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Abstract

This paper introduces a hybrid model that
combines a neural network with a latent topic
model. The neural network provides a low-
dimensional embedding for the input data,
whose subsequent distribution is captured by
the topic model. The neural network thus
acts as a trainable feature extractor while
the topic model captures the group struc-
ture of the data. Following an initial pre-
training phase to separately initialize each
part of the model, a unified training scheme
is introduced that allows for discriminative
training of the entire model. The approach
is evaluated on visual data in scene classifica-
tion task, where the hybrid model is shown
to outperform models based solely on neu-
ral networks or topic models, as well as other
baseline methods.

1 Introduction

Probabilistic graphical models [4, 9, 1] and neural net-
works [10, 17, 14] are the two prevalent types of be-
lief network in machine learning. In the first of these,
explicit variables (usually corresponding to some tan-
gible entity) are linked in a sparse dependency struc-
ture, which is typically specified by hand using domain
knowledge. This is quite different to a neural network
where variables lack explicit meaning and are densely
connected. In principle, the model is less dependent
on the details of the problem, but in practice selec-
tions must be made regarding the model architecture
and the training protocol (e.g. [13]).

Each model is appropriate for different settings. Prob-
abilistic graphical models are a natural way to repre-
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sent the high level structure of a signal. Equally, deep
neural networks have proven effective at automatically
learning good feature representations from the raw sig-
nal, a situation where detailing the precise form of the
dependencies is problematic.

This paper proposes a model that combines a deep
neural network with a latent topic models and presents
a joint learning scheme that allows the combined
model to be trained in a discriminative fashion. The
resulting model combines the strengths of the two ap-
proaches: the deep belief network provides a power-
ful non-linear feature transformation for the domain-
appropriate topic model.

Our main technical contribution is a novel way of
transforming the graphical model during inference to
form additional neural network layers. This transfor-
mation allows the back-propagation [13] to be per-
formed in a straightforward manner on the unified
model. We demonstrate this transformation for a la-
tent topic model but the operation is valid for any
model where (approximate) inference is possible in
closed-form.

We demonstrate our model in a computer vision set-
ting, using it to perform scene classification. We
choose this domain because (a) developing good fea-
ture representations for visual data is an active area
of research [14, 17] and the neural network part of our
model addresses this task and (b) latent topic models,
such as latent Dirichlet allocation (LDA) [4], have been
shown to be effective for image classification, using a
bag-of-words image representations [5, 6].

The training procedure for our model involves a pre-
liminary unsupervised phase where the parameters of
the deep-belief network are initialized. This is per-
formed using restricted Boltzmann machines (RBMs)
in conjunction with contrastive divergence learning, in
the style of Hinton and Salakhutdinov [8]. The same
layer-wise greedy scheme of [8, 2] is used.

Our graphical model is a variant of latent Dirichlet
allocation [4] and is closely related to the author-
topic model [18], introduced to the vision community
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by Sudderth et al. [21]. However, unlike these unsu-
pervised models, ours is discriminative and incorpo-
rates the class label, similar to the Disc-LDA model
of Lacoste-Julien et al. [11] and the Supervised-LDA
model of Blei and McAuliffe [3]. Ngiam et al. [16]
show how a feedforward neural-network can be used
as a deterministic transformation as input to a deep-
belief network (DBN), showing results on MNIST and
NORB datasets. In contrast, we use a topic model
instead of the DBN and evaluate on a more com-
plex scene dataset. Another related paper to ours is
Salakhutdinov et al. [19], who combine a Gaussian pro-
cess with a deep-belief network. However, this is a
simpler graphical model than ours and lacks the mod-
eling capabilities of latent topic models. The most
closely related paper is the contemporaneous work
of Salakhutdinov [20] who combine an Hierarchical
Dirichlet Process with a Deep Boltzmann Machine.

2 The hybrid model

Our hybrid model is a combination of one partic-
ular probabilistic model, hierarchical topic model
(HTM), and a neural network (NN). We consider a
set of N images {I1, . . . , Ii, . . . , IN} with labels y.
From each we extract a set of SIFT descriptors [15]
{v1, . . . , vj , . . . , vni

}. Each descriptor vj is individu-
ally mapped by a neural network with parameters w
to a feature vector xj in Rd, d being the number of
units in the top layer of the network. The transforma-
tion of v → x is denoted by fw(v). The structure of
neural network is encoded by layers of hidden units h.
The connections of hidden units are given in section
2.1.

