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Motivations

We consider classes of objects
Each object has a size (e.g. #(vertices))

Graphs Forests Permutations

DN AT

Given a class C, let ¢,, be the number of objects of size n
in C

Our aim: find automatic methods for estimating the
coefficients ¢,, asymptotically.
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Generating functions

* Let C be a class, with counting coefficients ¢,,.
OGF (unlabelled class): C(z) = chzn

EGF (labelled class):  C(z) = chz—
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Generating functions

* Let C be a class, with counting coefficients ¢,.

OGF (unlabelled class): C(z) = chz"
EGF (labelled class):  C(z) = chi—T
* Dictionary for computing GF: "
C=A+B |C(z)=A(z) + B(2)
C=AxB C(z): A(z) - B(z)
C =Set(A) | C(z) = exp(A(2))
C = Cyc(A) | C(z) = log(1/(1 — A(z)))
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Generating functions

* Let C be a class, with counting coefficients ¢,.
OGF (unlabelled class): C(z) = chz”

EGF (labelled class):

* Dictionary for computing GF:

n n

C(z) = ch%

n

C=A+B |C(z)=A(2) + B(z)
C=AxB | C(z)=A(z)- B(z)
C=0Set(A) | C(z) =exp(A(2))

C = Cyc(A) | C(z) =log(1/(1 — A(2)))

* Example: permutations with no fixed point:

= C'(z) = exp (log (

C = Set(CyCZQ

1
1 — 2z

(2))

-2))
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Complex analysis

* Generating function C'(z) as a complex function

/ p = limsup (["]C(2)) /"
\ > C(z) is singular at p

Y

(Pringsheim)

* Asymptotic methods:

singular asymptotic
behaviour . ﬁ estimate
of C) | (i) Sing. anaysis | °F ["1C(2)

* Remark: we can assume p = 1 without loss of
generality, using [2"|C(z2) = p~"[2"|C(p - 2)
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Coefficients of basic functions

* A log-power function at 1 is a linear combination o(z) of
functions of the form

1

(1 —z)alogk (E) , Q€ ]R, k € ZZO
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Coefficients of basic functions

* A log-power function at 1 is a linear combination o(z) of
functions of the form

1

1 —z

(1—Z)a10gk( ), OJER,/CGZZQ

* Coefficients have a full asymptotic expansion

Example:

log(liz) logn+’y+210g2_10gn+*y+210g2+

v1—2 /TN 8v/71tn3

2"
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Coefficients of basic functions

* A log-power function at 1 is a linear combination o(z) of
functions of the form

1

1 —z

(1—Z)a10gk( ), OJER,/CGZZO

* Coefficients have a full asymptotic expansion

Example:
1

log(l_z) logn + v+ 2log 2 logn+fy+210g2_|_
-z Jn W
* Applies for log-power with finitely many singularities

Gty -5 Qe using [2"]o(2/G) = ¢ 2" o (2)

2"
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Darboux’s method

* Key-remark: if g(z) is Cs-smooth on the closed unit
disk, then

2"]g(2) = o(n™7).
(from Cauchy’s integral formula + int. by part)

* Application: given C'(z) =) cp2", decompose C(z)
as a sum
Clz)= X(z) + g(2)
—— ~~

log—power Cs—smooth

Then | [2"|C(2) = [2"]%(2) + o(n™?) |.
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Singularity analysis

* There holds the transfer rule (Flajolet-Odlyzko'90)
C(z) = 0 (9(2)) — [2"]C(2) = O([z"]g(2))

Z—p transfer
(+ analytic continuation conditions to check)

* Applies for finitely many singularities (y,..., (s
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Singularity analysis

* There holds the transfer rule (Flajolet-Odlyzko'90)
C(z) = 0 (9(2)) — [2"]C(2) = O([z"]g(2))

Z—p transfer
(+ analytic continuation conditions to check)

* Applies for finitely many singularities (1,...,(y
* Application: given C(z) = ), cy2" with singularities
(1,...,Cy, decompose C'(z) as a sum
C(z) = ¥(z) + 9(2)
where >(z) is a log-power and ¢g(z) is O(z — (;)* at (;.

Then | [2"]C(2) = [2"]2(2) + O(n~ > 1) |
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Singularity analysis

There holds the transfer rule (Flajolet-Odlyzko'90)
C(z) = 0 (9(2)) — [2"]C(2) = O([z"]g(2))

Z—p transfer
(+ analytic continuation conditions to check)

Applies for finitely many singularities (y,...,(,

Application: given C(z) = > c,2" with singularities

(1,...,Cy, decompose C'(z) as a sum
C(z) = X(z) +g(2)

where >(z) is a log-power and ¢g(z) is O(z — (;)* at (;.

Then | [2"]C(2) = [2"]Z(2) + O(n~ > )|

Remark: ¢(z) is C|,|-smooth, as [2"]g(z) = O(n=*"1).

