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A Hybrid Neural Network Model 
for Solving Optimization Problems 

K. T. Sun and H. C. Fu, Member, ZEEE 

Abstract-In this paper, we propose a hybrid neural network 
model for solving optimization problems. We first derive an 
energy function, which contains the constraints and cost criteria 
of an optimization problem, and we then use the proposed neural 
network to find the global minimum (or maximum) of the energy 
function, which corresponds to a solution of the optimization 
problem. The proposed neural network contains two subnets: a 
Constraint network and a Goal network. The Constraint network 
models the constraints of an optimization problem and computes 
the gradient (updating) value of each neuron such that the 
energy function monotonically converges to satisfy all constraints 
of the problem. The Goal network points out the direction of 
convergence for finding an optimal value for the cost criteria. 
These two subnets ensure that our neural network finds feasible 
as well as optimal (or near-optimal) solutions. We use two well- 
known optimization problems-the Traveling Salesman Problem 
and the Hamiltonian Cycle Problem-to demonstrate our method. 
Our hybrid neural network successfully finds 100% of the feasible 
and near-optimal solutions for the Traveling Salesman Problem 
and also successfully discovers solutions to the Hamiltonian Cycle 
Problem with connection rates of 40% and 50%. 

Index Terms-Energy functions, feasible solutions, neural net- 
work, optimization problems. 

I. INTRODUCTION 
EURAL networks have been used to solve a wide variety N of optimization problems [2], [lo], [14], [20], [22], 

[23], [28], [31]. Hopfield and Tank [8] suggested that the 
Traveling Salesman Problem [6] can be represented by an 
energy function that can be iteratively solved on a neural 
network. The difficulty in using a neural network to optimize 
an energy function is that the iteration procedure may often 
be trapped into a local minimum, which usually corresponds 
to an invalid solution. Moreover, the values assigned to 
the parameters of an energy function can greatly affect the 
convergence rate of iterations. Aiyer et al. [l] proposed a 
mathematical method for predicting a set of parameters on 
the Hopfield model that allow the Hopfield net to reach a 
feasible solution. However, Aiyer’s .method is still restricted to 
quadratic functions (the Hopfield net) only. Many optimization 
problems, such as satisfiability problems, cannot be solved by 
the Hopfield net. In this paper, we propose a hybrid neural 
network for solving energy functions of different orders. The 
solutions found by our network are all feasible. 
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We first express an optimization problem by a set of logical 
expressions and then map the logical expressions into algebraic 
equations. Based on these algebraic equations, an energy 
function is formulated. The energy function has two parts: 
constraints and the cost criteria. The proposed neural network 
also has two parts: a Constraint net (for the constraints) and 
a Goal net (for the cost criteria). Benchmark tests on the 
traveling salesman problem show that our neural network can 
provide 100% of the feasible and near-optimal (or optimal) 
solutions to the test problems. 

The contents of this paper are as follows. In Section 
11, we describe the proposed method for constructing an 
energy function from an optimization problem. In Section 
111, we present the operations and functions of the proposed 
neural network model. A neural state updating method, the 
coordinate Newton method, and some convergence theorems 
are also introduced in Section 111. In Section IV, the results of 
experimental tests of our network are presented and discussed. 
Concluding remarks are given in Section V. 

11. PROBLEM REPRESENTATION AND 
THE TRANSFORMATION METHOD 

Since Hopfield and Tank [SI constructed an energy function 
to represent the Traveling Salesman Problem (TSP) so that 
it could be iteratively solved on their neural network, many 
energy functions have been proposed to represent different 
optimization problems. To date, there is no systematic transfor- 
mation method for constructing an energy function to represent 
an optimization problem. In this section, we shall propose 
such a systematic transformation method. Our transformation 
method contains three steps: 1) representing an optimization 
problem as a set of logical expressions; 2) mapping these 
logical expressions into a set of algebraic equations; and 3) 
formulating an energy function from these algebraic equations. 
Each of these steps will be discussed as follows. 

A. Representing an Optimization Problem 
by a Set of Logical Expressions 

Since most optimization problems contain two parts: con- 
straints and cost criteria, to achieve an optimal solution, the 
constraints must he satisfied and the cost criteria must be 
minimized (or maximized). For example, in the Traveling 
Salesman Problem [9], the constraints are that each city must 
be visited exactly once and that a salesman can arrive at only 
one city at a time during the tour, and the minimization of the 
cost criteria is to find the shortest tour length. For this problem, 
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we use the logical symbol Czj or its complement to represent 
whether or not a city z is being visited at time j during a 
tour, and we use the algebraic symbol d,, to represent the 
distance between cities z and y. Thus, the constraints and the 
minimization of cost criteria can be represented by the logical 
expressions at the bottom of this page and in the following. 