Each image is represented by a topic model where each
topic is a probability distribution over visual words
in a vocabulary. In prevalent topic models such as
LDA[4, 6] and its variants [21], the vocabulary is given
by vector quantization, but not integrated into the
topic model. In this paper, we want to learn the fea-
ture representation and the topic model jointly. We
extend the topic model by adding an extra latent vari-
able to encode visual vocabulary. Unlike other topic
models, our model is directly defined over image fea-
tures, and capable of learning vocabulary and topic
distribution simultaneously. The new topic model is
of hierarchical structure (see fig.1) whose distribution
is given in section 2.2.

The hierarchical topic model is combined with the neu-
ral network to form a hybrid model by treating the
output x of the network as the bottom nodes of the
hierarchy.

2.1 Neural Network

In this paper, we consider a neural network with two
hidden layers, as shown in Fig. 1(a). The first hidden
one is a sigmoid layer which maps the input features v
into a binary representation h via a sigmoid function,
i.e. h = σ(w1v + b1) where σ(t) = 1/(1 + exp(−t))
and w1, b1 are the parameters of this layer. The sec-
ond hidden layer performs linear dimension reduction
x = hw2 + b2, with w2, b2 being parameters. The out-
put of the units x correspond to the transformation
fw(v) provided the whole network. An arbitrary num-
ber of extra hidden layers could be inserted between
these two layers if more a complex transformation is
preferred. Let w = {w1, b1, w2, b2} denote all parame-
ters of the network. Training the network is performed
by back propagation [13] on w. The initialization of
w is obtained by learning a Restricted Boltzmann Ma-
chine (RBM) [7] with the same structure of network.
We will give details of the training procedure in section
3.2.

2.2 Hierarchical topic model

Given an image Ii, the neural network will trans-
form each raw feature vj into a vector xj , which is
input to the hierarchical topic model. We assume
that each xj is generated by a Gaussian distribution
of the corresponding word cluster uj . The Gaussian
is parametrized by φuj

= {µuj
,Σuj

}. The word uj

is generated by a multinomial word distribution with
parameters of ηzj . The distribution of topics zj is a
multinomial parametrized by πyi

where yi is a label
of scene category for image Ii. yi is provided in the
learning stage. The overall model is shown in Fig. 1(b).
The hierarchical generative process is given by:

1. Draw latent topic zj ∼Multi(πyi
)

2. Draw latent word uj ∼Multi(ηzi)

3. Draw feature vector xj ∼ Gaussian(φuj
).

The prior distributions on π, η, φ are defined as follows:

πy ∼ Dir(α) for y ∈ {1, 2, . . . S}

ηz ∼ Dir(β) for z ∈ {1, 2, . . .M}

φu ∼ NIW(γ) for u ∈ {1, 2, . . . K}

where Dir(.) is Dirichlet distribution, NIW(γ) is
normal-inverse-Wishart distribution, parametrized by
γ = {µ0, κ, ν,Λ0}. S is the number of scene categories
(class labels), M is the number of latent topics, and
K is the size of word vocabulary.
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Figure 1: (a) Neural network (NN). (b) Hierarchical topic model (HTM). (c) Our hybrid model that combines
the NN and HTM.

The hyper-parameters α, β, γ are set by hand, their ex-
act value not being too important. Learning the model
involves the estimation of the parameters π, η, φ. In
section 3.3, we will discuss the learning of the hierar-
chical model.

Note that, unlike standard LDA[4], our model has no
image (or document) specific prior of topic distribu-
tion. The most related representation is the scene
model [21] which essentially is a author-topic model
[18].

2.3 The hybrid model: coupling the neural

network and topic model

The hybrid model is designed to combine the strengths
of the two models defined above. The input x to the hi-
erarchical topic model is the transformed output fw(v)
of the neural network. Note, in the hybrid model, x
is not observable. The topic model captures high-level
scene structure of an image while the neural network
offers approximate low-dimensional embedding of raw
features. Typically, the probabilistic topic model is a
sparse graph while neural network is a densely con-
nected graph.

