A Hybrid of Darboux's method and Singularity Analysis in Combinatorial Asymptotics

Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario, Nicolas Pouyanne
É.F.: Dept. Mathematics, Simon Fraser University (Vancouver)

Motivations

- We consider classes of objects

Each object has a size (e.g. \#(vertices))

Graphs

Forests

Permutations
13524

- Given a class \mathcal{C}, let c_{n} be the number of objects of size n in \mathcal{C}
- Our aim: find automatic methods for estimating the coefficients c_{n} asymptotically.

Generating functions

- Let \mathcal{C} be a class, with counting coefficients c_{n}.

OGF (unlabelled class): $C(z)=\sum c_{n} z^{n}$
EGF (labelled class): $\quad C(z)=\sum_{n}^{n} c_{n} \frac{z^{n}}{n!}$

Generating functions

- Let \mathcal{C} be a class, with counting coefficients c_{n}. OGF (unlabelled class): $C(z)=\sum c_{n} z^{n}$
EGF (labelled class): $\quad C(z)=\sum_{n}^{n} c_{n} \frac{z^{n}}{n!}$
- Dictionary for computing GF:

$\mathcal{C}=\mathcal{A}+\mathcal{B}$	$C(z)=A(z)+B(z)$
$\mathcal{C}=\mathcal{A} \times \mathcal{B}$	$C(z)=A(z) \cdot B(z)$
$\mathcal{C}=\operatorname{Set}(\mathcal{A})$	$C(z)=\exp (A(z))$
$\mathcal{C}=\operatorname{Cyc}(\mathcal{A})$	$C(z)=\log (1 /(1-A(z)))$

Generating functions

- Let \mathcal{C} be a class, with counting coefficients c_{n}. OGF (unlabelled class): $C(z)=\sum c_{n} z^{n}$ EGF (labelled class): $\quad C(z)=\sum_{n}^{n} c_{n} \frac{z^{n}}{n!}$
Dictionary for computing GF.
- Dictionary for computing GF:

$\mathcal{C}=\mathcal{A}+\mathcal{B}$	$C(z)=A(z)+B(z)$
$\mathcal{C}=\mathcal{A} \times \mathcal{B}$	$C(z)=A(z) \cdot B(z)$
$\mathcal{C}=\operatorname{Set}(\mathcal{A})$	$C(z)=\exp (A(z))$
$\mathcal{C}=\operatorname{Cyc}(\mathcal{A})$	$C(z)=\log (1 /(1-A(z)))$

- Example: permutations with no fixed point:

$$
\begin{gathered}
\mathcal{C}=\operatorname{Set}\left(\mathrm{Cyc}_{\geq 2}(\mathcal{Z})\right) \\
\Rightarrow C(z)=\exp \left(\log \left(\frac{1}{1-z}-z\right)\right)=\frac{e^{-z}}{1-z} .
\end{gathered}
$$

Complex analysis

- Generating function $C(z)$ as a complex function

$$
\rho=\limsup \left(\left[z^{n}\right] C(z)\right)^{1 / n}
$$

$C(z)$ is singular at ρ
(Pringsheim)

- Asymptotic methods:

$$
\begin{aligned}
& \text { singular } \\
& \text { behaviour } \\
& \text { of } C(z)
\end{aligned}
$$

(i) Darboux
(ii) Sing. analysis
asymptotic estimate of $\left[z^{n}\right] C(z)$

- Remark: we can assume $\rho=1$ without loss of generality, using $\left[z^{n}\right] C(z)=\rho^{-n}\left[z^{n}\right] C(\rho \cdot z)$

Coefficients of basic functions

- A log-power function at 1 is a linear combination $\sigma(z)$ of functions of the form

$$
(1-z)^{\alpha} \log ^{k}\left(\frac{1}{1-z}\right), \quad \alpha \in \mathbb{R}, k \in \mathbb{Z}_{\geq 0}
$$

Coefficients of basic functions

- A log-power function at 1 is a linear combination $\sigma(z)$ of functions of the form

$$
(1-z)^{\alpha} \log ^{k}\left(\frac{1}{1-z}\right), \quad \alpha \in \mathbb{R}, k \in \mathbb{Z}_{\geq 0}
$$

- Coefficients have a full asymptotic expansion Example:
$\left[z^{n}\right] \frac{\log \left(\frac{1}{1-z}\right)}{\sqrt{1-z}} \sim \frac{\log n+\gamma+2 \log 2}{\sqrt{\pi n}}-\frac{\log n+\gamma+2 \log 2}{8 \sqrt{\pi n^{3}}}+\cdots$