In both of these constraints, N represents the number of 
cities in the problem, and 1 5 i,j 5 N .  

Cost criteria: To find the shortest tour length. 

where @ is an exclusive-OR operator (XOR). 
Under constraints (1) and (2), the space of feasible solutions 

can be represented by a binary value matrix [ c ] N , N .  In 
matrix [C],  there can be only one “1” (True) in each row 
and each column; all other variables must be “0” (False), 
so that constraints (1) and (2) are satisfied. Mapping logical 
expressions into algebraic equations is the second step of the 
transformation method. If we try to map expressions (1) and 
(2) directly into algebraic equations, however, the transformed 
algebraic equations will contain NNth power terms, making it 
difficult and complicated to update the new value on a neural 
net and slowing down the convergence speed. Therefore, we 
propose to rewrite the constraints of the problem using shorter 
logical expressions with fewer state variables. The rewritten 
constraints and the logical expressions are as follows: 

Constraint I :  Each city i must be visited at least once and 
no more than once. This constraint can be expressed by the 
following set of logical equations: 
\* At least one Gib, 1 5 k 5 N ,  is True. *\ 

\* No more than one C i k ,  1 5 k 5 N .  is True. *\ 

Constraint 2: A salesman arrives in at least one and no more 
than one city at any time j during the tour. Similarly, this 
constraint can be expressed by the following set of logical 
equations: 
\* At least one C k j ,  1 5 k 5 N ,  is True. *\ 

Clj V Czj V C3j V . . . V CAT, = T r u e ,  

\*  No more than one C k j ,  1 5 k 5 N ,  is True. *\ 
Clj A C2j = False,  Clj A C3j = False,  . . . , 

Clj A C N ~  = False,  
Czj A Csj = False,  . . . , C2j A C N ~  = False, .  . . , 

CN-lj A Cp~j = False. (5 )  

The logical expression “Cyi+l @ C,i-1 = True” in the cost 
expression can also be formulated as 

(Cyz+l A c,i-1) V (Eyi+l A Cyi-l) = False. (6 )  

Now, we shall simplify the cost expression in (6) by eliminat- 
ing the term “(Cyi+l A C,i-l) = False,  1 5 y, i 5 N” that 
also appears in the constraints [Le., in (4)]. Thus, we can delete 
this term - from (6) so that expression - (6) can - be simplified to 
Cyz++l A C,i-1 = False. Since “Cyi+l A Cyi-l = False” 
is logically equivalent to “C,i+l V C,i-1 = True,” the cost 
expression then becomes 

- 

N N 

M i n x  x [ & , ( C , t  A (c,i+l V C y i - l ) ) ] .  

Now the constraints and the cost criteria of a TSP can be 
represented by expressions (4), (5) ,  and (7). 

(7) 
X,Y i 

B. Mapping Logical Expressions into Algebraic Equations 

By applying a mapping method similar to that used in 
[29], logical expressions can be formulated as algebraic equa- 
tions without changing their semantic meaning. The mapping 
method is listed as follows: Replace each instance of 

1 )  True by 1 ,  
2 )  False by 0, 
3 )  Logical variable C%j by c ; j ,  

4) A NOT operator by subtraction from one, and 
5 )  An AND operator by multiplication. 

Constraint 1: Each city i must be visited exactly once. 

Constraint 2: A salesman arrives at only one city at any time j during the tour. 
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When an OR operator is needed, it can be derived by com- 
bining the NOT and AND operators. For example, xi V = 
Xi A Y i . ( X i  V x) can then be transformed into the algebraic 
equation 1 - (1 - x;)(1 - yi). 

Based on this mapping method, the logical expressions of a 
TSP can be transformed into the following algebraic equations: 

Constraint 1: Each city a must be visited at least once and 
no more than once. 

- 

C. Constructing an Energy Function from 
the Algebraic Equations 

function E, can be formulated as follows: 
For the constraints of the TSP [(8) and (9)], a squared error 

” 
E, = C ( t i  - (11) 

i= l  

where ti represents the target value (at the right-hand side) and 
ai represents the iteration value (at the left-hand side) of each 
algebraic expression of (8) and (9). N’ is the total number of 
algebraic equations in (8) and (9). An energy function E can 
be obtained by combining (10) and (11) as follows: 

N’ 

E = E, + Cost  = A c ( t i  - ~ i ) ~  + BCost 

where A and B are the parameters. When the constraints are 
satisfied (i.e., E, = 0) and the cost criteria is minimized, the 
shortest tour length of the TSP is obtained. 