3 Learning the hybrid model

3.1 Brief description

The task of learning the hybrid model is to maximize
the posterior distribution of class label y, given the

input data v. The loss function is given by:

L(w, π, η, φ) = − log p(y|v, w, π, η, φ) (1)

Since x = fw(v), p(y|x,w, π, η, φ) = p(y|v, w, π, η, φ),
and applying Bayes rule, we thus have:

L = − log p(fw(v)|y, π, η, φ)+log

S∑

ỹ=1

p(fw(v)|ỹ, π, η, φ)

(2)
The likelihood function of the hierarchical topic model
for an image Ii is defined as p(fw(v)|y):

ni∏

j=1

M∑

zj=1





K∑

uj=1

p (fw(vj)|uj , φ) p (uj |zj , η)



 p (zj |y, π)

The optimization of the loss function is performed by
gradient descent. The learning procedure consists of
two steps:

1. We first initialize the parameters {w0, π0, η0, φ0}
obtained by pre-training the neural network and
the hierarchical topic model which will be intro-
duced in sections 3.2 and 3.3.

2. The parameters are then updated according to the
following rules (where c is a learning rate):

wt+1 = wt − c
∂L

∂w
, πt+1 = πt − c

∂L

∂π

ηt+1 = ηt − c
∂L

∂η
, φt+1 = φt − c

∂L

∂φ
(3)
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The major technical issues of learning are (i) how to
obtain a good initialization; (ii) how to calculate the
gradients of the loss function defined over the joint
model. We will address these two issues in the follow-
ing sections.

3.2 Pre-training of neural network

We first pre-train the neural network by learning
RBMs with the same structure in an unsupervised
manner. A RBM is an undirected graphical model
with connections between visible units v and hid-
den units h. The joint distribution p(v, h) ∝
exp(−E(v, h)) with the normalization constant Z =
∑

v,h exp(−E(v, h)). The transformation provided by
neural network is defined as p(h|v) in the correspond-
ing RBM. We apply the contrastive divergence (CD)
algorithm [7] to train the network. CD algorithm is
a greedy layer-wise learning method for stack of Re-
stricted Boltzmann machine (RBMs) which maximize
the variational lower bound of the model likelihood.
Hinton and Osindero [7] show that such initialization
works well for discriminative training.

Each layer of NN is initialized by the correspond-
ing RBM model. More precisely, the RBM energy
for pre-training of the bottom layer is E(v, h) =
− 1

2
(v − b)T (v − b) − hT c − vTWh. The energy of

RBM for pre-training of the second (top) layer is
E(h, x) = − 1

2
(x− c)T (x− c)− hT b− hTWx.

3.3 Pre-training of the hierarchical topic

Model

Once we have pre-trained the neural network, the re-
sulting x = fw(v) are fixed and used as input to the
hierarchical topic model. The training of the graphi-
cal model is performed by Gibbs sampling in the style
adopted by Sudderth et al. [21] in their similar scene
model. The sampling procedure is given in Algorithm
1:

3.4 Joint optimization by gradient descent

We now have the full pre-trained model with all pa-
rameters initialized. Gradient descent is applied to
update the parameters. The loss function defined in
Equation (2) can be expanded as follows:

L = −
∑

j

log p(fw(vj)|y, π, η, φ) +

log
S∑

i=1

∏

j

p(fw(vj)|y = i, π, η, φ)

Let F0(A, y) ≡ L where A is a ni × S matrix, Aji =
[p(fw(vj)|y = i, π, η, φ]ji and F0 is a function which

foreach image i do
foreach feature j do
• Remove uij from the cached statistics
for current latent variable k = zij and
m = uij : πyk ← πyk − 1,ηkm ← ηkm − 1
and φm ← remove uij from φm.
• Sample zij and uij jointly from the
following multinomial distribution:
p(zij , uij |xij , π, η, φ, α, β, γ) ∝
p(xij |uij , φ, γ)p(uij |ηzij , β)p(zij |πyi

, α).
• Add back feature xij to the cached
statistic for its new latent variable
k = zij and m = uij :
πyk ← πyk + 1,ηkm ← ηkm + 1 and φm ←
add uij to φm.

end

end

Algorithm 1: Gibbs sampler for the hierarchical
topic model.

takes an input of a matrix A and a label information
y. F0(A, y) is a form of:

F0(A, y) = −
∑

j

logAjy + log
∑

i

∏

j

Aji (4)

We can decompose each element of A as follows:

Aji = p(fw(vj)|y = i, π, η, φ)

=

M∑

zj=1

p(fw(vj)|zj , η, φ)p(zj |y = i, π)

= [F1(B,C)]ji

where Bjm = p(fw(vj)|z = m, η, φ)

and Cmi = p(z = m|y = i, π)

Here matrix B is of size ni ×M and matrix C is of
size M × S. Function F1 is a multiplication of two
matrices, i.e. A = F1(B,C) = BC.