Coefficients of basic functions

- A log-power function at 1 is a linear combination $\sigma(z)$ of functions of the form

$$
(1-z)^{\alpha} \log ^{k}\left(\frac{1}{1-z}\right), \quad \alpha \in \mathbb{R}, k \in \mathbb{Z}_{\geq 0}
$$

- Coefficients have a full asymptotic expansion Example:
$\left[z^{n}\right] \frac{\log \left(\frac{1}{1-z}\right)}{\sqrt{1-z}} \sim \frac{\log n+\gamma+2 \log 2}{\sqrt{\pi n}}-\frac{\log n+\gamma+2 \log 2}{8 \sqrt{\pi n^{3}}}+\cdots$
- Applies for log-power with finitely many singularities
$\zeta_{1}, \ldots, \zeta_{\ell}$, using $\left[z^{n}\right] \sigma\left(z / \zeta_{i}\right)=\zeta_{i}^{-n}\left[z^{n}\right] \sigma(z)$

Darboux's method

- Key-remark: if $g(z)$ is \mathcal{C}_{s}-smooth on the closed unit disk, then

$$
\left[z^{n}\right] g(z)=o\left(n^{-s}\right) .
$$

(from Cauchy's integral formula + int. by part)

- Application: given $C(z)=\sum_{n} c_{n} z^{n}$, decompose $C(z)$ as a sum

$$
C(z)=\underbrace{\Sigma(z)}_{\log -\text { power }}+\underbrace{g(z)}_{\mathcal{C}_{s}-\text { smooth }} .
$$

Then $\left[z^{n}\right] C(z)=\left[z^{n}\right] \Sigma(z)+o\left(n^{-s}\right)$.

Singularity analysis

- There holds the transfer rule (Flajolet-Odlyzko'90)

$$
C(z)=\underset{z \rightarrow \rho}{O}(g(z)) \underset{\text { transfer }}{\longrightarrow}\left[z^{n}\right] C(z)=O\left(\left[z^{n}\right] g(z)\right)
$$

(+ analytic continuation conditions to check)

- Applies for finitely many singularities $\zeta_{1}, \ldots, \zeta_{\ell}$

Singularity analysis

- There holds the transfer rule (Flajolet-Odlyzko'90)

$$
C(z)=\underset{z \rightarrow \rho}{O}(g(z)) \underset{\text { transfer }}{\longrightarrow}\left[z^{n}\right] C(z)=O\left(\left[z^{n}\right] g(z)\right)
$$

(+ analytic continuation conditions to check)

- Applies for finitely many singularities $\zeta_{1}, \ldots, \zeta_{\ell}$
- Application: given $C(z)=\sum_{n} c_{n} z^{n}$ with singularities $\zeta_{1}, \ldots, \zeta_{\ell}$, decompose $C(z)$ as a sum

$$
C(z)=\Sigma(z)+g(z)
$$

where $\Sigma(z)$ is a log-power and $g(z)$ is $O\left(z-\zeta_{i}\right)^{\alpha}$ at ζ_{i}.

$$
\text { Then }\left[z^{n}\right] C(z)=\left[z^{n}\right] \Sigma(z)+O\left(n^{-\alpha-1}\right) \text {. }
$$

Singularity analysis

- There holds the transfer rule (Flajolet-Odlyzko'90)

$$
C(z)=\underset{z \rightarrow \rho}{O}(g(z)) \underset{\text { transfer }}{\longrightarrow}\left[z^{n}\right] C(z)=O\left(\left[z^{n}\right] g(z)\right)
$$

(+ analytic continuation conditions to check)

- Applies for finitely many singularities $\zeta_{1}, \ldots, \zeta_{\ell}$
- Application: given $C(z)=\sum_{n} c_{n} z^{n}$ with singularities $\zeta_{1}, \ldots, \zeta_{\ell}$, decompose $C(z)$ as a sum

$$
C(z)=\Sigma(z)+g(z)
$$

where $\Sigma(z)$ is a log-power and $g(z)$ is $O\left(z-\zeta_{i}\right)^{\alpha}$ at ζ_{i}.

$$
\text { Then }\left[z^{n}\right] C(z)=\left[z^{n}\right] \Sigma(z)+O\left(n^{-\alpha-1}\right) \text {. }
$$

- Remark: $g(z)$ is $\mathcal{C}_{\lfloor\alpha\rfloor}$-smooth, as $\left[z^{n}\right] g(z)=O\left(n^{-\alpha-1}\right)$. By Darboux, this gives only $\left[z^{n}\right] g(z)=o\left(n^{-\lfloor\alpha\rfloor}\right)$

Example

Let \mathcal{C} be the class of labelled 2-regular graphs.

