A HYBRID OBSERVER FOR THE DRIVELINE DYNAMICS
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Abstract

In this pape amethodolog for the desig of a hybrid obser-
ver for a hybrid systen with no continuows stak resd is
proposed. Tt methodolog is applied to the synthess of a
hybrid obsever for amodé of adrivelinewith discontinuiy in
the elastic torsionlaodficient.

1 Introduction

Hybrid systens have bean the subjedt of intensve study in the
pag few yeas by both the contrd and the compute science
communities Recenty, hybrid systen techniqus have been
applied to an importart industrid domain automoive engine
and power—train contrd (e.g [1]).

In thisdomain the ever increasig computationbpower of mi-
cro controlles has macke it possibé to extend the functionality
of electront subsysters controlling the motion and the per-
formane of the car to limits tha were unthinkabé only a few
yeas aga This opportuniy has exposel the neal for control
algorithns tha med the more ard more tighting demand on
passengerscomfort safey, emissios ard fuel consumption
imposel by car mandactures ard regulations To cope with
this challenge cycle-accura modek of the engire ard the
power train, are needed Thes modek are intrinsically hybrid
becausgwhile torgue generatio and fuel injection are both
synchronizd with the phase of the pistors and hence should
be modelel as event-diven systems power—train ard air dy-
namics can be modela as continuous-tine systems.

In thiswork we conside contrd problensrelated to driveabil-
ity requirementsDriveability requiremerg play an important
role. In particula, longitudind car oscillatiors represehone
of themog critical aspect especialy when fag torque changes
are requestd by the driver (tip-in and tip-out). To tackle this

problem acive dampirg of power-train oscillatiors has been
recenty proposd (see i.e. [9, 10]). Dampirg of the oscilla-
tions can be achieved by modulation of the generatd torque
via drive-by-wire actuators fuel injection and spak ignition
control.

By using hybrid systen techniquefor modelirg and synthesis,
we recenty proposéd solutiors to severd challengirg control
problens relatal to driveability sud as the Fag Force Tran-
siert problam [3] and the Cut-Off problem [2]. The Cut-Off
problem correspondto the complet releag of the gas pedal
by thedriver. For cars equippe with drive-by-wireelectronics,
sud contrd problem can be formulated as Fag Force Tran-
siert problem However, for traditiond cars whete the throttle
valveisdirectly connectd to the gas pedad and thereis no pos-
sibility of acting on the mas of air loadal by the cylinders a
differert approab has to be used The reducel contrd autha-
ity does nat allow us to avoid vehicle oscillations Indeed in
this case the god is to cut—df fuel injection minimizing pas-
sengersdiscomfot due to the unavoidablke power—train oscil-
lations Both problens have been solved by designirg hybrid
controlles with power—train full stat feedback Since state
measuremestare not available thes contrd laws cal for the
synthess of a power—train stake obsever.

In Sectio 2, a hybrid modé of the driveline that describsthe
nonlinearities due to discontinuos elasticiy is proposed A
hybrid obsever for the driveline hybrid modé is developed in
Sectin 3 and simulatian resuls are presented.

2 Driveline hybrid model

In this work, we conside the dynamic of an automoive
power—train with clutch closal and fixed gea. In particula,
we concentrag our attention to the cas of alow gea selection
ard smal vehicle velocities where the undesird oscillating
behavior of the driveline is more apparent We studial a very
compkx 7-dimensionanonlinea modé of the power—train
developal at Magnet Marelli, Divisione Sistem Motopropul-
sione Italy. Sud continuous—tire modd describe with high
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Figure 1: Driveline hybrid model! g, .
accuracy the complex nonlinear effects in the driveline due for transmission ratio J, | secondary driveline inertia
the gear backlash, clutch and gear friction and vehicle aefp”e | primary drivelineinertia || B. | primary driveline viscous coef.
dynamics. After a deep analysis of the model [11], supportgcPsm | drivelineviscouscoef. || oy | elasticity discontinity point
by a comprehensive set of simulations and experimental ddtd | 'ow drivelinedlasticity || ky | high driveline elasticity

we concluded that, for bounded excursions of the vehicle ve-
locity, the most important nonlinearity affecting the behavior of

the driveline is that due to the variations of the elasticity of the
driveline. Then, for the above mentioned operating conditions; ,
we obtained a reduced—order model whose state variables are:
the driveline torsion angle., the crankshaft revolution speed

w,, and the wheel revolution speed. In this model the drive- f(@1)
line nonlinearty is represented by a discontinuity of the elastic

Table 1: Hybrid model parameters.

kix1 + 2(](?1 — k)Oél if x1 +Oég < -0
kxy — (k1 — k)(@? —aq) if |21 + 0 < g

kizqy if 2y +Oé(e) >

coefficient at some value, of torsion. See figure 2.