The decomposition of matrix B is given by:

Bjm = p(fw(vj)|z = m, η, φ)

=
K∑

uj=1

p(fw(vj)|uj , φ)p(uj |z = m, η)

= [F1(D,E)]jm

where Djk = p(fw(vj)|u = k)

and Ekm = p(uj = k|z = m, η)

where E is the η matrix of size K×M and D is of size
ni ×K. We can decompose the matrix D:

Djk = p(fw(vj)|u = k, φ)
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= |Σk|
−1 exp

(

−
1

2
(fw(vj)− µk) Σ

−1

K (fw(vj)− µk)
T

)

= [F2(x, φ)]jk where φk = {µk,Σk}

Function F2 evaluates the likelihood (dropping out
the normalization constant) of the input data vi
for different Gaussian centers φk = {µk,Σk} for
k = 1, 2, . . . ,K. The output of F2(fw(v), φ) is
|Σk|

−1 exp(− 1

2
(fw(vj)− µk)Σ

−1

k (fw(vj)− µk)
T ).

After defining the functions F0, F1, F2, the loss func-
tion can be rewritten:

L = F0(F1(F1(

D
︷ ︸︸ ︷

F2 (fw(v), φ),

E
︷︸︸︷
η )

︸ ︷︷ ︸

B

,

C
︷︸︸︷
π )

︸ ︷︷ ︸

A

, y) (5)

and

∂L

∂π
=

∂F0(A, y)

∂A

∂F1(B, π)

∂π
∂L

∂η
=

∂F0(A, y)

∂A

∂F1(B, π)

∂B

∂F1(D, η)

∂η

∂L

∂φk

=
∂F0(A, y)

∂A

∂F1(B, π)

∂B

∂F1(D, η)

∂D

∂F2(fw(v), φ)

∂φk

∂L

∂w
=

∂F0(A, y)

∂A

∂F1(B, π)

∂B

∂F1(D, η)

∂D
ni∑

j=1

∂F2(fw(vj), φ)

∂fw(vj)

∂fw(vj)

∂w

The gradients of L w.r.t w, φ, η, π can be obtained
by applying chain rule, provided the gradients of
F0, F1, F2:

1. Function F0(A, y) evaluation:

F0(A, y) = −
∑

j

logAjy + log

S∑

i=1

ni∏

j=1

Aji

and gradient computation:

∂F0(A, y)

Aji

= −1 +
exp(F0(A, y))

Aji

2. Function F1(B, π) evaluation:

[F1(B, π)]ik =

∑

j Bijπjk
∑

k πjk

and gradient computation:

∂[F1(B, π)]ik
∂Bij

=
πjk

∑

t πjt

and

∂[F1(B, π)]ik
∂πjk

=
Bij

∑

t πjt

−
[F1(B, π)]ik

∑

t πjt

The reason that we divide the output by
∑

k Rjk

is because the second parameter π of this function
is always sufficient static of multinomial distribu-
tion, thus must always sum to one. The derivative
for F1(D, η) takes a similar form.

3. Function F2(x, φ) ,where φ = {φ1, φ2, . . . , φK}
each of φk is a Gaussian center φk = {µk,Σk}
[F2(x, φ)]jk = |Σk|−1 exp(− 1

2
(xj − µk)Σ

−1

k (xj −
µk)

T ) Taking gradients we obtain (omitting the
Σk update for brevity):

∂[F2(x, φ)]jk
∂xj

= −[F2(x, φ)]jk(xj − µk)Σ
−1

k

∂[F2(x, φ)]jk
∂µk

= [F2(x, φ)]jk(xj − µk)Σ
−1

k

3.5 Unifying probabilistic hierarchical model

and neural network: back-propagation

The gradient descent scheme introduced in section 3.4
can be interpreted as a back-propagation algorithm
on a new neural network which unifies the hierarchical
topical model and the neural network. The decompo-
sition of the loss function in Equation (5) allows us
applying chain rule to calculate the gradients w.r.t.
all the parameters in the hybrid model. It suggests
a strong connection with the back-propagation algo-
rithm if we define four consecutive layers from top to
bottom in the following order:

1. Bayesian Layer: Function F0

2. Integration Layer on z: Function F1 with π as the
second parameter

3. Integration Layer on u: Function F1 with η as the
second parameter

4. Gaussian Likelihood Layer: Function F2

The transformation of each layer is defined by the cor-
responding function F and its parameters. We can
simply add these four invented layers on the top of the
original neural network, yielding a unified neural net-
work. By back-propagating through this unified net-
work, we can estimate the parameters of the hybrid
model.