Parameter Setting: There are two adjustable parameters in 
(12). Previous studies of neural networks for optimization 
problems have had to assign appropriate values to the param- 
eters in an energy function to find a feasible solution [l], [22]. 
Consequently, choosing improper values for the parameters 
in the energy function slows down the convergence speed 
and results in invalid solutions [l], [22]. In the next section, 
we propose a neural network and a neural state updating 
method in which the parameters of the energy function can be 
fixed values and no initial setting of the proper parameters is 
required. In addition, our method accelerates the convergence 
speed and generates feasible solutions. 

(12) 
i=l 

0 ... 1...0 

Constraint 
Network 

I Network Goa’ 11 
Fig. 1. The structure of the hybrid neural network. 

111. MINIMIZATION OF THE ENERGY FUNCTION 

Many neural network models and algorithms [4], [ll], [12], 
[MI-[20], [23], [30], [32] have been proposed for solving 
optimization problems. Most of the algorithms often converge 
to an invalid solution or require a large amount of computation 
time to reach an optimal (or near-optimal) solution. In this 
section, we propose a neural network model that finds an 
optimal (or near-optimal) solution within a short computation 
time. 

The proposed neural network, which we called the hybrid 
neural network, contains two subnets: a Constraint network 
and a Goal network (see Fig. 1). 

The Constraint network models the constraints of the prob- 
lem and computes the gradient (updating) value of each neuron 
(i.e., Ax1, Axz, . . . , Ax,). By using these gradient value 
Ax’s, the Goal network computes the direction of convergence 
during each iteration for minimizing (or maximizing) the cost 
criteria (functions). The underlying point of this method is to 
ensure the constraints are satisfied (or at least are closer to 
being satisfied) at each stage of the gradient descent search 
on the cost functions. Therefore, the hybrid neural network 
produces feasible and near-optimal solutions. 

We have designed an array processor system [5], [13] (see 
Fig. 2) for our hybrid neural network. In Fig. 2, each processor 
element (neuron) xi in the Constraint Net computes the updat- 
ing value Axi, and all updating values (Axl, Axz, . . . , AZN) 
are sent to the Max-Min Net to determine which neuron is to 
be updated. Each processor in the Goal net computes F. 
Both the Axi and are sent to the Max-Min net to 
determine which variable xi is to be updated. The output 
of the Max-Min Net enables the Selector module to output 
the corresponding updating value Axi, which will be passed 
back to the input neurons to update their states. The iteration 
procedure continues until a stable state (i.e., Axi = 0) is 
reached. 

The Coordinate Newton Method: To minimize the squared 
error function E,, we propose a neural state updating method 
called the coordinate Newton method to compute the updating 
value of each neuron (i.e., each variable) at each iteration. 
This method is based on the concept of the coordinate descent 
method [17], in which a function f(z) is minimized with 
respect to one of the coordinate variables xi of z at each 
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Constraint Network 

Goal Network 

Fig. 2. The architecture of our hybrid neural network system. 

iteration until the gradient of function f reaches zero (i.e., 
Vf(z)  = 0). In order to achieve faster convergence speed, we 
apply the Newton method [17] instead of the gradient method 
to search for the minimum. By using the Newton method to 
find the minimum of a function f ,  the updating value Ax for 
a vector X at an iteration t is defined by (13). 

Fig. 3 .  

Fig. 4. 

For a function f, an initial point zo is monotonically reduced to a 
minimum point z*. 

A convex function f(x1,xz) converges to the minimum point zi on 
the updating coordinate in each iteration. 

AXt = [ F ( x ' ) ) l - l V f ( ~ X ~ ) ~ ,  and (potential) curve of a function f .  The proof of this theorem 
is given in Appendix A. 

Theorem 2: The coordinate Newton method always finds (13) 
- -  

the minimum point of a function f along the updating coor- 
dinate at each iteration, where f has nonzero second-partial 
derivatives over a convex set f2 in which each variable is of 

For updating a function f with only one variable x, (13) can 
be simplified as 

- 
dx2 

Thus, the updating value along a coordinate variable zi will be 

where the value xi" is the new value on the coordinate xi 
such that the new point zt+l is closer to the minimum point. 
Some interesting properties of the coordinate Newton method 
are presented in the following theorems. 

Theorem 1: The coordinate Newton method monotonically 
reduces a function f to a stable state, where f has nonzero 
second-order partial derivatives over a convex set f2 in which 
each variable is of order two. 

