A Hybrid of Darboux's method and Singularity Analysis in Combinatorial Asymptotics

Philippe Flajolet, Éric Fusy, Xavier Gourdon, Daniel Panario, Nicolas Pouyanne

É.F.: Dept. Mathematics, Simon Fraser University (Vancouver)

Motivations

We consider classes of objects
 Each object has a size (e.g. #(vertices))

- Given a class \mathcal{C} , let c_n be the number of objects of size n in \mathcal{C}
- Our aim: find automatic methods for estimating the coefficients c_n asymptotically.

Generating functions

• Let C be a class, with counting coefficients c_n . OGF (unlabelled class): $C(z) = \sum c_n z^n$

EGF (labelled class):

$$C(z) = \sum_{n}^{n} c_n \frac{z^n}{n!}$$

Generating functions

• Let C be a class, with counting coefficients c_n . OGF (unlabelled class): $C(z) = \sum c_n z^n$

EGF (labelled class): C

$$(z) = \sum_{n=1}^{n} c_n \frac{z^n}{n!}$$

• Dictionary for computing GF:

Generating functions

• Let C be a class, with counting coefficients c_n . OGF (unlabelled class): $C(z) = \sum c_n z^n$

EGF (labelled class): C

$$(z) = \sum_{n=1}^{n} c_n \frac{z^n}{n!}$$

• Dictionary for computing GF:

$$C = \mathcal{A} + \mathcal{B} \qquad C(z) = A(z) + B(z)$$
$$C = \mathcal{A} \times \mathcal{B} \qquad C(z) = A(z) \cdot B(z)$$
$$C = \operatorname{Set}(\mathcal{A}) \qquad C(z) = \exp(A(z))$$
$$C = \operatorname{Cyc}(\mathcal{A}) \qquad C(z) = \log(1/(1 - A(z)))$$

• Example: permutations with no fixed point:

$$\mathcal{C} = \operatorname{Set}(\operatorname{Cyc}_{\geq 2}(\mathcal{Z}))$$

$$\Rightarrow C(z) = \exp\left(\log\left(\frac{1}{1-z} - z\right)\right) = \frac{e^{-z}}{1-z}$$

Complex analysis

• Generating function C(z) as a complex function

 $\rho = \limsup \left([z^n] C(z) \right)^{1/n}$ C(z) is singular at ρ (Pringsheim)

• Asymptotic methods:

• Remark: we can assume $\rho = 1$ without loss of generality, using $[z^n]C(z) = \rho^{-n}[z^n]C(\rho \cdot z)$

Coefficients of basic functions

• A log-power function at 1 is a linear combination $\sigma(z)$ of functions of the form

$$(1-z)^{\alpha}\log^k\left(\frac{1}{1-z}\right), \quad \alpha \in \mathbb{R}, \ k \in \mathbb{Z}_{\geq 0}$$

Coefficients of basic functions

• A log-power function at 1 is a linear combination $\sigma(z)$ of functions of the form

$$(1-z)^{\alpha}\log^k\left(\frac{1}{1-z}\right), \quad \alpha \in \mathbb{R}, \ k \in \mathbb{Z}_{\geq 0}$$

• Coefficients have a full asymptotic expansion Example: $[z^{n}] \frac{\log\left(\frac{1}{1-z}\right)}{\sqrt{1-z}} \sim \frac{\log n + \gamma + 2\log 2}{\sqrt{\pi n}} - \frac{\log n + \gamma + 2\log 2}{8\sqrt{\pi n^{3}}} + \cdots$

Coefficients of basic functions

• A log-power function at 1 is a linear combination $\sigma(z)$ of functions of the form

$$(1-z)^{\alpha}\log^k\left(\frac{1}{1-z}\right), \quad \alpha \in \mathbb{R}, \ k \in \mathbb{Z}_{\geq 0}$$