3.6 Inference of the hybrid model:

feed-forward

Inference is performed as a feed-forward procedure on
the unified neural network. Given a testing image v,
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the first two layers of the neural network produce en-
coded features x = fw(v). According to the defini-
tion of the four additional layers, the output at the
top layer is p(y|fw(v)) for y = 1, 2, . . . , S. The task
of inference y∗ = argmaxy p(y|fw(v)) is the same as
passing x through Gaussian likelihood layer(F2), Inte-
gration layer(F1(·, η)), Integration layer(F1(·, π)) and
Bayesian layer F0 (see Figure 1(c)). Note that our hy-
brid approach can be extended to any graphical model
where the (approximate) inference can be performed
in closed-form.

4 Toy experiments

We illustrate the different stages of training in our
model with toy 2D data, as shown in Figure 2. The
data is drawn from 4 classes, arranged in 5 crescent-
shaped clusters (which cannot easily be separated by a
Gaussian mixture model). Pre-training the NN (hav-
ing a 2-50-2 architecture) for the most part preserves
the structure of the input data (see Figure 2(mid-
dle)) in the feature space, thus the topic model, us-
ing Gaussian distributions makes many classification
errors. But following back-propagation of the entire
model (Figure 2(right)), the NN provides a significant
warping of the input space, thus making it easier to
separate the clusters. Note that the Gaussian clusters
of the topic model do not lie directly on top of the fea-
tures since the topic model optimizes a discriminative
criterion, rather than a generative one.

5 Vision experiments

In this section, we provide a quantitative evaluation of
our hybrid model on a vision dataset and compare its
performance with alternative methods such as a stan-
dard neural network, hierarchical topic model, pLSA,
LDA and their variants.

5.1 Dataset and image features

We evaluated our hybrid model on challenging image
scene recognition dataset [12] where the experimental
results of standard probabilistic graphical models such
as pLSA and LDA have been reported. This dataset
consists of 1500 training images and 2998 test images
each of which is labeled by one of 15 scene categories
such as street, kitchen, coast, etc. Each image is repre-
sented by a set of SIFT descriptors which are sampled
every 16 pixels (giving ∼ 240 per image). Each SIFT
descriptor is a 128-dimensional vector which encodes
the histogram of gradients of a local image patch with
size of 32×32. Since we focus on the theoretical issues
involved when combining NN with graphical models,
the pyramid representation [12] which leads to better

performance is not used.

5.2 Scene modeling: topic model, neural

network and the hybrid

Topic model. The baseline model of image scene is
standard LDA [4, 6]. We first form visual vocabulary
with size of 200 (following [6]) where visual words are
obtained by vector quantization of SIFT descriptors.
An image scene is represented by LDA which learns the
latent topic distributions of visual words. When labels
are provided in training, the variants of LDA such as
supervised LDA [3] and discriminative LDA [11] can
be applied. The performance of LDA is directly based
on [6].

Hierarchical topic model. Unlike LDA, the hierar-
chical topic model introduced in section 2.2 integrates
the representation of dictionary. The observation data
input to HTM is SIFT features. The HTM is capable
of learning the visual vocabulary and the topic distri-
bution jointly. Our HTM method which makes use of
class labels is related to the discriminative version of
LDA [11]. We also follow the standard way [12, 11] to
study the discriminative power of the inferred latent
topics by training a SVM with the assigned topics as
classification features. Note that the input to all vari-
ants of both HTM and LDA models are fixed visual
vocabulary without the ability of learning transforma-
tion of low-level feature representation, i.e. SIFT de-
scriptors.

Neural network. We use the same architecture of
the neural network as described in section 2.1. In or-
der to predict scene labels, we extend the neural net-
work by imposing a softmax layer on the top which
performs logistic regression of the scene labels and the
output of the feature transformation. Learning the ex-
tended neural network is performed by standard back-
propagation [13]. Unlike the topic models, this ap-
proach lacks a high level model of the scene.