Fig. 3 illustrates that an initial point z'monotonically re- 
duces to a minimum point z* by the coordinate Newton 
method. Each ellipse curve in Fig. 3 represents an equal value 

order two. 
Theorem 2 means that the new point zt+l is the minimum 

point along the updating coordinate xi of the iteration t. The 
proof of this theorem is shown in Appendix B. Fig. 4 illustrates 
that an initial point z' of a convex function f (x l rx2)  con- 
verges to the minimum point z1 along the updating coordinate 
21. At the next iteration, the point 2' converges to the 
minimum point z2 along the updating coordinate 22, and the 
convergence procedure proceeds continuously until a stable 
point z* is reached (i.e., Of = 0). 

Another property of the coordinate Newton method is that 
it converges to a minimum with order two of convergence. 

Order of Convergence: When a sequence {a} converges 
to z*, the order of convergence [16] of {zk} is defined as the 
supremum of the nonnegative number p satisfying 

(16) 
-1 Xk+l - x* I O <  lim < 00. 
k - i m  1 xk - x* I p  

A larger order of p implies a faster convergence speed. 
Theorem 3: Let f be a function on R". Assume that there 

exists a minimum point z*, and the Hessian F ( z * )  is positive 
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definite. If the initial point zo is not a minimum and it is 
sufficiently close to z*, the sequence of points generated by 
the coordinate Newton method converge to x* with order two 
convergence. 

The proof of this theorem is presented in Appendix C. 
From Theorem 3, the coordinate Newton method has the same 
convergence-of order two-as the Newton method. In order 
to apply the coordinate Newton method in the proposed neural 
network for solving optimization problems, we propose the 
following algorithm: 

Hybrid Network Updating Algorithm (HNUA) 

1. 

2. 

3. 

4. 

5.  

Apply the coordinate Newton method to minimize the 
squared error function E ,  by computing the updating 

value Ax, (= &) for all variables (neurons) x,’s. 

Calculate the partial derivative of the Cost function over 
each variable xi (Le., F). 
Determine the maximum value Ax* of N I Ax ,  1’s 

a E ,  

az2 

Ax* = Inax({[ Axi I,l 5 i 5 N } ) ,  (17) 

then form a set r of variables x j  that corresponds to the 
maximum updating value Ax*, i.e., 

Among the x j  variables in set I?, select a variable XI, 
which corresponds to the minimum value of the partial 
derivative of the Cost function, 

dCost 
x,+ = min( - , vx j  E r). 

arg dx j  

Update x i  by adding the Axi  obtained in Step 1, 

= + ax;. 
Check the gradient of function E,  (i.e., V E,  = 2, Vi).  
If V E ,  is equal to OlxN, i.e., the energy function 
converges to a stable state (Axi = O,Vi), then stop. 
Otherwise, return to step 1 for the next iteration. 

The HNUA is implemented by the Constraint network and 
the Goal network. Steps 1 and 2 can be executed in parallel on 
these two subnetworks. The max and min operations in steps 3 
and 4 are performed by the Max-Min net. Based on the output 
from the Max-Min net, the Selector module selects the neuron 
xk for updating. Finally, the Constraint net checks the gradient 
value V E ,  to see whether the iteration procedure should be 
stopped or not. If the gradient V E ,  is equal to O l x ~ ,  then 
the energy function has converged to a stable state, which 
represents a solution to the optimization problem. 

We will apply the HNUA to solve two well-known opti- 
mization problems: the Traveling Salesman Problem and the 
Hamiltonian Cycle Problem. 

Example 1: Traveling Salesman Problem (TSP): By apply- 
ing the transformation method, the TSP can be represented by 
an energy function E [(12)]. The steps involved in using the 
HNUA to solve the TSP are described as follows. 

1. Apply the coordinate Newton method on the squared 
error function E, [see ( l l ) ]  to compute the Ac,, for 

each variable czi, 1 5 x , i  5 N :  

N 
dCost - - dzy(cyi+l+ cyi-i - cyi+icyi-i). (23) 
acxi y=l,y#x 

Determine the maximum value Ac* of N 2  I Acxi )’s, 

Ac* = max({l Ac,, ) ,1  I x , i  I N } ) ,  (24) 

then form a set r of variables cyj that corresponds to 
the maximum updating value Ac*, Le., 

Among the cyj’s in set r, select a variable Cwk which 
corresponds to the minimum value of the partial deriva- 
tive of the Cost function. 

acost ,vcyj E r). 
c W k  = min( - 

arg dcyj 

Update Cwk by adding the updating value obtained in 
Step 1. 

