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Motivations
• We consider classes of objects

Each object has a size (e.g. #(vertices))

1 3 5 2 4 

Graphs Forests Permutations

• Given a class C, let cn be the number of objects of size n
in C

• Our aim: find automatic methods for estimating the
coefficients cn asymptotically.
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Generating functions
• Let C be a class, with counting coefficients cn.

OGF (unlabelled class): C(z) =
∑

n

cnzn

EGF (labelled class): C(z) =
∑

n

cn
zn

n!
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Generating functions
• Let C be a class, with counting coefficients cn.

OGF (unlabelled class): C(z) =
∑

n

cnzn

EGF (labelled class): C(z) =
∑

n

cn
zn

n!
• Dictionary for computing GF:

C = A + B C(z) = A(z) + B(z)

C = A× B C(z) = A(z) · B(z)

C = Set(A) C(z) = exp(A(z))

C = Cyc(A) C(z) = log(1/(1 − A(z)))
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Generating functions
• Let C be a class, with counting coefficients cn.

OGF (unlabelled class): C(z) =
∑

n

cnzn

EGF (labelled class): C(z) =
∑

n

cn
zn

n!
• Dictionary for computing GF:

C = A + B C(z) = A(z) + B(z)

C = A× B C(z) = A(z) · B(z)

C = Set(A) C(z) = exp(A(z))

C = Cyc(A) C(z) = log(1/(1 − A(z)))

• Example: permutations with no fixed point:

C = Set(Cyc≥2(Z))

⇒ C(z) = exp

(

log

(
1

1 − z
− z

))

=
e−z

1 − z
.

– p.3/14



Complex analysis
• Generating function C(z) as a complex function

ρ

ρ = lim sup ([zn]C(z))1/n

C(z) is singular at ρ

(Pringsheim)

• Asymptotic methods:

singular
behaviour
of C(z)

=⇒
(i) Darboux

(ii) Sing. analysis

asymptotic
estimate
of [zn]C(z)

• Remark: we can assume ρ = 1 without loss of
generality, using [zn]C(z) = ρ−n[zn]C(ρ · z)
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Coefficients of basic functions
• A log-power function at 1 is a linear combination σ(z) of

functions of the form

(1 − z)α logk

(
1

1 − z

)

, α ∈ R, k ∈ Z≥0
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Coefficients of basic functions
• A log-power function at 1 is a linear combination σ(z) of

functions of the form

(1 − z)α logk

(
1

1 − z

)

, α ∈ R, k ∈ Z≥0

• Coefficients have a full asymptotic expansion
Example:

[zn]
log

(
1

1−z

)

√
1 − z

∼ log n + γ + 2 log 2√
πn

− log n + γ + 2 log 2

8
√

πn3
+· · ·
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Coefficients of basic functions
• A log-power function at 1 is a linear combination σ(z) of

functions of the form

(1 − z)α logk

(
1

1 − z

)

, α ∈ R, k ∈ Z≥0

• Coefficients have a full asymptotic expansion
Example:

[zn]
log

(
1

1−z

)

√
1 − z

∼ log n + γ + 2 log 2√
πn

− log n + γ + 2 log 2

8
√

πn3
+· · ·

• Applies for log-power with finitely many singularities
ζ1, . . . , ζℓ, using [zn]σ(z/ζi) = ζ−n

i [zn]σ(z)
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Darboux’s method
• Key-remark: if g(z) is Cs-smooth on the closed unit

disk, then
[zn]g(z) = o(n−s).

(from Cauchy’s integral formula + int. by part)

• Application: given C(z) =
∑

n cnzn, decompose C(z)
as a sum

C(z) = Σ(z)
︸︷︷︸

log−power

+ g(z)
︸︷︷︸

Cs−smooth

.

Then [zn]C(z) = [zn]Σ(z) + o(n−s) .
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Singularity analysis
• There holds the transfer rule (Flajolet-Odlyzko’90)

C(z) = O
z→ρ

(g(z)) −→
transfer

[zn]C(z) = O([zn]g(z))

(+ analytic continuation conditions to check)

• Applies for finitely many singularities ζ1, . . . , ζℓ
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Singularity analysis
• There holds the transfer rule (Flajolet-Odlyzko’90)

C(z) = O
z→ρ

(g(z)) −→
transfer

[zn]C(z) = O([zn]g(z))

(+ analytic continuation conditions to check)

• Applies for finitely many singularities ζ1, . . . , ζℓ

• Application: given C(z) =
∑

n cnzn with singularities
ζ1, . . . , ζℓ, decompose C(z) as a sum

C(z) = Σ(z) + g(z)

where Σ(z) is a log-power and g(z) is O(z − ζi)
α at ζi.