Example

Let \mathcal{C} be the class of labelled 2-regular graphs. 2 -regular graph $=$ Set of undirected cycles of length ≥ 3

$$
\Rightarrow C(z)=\exp \left(\frac{1}{2} \log \left(\frac{1}{1-z}\right)-\frac{z}{2}-\frac{z^{2}}{4}\right)=\frac{e^{-z / 2-z^{4} / 4}}{\sqrt{1-z}}
$$

Example

Let \mathcal{C} be the class of labelled 2-regular graphs. 2 -regular graph $=$ Set of undirected cycles of length ≥ 3

$$
\Rightarrow C(z)=\exp \left(\frac{1}{2} \log \left(\frac{1}{1-z}\right)-\frac{z}{2}-\frac{z^{2}}{4}\right)=\frac{e^{-z / 2-z^{4} / 4}}{\sqrt{1-z}}
$$

- Singularity analysis:

$$
C(z) \underset{z \rightarrow 1}{\sim} \frac{e^{-3 / 4}}{\sqrt{1-z}} \Rightarrow\left[z^{n}\right] C(z) \sim \frac{e^{-3 / 4}}{\sqrt{\pi n}}
$$

Example

Let \mathcal{C} be the class of labelled 2-regular graphs. 2 -regular graph $=$ Set of undirected cycles of length ≥ 3
$\Rightarrow C(z)=\exp \left(\frac{1}{2} \log \left(\frac{1}{1-z}\right)-\frac{z}{2}-\frac{z^{2}}{4}\right)=\frac{e^{-z / 2-z^{4} / 4}}{\sqrt{1-z}}$

- Singularity analysis:

$$
C(z) \underset{z \rightarrow 1}{\sim} \frac{e^{-3 / 4}}{\sqrt{1-z}} \Rightarrow\left[z^{n}\right] C(z) \sim \frac{e^{-3 / 4}}{\sqrt{\pi n}}
$$

- Darboux's method:

$$
\begin{aligned}
& C(z)=\frac{e^{-3 / 4}}{\sqrt{1-z}}+* \sqrt{1-z}+\underbrace{O\left((1-z)^{3 / 2}\right)}_{\mathcal{C}_{1}-\text { smooth }} \\
\Rightarrow & {\left[z^{n}\right] C(z) \sim \frac{e^{-3 / 4}}{\sqrt{\pi n}}+\frac{*}{n^{3 / 2}}+o\left(n^{-1}\right) \sim \frac{e^{-3 / 4}}{\sqrt{\pi n}} }
\end{aligned}
$$

The Hybrid method

- Classical Darboux's method: sum-decomposition of $C(z)=\sum_{n} c_{n} z^{n}$ as

$$
C(z)=\underbrace{\Sigma(z)}_{\text {log-power }}+\underbrace{g(z)}_{\mathcal{C}_{s}-\text { smooth }} .
$$

The Hybrid method

- Classical Darboux's method: sum-decomposition of $C(z)=\sum_{n} c_{n} z^{n}$ as

$$
C(z)=\underbrace{\Sigma(z)}_{\text {log-power }}+\underbrace{g(z)}_{\mathcal{C}_{s}-\text { smooth }} .
$$

- For many classes, $C(z)$ is an infinite product \Rightarrow sum-decomposition does not easily apply
- Example: The EGF of permutations with distinct cycle lengths is

$$
C(z)=\prod_{k \geq 1}\left(1+\frac{z^{k}}{k}\right)
$$

The Hybrid method

- Classical Darboux's method: sum-decomposition of $C(z)=\sum_{n} c_{n} z^{n}$ as

$$
C(z)=\underbrace{\Sigma(z)}_{\text {log-power }}+\underbrace{g(z)}_{\mathcal{C}_{s}-\text { smooth }} .
$$

- For many classes, $C(z)$ is an infinite product \Rightarrow sum-decomposition does not easily apply
- Example: The EGF of permutations with distinct cycle lengths is

$$
C(z)=\prod_{k \geq 1}\left(1+\frac{z^{k}}{k}\right)
$$

- Idea: in such cases, decompose $C(z)$ as a product, where the first factor gathers the most salient singularities

Hybrid methodology

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of finite order a, $C(z)=O(1-|z|)^{a}$.