By Darboux, this gives only [z"]g(2) = o(n~l)
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Example
Let C be the class of labelled 2-regular graphs.
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Example

Let C be the class of labelled 2-regular graphs.
2-regular graph = Set of undirected cycles of length > 3

1 1 > 22 6—2/2—24/4
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Example

Let C be the class of labelled 2-regular graphs.
2-regular graph = Set of undirected cycles of length > 3

1 1 z 22 e~ #/2=2 /4
:C(z)—eXp<§10g(1_Z)_§_Z)_ V1—z
+ Singularity analysis:_, 3/
C2) —1y/I— 2 > e~ v
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Example

Let C be the class of labelled 2-regular graphs.
2-regular graph = Set of undirected cycles of length > 3

1 1 z 22 e—#/2=7"/4
— _1 9 4 -
= (C'(z) = exp (2 Og(l—z) 9 4) m
o S|ngu|ar|ty analysis: 34 e—3/4
C2) —1y/I— 2 > e~ v
e Darboux’'s method:
o—3/4
C(z) = V-2 +xV1— 2+ O((1 Z)B/Q)
» Ci1— Smooth 3/4
= 0 ~ =+ am ol
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The Hybrid method

e (Classical Darboux’s method: sum-decomposition of
C(z) =), cn2" as

c= 2+ g

log—power Cs—smooth
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The Hybrid method

e (Classical Darboux’s method: sum-decomposition of
C(z) =), cn2" as

c= 2+ g

log—power Cs—smooth

* For many classes, C'(z) is an infinite product
= sum-decomposition does not easily apply

e Example: The EGF of permutations with distinct cycle

lengths is
Clz) =] (1+ Z—:)
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The Hybrid method

Classical Darboux’s method: sum-decomposition of
C(z) =), cn2" as

Clz)= X(2) + g(2)
SN~ N~~~
log—power Cs—smooth

For many classes, C'(z) is an infinite product
= sum-decomposition does not easily apply

Example: The EGF of permutations with distinct cycle

lengths is
C@%:II(L+%)

k>1

Idea: in such cases, decompose C'(z) as a product,
where the first factor gathers the most salient
singularities
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Hybrid methodology

Given is a function C(z) = > c,2" of finite order a,
Clz) = O(1 — [2])*.
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Hybrid methodology

Given is a function C(z) = > c,2" of finite order a,
Clz) = O(1 — [2])*.

1. Product-decomposition:

Q
O
||
g
O
O
O

sing. (1,...,(y Cs—smooth
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Hybrid methodology

Given is a function C(z) = > c,2" of finite order a,
C(z) = O(1 = |2])*.

1. Product-decomposition:

Clz)= P(z) - Q)
N—— N——
sing. (1,...,(y Cs—smooth

2. Sum-decompositions:

P(:)= Z(:) + BE) 1QE) = Q) + SG)

———

log—power  C¢—smooth interpolation  high contact
polynomial (order c¢)
of order c at C1,...,(p
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Hybrid methodology

Given is a function C(z) = > c,2" of finite order a,
C(z) = O(1 — |z])*.
1. Product-decomposition:

Clz)= P(z) - Q)
N—— N——
sing. (1,...,(y Cs—smooth

2. Sum-decompositions:

P(:)= Z(:) + BE) 1QE) = Q) + SG)

N~
log—power  C¢—smooth interpolation high contact
polynomial (order c)
' of order c t C1....
3. Combine the terms: at C1,---5Ce

C(z) =2X(2)Q(z) + X(2)5(z) +R(2)Q(z)+ R(2)5(z)

\ .

TV TV TV TV
log—power Cy—smooth Cs—smooth  Cpip(s,¢) —Smooth
u=min(|c+a|,s—c)
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Hybrid methodology

Given is a function C(z) = > c,2" of finite order a,
C(z) = O(1 = |2])*.

1. Product-decomposition:

Clz)= P(z) - Q)
N—— N——
sing. (1,...,(y Cs—smooth

2. Sum-decompositions:

P(:)= Z(:) + BE) 1QE) = Q) + SG)

———

log—power  C¢—smooth interpolation  high contact
polynomial (order c¢)

of order c at C1,...,(p

3. Combine the terms:

C(z) = 2(:)Q(z) + S(2)S(z) +R(:)Q(z)+ R(2)S(z)

TV TV TV TV
log—power Cy—smooth Cs—smooth  Cpip(s,¢) —Smooth
u=min(|c+a|,s—c)

4. Adjust the parameters: with ¢ = L%J, c = L%j
we obtain | [2"]C(2) = [2"]2(2)Q(z) + o(n™")
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Hybrid in practice

Given is a function C(z) = > ¢, 2" of order a,
C(z) =0(1 —|z|)“.
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Hybrid in practice

Given is a function C(z) = > ¢, 2" of order a,
C(z) =0(1 —|z|)“.

