurons’ j output, and bk the bias of neuron zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
k. The training method was the error back-propagation al- 
gorithm as described in Rumelhart et al. (1986): A set of inputs 
was presented to the network, and a set of the network’s 
outputs was obtained by propagating these inputs through the 
layers of the network (shown in Figure 1). An error signal was 
obtained by comparing the network’s outputs with the actual 
process outputs that corresponded to this set of inputs, and 
this error signal was used to change the network’s weights. 
The errors for each input-output example were accumulated 
and the weights were updated after each complete presentation 
of the training data set to the neural network. To avoid ov- 
erfitting of the training data, at frequent intervals during the 
training session the network’s weights were frozen and the 
mean square prediction error, on a separate testing data set, 
was calculated. Training was stopped when it was determined 
that the network’s prediction accuracy would deteriorate upon 
continued training. 

For the hybrid neural network model, the squared prediction 
error over both process variables (biomass and substrate con- 
centration) and for all training patterns N was minimized as 
with the standard neural network model: 
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l N  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
* i  

MSE=- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ ( x ~ - x , ’ ) ~ +  ( u , - u ~ ’ ) ~ ]  

The neural network’s output (cell growth rate p )  does not 
appear explicitly in the above expression. However, if it is 
considered constant for each sampling instant, the gradient of 
the structured model’s output with respect to this internal 
parameter can be calculated through integration of the sen- 
sitivity equations (Caracotsios and Stewart, 1985) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

- kl - p  ( t )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA.GI ( t )  - F(f)c2( t )  - kl .X (  t )  (12) 
dG2 
dt V ( t )  

-= 

with initial conditions G,(t) = 0, G2( t )  = 0. Thus the gradient 
of the structured model’s output with respect to the network’s 
output can be calculated through use of Eqs. 11-13 and, as a 
result, the gradient of the performance measure (Eq. 10) with 
respect to the network’s output is readily available. This gra- 
dient information will generate an error signal that is used to 
update the network’s weights. 

Both state variables (biomass and substrate concentration) 
were used as inputs to the neural network model component 
of Figure 2. Obviously, since the “true” kinetics only depend 
on the substrate concentration (Eq. 6), the biomass concen- 
tration input is merely a noisy input to the network; however, 
it is interesting to examine the behavior of the hybrid neural 
network model under these conditions. The inputs were scaled 
in the same way as for the standard neural network model 
(natural logarithm of biomass and substrate concentration 
taken), and the network’s output was an estimate of the growth 
rate for the current sampling time. This output was scaled as 
p = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA2.pmax.ji, where i~ was the network’s output and pmax a 
constant, and was used as input to the first principles model 
component (Eqs. 3-5) in order to predict the system’s state 
for the next sampling time. The outputs of this hybrid model 
were dedimensionalized according to Eqs. 7-8 to allow a direct 
comparison with the standard “black-box” neural network 
model. 

The hybrid neural network model was trained as follows. 
A set of inputs was presented to the model, namely the current 
values of the biomass (X) ,  substrate (S) and substrate feed 
(Sin). Scaled values of X and S were propagated through the 
network part of the structured model; its output was an es- 
timate of the growth rate p, which along with X ,  S and Sin 
were “propagated” through the first principles part of the 
hybrid model (Eqs. 3-5) to obtain an estimate of the process 
variables for the next sampling time. At the same time, the set 
of the sensitivity equations was integrated, and an error signal 
(ES) was calculated according to the following relationship: 

where 

that is, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAg represents a dimensionless gradient and subscript i 
stands for the i-th input-output pattern in the training data 
set. The error signals ESi for the neural network output were 
summed over all input-output examples and the weights were 
updated using back-propagation after a complete presentation 
of the training data set. 

