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A hybrid approach consisting of two neural networks is used to model the oscillatory dy-

namical behavior of the Kuramoto-Sivashinsky (KS) equation at a bifurcation parameter

α= 84.25. This oscillatory behavior results from a fixed point that occurs at α= 72 having

a shape of two-humped curve that becomes unstable and undergoes a Hopf bifurcation

at α= 83.75. First, Karhunen-Loève (KL) decomposition was used to extract five coher-

ent structures of the oscillatory behavior capturing almost 100% of the energy. Based

on the five coherent structures, a system of five ordinary differential equations (ODEs)

whose dynamics is similar to the original dynamics of the KS equation was derived via

KL Galerkin projection. Then, an autoassociative neural network was utilized on the am-

plitudes of the ODEs system with the task of reducing the dimension of the dynamical

behavior to its intrinsic dimension, and a feedforward neural network was used to model

the dynamics at a future time. We show that by combining KL decomposition and neural

networks, a reduced dynamical model of the KS equation is obtained.

1. Introduction

During the last two decades, similarities between the theories of ordinary differential

equations (ODEs) and partial differential equations (PDEs) have been observed in the

context of the qualitative theory of differential equations, especially in the case of par-

abolic PDEs. In 1981, Henry [13] gave various examples of this trend, comparing the

stability properties of PDEs to those of ODEs. Later on, the work of Mallet-Paret [24],

Mañé [25], and others opened up new avenues for understanding the longtime dynamics

of a more general class of dissipative PDEs. Furthermore, the results of Babin and Vishik,

Constantin et al., Foias et al., and Ladyzhenskaya [3, 7, 8, 9, 10, 21], who proved the finite

dimensionality of the global attractor of the two-dimensional (2D) Navier-Stokes (NS)

equations, strengthened the similarities between the two fields. The results suggest that

the dynamics on the attractor can be captured by a system of ODEs making the long-

time dynamics of the PDEs equivalent in some sense to the dynamics of a suitable system
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of ODEs. In 1997, a system of ODEs that mimics the dynamics of the 2D NS flow for a

given Reynolds number has been constructed by Smaoui and Armbruster [34]. Similar

to the 2D NS equations, the one-dimensional (1D) Kuramoto-Sivashinsky (KS) equation

was proven to contain a finite-dimensional global attractor [1]. Kirby and Armbruster

[18] and Smaoui and Zribi [35] have each obtained a system of ODEs for the 1D KS

equation based on Karhunen-Loève (KL) Galerkin approach for a given bifurcation pa-

rameter α = 17.75. In [35], three different finite-dimensional feedback control schemes

of the KS equation were designed for the system of ODEs with the task of stabilizing its

dynamics.

Recently, Neural networks have been used for the prediction of complicated dynamics

and the identification of long-term dynamical behavior and bifurcation [5, 11, 27, 29, 30].

Neural networks in conjunction with KL decomposition were also used to model the

unstable manifold of the bursting behavior in the 2D NS equations [31], to unravel the

complex behavior observed in 2D flames [33] and to obtain the intrinsic dimension of the

dynamics of the 2D NS equations and the 1D KS equation [32]. The greatest advantage

of a neural network is its ability to model complex nonlinear relationships without any

assumptions about the nature of the relationships.

The goal of this paper is to obtain a reduced dynamical system for the 1D KS equa-

tion based on a hybrid approach that combines KL decomposition and artificial neural

networks. We extend the ideas presented in [32] to demonstrate that this new modelling

approach can be used to elucidate the dynamics of more complicated PDEs, such as the

NS equation and related problems.

The paper is organized as follow. In Section 2, we present some numerical simulation

results of the KS equation for a bifurcation parameter α = 84.25. In Section 3, we apply

the KL decomposition to the numerical simulation results and show that the dynamics of

the KS equation studied in Section 1 can be represented in phase space by a limit cycle.

Furthermore, a system of five ODEs based on a KL Galerkin approach is then obtained

and it reduces the KS equation faithfully to a model with a minimum degree of free-

dom. Section 4 presents a hybrid neural network model consisting of an autoassociative

neural network and a feedforward neural network, with phase space dimension equal to

the intrinsic dimension of the KS equation, and some concluding remarks are given in

Section 5.