Test the gradient of function E,  (Le., VE, ) .  If V E ,  is 
equal to O1 N2, i.e., the energy function converges to a 
stable state (i.e., Acxi = 0, Vx, i), then stop. Otherwise, 
return to step 1 for the next iteration. 

Based on the HNUA, the squared error function E,  of 
the TSP monotonically converges to a stable state, because 
the squared error function E, has nonzero second partial 
derivatives over a convex set in which each variable is of 
order two (see Theorems 1 and 2). Many interesting properties 
of the squared error function E, are presented with proofs in 
Appendix D. 

Example 2: Hamiltonian Cycle Problem (HCP): A Hamil- 
tonian cycle in a graph G = (V, E )  is a cycle in graph 
G containing all vertices in V. If G is directed, then the 
Hamiltonian cycle is directed; if G is undirected, then the 
Hamiltonian cycle is undirected. Note that not all graphs have 
a Hamiltonian cycle, and the problem of determining whether a 
graph G has a Hamiltonian cycle is NP-complete. To solve an 
HCP, we need to derive an energy function for the HCP. The 
energy function for an HCP can be derived in a way similar 
to the derivation of (12) for TSP. Since the nodes in an HCP 
are not fully connected, the cost (distance) d i j  between nodes 
is defined as follows: 

dij  = 1, if node i is connected to node j .  

d i j  = N ,  if there is no connection between node i and node j .  

(28) 

We represent the distance between two unconnected nodes i 
and j by a number N for ease of formulation and computation 
of the energy function. 
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The procedure of using the Hybrid Network Updating 
Algorithm to solve an HCP is similar to the procedure for 
solving the TSP. To avoid repetition, in the following we will 
discuss only the major procedure differences between these 
two problems. For an HCP, a valid tour length is N for an N 
nodes problem. The total distance connected to a node x at 
time i is equal to the value of p. Using the distance defined 
in (28), a value of greater than or equal to N indicates 
a disconnected path to node x at time i .  In order to continue 
searching for a connected cycle, we randomly select a node y 
to visit at time i and remove the selected nodes at time i + 1 
and time i - 1. Thus, another path is tried in order to establish 
a complete cycle. This process can be seen as a hill-climbing 
technique used to escape from a spurious minimum z: and to 
search for the global minimum z* (an optimal solution). 

From the TSP and HCP, we see that the coordinate Newton 
method is suitable for rapidly solving different optimization 
problems with different orders of the squared error function 
E,. Therefore, a wide variety of optimization problems, such 
as the satisfiability problem [23], the traffic control problem 
in interconnection networks [25], [26], the restrictive channel 
routing problem [27], the independent set problem, the multi- 
processor scheduling problem, and the partition problem can 
be also solved by this method. 

IV. EXPERIMENTAL RESULTS 

Simulation systems for the proposed neural network were 
constructed on an IBM RS/6000 workstation. The Traveling 
Salesman Problem (TSP) and the Hamiltonian Cycle Problem 
(HCP) were used as examples to test the performance of the 
proposed neural network. For the TSP, we tested 10, 50, 100 
and 200-city problems with randomly chosen city coordinates 
within a unit square, similar to [21]. One hundred test cases 
with different city coordinates were simulated and tested for 
problems with different number of cities. The initial values 
of the neurons for different tests were all set to “O”, except 
for the starting city c11 (=1) of the tour. Fig. 5 shows the 
tour length distribution for a 10-city TSP. For this case, our 
test result, 2.28, is an optimal solution. Table I shows our 
simulation results along with the results for the Potts Neural 
Network ( N N , )  [21], Elastic Net (EN) [4], Genetic Algorithm 
(GA) [19], Simulated Annealing (SA) [ l l ] ,  Hybrid Approach 
(HA) [12], and Random Distribution (RD). 

Using our neural network, the simulation time for solving 
a 200-city problem on an IBM RS/6000 workstation was 
about two minutes. As shown in Table I, our results are 
far better than those obtained by RD (random distribution), 
and our results are comparable to those for the Potts Neural 
Network (NN,). Although our method, HN, generates the 
longest or the second longest tour lengths, our object is to 
compare the overall performance of the different methods, 
including such factors as tour length, convergence speed, and 
feasible solution rate. As listed in Table I, our method is 
the only method that does not apply hill-climbing technique 
to escape from a local minimum. Obviously, applying hill- 
climbing technique requires a lot of computation. Davis [3] 
and Wilson et  al. [30] have reported that some neural networks 

2 2.4 2.8 3.2 3.6 4 4.4 4.8 5.2 5.6 6 6.4 6.8 7.2 7.6 8 8.4 8.8 9.2 

Tour Length 

Fig. 5. The distribution of tour lengths of a 10-city TSP. Our solution falls 
at the position z* (= 2.28), which is an optimal solution. 