Equations 3-6 with parameter values given by Dochain and 
Bastin (1990) were used to develop a training data set. The 
substrate feed inlet concentration was randomly perturbed 
within 50% of a nominal value of 60 g/k, following a uniform 
distribution. The initial state of the process was also chosen 
in such a way as to explore the state space as much as possible. 
For each of the two state variables (biomass concentration X 
and substrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAS) three levels of low (= 0.1 g/lt), medium (= 0.5 
g/lt), and high ( = 0.9 gllt) concentrations were considered, 
and the initial state of the process comprised all possible com- 
binations of these initial conditions. The initial reactor volume 
of the reactor was set equal to a nominal value of lOlt in all 
simulated batch runs. Data were sampled every 0.2 hours, and 
the batch policy consisted of a feeding period of 15 hours and 
a subsequent “quenching” period of 5 hours, where the sub- 
strate feed Sin and flow rate F were set equal to zero. A total 
of nine data sets, each consisting of 100 data points, were 
created in this way; two additional runs with shorter feeding 
time (5 hours) and different initial conditions were created, 
each consisting of 50 data points. All measurements were cor- 
rupted with normal white Gaussian noise N(0, 0.01) added to 
the dimensional state variables. 

The presence of noise in the measurements of process vari- 
ables X and S corrupts the gradient information obtained 
through integration of the sensitivity equations with colored 
noise. A practical advantage of the batch mode of learning, 
implemented in the training of the hybrid neural network model, 
is that it provides some degree of noise smoothing: Misleading 
individual error signals are lumped together with all other error 
signals providing a total error signal that more closely repre- 
sents the “true” gradient. 

Comparison of Hybrid and Standard Neural Net- 
works 

An important consideration in neural network modeling is 
how the size of the available training data set affects the ac- 
curacy of the learned model. For sufficiently large data sets, 
a standard neural network should perform arbitrarily well in 
approximating the dynamic system. When the training data 
set size is small then the state space is not sampled sufficiently 
densely, and a traditional neural network relies heavily on 
interpolation to approximate the dynamic system. Further- 
more, a standard neural network relies only on the data to 
infer the complete process model. On the contrary, a hybrid 
neural network already contains a partial model, which is also 
used to reduce the error signal to a subspace that can be ex- 
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Figure 3. Logarithm of Mean Squared Error (MSE) on 
both state variables (Eq. 10) vs. number of 
available training examples, for the hybrid and 
standard neural networks. 

Figure 4a. Biomass concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X )  prediction vs. time 

for the standard network process model. 

Vertical bars indicate standard deviation, calculated from 10 train- 
ing sessions. 

plored with fewer training examples. In other words, the net- 
work component of the hybrid model relies on the data to 
approximate only part of the model (the unmeasured param- 
eters). 

To investigate this argument we compared the approxima- 
tion accuracy of the standard and hybrid neural networks as 
a function of the training data set size. Five cases were con- 
sidered, with training data set sizes of 50, 100, 250, 500 and 
1,000 data points respectively. For all but the last case the 
corresponding number of data points was randomly drawn 
from the 1,000 training examples available (see the previous 
section). The networks were trained as described above, with 
each of the five data sets randomly partitioned (with a 70% :30% 
ratio) into two smaller subsets used for training and testing 
respectively. Figure 3 shows that the mean squared prediction 
error of the hybrid network on both state variables is an order 
of magnitude lower than that of the standard network model 
and is relatively unaffected by the training data set size. How- 
ever, the hybrid network's prediction error increases as the 
data set becomes very small (see Figure 3). The performance 
of the standard network, as expected, improves significantly 
as the size of the data set increases and should asymptotically 
approach the hybrid network's prediction error as the data set 
becomes very large. 

The hybrid neural network model should also extrapolate 
better than the standard network model, as a result of the 
partial first principles model it contains. Poor extrapolation 
has been the plague of traditional neural networks (Leonard 
et al., 1991), and is even more important for processes such 
as batch reactors which operate in a nonstationary mode. The 
superior extrapolation of the hybrid neural network compared 
to the standard neural network is shown in Figure 4, where 
both were required to predict the state of the system when it 
operated in a state space regime that was not sampled by the 
training data set. The standard network model fails to ex- 
trapolate correctly, whereas the hybrid model gives quite ac- 
curate predictions. The hybrid model also interpolates better, 
as illustrated in Figure 5 .  

In conclusion, the hybrid network model appears to reject zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 4b. Biomass concentration ( X )  prediction vs. time 
for the hybrid network process model. 

the noisy input (biomass concentration, which does not affect 
the growth kinetics), as well as the noise in the process variables 
measurements, and gives very good predictions of the system's 
state. Furthermore, these predictions are achievable even with 
only a few data points available for training. 