2. The Kuramoto-Sivashinsky equation

In the last two decades, many theoretical and numerical studies were devoted to the KS

equation [1, 15, 17, 18, 20, 32, 35]. The KS equation

∂u

∂t
+ ν

∂4u

∂x4
+
∂2u

∂x2
+

1

2

(

∂u

∂x

)2

= 0, (x, t)∈R
1×R

+, (2.1)

u(x, t)= u(x+L, t), (2.2)

u(x,0)= u0(x), (2.3)
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where L is a period and ν is the kinematic viscosity, can be transformed to the following

equation:

∂u

∂t
+ 4

∂4u

∂x4
+α

[

∂2u

∂x2
+

1

2

(

∂u

∂x

)2
]

= 0, 0≤ x ≤ 2π, (2.4)

u(x, t)= u(x+ 2π, t), (2.5)

u(x,0)= u0(x), (2.6)

by setting t̃ = νt/4, L = 2π, and introducing a new bifurcation parameter α = 4/ν. The

mean value of u is given by

m(t)=
1

2π

∫ 2π

0
u(x, t)dx, (2.7)

and the rate of change of m with respect to time satisfies the drift equation

ṁ(t)=
−α

4π

∫ 2π

0

(

ux
)2
dx. (2.8)

To normalize the drift to zero, we modify (2.4) by setting

v(x, t)= u(x, t)−m(t). (2.9)

The drift-free KS equation becomes

∂v

∂t
+ 4

∂4v

∂x4
+α

[

∂2v

∂x2
+

1

2

(

∂v

∂x

)2
]

+ ṁ(t)= 0, 0≤ x ≤ 2π, (2.10)

v(x, t)= v(x+ 2π, t), (2.11)

v(x,0)= v0(x). (2.12)

In [15], it has been shown that as α increases from 0 to 320, the dynamics exhibits a

variety of interesting behaviors including fixed points, traveling waves, beating waves,

homoclinic and heteroclinic orbits, and chaos. For the bifurcation parameter α= 84.25,

the dynamics of the KS equation is shown to exhibit a local oscillatory motion [15, 18]. In

[18], it was explained that this behavior resulted from a Hopf bifurcation of a “strange”

fixed point that becomes unstable at α= 83.75.

Since the goal of this work is to obtain a reduced dynamical system for the KS equation

at α= 84.25, we numerically compute the time series solution of (2.10), (2.11), and (2.12)

with v0(x)= sin2x+ sin3x+ cosx+ cos4x by decomposing v(x, t) via the expansion

v(x, t)=
∞
∑

k=−∞

ak(t)eikx. (2.13)

Using the above expansion, (2.10) becomes

∞
∑

k=−∞

[

ȧk(t) +
(

4k4−αk2
)

ak(t)
]

eikx =
α

2

(

∞
∑

k=−∞

kak(t)eikx
)2

− ṁ(t). (2.14)
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Figure 2.1. Numerical simulation results of the KS equation at α = 84.25 with initial conditions

v0(x)= sin2x+ sin3x+ cosx+ cos4x.

The Fourier coefficients ak are found via the orthogonality relationship

∫ 2π

0
eikxe−ilxdx = 2πδkl. (2.15)

Carrying out this procedure and truncating the expansion results in

ȧl(t)=
(

αl2− 4l4
)

al(t) +
α

2

N
∑

n=−N+l

n(l−n)al−nan, (2.16)

where−N ≤ l ≤N . Equation (2.16) is solved using a pseudospectral Galerkin method [6].

Figure 2.1 presents a numerical simulation result obtained at α= 84.25. Looking care-

fully at Figure 2.1, we see that it consists of a local oscillatory behavior. For α = 72, the

PDE has an attracting fixed point. This fixed point has a shape of a two-humped curve,

one hump smaller than the other, and it is known as “strange fixed point.” At α= 83.75,

this fixed point becomes unstable and undergoes a Hopf bifurcation which results in the

oscillatory behavior shown in Figure 2.1. In the phase space concept, the behavior is sim-

ilar to that of a limit cycle. To extract the coherent structure of the dynamics shown in

Figure 2.1, we decompose the numerical simulation results using KLTOOL (see [2]). To

make this paper self-contained, we briefly describe the KL decomposition.