TABLE I 

NETWORK (HN), Pons NEURAL NETWORK (NNp), ELASTIC 
NET (EN), GENETIC ALGORITHM (GA), SIMULATED ANNEALING (SA), 

HYBRID APPROACH (HA), AND RANDOM DISTRIBUTION (RD) 

COMPARISON OF AVERAGE TOUR LENGTHS DERIVED USING THE HYBRID 

-v Different Approaches 
(number 
ofcities) HN NNp EN GA SA HA RD 

50 6.7 6.61 5.62 5.58 6.8 - 26.95 

100 9.28 8.58 7.69 7.43 8.68 7.48 52.57 
200 12.77 12.66 11.14 10.49 12.79 10.53 106.42 

that do not use hill-climbing technique can become trapped 
into invalid solutions. Although our method guarantees that 
the solution search for the travelling salesman problem stops 
at the global minimum of the constraints, it may stop at the 
local minimum of the cost function. Thus we claim that our 
method generates feasible solutions for the TSP, although 
these solutions may not be optimal solutions. In addition, 
our method does not require setting proper values for the 
parameters in the energy function or estimating the temperature 
T, for the annealing schedule, both of which are critical for 
obtaining a good solution using the Potts Neural Network. 
The Elastic Net (EN) can only be applied to the TSP using 
geometrical distances between cities, which is too restrictive 
for the general TSP. The distances for a general TSP may 
contain costs, times, etc., and the Elastic Net cannot be used 
to solved this general problem. The genetic algorithm has the 
best performance, since it provides the shortest tour lengths. 
When a genetic algorithm is used, the solution is obtained 
after many evolutions of generations. In each generation, 
thousands of feasible solutions are generated, and the better 
solutions are selected to evolve the next generation. Therefore, 
using the genetic algorithm to compute a solution provides a 
higher probability of discovering a near-optimal solution than 
other methods, which generates only one result. However, the 
genetic algorithm requires a large amount of computation to 
find a solution. In addition, different operations of the genetic 
algorithm, such as crossover, mutation, and inversion, must 
be specially defined to solve different optimization problems. 
For example, the crossover operation in the genetic algorithm 
can be defined to exchange the positions of cities on the 
tour for the TSP, and it can also be defined to change the 
assignment of objects to different sets for partition problem. 
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Fig. 6 .  The number of iterations needed by our method and another efficient 
algorithm to solve an HCP with connection density (a) 40% and (b) 50%. 

So the genetic algorithm cannot provide a systematic method 
for solving different optimization problems. The simulated 
annealing (SA) method uses much time to reach a stable state, 
which makes it impractical for larger problems. The hybrid 
approach (HA), which combines three methods-the greedy 
method, simulated annealing, and exhaustive search-is a 
complex and computation-inefficient algorithm for solving the 
TSP. Compared with the other methods listed in Table I, our 
method provides greater computational efficiency. 

For the HCP, we also tested 10, 20, 30, 50, and 100-node 
problems with connection densities of 40% and 50%. One 
hundred tests with different connection distributions between 
nodes were simulated for each different size and density 
problem. A comparison of our method with the branch-and- 
bound algorithm [9], is shown in Figs. 6(a) and (b). 

The branch-and-bound algorithm is a tree search procedure 
in which the number of iteration steps grows exponentially as 
the size of the problem is increased. However, our simulation 
results show that the number of iteration steps in our neural 
network approach grows approximately in linear. When the 
connection density is 50%, the results of our method are 
comparable to those of the branch-and-bound algorithm. When 
the connection density is reduced to 40%, our method performs 
much better than the branch-and-bound algorithm. Our method 
seems to be suitable for solving HCP's with lower connection 
densities. 

V. CONCLUSIONS 

In this paper, a hybrid neural network and a neural state 
updating method for solving optimization problems have been 
proposed. A transformation method for representing an op- 

timization problem by an energy function has also been 
presented. The transformation method can be applied to any 
type of optimization problem that can be represented by 
logical expressions such as those used in Section I1 of this 
paper. The energy function has two parts: the constraints 
and the cost criteria. It is solved using a hybrid neural 
network that comprises two subnets: the Constraint net and 
the Goal net, which correspond to the two parts of the energy 
function. The energy of the function is iteratively minimized 
(or maximized) by the neural network ~ operations until a 
stable state is reached. The coordinate Newton method, a 
neural state updating method that combines the concepts of 
the coordinate descent method and the Newton method, is 
proposed for computing the updating value of each variable 
(neuron). Various merits of using the coordinate Newton 
method to determine the gradient value of each variable in 
order to reduce (or increase) the energy of the function are 1) 
the coordinate Newton method's convergence speed (order two 
convergence) is faster than that of the gradient descent method; 
2) the coordinate Newton method is more suitable for parallel 
implementation than the Newton method; 3) if a function f 
has nonzero second-order partial derivatives over a convex set 
R in which each variable is of order two, then by applying the 
coordinate Newton method, a) the function f is monotonically 
reduced to a stable state, b) the function f always reaches the 
minimum point along the updating coordinate at each iteration; 
and 4) the stable state of the energy function represents a 
feasible solution. 