State and Parameter Estimation Using an NLP 
Technique 

Hybrid neural networks offer a method of estimating unob- 
served process parameters and process variables, as demon- 
strated in the previous sections; however, a variety of other 
methods has been extensively applied to the problem of state 
and parameter estimation. In recent years, optimization meth- 
ods have come to be increasingly used in such problems (Be- 
quette and Sistu, 1990; Brengel and Seider, 1989; Jang et al., 
1986). These methods use a process model and typically assume 
some parameterization (model with fixed coefficients) of the 
process parameters. The unknown fixed coefficients are treated 
as decision variables that can be estimated in such a way as 
to minimize prediction error. However, as discussed in the 
introduction, proper a priori parameterization is not always 
possibIe. 
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formulation. The apparent conclusion is that the NLP ap- 
proach is not suitable for directly estimating nonconstant proc- 

2.5 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- ess parameters of dynamic systems such as the fedbatch 
bioreactor considered here. An alternate approach in this case 
would be to experiment with different parameterized models 
for the unmeasured process parameter, in order to determine 
which is most suitable for the specific problem at hand. The 
advantage of the hybrid neural network model is that, by 
providing a very general parameterization of the process pa- 
rameter (neural network component), it helps avoid this ex- 
perimentation. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA0 5 -  

0.0 - zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

3 F-r--- zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
2.5 1 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

o) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 2'o 1.5 1 - 
1 0 -  

0.5 - 

0 0 -  

the Kalman filter. The discrete linear Kalman filter provides 
optimal (in the sense of maximum likelihood) estimates of a 
linear dynamic system's states in the presence of additive white 
Gaussian noise (Anderson and Moore, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA1981). Extended Kal- 
man filtering applies this method to nonlinear time-varying 
systems. For a nonlinear dynamic system with the discrete time 
representation: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

x k + l = f k ( x k t  P k ,  u k ) + w k  (17) 

(18) z k  = h k  ( x k )  + v k  

where the noise vectors wk and v p  represent white Gaussian 
state and measurement noise processes, with 

We investigated the performance of the NLP estimation 
approach on the bioreactor problem under the assumption that 
the functional relationship describing the cell growth rate is 
completely unknown. Thus the (discretized) growth rate was 
treated as a time-varying unknown parameter to be directly 
estimated; the decision variables represented the estimates of 
the growth rate for the corresponding sampling times. A gra- 
dient-based optimization strategy, Successive Quadratic Pro- 
gramming (Cuthrell and Biegler, 1985), was used to solve the 
problem. The gradient of the objective function-squared pre- 
diction error-can be analytically calculated through integra- 
tion of the sensitivity equations, as described in the section on 
comparing hybrid and standard neural networks. However, 
this requires substantial computation, and a simpler alternative 
of using numerical derivatives was used. 

Under this formulation, this parameter estimation method 
essentially performs local fitting of the unknown cell growth 
rate. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAAs a result, the presence of noise in the process variables 
measurements degrades the estimator's performance and pro- 
duces erroneous parameter estimate values. The parameter 
estimates were also significantly affected by the magnitude of 

stable in estimating the time-varying growth rate under this 

where 

the upper bound, indicating that the method is essentially un- aJk-l=: (it::) - 4 - l / k - I  (27) 
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The term zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAW, in Eq. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA26 represents the estimator’s gain which 
essentially specifies how much to weigh new information about 
the evolution of the system, as obtained through the meas- 
urements z,, in updating the current state estimate. The re- 
cursive equations are initialized by assigning zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori values to 
the state estimate and the state covariance matrices. The re- 
cursive nature of the Kalman filter estimator is an important 
advantage, since the covariance matrix P and the filter’s gain 
W are updated at each sampling time interval as new data 
become available. 

Extended Kalman filtering combined with parameter es- 
timation 

The above development of the extended Kalman filter es- 
timator was based on the assumption that the parameter vector 
p is known. When this is not the case, then an appropriate 
parameter estimation method has to be incorporated. Since 
the microbial growth rate in the fedbatch bioreactor changes 
with time, a suitable parameter estimation algorithm should 
have the ability to track the parameter changes as the process 
evolves. To accomplish this, we implemented a two step es- 
timation scheme as follows: 

1) Given an estimate of the unknown process parameter 
at the current time, use Eqs. 20-26 to update the state estimates 