3. The Karhunen-Loève decomposition

The KL decomposition is a method of representing a set of data with a minimum de-

gree of freedom. In the literature, KL decomposition goes under a variety of other names

such as Hotelling transform [14], principle component analysis [16], factor analysis [12],

empirical orthogonal functions [22], and singular value decomposition (SVD) or proper

orthogonal decomposition (POD) [23]. KL decomposition produces a basis of orthog-

onal functions, ψn, that span the data in an optimal way. The basis is optimal in the

sense that a truncated series representation of the data in this basis has a smaller mean

square error than that of a representation of the data by any other basis. As a means of
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explaining the KL decomposition, we select a set of real (random) vectors, which depend

on space and time, {vi}
M
i=1. This set of vectors is called “snapshots” [28]. It was shown

that the most coherent structures, ψ(x), among these snapshots are given by solving the

eigenvalue problem of the integral equation given by

∫

K(x,x′)ψ(x′)dx′ = λψ(x), (3.1)

where the kernel defined by

K(x,x′)= lim
M→∞

1

M

M
∑

i=1

vi(x)vTi (x′) (3.2)

can be approximated by

K(x,x′)≈
1

M

M
∑

i=1

vi(x)vTi (x′) (3.3)

for a sufficiently large M [28, 32, 35].

Expanding the snapshots vi in terms of these eigenfunctions, we get

vi = v
(

x, ti
)

=

M
∑

k=1

ak
(

ti
)

ψk(x), (3.4)

where ψk(x) are the time-independent eigenfunctions that show the important struc-

tures, and ak(ti) are the time-dependent amplitudes that show how the structure in time

interacts and may be found by projecting the snapshots vi onto an eigenfunction:

ak
(

ti
)

=

(

vi,ψk

)

(

ψk,ψk

) . (3.5)

To each eigenfunction an energy percentage is assigned based on the eigenfunction’s as-

sociated eigenvalue, that is, Ek = λk/E. The eigenfunction ψ1 corresponding to the largest

energy is the most coherent structure of the snapshots {vi}
M
i=1, and the eigenfunction ψ2

with the next largest energy is the next coherent structure, and so forth.

Using only the first most energetic N eigenfunctions, an approximation of the data is

constructed:

v
(

x, ti
)

≈

N
∑

k=1

ak
(

ti
)

ψk(x). (3.6)

The KL procedure has been used on the numerical results obtained in Figure 2.1 with

the task of extracting the coherent structures or the most energetic eigenfunctions of the

numerical data. Figure 3.1 depicts the five most energetic eigenfunctions accounting for

99.99% of the total energy. The first eigenfunction corresponds to the fixed point attrac-

tor that occurs at α = 72 which becomes unstable. The remaining four eigenfunctions

describe the local oscillation. This suggests that the dynamical behavior presented by the
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Figure 3.1. The first five eigenfunctions of the KS numerical simulation data at α= 84.25.
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Figure 3.2. The first five data coefficients of the numerical simulation data shown on Figure 2.1.
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Figure 3.3. Different projections of the limit cycle from a five-dimensional phase space into two di-

mensions.
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local oscillatory behavior lives in a low-dimensional linear space, and that the KL ex-

pansion provides a set of vectors that span this space. Of course, the dimension of this

space is not the intrinsic dimension where the attractor resides, since in phase space the

periodic solution is presented by a limit cycle which may be viewed topologically as a

one-dimensional manifold (see Smaoui [32]). Projections of the numerical results onto

the first five eigenfunctions are given in Figure 3.2.

The derivation of the system of ODEs based on KL eigenfunctions is similar to the

Fourier-Galerkin projection presented above. The new decomposition takes the form

v(x, t)≈
N
∑

k=1

akψk, (3.7)

where

ψk =

H
∑

l=−H

clke
ilx. (3.8)

Thus,

ȧm(t)=−4
∞
∑

n=1

an
(

ψm,ψ(4)
n

)

−α
∞
∑

n=1

an
(

ψm,ψ′′n
)

−
α

2

∞
∑

n,k=1

(

ψm,ψ′kψ
′
n

)

anak. (3.9)

Equation (3.9) was obtained by substituting v(x, t) from (3.7) into (2.10), multiplying by

ψm, m = 1, . . . ,N , integrating from 0 to 2π, and applying the orthogonality condition of

the ψ′ks.