In summary, the proposed neural network technique for 
solving optimization problems has the following advantages: 

1) It provides a mapping technique for systematically trans- 
forming an optimization problem into an energy func- 
tion. 

2) It does not require selection of the proper values for 
parameters in an energy function in order to obtain an 
optimal (or near-optimal) solution. 

3) It prevents the energy function from being trapped into 
an invalid solution. 

APPENDIX A 
PROOF OF THEOREM 1 

The coordinate Newton method monotonically reduces a 
function f to a stable state, where f has nonzero second- 
order partial derivatives over a convex set R, in which each 
variable is of order two. 

Proof: According to Taylor's series expansion, we can 
expand a function f ( z )  at point z0 as follows: 

1 1 
f ( z )  = f ( ~ ~ ) + d f ( ~ ~ ) + - d ~ f ( z O ) i 3 d ~ f ( ~ ~ ) + . . .  2! , (29) 

f Po ) where d k f ( z O )  = E,1 cz2 . . . Czk a z l B x z  azn qiqz . . 
and qz = x, - 2:. By applying the coordinate Newton method, 
the updating value of 2, along the coordinate 2, at iteration t is 

afo 

ax: 

2t+l - 2; - aZ, 
z a z f ( x ' )  ' and 

2;" = xi, VJ # r .  

- 

(30) 
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kt z 1 xt+' and zo = xt. Then q; = x i  - ~4 = - x: = 
Ax;, such that the value of qi is equal to Axi. Rewrite (29) 
in terms of z t ,x t t l  and A z .  Then 

1 d3f(zt) 
3! dX? 

+ -Ax: ~ + . . . . 
Since each variable in function f is of order two, the higher 
order terms (&Ax?- + . . .) vanish and (31)'becomes axt 

Then, 

1 (*)2 

Af(z t )  = 2 a2f(zt )  ' (33) 
ax: 

Since f ( z )  is a convex function, the second partial derivatives 
of function f ( z )  are greater than 0 (i.e., > 0). 
Therefore, we can prove that 

A f ( z t )  5 0. (34) 

This implies that the' function f is monotonically reduced to 
a stable state. Q.E.D. 

APPENDIX B 
PROOF OF THEOREM 2 

The coordinate Newton method can always find the mini- 
mum point of a function f along the updating coordinate at 
each iteration, where f has nonzero second-partial derivatives 
over a convex set R in which each variable is of order two. 

Proof: The function f(z),z = (xl, 2 2 , .  . . , zn), can be 
expressed in terms of the variable X, as follows: 

f ( z )  = Ex: + Fx, + G ,  and E > 0; F, G E R, (35) 

where E ,  F and G are the terms that contain variables x l ,  V j  # 
i in the function f (z) .  By applying the coordinate Newton 
method to function f on the coordinate 2%) the variable x, is 
updated by 

afo 
-az, (36) W '  

If new point z' is the minimum point on the coordinate z,, 
then the partial derivative of f over X, at the next iteration 
should equal zero. 

d + --xi a + 0 
dxa d X 2  

= 2E(1 - l) + F ( l  - l )  

= o + o  
= 0 .  (37) 

From the minimization of convex functions, (37) shows that 
the new point z' is the minimum point on the coordinate xi  at 
the next iteration. Thus, the coordinate Newton method always 
finds the minimum point along the updating coordinate at each 
iteration. Q.E.D. 

APPENDIX C 
PROOF OF THEOREM 3 

Let f be a function on R". Assume that there exists a 
minimum point z* and that the Hessian F(x*)  is positive 
definite. If the initial point zo is not a minimum and is 
sufficiently close to z*, the sequence of points generated by 
the coordinate Newton method converge to x* with order two 
convergence. 