2) Given these state estimates, update the parameter esti- 
mate with an appropriate algorithm. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAA sequential nonlinear 
least-squares algorithm was used to estimate the parameters; 
for multiple observations, the algorithm is described by the 
following set of equations (Goodwin and Sin, 1984): 

where 

In order to use the above estimation technique to model the 
fedbatch bioreactor, the dynamic system has to be represented 
in a discrete form; equations (Eqs. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3-5) were discretized using 
Euler’s method. The discretization error can be accounted for 
with a judicious choice of the process state noise wk,  as noted 
by Wells (1971). We did not assume any prior parameterization 
of the growth rate, which was considered constant within each 
sampling time and was the parameterp to be directly estimated, 
given measurements of the process variables: biomass concen- 
tration X and substrate concentration S. Measurement noise 
and process state noise were both assumed white Gaussian, 
with zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBARk zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= N(0, 0.01) and Qk = N(0, 0.001) respectively; these 
matrices were diagonal, and the choice of values reported here 
gave the best filter performance. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

1.5 c A h  

1.0 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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3.0 I 
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Figure 6a. Substrate concentration (S) prediction vs. 
time for the extended Kalman filter, com. 
bined with sequential least-squares param- 
eter estimation. 

21 
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Figure 6b. Biomass concentration ( X )  prediction vs. time 
for the extended Kalman filter, combined with 
sequential least-squares parameter estima- 
tion. 

The performance of the extended Kalman filter combined 
with the sequential least-squares estimation algorithm, on the 
same simulated batch run used in the section on state and 
parameter estimation using an NLP technique, is shown in 
Figure 6 .  As can be observed, the estimator performs quite 
well and is able to predict the process state quite accurately. 
A small error in the prediction of the biomass concentration 
is observed at the “quenching” period of operation of the 
bioreactor (after t= 15 h), due to an error in the estimation of 
the growth rate; the “true” growth rate is zero for this time 
period, since the substrate in the bioreactor has all been con- 
sumed. Not surprisingly, the noise in the predictions of the 
system’s state variables is rejected. The performance of a trained 
hybrid neural network, for the same simulated batch run, is 
shown in Figure 7. The hybrid neural network gives slightly 
better predictions in this operating regime since it provides a 
better estimate of the growth kinetics; however, the state vari- 
able predictions are noisy. The unobserved growth rate esti- 
mates for both methods is shown in Figure 8. The transient 
behavior of the growth rate estimate is poor for the Kalman 
filter; nevertheless, when the process operates such that the 
growth rate is approximately constant, the estimation accuracy 
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Figure 7a. Substrate concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S) prediction vs. 
time for the hybrid neural network process 
model. 
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Figure 7b. Biomass concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA( X )  prediction vs. time 
for the hybrid neural network process model. 

is much improved. In contrast, the growth rate prediction of 
the hybrid model is in general more accurate. 

The Kalman filter’s performance depends on a number of 
“tuning” parameters which have to be carefully selected for 
good performance. The initial state estimate and the initial 
state covariance affect its response; the values of the meas- 
urement noise and process state noise also affect performance. 
In addition, the estimator Eqs. 20-26 have been derived with 
the assumption of white Gaussian noise; performance under 
different and unknown noise statistics may well deteriorate. 
In contrast, the hybrid neural network model needs no such 
tuning parameters, makes no assumption about the noise sta- 
tistics, and is not affected by irrelevant inputs (biomass con- 
centration) to the neural network component of the model. 
The only cumbersome step in the use of the hybrid model is 
the training time. 

Incomplete State Measurements zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Hybrid network model 

In the development of the hybrid neural network model 
discussed in the section on standard and hybrid neural network 
models, the availability of the gradient of the state with respect 
to process parameters (growth rate) is essential. When the 
sensitivity equations are a function of nonmeasured state vari- 
ables, as is the case here, gradient information is not directly 
available. As a result, the derivative of the performance meas- 

ure (squared prediction error) of the hybrid model with respect 
to the neural network’s (unmeasured) output cannot be ana- 
lytically calculated. 