Figure 2: Elastic torque profile.

We consider the equmbrlum point (a?,w? wp) correspond-
ing to 2000 rpm (i.e. w? = (7/30) 2000 rad/sec) with second
gear engaged. Linearizing aero-dynamics and other remain-
ing nonlinearities around this equilibrium point, the driveline
model is expressed as follows

#(t) = Ax(t)+ ETsn(x) + Bu(t) (1)
y(t) = Cux(t) @)
where z = (a. — af,w, — w?,w, — w)), theinput u and the

feedback T's,,, () stand respectlvely for the torque generated by
the engine and the transmitted torque minus the corresponding
equilibrium values. The measurable output y represents the
variation of the crankshaft speed with respect to the equilibrium
value expressed in rpm. In (1) and (2), we have

R e R
A R N

Model parameters are summarized in Table 1.

The nonlinear driveline dynamics can be represented by a hy-
brid automaton with 3 locationsrelated to the 3 possible values
of the driveline elastic coefficient. The hybrid automaton, re-
ferred to as Hyryin , is depicted in Figure 1. The model param-
etersare asfollows

0 T -1
2
Al — A3 — _k}: _Be-&-}e bsm T{)]sem ,
k1 Them _bsm
Jo v Jy
0 T -1
kT B. szgm Thsm
dy= | —hr Berfm b |
& Them _bsm
Iy Ju Ju
E1 = 2(k1—k‘)0&1E, E2 = —(kl—k)(a —Oél)E E3 [0 0 0],
BlzBQZB3:BandC1: 220320.

3 Hybrid observer design

In this section, we propose a metodology for the design of a
hybrid observer for a generic hybrid plant with no continuous
state resets.

Let Hpjant denote the hybrid automata model of a given hybrid
plant (see[5]) with NV locationsand let (¢, z), (o, u) and (¢, y)
stand, respectively, for the hybrid state, inputs and outputs of
the plant. We want to design a hybrid observer for the plant
Hpjant that provides an estimate ¢ and an estimate & for the
current location ¢ and current continuous state = of H pjant -

We assume that, in each location ¢;, the continuous evolution
of z issubject to alinear o.d.e.

and Ty (z) = f(x1) + bsm (T72 — 3) With, assuming o > - Cu (4
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Figure 3: Observer structure: location observer H|gcops and
continuous observer H cniobs -

with A;, B; and C; depending on the location ¢;. We denote
by N' the number of distinct triple (A;, B;, C;).

As design specification for the hybrid observer, we consider
the classical exponential convergence in the continuous time
domain. Let ((¢) be the observation error Z(t) — x(t).

Specification: Given a neighborhood amplitude M and a ve-
locity of convergence u, the hybrid observer has to produce an
evolution of the observation errror { satisfying

IO < Mem"[IC(0)]] + Mo vVt >0

®)
for some M > 0.

The structure of the proposed hybrid observer isillustrated in
Figure 3. It is composed of two blocks:

1. alocation observer, and

2. acontinuous observer.

The location observer receives as input the plant inputs (o, u)
and outputs (1, y). Itstask is to provide the estimate g of the
discrete location ¢ of the hybrid plant at the current time. This
information is used by the continuous observer to construct an
estimate z of the plant continuous state that exponentially con-
vergesto z. The continuous plant input « and output y are used
by the continuous observer.

In the following sections the location observer and the contin-
uous observer are described in details.

3.1 Location observer

Consider first N’ locations with distinct dynamics parameters
(4;, B;, C;) in (3-4). Inthis case, the task of the location ob-
server is similar to that of a fault detection and isolation al-
gorithm (see [8] for a tutorial). Indeed, the location observer
has to choose which dynamics the continuous system is obey-
ing to in a set of known ones. Assuming that the location ob-
server has properly recognized that the hybrid plant H pjant is
in location ¢;, i.e. § = ¢;, then the location observer should
detect a fault from the evolution of u(t) and y(t) when the

R
v Location _
q
u - rL o} Identification
I Residual > Decision ) —
y Generator : ) i Logic
N P - Function o

Figure 4. Location observer structure.

plant Hpjant changes the location to some ¢; # ¢; and should
identify the new location ¢ ;.