Hybrid methodology

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of finite order a, $C(z)=O(1-|z|)^{a}$.

1. Product-decomposition:

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\operatorname{smooth}}
$$

Hybrid methodology

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of finite order a, $C(z)=O(1-|z|)^{a}$.

1. Product-decomposition:

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

2. Sum-decompositions:

$$
P(z)=\underbrace{\sum(z)}_{\text {log-power }}+\underbrace{R(z)}_{\begin{array}{c}
\mathcal{C}_{t}-\text { smooth }
\end{array}} \| Q(z)=\underbrace{\bar{Q}(z)}_{\begin{array}{c}
\text { interpolation } \\
\text { polynomial } \\
\text { of order } c
\end{array}}+\underbrace{S(z)}_{\begin{array}{c}
\text { high contact } \\
\text { order } c) \\
\text { at } \zeta_{1}, \ldots, \zeta_{\ell}
\end{array}}
$$

Hybrid methodology

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of finite order a, $C(z)=O(1-|z|)^{a}$.

1. Product-decomposition:

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

2. Sum-decompositions:

$$
\begin{aligned}
& \quad P(z)=\underbrace{\sum(z)}_{\text {log-power }}+\underbrace{R(z)}_{\mathcal{C}_{t}-\text { smooth }} \| Q(z)=\underbrace{\bar{Q}(z)}_{\begin{array}{c}
\text { interpolation } \\
\text { polynomial } \\
\text { of order } c
\end{array}}+\underbrace{S(z)}_{\begin{array}{c}
\text { high contact } \\
\text { (order } c) \\
\text { at } \zeta_{1}, \ldots, \zeta_{\ell}
\end{array}} \\
& \text { 3. Combine the terms: }
\end{aligned}
$$

$$
C(z)=\underbrace{\Sigma(z) \bar{Q}(z)}_{\text {log-power }}+\underbrace{\Sigma(z) S(z)}_{\substack{\mathcal{C}_{u}-\text { smooth } \\ u=\min (\lfloor c+a\rfloor, s-c)}}+\underbrace{R(z) \bar{Q}(z)}_{\mathcal{C}_{s}-\operatorname{smooth}}+\underbrace{R(z) S(z)}_{\mathcal{C}_{\min (s, t)}-\text { smooth }}
$$

Hybrid methodology

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of finite order a, $C(z)=O(1-|z|)^{a}$.

1. Product-decomposition:

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

2. Sum-decompositions:

$$
\begin{aligned}
& \quad P(z)=\underbrace{\Sigma(z)}_{\text {log-power }}+\underbrace{R(z)}_{\mathcal{C}_{t}-\text { smooth }} \| Q(z)=\underbrace{\bar{Q}(z)}_{\begin{array}{c}
\text { interpolation } \\
\text { polynomial } \\
\text { of order } c
\end{array}}+\underbrace{S(z)}_{\begin{array}{c}
\text { high contact } \\
\text { (order } c \\
\text { at } \zeta_{1}, \ldots, \zeta_{\ell}
\end{array}} \\
& \text { 3. Combine the terms: }
\end{aligned}
$$

$$
C(z)=\underbrace{\Sigma(z) \bar{Q}(z)}_{\text {log-power }}+\underbrace{\Sigma(z) S(z)}_{\substack{\mathcal{C}_{u}-\text { smooth } \\ u=\min (\lfloor c+a\rfloor, s-c)}}+\underbrace{R(z) \bar{Q}(z)}_{\mathcal{C}_{s}-\operatorname{smooth}}+\underbrace{R(z) S(z)}_{\mathcal{C}_{\min (s, t)}-\text { smooth }}
$$

4. Adjust the parameters: with $t=\left\lfloor\frac{s+\lfloor a\rfloor}{2}\right\rfloor, c=\left\lfloor\frac{s-\lfloor a\rfloor}{2}\right\rfloor$, we obtain $\left[z^{n}\right] C(z)=\left[z^{n}\right] \Sigma(z) \bar{Q}(z)+o\left(n^{-t}\right)$

Hybrid in practice

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of order a, $C(z)=O(1-|z|)^{a}$.

Hybrid in practice

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of order a, $C(z)=O(1-|z|)^{a}$.

1. Check that there exists a product-decomposition

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

Hybrid in practice

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of order a, $C(z)=O(1-|z|)^{a}$.