One way to overcome this problem is to estimate the un- 
measured state variables using state observers, which compute 
estimates of the state of a dynamic system given estimates of 
the initial state xo (open-loop observers). When process output 
measurements are available, then the prediction error can be 
used as a feedback term, multiplied with an observer gain, to 
provide better state estimates. This results in a closed-loop 
observer, which has desirable characteristics (Kravaris and 
Chung, 1987; Banks, 1981; Bestle and Zeitz, 1983). Following 
the analysis of Kou et al. (1975), we can construct an expo- 
nential closed-loop observer for the fedbatch bioreactor sys- 
tem, as discussed previously. Based on Eqs. 3-5 and the 
availability of substrate concentration measurements, we have: 

- I  

V h = [ O  11 (33) 

With a choice of the observer’s gain matrix B such that 

0.0 t 
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Figure 8a. Cell growth rate estimate for the extended 
Kalman filter combined with sequential least- 
squares estimation. 
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Figure 8b. Cell growth rate estimate for the hybrid net- 
work. 
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(34) 

it can be shown that the matrix 

is stable and, as a result, the closed-loop observer described 
by the equations: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

X(0) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA=x,, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA$0) = so zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(38) 

is an exponential observer for the fedbatch bioreactor. Equa- 
tions 36-38 comprise the first principles part of the hybrid 
neural network model; the other component consists of a neural 
network that estimates the microbial growth rate p ,  given as 
input only measurements of the substrate concentration. As 
in the section on the training of standard and hybrid neural 
network models, we zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAcan derive a set of observer sensitivity 
equations from Eqs. 36-37, which provide the gradient of the 
performance measure with respect to the network’s output. 
The performance measure in this case is the squared prediction 
error of the substrate concentration only. Thus Eq. 14 has to 
be modified so that the error signal used to update the net- 
work’s weights involves only the prediction error on the sub- 
strate concentration. The training procedure is otherwise the 
same as the one discussed earlier. 

The prediction5 for the substrate concentration and the cell 
growth rate of a hybrid neural network model trained using 
only substrate concentration measurements is shown in Figure 
9, for the same simulated batch run as before. Partial state 
accessibility does not noticeably degrade the hybrid model’s 
ability to estimate the growth rate; this is not true, as will be 
seen in the following, for extended Kalman filtering. In most 
of the operating regime the prediction accuracy is quite good, 
with the possible exception of the regime where the substrate 
concentration approaches zero. However, it should be em- 
phasized-in defense of the method-that the signal-to-noise 
ratio for the substrate concentration measurements is very low 
in this regime. This problem was also apparent in the full state 
hybrid network model. More importantly, this partial state 
hybrid network model, like the full state hybrid network, gives 
estimates for the unmeasured process variables (biomass con- 
centration). In contrast, standard neural networks can only 
predict the measured process output (ARMA type models). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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Figure 9a. Substrate concentration (S) prediction vs. 
time for the hybrid network model using par- 
tial state measurements. 
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Figure 9b. Cell growth rate estimate for the hybrid net- 
work using partial state measurements. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

NL P estimation and extended Kalman filtering 
The NLP optimization method can be applied to the problem 

of state and process parameter estimation of the fedbatch 
bioreactor, in the case when only substrate concentration meas- 
urements are available, and the basic problem formulation and 
solution methods remain the same as presented in the section 
on state and parameter estimation using an NLP technique. 
However, the objective function involves only the error of the 
measured output over the process monitoring window. We 
found the estimator’s performance to be similar to the one 
previously discussed using full state measurements. Further- 
more, the observations made in the earlier section about the 
method’s deficiencies when estimating time-varying process 
parameters, for which properly parameterized models are not 
available, also apply here. 

The extended Kalman filtering method combined with a 
sequential least-squares parameter estimation technique can 
also be applied to the bioreactor modeling problem, when only 
substrate concentration measurements are available. The es- 
timator’s formulation, as described in the previous section 
(Eqs. 20-26), remains the same, with the only difference that 
the measurement vector zk is now a scalar. This simplifies the 
expressions that are used to update the parameter estimate 
(Eqs. 29-31) since r and \k now represent scalar quantities. 
The performance of the partial state Kalman filter estimator 
is shown in Figure 10 for the same batch run as in the previous 
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Figure 10a. Substrate concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(S) prediction zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAvs. 
time for the extended Kalman filter, com- 
bined with sequential leas 1-squares param- 
eter estimation, using partial state 
measurements. 
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Figure lob. Cell growth rate estimate for the extended 
Kalman filter, combined with sequential 
least-squares parameter estimation, using 
partial state measurements. 

section. It is evident that the prediction accuracy decreases 
when only the substrate concentration is measured; the estimate 
of the growth rate is inaccurate in most of the operating regime. 
The hybrid neural network model gives more accurate predic- 
tions with partial state measurements than the Kalman filter, 
particularly for the (unmeasured) bicmass concentration. 