Thetime delay in the location change detection and isolation is
critical to the convergence of the overall hybrid observer. We
denote by A an upper bound for such delay.

Since when a change of location occurs, the continuous dy-
namics of the plant suddenly change, then the fault detection
algorithms of interest are those designed for abrupt faults [4].
The general scheme is composed of three cascade blocks: the
residual generator, the decision function, and the fault decision
logic, renamed here location identification logic, see Figure 4.

The simplest and most reliable approach for our applicationis
to use a bank of N’ Luenberger observers (see [4]), one for
each plant dynamics, as residual generators:

%2; = Hjzj+ Bju+ Ljy (6)

()
where H; = A; — L;C; and L; aredesign parameters. The N’
residual signalsr; are used as signatures to identify the contin-
uous dynamics the plant is obeying to. Indeed, no—vanishing

signatures r;(t) correspond to j # i. The decision function
outputs N’ binary signals as follows:

, [ true
97 7 false

where the threshold € is a design parameter.

rj = C]’Zj -y

if|rj| <e

T !
if |ry] > forj=1,...,N" (8)

In the following proposition a sufficient condition for ensuring
ol = truein atime A after a transition of the hybrid plant
Hpjant to adynamics (4;, B;, C;) is presented.

Proposition 3.1.1 For agiven A > 0, ¢ > 0 and a given upper
bound Z, on ||z — z;]|, if the estimator gains L; in (6) are
chosen such that

llognHCin(Hi) Zy 9
A €

then o becomes true before a time A elapses after a change
in the plant dynamics parametersto the values (A;, B;, C;).

a(H;) < -

Thefollowing result (see[6]) isinstrumental in proving propo-
sition 3.1.1.

Proposition 3.1.2 Let A be a matrix in R™*™ and let a(A)
stand for the spectral abscissa (i.e. the maximal real part of
the eigenvalues) of matrix A. \We have

||eAT|| <nk(A) e(A)T V7 >0. (20)
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where k(A4) = || X ||X~!|| with X such that X ~'AX isin
the Jordan canonical form.

Proof of Proposition 3.1.1. Assume that the plant hybrid
model enters the location ¢; at some time ¢ty and consider the
generic j—thresidual generator (6-7). Introducing& ; = = — z;,
by (3-4) and (6-7), we have
JL&]+] 5
& Bi;

MR
&1 | Mu Hj

[Cji Cil [ g ]

} u (11)

(12)

ry =

where Mji = (AJ — Al) — Lj(Cj — Cl), .BJZ = Bj - B;,
C]’i = Cj - C;. Since, M;;, By; and C;; are null matrices,
by (12-11) we have
ri(t) = CieHit=t) g, (1) (13)

Hence, to achieve an estimation of the new plant location
within a time smaller than a given A, the transient evolution
in (13) should be smaller than e whent — ¢t > A, so to have
of = trueaccording to (8). This can be always obtained by se-
lecting the estimation dynamics (6) fast enough. Infact, by (10)
the residuals (13) can be bounded as follows

|rs(8)] ICalllle™ =t g 0)]
ICilln k(H) e MO0 g 0) |
|Cilln k(H;) e2 DA Zy Wi >t + A,

ININIA

which gives |r;(t)| < efort > to + A, provided that L; is
chosen according to (9). Q.E.D.

Let us now consider the j—th residual generator and let us as-
sume that the continuous state = of Hpjant is obeying the dy-
namics defined by parameters (4;, B;, C;) withi # j. Unfor-
tunately, as shown by the following proposition, there are cases
where we cannot prevent the signal o7 from being true for an
unbounded time:

Proposition 3.1.3 If the matrix C';; B; + C;B;; is invertible,
withi # j, then for any hybrid plant initial condition, the class
of plant inputs u that achieves o = true after atime A after a
changein the plant dynamics parametersto (A;, B;, C;) isnot
empty.