1. Check that there exists a product-decomposition

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

(then, with $t=\left\lfloor\frac{s+\lfloor a\rfloor}{2}\right\rfloor, c=\left\lfloor\frac{s-\lfloor a\rfloor}{2}\right\rfloor$,

$$
\left[z^{n}\right] C(z)=\left[z^{n}\right] \underbrace{\Sigma(z)}_{\begin{array}{c}
\text { log-power } \\
\text { expansion of } P \\
\text { of order } t
\end{array}} \cdot \underbrace{\bar{Q}(z)}_{\begin{array}{c}
\text { interpolation } \\
\text { polynomial of } \\
\text { of order } c
\end{array}}+o\left(n^{-t}\right))
$$

Hybrid in practice

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of order a, $C(z)=O(1-|z|)^{a}$.

1. Check that there exists a product-decomposition

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{l}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

(then, with $t=\left\lfloor\frac{s+\lfloor a\rfloor}{2}\right\rfloor, c=\left\lfloor\frac{s-\lfloor a\rfloor}{2}\right\rfloor$,

$$
\left[z^{n}\right] C(z)=\left[z^{n}\right] \underbrace{\sum(z)}_{\begin{array}{c}
\text { log-power } \\
\text { expansion of } P \\
\text { of order } t
\end{array}} \cdot \underbrace{\bar{Q}(z)}_{\begin{array}{c}
\text { interpolation } \\
\text { polynomial of } \\
\text { of order } c
\end{array}}+o\left(n^{-t}\right))
$$

Theorem: $\Sigma(z) \bar{Q}(z)$ is the sum of the radial singular expansions of order t of $C(z)$ at $\zeta_{1}, \ldots, \zeta_{\ell}$.

Hybrid in practice

Given is a function $C(z)=\sum_{n} c_{n} z^{n}$ of order a, $C(z)=O(1-|z|)^{a}$.

1. Check that there exists a product-decomposition

$$
C(z)=\underbrace{P(z)}_{\text {sing. } \zeta_{1}, \ldots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_{s}-\text { smooth }}
$$

(then, with $t=\left\lfloor\frac{s+\lfloor a\rfloor}{2}\right\rfloor, c=\left\lfloor\frac{s-\lfloor a\rfloor}{2}\right\rfloor$,

$$
\left[z^{n}\right] C(z)=\left[z^{n}\right] \underbrace{\sum(z)}_{\begin{array}{c}
\text { log-power } \\
\text { expansion of } P \\
\text { of order } t
\end{array}} \cdot \underbrace{\bar{Q}(z)}_{\begin{array}{c}
\text { interpolation } \\
\text { polynomial of } \\
\text { of order } c
\end{array}}+o\left(n^{-t}\right))
$$

Theorem: $\Sigma(z) \bar{Q}(z)$ is the sum of the radial singular expansions of order t of $C(z)$ at $\zeta_{1}, \ldots, \zeta_{\ell}$.
2. Compute the radial expansions of $C(z)$ of order t (all computations within the disk of convergence)

Example (computation steps)

$C(z)$ is the EGF of permutations with dist. cycle lengths

$$
C(z)=\prod_{k \geq 1}\left(1+\frac{z^{k}}{k}\right)
$$

Example (computation steps)

$C(z)$ is the EGF of permutations with dist. cycle lengths

$$
C(z)=\prod_{k \geq 1}\left(1+\frac{z^{k}}{k}\right)
$$

1. exp-log transformation gives

$$
C(z)=(1+z) \exp \left(\sum_{\ell \geq 1} \frac{(-1)^{\ell-1}}{\ell}\left(A_{\ell}(z)\right)\right),
$$

where $A_{\ell}(z)=\operatorname{Li}_{\ell}\left(z^{\ell}\right)-z^{\ell}, \operatorname{Li}_{\ell}(t)=\sum_{n \geq 1} \frac{t^{n}}{n^{\ell}}$ (polylog.)