Process Operation Scheduling using a Hybrid 
Neural Network Model 

It was emphasized above that an important feature of the 
hybrid neural network model is that it provides a model for 
the unobserved growth kinetics. A practical application in 
showing the usefulness of such a model is the optimization of 
(fed)batch process operating schedules or, more specifically, 
determining the substrate feeding policy that maximizes prod- 
uct yield. One way to obtain such an optimal substrate feed 
policy is to formulate the problem as an optimal control prob- 
lem and calculate (analytically if the growth rate kinetics are 
completely known) the substrate profile. An alternative method 
is to use optimization techniques to maximize a suitable cost 
function. 
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We formulated the problem of determining the optimal feed 
policy for the bioreactor following the latter approach, as: 

subject to Eqs. 3-5 and 

This formulation implies that the objective function to be 
maximized is the cell mass in the reactor after the end of some 
feeding period zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAT. Equations 3-5 describe the process model, 
and T( ) represents the neural network model of the growth 
rate; together these equations comprise the hybrid network 
model. Equation 41 simply implies that the substrate feed is 
held constant for three consecutive time intervals. A simulation 
for T =  15 hours, followed by a subsequent “quenching” pe- 
riod of 5 hours where no substrate is fed in the reactor, was 
performed. With a sampling time of 0.2 hours, this formulation 
leads to an optimization problem with 25 decision variables. 
Upper and lower bounds were imposed on the substrate feed, 
and numerical derivatives were used to determine the gradient 
of the objective function; the problem was solved using SQP. 

The substrate feed optimal profile, for a batch run with 
initial conditions of X=O.5 g/lt, S=O.1 g/lt and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAV =  10 It, is 
shown in Figure 11; also, for comparison, the optimal profile 
obtained if the same problem is solved using Eqs. 3-6 (that is, 
the “true” growth rate model) instead of the hybrid network 
process model. The substrate feed is initially set at a high value, 
so that the substrate concentration can be rapidly increased to 
a value of about lg/lt which is the value that maximizes the 
cell growth rate. Subsequently, the substrate feed is initially 
decreased and progressively increased in order to regulate the 
substrate concentration to this maximum growth rate value. 
It can be seen that the hybrid model’s predictions for the 
optimal policy are in very good agreement with the predictions 
using the true model. This suggests that the hybrid neural 
network model can be used in the design of high product yield 

14 
t (hours) 

Figure 11. Comparison of optimal substrate feed poli- 
ties for the fedbatch bioreactor, as calcu- 
lated by using the actual process model (Eqs. 
3-6) and the hybrid network process model. 
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batch runs. Furthermore, with its predictive capability, it can 
also be used for on-line multistep predictive control when the 
process is required to follow an optimal feed policy which has 
been previously calculated off-line, or in gain scheduling con- 
trol. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Discussion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

A hybrid neural network modeling approach was presented 
and used to model a fedbatch bioreactor. This hybrid model 
is comprised of two parts including a partial first principles 
model, which reflects the zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa priori knowledge, and a neural 
network component, which serves as a nonparametric ap- 
proximator of difficult-to-model process parameters. This form 
of hybrid neural network is useful for modeling processes 
where a partial model can be derived from simple physical 
considerations (for example, mass and energy balances), but 
which also includes terms that are difficult (or even infeasible) 
to model from first principles. For example, the neural network 
component of the hybrid model may be used to approximate 
unknown reaction kinetics, or predict product properties whose 
correlation with the process variables is difficult to determine 
from first principles, such as the solution viscosity in poly- 
merization reactors. The bioreactor used to demonstrate this 
hybrid modeling method only contained one process param- 
eter, but it is in principle straightforward to extend this method 
when models for multiple parameters are to be learned. We 
are currently studying such problems. 