1. Check that there exists a product-decomposition
Clz)= Plz) - Q)
——

sing. (1,...,(e Cs—smooth
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Hybrid in practice

Given is a function C(z) = > ¢, 2" of order a,
C(z) =0(1 — |2|)“.

1. Check that there exists a product-decomposition

Ce)= P - QC)
—— ——
sing. (1,...,Ce Cs—smooth
(then, with ¢t = L#L c = L#J
MO =" B(z) - Q) 4e(n™h)
SN~ SN~
log—power interpolation

expansion of P polynomial of
of order t of order c
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Hybrid in practice

Given is a function C(z) = > ¢, 2" of order a,
C(z) =0(1 — |2|)“.

1. Check that there exists a product-decomposition

Clz)= Plz) - Q)
—— ——
sing. (1,...,(e Cs—smooth
(then, with t = [5Hed | o= |==1ed ),
2"C(z)=["]  X(2) - Qz)  +o(n7"))
—— N——"
log—power interpolation
expansion of P polynomial of
of order t of order c

Theorem: Y(2)Q(z) is the sum of the radial singular
expansions of order t of C'(z) at (1,..., (.
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Hybrid in practice

Given is a function C(z) = > ¢, 2" of order a,
C(z) =0(1 — |2|)“.

1. Check that there exists a product-decomposition

Clz)= Plz) - Q)
—— ——
sing. (1,...,(e Cs—smooth
(then, with t = [5Hed | o= |==1ed ),
2"C(z)=["]  X(2) - Qz)  +o(n7"))
—— N——"
log—power interpolation
expansion of P polynomial of
of order t of order c

Theorem: Y(2)Q(z) is the sum of the radial singular
expansions of order t of C'(z) at (1,..., (.

2. Compute the radial expansions of C'(z) of order ¢
(all computations within the disk of convergence)
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Example (computation steps)
C'(z) is the EGF of permutations with dist. cycle lengths

Cz)=]] <1+ Z—D

k>1
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Example (computation steps)
C'(z) is the EGF of permutations with dist. cycle lengths

Sk
C(z) = 1+ —
@=T1(1+5)
k>1
1. exp-log transformation gives

o) =+ 2y T,

>1

where Ay(z) = Lig(2°) — 2°, Lig(t) = 3,5, £ (polylog.)
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Example (computation steps)
C'(z) is the EGF of permutations with dist. cycle lengths

Sk
C(z) = 1+ —
@=T1(1+5)
k>1
1. exp-log transformation gives

o) =+ 2y T,

>1

where Ay(z) = Lig(2°) — 2°, Lig(t) = 3,5, £ (polylog.)
2. Liy(t) is Cs-smooth for £ > s 4 2, so prod.-decomp. is
C(2) = P(2) ' Q(2)

N N
(1+2) exp(D_p< 541 Ae(2)) exp(2_r>sq2 Ae(2))
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Example (computation steps)
C'(z) is the EGF of permutations with dist. cycle lengths

Sk
C(z) = 1+ —
@=T1(1+5)
k>1
1. exp-log transformation gives

C(z) = (14 2) (Y (a2
where A,(z) = Lig(2%) — 2%, Lig(t) = D n>1 £ (polylog.)

2. Liy(t) is Cs-smooth for £ > s 4 2, so prod.-decomp. is

C(z) = P(z) ' Q(z)
N N
(1+2) exp(D_p< 541 Ae(2)) exp(2_r>sq2 Ae(2))

3. Singularities of P(z) arerootsof unity till order s+1,
= compute the radial expansions of C'(z) at these roots,
using the singular expansions of polylogarithms
(Zagier-Cohen'91, Flajolet’'99)
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Example (results)

Proposition: The probability that a permutation is made of
cycles of distinct lengths admits a full asymptotic expansion

of the form
e’ e’
fn o~ e 7+ + 5 (—logn — 1 —v+log2)
ponoom (2) |
18T (£ )w ™™
+$[€ 7(1og n+cs1logn+tcso)+2(—1) +§R(F( Jr“F)F(1 Zf))
f,a n
+Z n’ 7
r>4

where c31 and c3 are explicit constants. Each P.(n) is a
polynomial of degree » — 1 in log n with coefficients that are
periodic functions of n with period D(r) =lem(2,3,...,7).
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Scope of applications
* The hybrid method typically applies for a function C'(z)

of the form
C(z) = H(l + cp2"), with ¢y ~n™ % a>1
n>1
Zn
Q_1 = H (1 -+ —) Perm. dist. cycle lengths | oc 1
n
n>1
Zn
_ap = 1+ Forest dist. comp. sizes | o n=3/2
Q 3/2 Tg( 77/3/2) p
> —
Q_y = H (1 + —2> Perm. same cycle type | oc n=?
n
n>1

e Qutside of scope:
* Partitions dist. summands: [[,~;(1+ 2")

* Set partitions dist. sizes. [], -, (1 + 2—7)
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