Example (computation steps)

$C(z)$ is the EGF of permutations with dist. cycle lengths

$$
C(z)=\prod_{k \geq 1}\left(1+\frac{z^{k}}{k}\right)
$$

1. exp-log transformation gives

$$
C(z)=(1+z) \exp \left(\sum_{\ell \geq 1} \frac{(-1)^{\ell-1}}{\ell}\left(A_{\ell}(z)\right)\right)
$$

$$
\text { where } A_{\ell}(z)=\operatorname{Li}_{\ell}\left(z^{\ell}\right)-z^{\ell}, \mathrm{Li}_{\ell}(t)=\sum_{n \geq 1} \frac{t^{n}}{n^{\ell}} \quad(\text { polylog.) }
$$

2. $\operatorname{Li}_{\ell}(t)$ is \mathcal{C}_{s}-smooth for $\ell \geq s+2$, so prod.-decomp. is

$$
C(z)=\underbrace{P(z)}_{(1+z) \exp \left(\sum_{\ell \leq s+1} A_{\ell}(z)\right)} \cdot \underbrace{Q(z)}_{\exp \left(\sum_{\ell \geq s+2} A_{\ell}(z)\right)}
$$

Example (computation steps)

$C(z)$ is the EGF of permutations with dist. cycle lengths

$$
C(z)=\prod_{k \geq 1}\left(1+\frac{z^{k}}{k}\right)
$$

1. exp-log transformation gives

$$
C(z)=(1+z) \exp \left(\sum_{\ell \geq 1} \frac{(-1)^{\ell-1}}{\ell}\left(A_{\ell}(z)\right)\right)
$$

where $A_{\ell}(z)=\operatorname{Li}_{\ell}\left(z^{\ell}\right)-z^{\ell}, \mathrm{Li}_{\ell}(t)=\sum_{n \geq 1} \frac{t^{n}}{n^{\ell}} \quad$ (polylog.)
2. $\operatorname{Li}_{\ell}(t)$ is \mathcal{C}_{s}-smooth for $\ell \geq s+2$, so prod.-decomp. is

$$
C(z)=\underbrace{P(z)}_{(1+z) \exp \left(\sum_{\ell \leq s+1} A_{\ell}(z)\right)} \cdot \underbrace{Q(z)}_{\exp \left(\sum_{\ell \geq s+2} A_{\ell}(z)\right)}
$$

3. Singularities of $P(z)$ are roots of unity till order $s+1$, \Rightarrow compute the radial expansions of $C(z)$ at these roots, using the singular expansions of polylogarithms
(Zagier-Cohen'91, Flajolet'99)

Example (results)

Proposition: The probability that a permutation is made of cycles of distinct lengths admits a full asymptotic expansion of the form

$$
\begin{aligned}
f_{n} \sim & e^{-\gamma}+\frac{e^{-\gamma}}{n}+\frac{e^{-\gamma}}{n^{2}}(-\log n-1-\gamma+\log 2) \\
+ & \frac{1}{n^{3}}\left[e^{-\gamma}\left(\log ^{2} n+c_{3,1} \log n+c_{3,0}\right)+2(-1)^{n}+\Re\left(\frac{18 \Gamma\left(\frac{2}{3}\right) \omega^{-n}}{\Gamma\left(\frac{1}{6}+\frac{i \sqrt{3}}{6}\right) \Gamma\left(\frac{1}{2}-\frac{i \sqrt{3}}{6}\right)}\right) .\right. \\
& +\sum_{r \geq 4} \frac{P_{r}(n)}{n^{r}},
\end{aligned}
$$

where $c_{3,1}$ and $c_{3,0}$ are explicit constants. Each $P_{r}(n)$ is a polynomial of degree $r-1$ in $\log n$ with coefficients that are periodic functions of n with period $D(r)=\operatorname{lcm}(2,3, \ldots, r)$.

Scope of applications

- The hybrid method typically applies for a function $C(z)$ of the form

$$
C(z)=\prod_{n \geq 1}\left(1+c_{n} z^{n}\right), \text { with } c_{n} \sim n^{-\alpha}, \alpha \geq 1
$$

$Q_{-1}=\prod_{n \geq 1}\left(1+\frac{z^{n}}{n}\right)$	Perm. dist. cycle lengths	$\propto 1$
$Q_{-3 / 2}=\prod_{n \geq 1}\left(1+\frac{z^{n}}{n^{3 / 2}}\right)$	Forest dist. comp. sizes	$\propto n^{-3 / 2}$
$Q_{-2}=\prod_{n \geq 1}\left(1+\frac{z^{n}}{n^{2}}\right)$	Perm. same cycle type	$\propto n^{-2}$

- Outside of scope:
- Partitions dist. summands: $\prod_{n \geq 1}\left(1+z^{n}\right)$
- Set partitions dist. sizes. $\prod_{n \geq 1}\left(1+\frac{z^{n}}{n!}\right)$