Such hybrid neural networks have distinct advantages over 
standard “black-box’’ neural networks. As was argued above, 
the hybrid model uses its internal structure to restrict the in- 
teractions among process variables to be consistent with phys- 
ical models. This produces combined models which are more 
reliable and which generalize and extrapolate more accurately 
than standard neural networks. Furthermore, interpreting a 
standard network is difficult, as inferred knowledge of the 
process is spread among its many internal parameters. In con- 
trast, the nonparametric approximation in the hybrid neural 
network model is restricted to modeling terms for which a 
priori models are difficult to obtain. Of equal importance, 
significantly less data are required for training hybrid neural 
networks. As was argued, the partial model “projects” the 
error signal to a subspace that is easier to sufficiently explore 
with a small number of training points. Put differently, use 
of the partial first principles model reduces the number of 
functions that the neural network has to choose from to ap- 
proximate the process parameters. Thus, hybrid network 
models give far better approximation accuracy-for the same 
number of data points-than standard neural networks. 

The hybrid modeling approach assumes that the partial first 
principles model has a reasonably correct structure, thereby 
reducing the identification problem to that of estimating un- 
measured process parameters. If the partial model’s structure 
is highly uncertain, or contains a large number of very complex 
process parameters, then hybrid modeling may not provide a 
significant advantage over standard “black-box” neural net- 
works. This may also be true when modeling processes op- 
erating in a continuous mode, where the behavior of interest 
is in a small region around a nominal operating point. 

It is possible to use a simple parameterized model (for ex- 
ample, linear or quadratic) in place of the neural network and 
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estimate its unknown coefficients by using the available process 
data. This approach has been widely used in certain applica- 
tions and works, to the extent that the correct parameterization 
is chosen for the process parameter model. However, it is often 
not possible to a priori choose a parameterization that can 
closely approximate the true process parameter model. For 
example, any linear parameter model will perform poorly when 
trying to approximate the growth rate kinetics used in this 
article. Often the true parameter model is quite complex and 
extensive experimentation is required to get an acceptable ap- 
proximation. For example, polymerization reactors are typi- 
cally described by kinetic expressions which are quite complex 
and involve a large number of adjustable coefficients, and 
biological reactions often have growth kinetics described by 
complex nonlinear expressions, with exponential dependencies 
on the state variables. Use of the hybrid modeling approach 
in such problems provides a general and versatile parameter- 
ization (neural network) which can approximate arbitrarily 
complex parameter models and can help avoid the lengthy 
experimentation to determine a properIy parameterized model. 

Extended Kalman filtering and NLP estimation were con- 
sidered as alternative methods of estimating unknown process 
parameters in a known first principles model, under the as- 
sumption that a priori parameterization of the process param- 
eter model is not possible. The hybrid network model 
outperformed both methods in estimating the unobserved 
process parameter, especially when only partial state meas- 
urements were available. In the latter case, a hybrid model can 
be developed by using a state reconstruction scheme, as shown 
in the section on the hybrid network model. If a sufficiently 
detailed process parameter model is available so that the un- 
known coefficients which it contains are almost constant (such 
as reaction rate activation energies), use of a hybrid neural 
network is not appropriate and extended Kalman filtering or 
NLP estimation are more suitable. However, for process pa- 
rameters which are rapidly time-varying and are not easily 
described by a parameterized model, the hybrid neural network 
gives superior performance. 

Notation zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
E(  Y )  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= expectation of a random variable Y 

F =  
I =  

k ,  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
K m ,  K, = 

P =  
P =  
R =  
s =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

S,”, = 
S,” = 

v =  
V =  

W =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
x =  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

y‘ = 
p =  

w =  

y . =  
i/J 

Y, = 
z =  

inlet flow rate 
identity matrix 
substrate zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto cell conversion coefficient (= 1) 

Haldane growth rate model constants (= 10 and 0.1 re- 
spectively) 
state covariance matrix (Kalman filter) 
process state noise covariance matrix 
measurement noise covariance matrix 
substrate concentration 
mean value of Sin over the batch run 
inlet feed concentration 
process measurement noise vector 
reactor’s volume 
state variable noise vector 
Kalman filter’s gain matrix 
biomass concentration 
measured value of the variable Y 
predicted value of variable Y (Kalman filter, exponential 
observer) 
value at time i given information up to time j (Kalman 
filter) 
value of variable Y at time k 
vector of process measurements 
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Greek letters zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
I’ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAparameter vector’s covariance matrix (Kalman filter) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

p’ = constant (= zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5) 
,urn= = maximum growth rate (=  5/21) 

p ( t )  = cell growth rate 
u = dimensionless substrate concentration 

x = dimensionless biomass concentration zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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