Hybrid model: The hybrid model is a combina-
tion of the hierarchical topic model and the neural
network which integrate the ability of learning low-
level feature transformation and high-level scene rep-
resentation. The input to the model is SIFT features,
used by the other approaches. The free parameters
and hyper-parameters are set to S = 15 (categories),
M = 45 (topics), K = 200 (words), α = 1/3, β = 1/3.
Let d denote the dimension of µ (=25). γ is set to
(µ0 = 0d, κ = 0.1, ν = d + 5,Λ0 = Id). The NN has a
128− 600− 25 architecture. Back-propagation is per-
formed using conjugate gradients, with mini-batches
of 75 images by ∼ 200 features/image. Convergence
occurs in about 70 iterations. The corresponding sep-
arate HTM and NN use the same parameter settings.
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Figure 2: Toy experiment using 2D data (left), with 5 clusters drawn from 4 classes (cross, dot, square, circle). Note
that there are multiple clusters per class. Middle: Visualization of 2D feature space x after NN pre-training and Gibbs
sampling of supervised topic model with K=5 clusters and Y=4 classes. The ellipses show the mean and covariance of
each Gaussian cluster in the HTM. In the HTM, the color indicates the predicted class of each data point (the labels:
red=cross, green=dot, blue=square, cyan=circle). Note that several points are mislabeled. Right: The feature space
after back-propagation of unified model. The NN has distorted the feature space to make classification easier for the topic
model, with only a single data point now being misclassified.

pLSA+SVM [12] LDA [6] Supervised LDA [3] Neural Network HTM
63.3 65.2 67.0 51.6± 1.1 64.9± 1.2

HTM+ SVM Hybrid model Hybrid model Hybrid model Hybrid model
no pre-train pre-train NN only pre-trained fully trained

65.5± 1.5 47.2 52.5 65.7± 0.4 70.1± 0.6

Table 1: Classification rates of our model and other approaches on a scene classification dataset [12]. Our implementation
of discriminative hierarchical topic model (HTM) is similar to Sudderth’s scene model[21]. The performance of the HTM
alone is close to the other two probabilistic models (pLSA+SVM) reported in [12] and discriminative LDA [6] which is
evaluated on 13 categories. The method of “HTM+SVM” is a multi-class SVM with the input features of the latent topic
assignments of HTM. Our hybrid model is a combination of neural network and HTM. We report the results of both
pre-training and joint optimization, with the latter achieving a performance of 70.1%.

5.3 Results

We report the classification accuracy of the three types
of methods in Table 1. Each model is trained on 5 ran-
dom splits of training and test sets. We can see that
the neural network, which lacks high-level represen-
tation, performs badly with classification accuracy of
51.6%. We also tried adding an extra hidden layer to
better match the capacity of hybrid model, which re-
sulted in a performance of 50.7%. The baseline HTM
achieves 64.9% which is significantly better than neu-
ral network, and is comparable with other latent topic
models LDA [6] (65.2%) and pLSA [12] (63.3%). The
method of “HTM+SVM” which is a multi-class SVM
using latent topic assignments of HTM as classifica-
tion features, provides slightly improved predictions
(65.5% vs 64.9%).

The hybrid model is analyzed after: i) pre-training
and ii) full training with joint optimization. The pre-
trained hybrid model achieves 65.7% , slightly bet-
ter than HTM, which shows that simple pre-trained
feature transformation offers similar predictions. The
fully trained hybrid model further improves the classi-

fication accuracy to 70.1% which is significantly better
than HTM. It shows that joint optimization is capable
of learning better low-level feature transformations for
high-level topic modeling.

6 Discussion

We have introduced a unified representation that uni-
fies two distinct classes of model that are widely used
in machine learning and an end-to-end training scheme
for the model. A number of improvements to our
model could easily be incorporated. For example, a
convolutional form of NN [13] could be used to directly
learning from image pixels, or a spatial structure could
be incorporated into the topic model, in the style of
Sudderth et al. [21].

Our approach for joint training of the two models is a
simple one that can be applied to more complex types
of graphical model, provided (approximate) inference
is possible in closed form. Finally, our model is not
limited to image data and could easily be applied to
other modalities such as text or audio.
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