Then [zn]C(z) = [zn]Σ(z) + O(n−α−1) .
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Singularity analysis
• There holds the transfer rule (Flajolet-Odlyzko’90)

C(z) = O
z→ρ

(g(z)) −→
transfer

[zn]C(z) = O([zn]g(z))

(+ analytic continuation conditions to check)

• Applies for finitely many singularities ζ1, . . . , ζℓ

• Application: given C(z) =
∑

n cnzn with singularities
ζ1, . . . , ζℓ, decompose C(z) as a sum

C(z) = Σ(z) + g(z)

where Σ(z) is a log-power and g(z) is O(z − ζi)
α at ζi.

Then [zn]C(z) = [zn]Σ(z) + O(n−α−1) .

• Remark: g(z) is C⌊α⌋-smooth, as [zn]g(z) = O(n−α−1).

By Darboux, this gives only [zn]g(z) = o(n−⌊α⌋)
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Example
Let C be the class of labelled 2-regular graphs.
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Example
Let C be the class of labelled 2-regular graphs.
2-regular graph = Set of undirected cycles of length ≥ 3

⇒ C(z) = exp

(
1

2
log(

1

1 − z
) − z

2
− z2

4

)

=
e−z/2−z4/4

√
1 − z
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Example
Let C be the class of labelled 2-regular graphs.
2-regular graph = Set of undirected cycles of length ≥ 3

⇒ C(z) = exp

(
1

2
log(

1

1 − z
) − z

2
− z2

4

)

=
e−z/2−z4/4

√
1 − z

• Singularity analysis:

C(z) ∼
z→1

e−3/4

√
1 − z

⇒ [zn]C(z)∼ e−3/4

√
πn
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Example
Let C be the class of labelled 2-regular graphs.
2-regular graph = Set of undirected cycles of length ≥ 3

⇒ C(z) = exp

(
1

2
log(

1

1 − z
) − z

2
− z2

4

)

=
e−z/2−z4/4

√
1 − z

• Singularity analysis:

C(z) ∼
z→1

e−3/4

√
1 − z

⇒ [zn]C(z)∼ e−3/4

√
πn

• Darboux’s method:

C(z) =
e−3/4

√
1 − z

+ ∗
√

1 − z + O((1 − z)3/2)
︸ ︷︷ ︸

C1−smooth

⇒ [zn]C(z) ∼ e−3/4

√
πn

+
∗

n3/2
+ o(n−1)∼ e−3/4

√
πn
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The Hybrid method
• Classical Darboux’s method: sum-decomposition of

C(z) =
∑

n cnzn as

C(z) = Σ(z)
︸︷︷︸

log−power

+ g(z)
︸︷︷︸

Cs−smooth

.
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The Hybrid method
• Classical Darboux’s method: sum-decomposition of

C(z) =
∑

n cnzn as

C(z) = Σ(z)
︸︷︷︸

log−power

+ g(z)
︸︷︷︸

Cs−smooth

.

• For many classes, C(z) is an infinite product
⇒ sum-decomposition does not easily apply

• Example: The EGF of permutations with distinct cycle
lengths is

C(z) =
∏

k≥1

(

1 +
zk

k

)
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The Hybrid method
• Classical Darboux’s method: sum-decomposition of

C(z) =
∑

n cnzn as

C(z) = Σ(z)
︸︷︷︸

log−power

+ g(z)
︸︷︷︸

Cs−smooth

.

• For many classes, C(z) is an infinite product
⇒ sum-decomposition does not easily apply

• Example: The EGF of permutations with distinct cycle
lengths is

C(z) =
∏

k≥1

(

1 +
zk

k

)

• Idea: in such cases, decompose C(z) as a product,
where the first factor gathers the most salient
singularities

– p.9/14



Hybrid methodology
Given is a function C(z) =

∑

n cnzn of finite order a,
C(z) = O(1 − |z|)a.
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Hybrid methodology
Given is a function C(z) =

∑

n cnzn of finite order a,
C(z) = O(1 − |z|)a.

1. Product-decomposition:

C(z) = P (z)
︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth
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Hybrid methodology
Given is a function C(z) =

∑

n cnzn of finite order a,
C(z) = O(1 − |z|)a.