- Coefficients have a full asymptotic expansion Example: $[z^{n}]\frac{\log\left(\frac{1}{1-z}\right)}{\sqrt{1-z}} \sim \frac{\log n + \gamma + 2\log 2}{\sqrt{\pi n}} - \frac{\log n + \gamma + 2\log 2}{8\sqrt{\pi n^{3}}} + \cdots$
- Applies for log-power with finitely many singularities $\zeta_1, \ldots, \zeta_\ell$, using $[z^n]\sigma(z/\zeta_i) = \zeta_i^{-n}[z^n]\sigma(z)$

Darboux's method

• Key-remark: if g(z) is C_s -smooth on the closed unit disk, then

$$[z^n]g(z) = o(n^{-s}).$$

(from Cauchy's integral formula + int. by part)

• Application: given $C(z) = \sum_{n} c_n z^n$, decompose C(z) as a sum

$$C(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{g(z)}_{\mathcal{C}_s - \text{smooth}}$$

Then
$$[z^n]C(z) = [z^n]\Sigma(z) + o(n^{-s})$$
.

Singularity analysis

- There holds the transfer rule (Flajolet-Odlyzko'90)
 C(z) = O(g(z)) → (z→ρ) (z^n)C(z) = O([z^n]g(z))
 (+ analytic continuation conditions to check)
- Applies for finitely many singularities $\zeta_1, \ldots, \zeta_\ell$

Singularity analysis

- There holds the transfer rule (Flajolet-Odlyzko'90) $C(z) = \underset{z \to \rho}{O} (g(z)) \underset{\text{transfer}}{\longrightarrow} [z^n]C(z) = O([z^n]g(z))$ (+ analytic continuation conditions to check)
- Applies for finitely many singularities $\zeta_1, \ldots, \zeta_\ell$
- Application: given $C(z) = \sum_{n} c_n z^n$ with singularities $\zeta_1, \ldots, \zeta_\ell$, decompose C(z) as a sum

$$C(z) = \Sigma(z) + g(z)$$

where $\Sigma(z)$ is a log-power and g(z) is $O(z - \zeta_i)^{\alpha}$ at ζ_i . Then $[z^n]C(z) = [z^n]\Sigma(z) + O(n^{-\alpha-1})].$

Singularity analysis

- There holds the transfer rule (Flajolet-Odlyzko'90) $C(z) = \underset{z \to \rho}{O} (g(z)) \underset{\text{transfer}}{\longrightarrow} [z^n]C(z) = O([z^n]g(z))$ (+ analytic continuation conditions to check)
- Applies for finitely many singularities $\zeta_1, \ldots, \zeta_\ell$
- Application: given $C(z) = \sum_{n} c_n z^n$ with singularities $\zeta_1, \ldots, \zeta_\ell$, decompose C(z) as a sum

$$C(z) = \Sigma(z) + g(z)$$

where $\Sigma(z)$ is a log-power and g(z) is $O(z - \zeta_i)^{\alpha}$ at ζ_i . Then $[z^n]C(z) = [z^n]\Sigma(z) + O(n^{-\alpha-1})$.

• Remark: g(z) is $\mathcal{C}_{\lfloor \alpha \rfloor}$ -smooth, as $[z^n]g(z) = O(n^{-\alpha-1})$. By Darboux, this gives only $[z^n]g(z) = o(n^{-\lfloor \alpha \rfloor})$

Let C be the class of labelled 2-regular graphs.

Let C be the class of labelled 2-regular graphs. 2-regular graph = Set of undirected cycles of length ≥ 3 (1) 1) $z = z^2$ $e^{-z/2-z^4/4}$

$$\Rightarrow C(z) = \exp\left(\frac{1}{2}\log(\frac{1}{1-z}) - \frac{z}{2} - \frac{z^2}{4}\right) = \frac{e^{-z/2-z^2/4}}{\sqrt{1-z}}$$

Let C be the class of labelled 2-regular graphs. 2-regular graph = Set of undirected cycles of length ≥ 3

$$\Rightarrow C(z) = \exp\left(\frac{1}{2}\log(\frac{1}{1-z}) - \frac{z}{2} - \frac{z^2}{4}\right) = \frac{e^{-z/2 - z^4/4}}{\sqrt{1-z}}$$