Truncating the expansion of v(x, t) in terms of the KL eigenfunctions to N = 5 (i.e.,

considering only the first five most energetic eigenfunctions) results in a system of five

ODEs (see the appendix). The cubic damping term in each equation was artificially added

to mimic dissipation carried out by the smaller scales as suggested by Kirby and Arm-

bruster [18]. After numerically integrating the system of ODEs and plotting the time

series solutions versus one another, a limit cycle appears in a five-dimensional space pro-

jected in two dimensions (see Figure 3.3). Since the topological dimension of this limit

cycle is one, then we use the theory presented in [19, 32] to obtain a dynamical model

with attractor’s dimension equal to one. This dynamical model based on neural networks

is presented in the following section.

4. The hybrid neural network model

Our hybrid neural network modelling approach consists of designing two neural net-

works in series, where the first is an autoassociative neural network designed to reduce

the dimensionality of the problem to its intrinsic dimension, and the second is a feedfor-

ward neural network used for prediction. We now describe the two neural networks.

4.1. The autoassociative neural network. An autoassociative neural network is a net-

work capable of reducing the dimensionality of the data with minimum information loss

(see Figure 4.1). Figure 4.1 consists of five layers: a five-node input layer, two ten-node



314 Neural network modelling of the KS equation

a1 a2 a3 a4 a5

b

a1 a2 a3 a4 a5

Output layer

Second hidden layer

Bottleneck layer

First hidden layer

Input layer

Figure 4.1. The autoassociative neural network used for dimensionality reduction.

hidden layers with nonlinear sigmoidal activation function g(x)= tanhx, one-node bot-

tleneck layer, and a five-node output layer that consists of the same values of the input

layer nodes. Baldi and Hornik [4] have shown that if only one bottleneck layer is used

between the input and the output layers, then the network extracts the principal compo-

nents or the coherent structures of the data as defined earlier in Section 3. KL decomposi-

tion projects the data into a linear subspace with a minimum information loss. This linear

subspace is obtained by multiplying the data by the eigenvectors of the covariance matrix

defined in (3.3), thus extracting a set of eigenfunctions or coherent structures that span

the linear subspace in an optimal way. By examining the energy of the corresponding

eigenfunctions, one can estimate the minimum dimensionality of the space into which

the data can be projected and thus eliminate the loss. However, if the data lie on a nonlin-

ear submanifold of the feature space, then KL decomposition will overestimate the phase

space dimension of the data. For example, the dynamics of the KS equation at α= 84.25

represented in phase space by a limit cycle was captured using five eigenfunctions. How-

ever, the limit cycle is a one-dimensional manifold and can be smoothly parameterized

with a single number.

To provide a network capable of extracting nonlinear features, one hidden layer is

added between the input layer and the bottleneck layer and another one between the

bottleneck layer and the output layer with nonlinear sigmoidal activation function (see
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Figure 4.2. The time evolution of b(t) at the bottleneck node.

Kramer [19] and Smaoui [32]). Such a network can perform the nonlinear analogue of

KL decomposition and extract nonlinear principal manifolds.

The number of nodes in the input layer consists of the amplitudes {ai}
5
i=1 derived from

(3.9), which represent solutions of the system of differential equations at different times.

The number of nodes in the output layer is the same as the number of nodes in the input

layer. That is, the network presented in Figure 4.1 is trained to reproduce the identity

mapping

Id : R
n F
−→R

p F−1

−−−→R
n, (4.1)

where p < n. In general, in order to find the value of p, the network should be pruned in

the same way as in [32, 33]. In our case, there is no need to prune the network since p

is equal to 1 which is the attractor intrinsic dimension of the KS dynamics at α= 84.25.

Three hundred sets of data, where each set constitutes the amplitudes {ai}
5
i=1, were used

during the training process. Upon convergence of the network, the values of the node

at the bottleneck layer are saved. Figure 4.2 depicts the evolution of the values of the

bottleneck node as a function of time. This procedure reduces the phase space of the

dynamical behavior from a five-dimensional space into a one-dimensional one. Next, the

feedforward neural network presented in Figure 4.3 is used to model the dynamics of b(t)

for future prediction.

4.2. The feedforward neural network. Feedforward neural networks have been used for

the prediction of complicated dynamics and the identification of long-term dynamical

behavior and bifurcation [5, 11, 27, 29, 30, 31]. In this subsection, we design a feedfor-

ward neural network to obtain a nonlinear input-output map, which, given the values of

b(t) at times tn and tn−1, will predict the value of b(t) at time tn+P for different values of P
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b(tn+P)

b(tn−1) b(tn)

Output layer

Hidden layer

Input layer

Figure 4.3. The feedforward neural network used for future prediction.