1. Product-decomposition:

C(z) = P (z)
︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth

2. Sum-decompositions:

P (z) = Σ(z)
︸︷︷︸

log−power

+ R(z)
︸︷︷︸

Ct−smooth

|| Q(z) = Q(z)
︸︷︷︸

interpolation
polynomial
of order c

+ S(z)
︸︷︷︸

high contact
(order c)
at ζ1,...,ζℓ
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Hybrid methodology
Given is a function C(z) =

∑

n cnzn of finite order a,
C(z) = O(1 − |z|)a.

1. Product-decomposition:

C(z) = P (z)
︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth

2. Sum-decompositions:

P (z) = Σ(z)
︸︷︷︸

log−power

+ R(z)
︸︷︷︸

Ct−smooth

|| Q(z) = Q(z)
︸︷︷︸

interpolation
polynomial
of order c

+ S(z)
︸︷︷︸

high contact
(order c)
at ζ1,...,ζℓ3. Combine the terms:

C(z) = Σ(z)Q(z)
︸ ︷︷ ︸

log−power

+ Σ(z)S(z)
︸ ︷︷ ︸

Cu−smooth
u=min(⌊c+a⌋,s−c)

+R(z)Q(z)
︸ ︷︷ ︸

Cs−smooth

+ R(z)S(z)
︸ ︷︷ ︸

Cmin(s,t)−smooth
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Hybrid methodology
Given is a function C(z) =

∑

n cnzn of finite order a,
C(z) = O(1 − |z|)a.

1. Product-decomposition:

C(z) = P (z)
︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth

2. Sum-decompositions:

P (z) = Σ(z)
︸︷︷︸

log−power

+ R(z)
︸︷︷︸

Ct−smooth

|| Q(z) = Q(z)
︸︷︷︸

interpolation
polynomial
of order c

+ S(z)
︸︷︷︸

high contact
(order c)
at ζ1,...,ζℓ3. Combine the terms:

C(z) = Σ(z)Q(z)
︸ ︷︷ ︸

log−power

+ Σ(z)S(z)
︸ ︷︷ ︸

Cu−smooth
u=min(⌊c+a⌋,s−c)

+R(z)Q(z)
︸ ︷︷ ︸

Cs−smooth

+ R(z)S(z)
︸ ︷︷ ︸

Cmin(s,t)−smooth

4. Adjust the parameters: with t = ⌊ s+⌊a⌋
2

⌋, c = ⌊ s−⌊a⌋
2

⌋,
we obtain [zn]C(z) = [zn]Σ(z)Q(z) + o(n−t)
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Hybrid in practice
Given is a function C(z) =

∑

n cnzn of order a,
C(z) = O(1 − |z|)a.
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Hybrid in practice
Given is a function C(z) =

∑

n cnzn of order a,
C(z) = O(1 − |z|)a.

1. Check that there exists a product-decomposition
C(z) = P (z)

︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth
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Hybrid in practice
Given is a function C(z) =

∑

n cnzn of order a,
C(z) = O(1 − |z|)a.

1. Check that there exists a product-decomposition
C(z) = P (z)

︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth

(then, with t = ⌊s+⌊a⌋
2 ⌋, c = ⌊s−⌊a⌋

2 ⌋,
[zn]C(z) = [zn] Σ(z)

︸︷︷︸

log−power
expansion of P

of order t

· Q(z)
︸︷︷︸

interpolation
polynomial of Q

of order c

+o(n−t))
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Hybrid in practice
Given is a function C(z) =

∑

n cnzn of order a,
C(z) = O(1 − |z|)a.

1. Check that there exists a product-decomposition
C(z) = P (z)

︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth

(then, with t = ⌊s+⌊a⌋
2 ⌋, c = ⌊s−⌊a⌋

2 ⌋,
[zn]C(z) = [zn] Σ(z)

︸︷︷︸

log−power
expansion of P

of order t

· Q(z)
︸︷︷︸

interpolation
polynomial of Q

of order c

+o(n−t))

Theorem: Σ(z)Q(z) is the sum of the radial singular
expansions of order t of C(z) at ζ1, . . . , ζℓ.
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Hybrid in practice
Given is a function C(z) =

∑

n cnzn of order a,
C(z) = O(1 − |z|)a.