Proof: According to the coordinate Newton method, the 
updating value for each neuron is x:+' = xr +Ax:,  which can 
be represented in vector form for the purpose of proving the 
convergence of the function f .  In vector form the updating 
value is 

%t+l = zt - [ e ,F(z t ) e r ] - 'Vf ( z t ) e re ,  (38) 

where e, is the zth coordinate unit vector (i.e., el = 
(1,O,O , . . . ,  O),e2 = (O,1,O ,..., 0) , . . . , e ,  = ( O , O , O  ,..., 
1)); F ( x t )  is the Hessian matrix [17], [d2 f /dx ,dx , ] ,Vz ,~ ,  
of the function f ;  and V f ( z t )  is the gradient of function f at 
time t .  There exists p, a > 0, p > 0 such that 1 z - x* I< p, 
I [e,F(x)e:]-' I 5 a and I Vf(z )eFe ,  + [e%F(x)eT](z* - 

z) 15 p I z - z* 1 2 ,  for all z. Now suppose zt is selected 
with a.P I zt - z* I <  1. Then 

I zt+' - z* I =I zt - z* - [ e Z ~ ( x t ) e T ] - ' o f ( z ' ) e F e ,  I 
=I [ e Z ~ ( z t ) e r ] - ' ( ~ f ( z t ) e ~ e ,  

+ [ e Z ~ ( z t ) e r ] ( z *  - z')) I 
51 [ e , ~ ( z ~ ) e ? l - + l  1 0 1 zt - z* l 2  
- < ap I xt - z* 12 (39) 
<)z t - z *  I .  (40) 

Equation (40) shows that the new point zt+' is closer to z* 
than the point zt, and (39) shows that the order of convergence 
of the coordinate Newton method is two. Q.E.D. 

APPENDIX D 
PROPERTIES OF THE SQUARED 

ERROR FUNCTION E, OF THE TSP 

Property 1: Based on the coordinate Newton method, the 
value of each variable cxi, 1 5 x, i 5 N ,  in the squared error 
function E, is bound within [0,1]. 
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Proof: The squared error function E, [(l l)]  can be 
rewritten as 

E, = 7; yI + c$icii 
z i j # i  x y f z  i 

x i  i x  

Equation (41) can be expressed in terms of the variable cxi: 

E, = A& + Bcxi + C, (42) 

where A 2 0, C 2 0, and B 5 0. Therefore, (42) is a convex 
function of cxi and can be expressed as 

B B2 B2 
E, = A ( c ; ~  + -c,i + -) + C - - A 4A2 4 A  (43) 

B B2 
= A(cXi + - )2  + C - -. 2A 4A (44) 

From Theorem 2, is equal to the minimum point (= g )  
at iteration t + 1 ,  so the value of the variable c,i is bound by 

(45) 

From (41), the value of A (summation of the terms with order 
two) is greater than or equal to f B  (summation of the terms 
with order one), thus c::’ is further bound by 

(46) t+l - -B cxi - ~ < 1. 2A - 

This proves that the value of the variable e,; is bound by 
[OJ]. Q.E.D. 

Property 2: For the neuron state matrix [ C ] N x N  of a TSP, 
when the value of a variable e,; equals one and the values of 
other elements in row z and column i are not all zeros, then 
the gradient value of 2 is not equal to zero. 

Proof: When more than one variable in a row z and 
column i is one and the values of the other elements in row 
z and column i are not all equal to zero, (45) shows that the 
gradient value of E is not equal to zero (not in a stable 
state). Q.E.D. 

Property3: By applying the HNUA, when the squared 
error function E, reaches a stable state and a variable c,i 
equals one, then each row and each column of matrix [ q n r X N  
must contain only one “1” and all other entries of this row and 
column must be “0”, which corresponds to a feasible solution. 

Proof: From (41), the first-order partial derivative of E, 
with respective to the variable e,, is 

When the function E, reaches a stable state and the value of 
e,, is equal to one, (47) becomes 

aEs 
dcx, 
- = 2[c;1 + c22 + ’ ’ ’ + cE,-l + c:,+1 + . . . + 

+ e:, + e;, + . ’ . + c;-1, + + . . . + e”,] 
= 0 ,  1 <z,i 5 N .  (48) 

Since (48) contains only squared terms, all variables in row z 
other than c,, must be zero. Similarly, on the stable state, the 
partial derivative 2 , V l  # i ,  must be zero. Then, 

aE, 
dcxl 
- = -2(1 - c11)2(1 - c21)2.. . (1 - C X - 1 l ) ( l  - cx+11)2 

. ’ ‘ ( 1  - C N [ ) 2  

= 0, Vl # a .  
(49) 

From property 2, there exists only one element cpl that is “1” 
in column 1 of matrix [ C ] N , N ,  and the other elements are all 
zeros. Similarly, we can prove that any row or any column 
contains only one “1.” Q.E.D. 
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