(see Figure 4.3). The network consists of three layers: a two-node input layer, a five-node

hidden layer, and a one-node output layer. The input to each node is a weighted sum of

outputs of the nodes in the previous layer. Each hidden layer node performs a nonlinear

transformation of its input:

Oi = g

(

∑

j

wi jx j − θi

)

, (4.2)

where Oi is the node output, x j is the node input (outputs of the previous layers), wi j

are the weights, and θi is a bias (wi j and θi are adjustable parameters of the model). The

transfer function g(x) = tanhx is a sigmoidal function that takes the input (which may

have any value between plus and minus infinity) and squashes the output into the range

from −1 to 1.

The node in the output layer predicts the value of b(t) at the next P sampling instant

b(tn+P), that is, we have the following mapping:

b
(

tn+P

)

= f
(

b
(

tn
)

,b
(

tn−1

))

, (4.3)

where f is a set of nonlinear functions representing the neural network model.

During the training procedure, the network compares its actual response with the tar-

get response and adjusts its weights in such a way to minimize the sum square of the error

E defined by

E =
1

2

∑

p

∑

k

(

zk − yk
)2
p, (4.4)
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Figure 4.4. Short-term neural network prediction of b(t) (solid) versus its original values (circles).

where zk is the desired vector of the kth output node, yk is the actual output vector of

the kth output node, and the subscript p refers to the specific input vector pattern used.

The weights are successfully modified in order to reduce E. The Levenberg-Marquardt

algorithm which has proven to be a reliable and efficient algorithm for computing the

weight matrix was used [26].

For P = 1 in (4.3), a sensitivity study was conducted to fine-tune both the sum square

error and the number of nodes in the hidden layer. The network was then trained using

the first 200 sets of the data given in Figure 4.2, where each set contains the values of b(t)

at times tn and tn−1. Upon convergence, that is, when the sum square error reaches a pre-

set bound, the weights connecting all nodes were saved and the network was tested for

the remaining sets of data not included during the training stage (i.e., the last 100 data

sets in Figure 4.2). Figure 4.4 presents both the testing data sets and their neural network

predictions. The almost perfect match of the predicted coefficients of b(t) with the orig-

inal ones indicates the ability of the hybrid model to capture the dynamical behavior of

the KS equation at α= 84.25. The model

b
(

tn+1

)

= f
(

b
(

tn
)

,b
(

tn−1

))

(4.5)

can be represented in terms of the saved weights and biases:

b
(

tn+1

)

=w(2)g
(

w(1)b
(

tn, tn−1

)

− θ1

)

− θ2, (4.6)

where w(1) is the weight matrix for synapses connecting the input nodes with nodes of the

first hidden layer, and w(2) is the weight matrix for synapses connecting the first hidden
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layer with the node at the output layer. These weights are given by

w(1) =

















−86.1253 −55.4127

1.535 −2.3512

0.0076 0.2551

−8.1596 −81.7548

−67.8001 −32.0746

















,

w(2) =
[

−1.8116 −0.7044 8.2458 −43.8703 42.9676
]

.

(4.7)

The bias vectors used for each layer θ1 and θ2 are given by

θ1 =

















−137.633

−0.8655

−1.2115

−89.5293

−98.2105

















, θ2 = [3.6765]. (4.8)

b(tn, tn−1) =
(

b(tn)
b(tn−1)

)

and b(tn+1) are the input and output vectors that consist of the

values of the data coefficients at tn−1, tn and tn+1, respectively.

The architecture given in Figure 4.3 was also used to predict the values at the bottle-

neck node when P = 3,6, and 9. Excellent agreement was found in each case. It should

be noted that a prediction at P time steps into the future past the last observed point

b(t) will be made using observed data at times: b(t) and b(t− 1). That is, a prediction at

P time steps into the future is made by placing previously predicted values in the input

layer. For large enough P, good predictions might not be achieved. Of course, this can

happen because previously predicted values (made with some errors) are used to make a

subsequent prediction; therefore the errors get magnified upon iterations.