Proof of Proposition 3.1.3. Introduce the region
Rye, = {(2,&) e R —e < [Cj;  Cjl(x,&5) < €}. (14)

By (12) we have havethat if (x(), {;(t)) belongsto R, , then
the decision generator (8) outputs a true value both for o[ and
of. If C;iB; + C;B;; is invertible, then the necessary and
sufficient condition for establishing a slinding motion on the
surface [Cj;  Cj](z, &) = 0 for the plant dynamics (11) is
satisfied. Then, by (12), there exists a particular control that
can steer the system to the subspace wherer; = 0 in time less

than A, and maintain its motion on it, with the result of having
o =trueforalt >to + A,

Q.E.D.

In the general case, the set of configurations and the class of
plant inputs for which the signatures (12) fail to properly iden-
tify the continuous dynamics when a time A is elapsed after
a plant discrete transition can be obtained by computing the
maximal safe set and the maximal controller for dynamics (11)
with respect to a safety specification defined in an extended
state space that contains an extra variable 7 representing the
elapsed time. More precisely, the set of configurations for
which awrong signatureisproduceduptoatimet’ > A aftera
change of location of the plant, is given by those configurations
(7%, 2°,€2) from which there exists a plant continuousinput

ableto keep thetrajectory insidethe set R*™ ™\ [A, #') x Ry, .

The location identification logic receivesthe N’ signals o and
the discrete plant inputs o and outputs v, if available. Based
onthisinformation it hasto return the value ¢ of the estimated
plant location. The critical cases the identification agorithm
should solve are the following ones

e morethanonesignal o} istrue at asametime;

e only one signal o7 is true but the dynamic parameters
(A;, Bj,C;) are associtated to more than one plant loca-
tion.

Such problems can be addressed exploiting the structure of
the plant automaton and using FSM identification algorithms,
which take advantage of the informations coming from the con-
tinuous evolutions of the hybrid plant, provided by signalso 7,
aswell asfrom the discrete plant inputs o and outputs .

3.2 Continuous observer

The continuous observer is a hybrid system, referred to as
H cniobs » Whose dynamicss depend on the current estimate ¢ of
the hybrid plant location ¢ provided by the location observer.
The scheme of the continuous observer is readily obtain using
the classical Luenberger’s approach [7]:

(t) = Fi(t)+ Bau(t) + Giy(t) if§=Q;. (15)

where F; = (4;—G;C;). If ¢ = Q;, the corresponding dynam-
ics of the observation error ¢ = & — z is ((t) = Fi((t). The
gain matrix G; isthe design parameter used to set the velocity
of convergencein each location.

Itisworth noting that the L uenberger observers(6) containedin
the residual generators, which are designed to convergence to
the same state variable z, do not provide a satisfactory estimate
of the evolution of x since they are tunning according to (9) in
order to meet the specification of producing a residua with a
transient time less than A. Hence, they exhit a high overshoot
whichisundesiderablefor feedback purpose. Thisisthereason
why we have to add a further observer, (15), for constructing a
reliable estimate z of the continuous state x.
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Figure 5: Continuous hybrid observer scheme H ¢nigps -

The hybrid model of the continuous observer H cpiops for the
driveline model Hpant , described in section 2, is reportedin
Figureb.

3.3 Exponentially convergent hybrid observer

The properties of convergence of the hybrid observer are stud-
ied considering the compl ete hybrid system, denoted H pjantobs s
obtained by composing the hybrid model H pjant and the ob-
server hybrid model H|ggops @d Hentobs- The hybrid system
Hpjantobshas N’ x N’ locations (9 for the driveline case).
The locations are labeled (g¢;, @;), the former corresponding
to plant locations and the | atter corresponding to observer loca
tions. To each location (g¢;, @), the continuous dynamics

(16)

0 A;z(t) + Biu(t)

() = FiC(t) + (A — 4j) — G5(Ci — Cy)]a(t)
+(Bi — Bj)u(t) (17)
isassociated. By integrating (17) we have
C(t) = e™1¢(0) + e % u(t) (18)

where x denotes the convol ution operator and
v(t) = [(Ai — 4j) — K(C; — CD)]x(t) + (B; — Bj)u(t)

Thefollowing notation will be used in the sequel (seee.g. [12])

o [|m(t)]loc = maxyg=1,4 sup;>q [m(t)|, L>—norm of g—
dimensiona signasm : R — RY;

e ||M||so,||M]|1 L and the L'—norm of amatrix M.