1. Check that there exists a product-decomposition
C(z) = P (z)

︸︷︷︸

sing. ζ1,...,ζℓ

· Q(z)
︸︷︷︸

Cs−smooth

(then, with t = ⌊s+⌊a⌋
2 ⌋, c = ⌊s−⌊a⌋

2 ⌋,
[zn]C(z) = [zn] Σ(z)

︸︷︷︸

log−power
expansion of P

of order t

· Q(z)
︸︷︷︸

interpolation
polynomial of Q

of order c

+o(n−t))

Theorem: Σ(z)Q(z) is the sum of the radial singular
expansions of order t of C(z) at ζ1, . . . , ζℓ.

2. Compute the radial expansions of C(z) of order t
(all computations within the disk of convergence)
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Example (computation steps)
C(z) is the EGF of permutations with dist. cycle lengths

C(z) =
∏

k≥1

(

1 +
zk

k

)
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Example (computation steps)
C(z) is the EGF of permutations with dist. cycle lengths

C(z) =
∏

k≥1

(

1 +
zk

k

)

1. exp-log transformation gives

C(z) = (1 + z) exp(
∑

ℓ≥1

(−1)ℓ−1

ℓ
(Aℓ(z))),

where Aℓ(z) = Liℓ(z
ℓ) − zℓ, Liℓ(t) =

∑

n≥1
tn

nℓ (polylog.)
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Example (computation steps)
C(z) is the EGF of permutations with dist. cycle lengths

C(z) =
∏

k≥1

(

1 +
zk

k

)

1. exp-log transformation gives

C(z) = (1 + z) exp(
∑

ℓ≥1

(−1)ℓ−1

ℓ
(Aℓ(z))),

where Aℓ(z) = Liℓ(z
ℓ) − zℓ, Liℓ(t) =

∑

n≥1
tn

nℓ (polylog.)

2. Liℓ(t) is Cs-smooth for ℓ ≥ s + 2, so prod.-decomp. is

C(z) = P (z)
︸︷︷︸

(1+z) exp(
P

ℓ≤s+1 Aℓ(z))

· Q(z)
︸︷︷︸

exp(
P

ℓ≥s+2 Aℓ(z))
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Example (computation steps)
C(z) is the EGF of permutations with dist. cycle lengths

C(z) =
∏

k≥1

(

1 +
zk

k

)

1. exp-log transformation gives

C(z) = (1 + z) exp(
∑

ℓ≥1

(−1)ℓ−1

ℓ
(Aℓ(z))),

where Aℓ(z) = Liℓ(z
ℓ) − zℓ, Liℓ(t) =

∑

n≥1
tn

nℓ (polylog.)

2. Liℓ(t) is Cs-smooth for ℓ ≥ s + 2, so prod.-decomp. is

C(z) = P (z)
︸︷︷︸

(1+z) exp(
P

ℓ≤s+1 Aℓ(z))

· Q(z)
︸︷︷︸

exp(
P

ℓ≥s+2 Aℓ(z))

3. Singularities of P (z) are roots of unity till order s+1,

⇒ compute the radial expansions of C(z) at these roots,

using the singular expansions of polylogarithms

(Zagier-Cohen’91, Flajolet’99)
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Example (results)
Proposition: The probability that a permutation is made of

cycles of distinct lengths admits a full asymptotic expansion

of the form

fn ∼ e−γ +
e−γ

n
+

e−γ

n2
(− log n − 1 − γ + log 2)

+
1

n3

[

e−γ
(
log2n+c3,1 log n+c3,0

)
+2(−1)n+ℜ

(
18Γ( 2

3
)ω−n

Γ( 1
6
+ i

√
3

6
)Γ( 1

2
− i

√
3

6
)

)]

+
∑

r≥4

Pr(n)

nr
,

where c3,1 and c3,0 are explicit constants. Each Pr(n) is a
polynomial of degree r − 1 in log n with coefficients that are
periodic functions of n with period D(r) = lcm(2, 3, . . . , r).
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Scope of applications
• The hybrid method typically applies for a function C(z)

of the form

C(z) =
∏

n≥1

(1 + cnzn), with cn ∼ n−α, α ≥ 1

Q−1 =
∏

n≥1

(

1 +
zn

n

)

Perm. dist. cycle lengths ∝ 1

Q−3/2 =
∏

n≥1

(

1 +
zn

n3/2

)

Forest dist. comp. sizes ∝ n−3/2

Q−2 =
∏

n≥1

(

1 +
zn

n2

)

Perm. same cycle type ∝ n−2

• Outside of scope:
• Partitions dist. summands:

∏

n≥1(1 + zn)

• Set partitions dist. sizes.
∏

n≥1

(

1 + zn

n!

)
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