5. Concluding remarks

A hybrid approach consisting of two neural networks was used to model the dynamics of

the KS equation. Numerical solutions using pseudospectral techniques were obtained at

a bifurcation parameter α= 84.25. Coherent structures were extracted from the numer-

ical simulation results via KL decomposition. Then, a system of five ODEs was derived

using KL Galerkin projection whose dynamical behavior is similar to the KS equation

and is represented by a limit cycle in a five-dimensional space. An autoassociative neural

network utilized for dimensionality reduction and a feedforward network used for pre-

diction were combined in series to model the dynamics of the KS equation at a future

time. The model was successful in predicting the dynamics at different time steps.

It should be emphasized that the hybrid approach presented is not limited only to

the dynamics of PDEs, but it can also be carried out to model the dynamical behavior

of experimental data. In such a case, KL data coefficients will be used as inputs to the

autoassociative neural networks instead of the amplitudes of the ODEs system.
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Appendix

The system of ODEs

The following system of ODEs was derived by applying the KL Galerkin projection to the

five most energetic eigenfunctions of the KS equation at α= 84.25:

ȧ1 =−101.795a1 + 2.76107αa1− 0.64364αa2
1− 26.1487a2 + 0.418203αa2

+ 1.27714αa1a2− 0.7451αa2
2− 72.8953a3 + 0.725986αa3− 1.41632αa1a3

− 3.50667αa2a3 + 4.26641αa2
3− 12.4719a4 + 0.375998αa4− 0.940871αa1a4

− 10.7512αa2a4− 1.05421αa3a4− 6.43332αa2
4 + 34.6688a5− 0.561543αa5

− 0.218701αa1a5− 8.07564αa2a5− 2.1708αa3a5− 9.58715αa4a5 + 0.161873αa2
5

− 1.5a3
1,

ȧ2 =−26.1487a1 + 0.418203αa1− 0.0461221αa2
1− 1037.64a2 + 13.0649αa2

+ 0.121569αa1a2− 1.54634αa2
2 + 122.542a3− 1.00856αa3 + 4.06744αa1a3

+ 1.12682αa2a3− 1.54545αa2
3− 201.511a4 + 1.49775αa4 + 1.38514αa1a4

+ 3.55207αa2a4− 2.48535αa3a4 + 0.125828αa2
4− 66.7744a5 + 0.241626αa5

− 1.50887αa1a5 + 2.86511αa2a5− 0.415733αa3a5 + 0.272801αa4a5 + 4.4739αa2
5

− 1.5a3
2,

ȧ3 =−72.8953a1 + 0.725986αa1 + 0.05655αa2
1 + 122.542a2− 1.00856αa2

− 3.7576αa1a2− 5.38241αa2
2− 974.508a3 + 13.4944αa3 + 0.96696αa1a3

+ 1.19751αa2a3− 1.3391αa2
3− 417.409a4 + 4.13014αa4 + 1.63645αa1a4

+ 0.0339751αa2a4 + 0.346602αa3a4− 1.82304αa2
4− 114.944a5 + 0.220561αa5

+ 1.56055αa1a5 + 0.424728αa2a5 + 1.44077αa3a5− 2.93726αa4a5 + 2.98004αa2
5

− 1.5a3
3,

ȧ4 =−12.4719a1 + 0.375998αa1− 0.0939612αa2
1− 201.511a2 + 1.49775αa2

− 1.19105αa1a2 + 2.50634αa2
2− 417.409a3 + 4.13014αa3− 2.23219αa1a3

− 2.99006αa2a3− 2.65047αa2
3− 606.794a4 + 6.63728αa4− 0.127752αa1a4

− 4.22894αa2a4− 2.46861αa3a4− 1.20316αa2
4− 431.498a5 + 3.58672αa5

− 1.29591αa1a5− 3.05007αa2a5 + 1.24718αa3a5− 1.27468αa4a5− 2.0206αa2
5

− 1.5a3
4,

ȧ5 = 34.6688a1− 0.561543αa1 + 0.0642473αa2
1− 66.7744a2 + 0.241626αa2

+ 0.619004αa1a2− 0.548517αa2
2− 114.944a3 + 0.220561αa3− 2.09107αa1a3

+ 0.162558αa2a3 + 0.44833αa2
3− 431.498a4 + 3.58672αa4 + 0.701577αa1a4

+ 1.57101αa2a4 + 1.43951αa3a4 + 0.0387317αa2
4− 1285.02a5 + 14.8582αa5

− 0.0898619αa1a5− 1.60065αa2a5− 2.34221αa3a5− 1.37323αa4a5 + 1.09346αa2
5

− 1.5a3
5.

(A.1)
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