(A;, C;) are observable, ||z(t)]|co < X, for some X > 0 and
[lu(t)]|oo < X, for someU > 0 sothat

lv@®)llw <V = [[[(4i = 4;) = G;(Ci = Cj)] 1 X
+|1Bi — B; |1\ U (19

Given avalue i1 > 0, if the location observer H | qgopns identifies
a change in the hybrid system location within time A < D,
there exist gains GG; such that the state z of the continuous ob-
server Heprops CONverges to the set

||$_1'||§M0:1_6W

(20)
with velocity of convergence greater than p.

Consider thefirst two subseguent transitions of the hybrid plant
Hpjant , Occurring at times, and ¢ respectively. By hypothesis

ty —t; > D. (21)
Since A < D, thelocation observer H qcops identifies the state
transitions at some time ¢} and ¢, with ¢#{ — ¢; < A and
th—to < A. Hence, by (21),t2—t] > D—A > 0. Since@ = ¢
inthetimeinterval [t], t2], then, by properly choosing G ;, con-
vergence to zero of ((t) at any desired velocity can obtained.
However, since Q # g whent € [to, t}], ¢(¢t) may fail to con-
verge later. Hence, the convergent behavior for ¢ € [t!, t2] has
to compensate the divergent behavior for ¢ € [to, t].

By (18), we have
((t) = P t=tI(t)
C(t) = Pt + /

0

Vt € [th, o]
t—to
eFf(t_tz_T)v(T +to) dr

(22)
Vt € (t2, 1] (23)

Since, by (10), |le™i7|| < nk(F;)e*F)7, then for al ¢ €
[}, t2] the evolution of ((t) for can be bounded as follows
KO < nk(F)e D¢ (24)

Inequality (24) provides also an upper bound for the first term
in (23). For the second term, we have

t—to
< nk(F}) / TNt ly(7 4 ty)|| dr
0

t—ts
/ eFj(t*tTT)v(T +to) dr
0

t—to
< k(E)[0(t) oo / )" gy

ea(Fj)(t—t2) _q

= nk(F;)V < [nk(F)V](t—t)  (25)

Proposition 3.3.1 Assume that the hybrid system a(Fj)
Hpj gt exhibits  transitions with time aration greater ;
plant Sep 9 Then, using (23),(24) and (25), we have that, V¢ € (¢, t!
than or equal to some D > 0. Assume also that all the couples - using (23),(24) and (29), ’ (b2, 2],
INote that in this mode! the constant terms E; have been added. IC@)|| < TN C()]| + [nk(F)V](t —t2)  (26)
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Consider the worst case in which the location observer takes
exactly time A to identify a change in the hybrid system lo-
cation and the hybrid plant exhibits transitions with time sep-
aration equal to D. Then, by (26) with ¢ = ¢} and (20) we
have

ICEN < e TDIPNC(E)] + nk(F)V A

Hence, assuming ||¢(t])|| = Mo, from (27) we obtain

1C(#)]] < e*FDP My + nk(Fj)VA = M

(27)

This shows that the hybrid observer keeps ||z — Z|| below the
bound M given by (20) when convergenceis achieved.

To prove that the observation error ((t) converges to this set
with velocity greater than i, we have to show that

IC(Es) I < e t=R)i¢(#))]]

when [|{(t])]] > Mo. The worst case for the above inequality
isgivenby ¢, — ¢t} = D. Hence, by (27), we have that velocity
of convergence i is achieved if G; are chosen such that

e IIPYIG)I] +nk(FHVA < e *Pli¢(ty)]
is satisfied.

Figure 6 shows some simulation results for a hybrid observer
of the drivelinemodel presented in Section 2. Thefigure shows
thedynamicsof a. (t) —a?, witha® = 0.025 rad, when at time
t = 2 anegative step of 10 Nm is applied with respect to the
equilibrium torque generated by the engine. Since «; = 0.015
rad, then a change of location occurs when a.. (t) — a? reaches
one of the thresholds —a?% + a; = —0.01 rad, —a? — a; =
—0.04 rad. Signals ¢} and ¢} are aso depicted in Figure 6.
Note that the raising edges of the signals ¢} and o} detect,
with a negligible delay A, the driveline location changes so
that the L ocation Identification Logic is able to recognize, with
the same delay, the true location of the system.

(28)

Q.E.D.

[

L L

-0.025 L .
15 2 25 3

Figure 6: Driveline torsion angle variation w.r.t. the equilib-
riumvalueand signals o}, o%.
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