• Singularity analysis:

$$C(z) \underset{z \to 1}{\sim} \frac{e^{-3/4}}{\sqrt{1-z}} \quad \Rightarrow \quad [z^n] C(z) \sim \frac{e^{-3/4}}{\sqrt{\pi n}}$$

Let C be the class of labelled 2-regular graphs. 2-regular graph = Set of undirected cycles of length ≥ 3

$$\Rightarrow C(z) = \exp\left(\frac{1}{2}\log(\frac{1}{1-z}) - \frac{z}{2} - \frac{z^2}{4}\right) = \frac{e^{-z/2 - z^4/4}}{\sqrt{1-z}}$$

- Singularity analysis: $C(z) \underset{z \to 1}{\sim} \frac{e^{-3/4}}{\sqrt{1-z}} \Rightarrow [z^n] C(z) \sim \frac{e^{-3/4}}{\sqrt{\pi n}}$
- Darboux's method:

$$C(z) = \frac{e^{-3/4}}{\sqrt{1-z}} + *\sqrt{1-z} + \underbrace{O((1-z)^{3/2})}_{C_1 - \text{smooth}}$$

$$\Rightarrow \quad [z^n]C(z) \sim \frac{e^{-3/4}}{\sqrt{\pi n}} + \frac{*}{n^{3/2}} + o(n^{-1}) \sim \frac{e^{-3/4}}{\sqrt{\pi n}}$$

The Hybrid method

• Classical Darboux's method: sum-decomposition of $C(z) = \sum_n c_n z^n$ as

The Hybrid method

• Classical Darboux's method: sum-decomposition of $C(z) = \sum_n c_n z^n$ as

- For many classes, C(z) is an infinite product \Rightarrow sum-decomposition does not easily apply
- Example: The EGF of permutations with distinct cycle lengths is

$$C(z) = \prod_{k \ge 1} \left(1 + \frac{z^k}{k} \right)$$

The Hybrid method

• Classical Darboux's method: sum-decomposition of $C(z) = \sum_n c_n z^n$ as

- For many classes, C(z) is an infinite product \Rightarrow sum-decomposition does not easily apply
- Example: The EGF of permutations with distinct cycle lengths is

$$C(z) = \prod_{k \ge 1} \left(1 + \frac{z^k}{k} \right)$$

• Idea: in such cases, decompose C(z) as a product, where the first factor gathers the most salient singularities

Given is a function $C(z) = \sum_{n} c_n z^n$ of finite order a, $C(z) = O(1 - |z|)^a$.

Given is a function $C(z) = \sum_{n} c_n z^n$ of finite order a, $C(z) = O(1 - |z|)^a$.

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_\ell} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$

Given is a function $C(z) = \sum_{n} c_n z^n$ of finite order a, $C(z) = O(1 - |z|)^a$.

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_\ell} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$
2. Sum-decompositions:

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{R(z)}_{\mathcal{C}_t - \text{smooth}} || Q(z) = \underbrace{\overline{Q}(z)}_{\text{interpolation}} + \underbrace{S(z)}_{\substack{\text{high contact}\\ \text{of order } c}}$$

Given is a function $C(z) = \sum_{n} c_n z^n$ of finite order a, $C(z) = O(1 - |z|)^a$.

$$C(z) = \underbrace{P(z)}_{\text{sing. }\zeta_1, \dots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$
2. Sum-decompositions:

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{R(z)}_{\mathcal{C}_t - \text{smooth}} || Q(z) = \underbrace{\overline{Q}(z)}_{\text{interpolation}} + \underbrace{S(z)}_{\text{high contact}}$$
3. Combine the terms:

$$C(z) = \underbrace{\Sigma(z)\overline{Q}(z)}_{\text{log-power}} + \underbrace{\Sigma(z)S(z)}_{\mathcal{C}_u - \text{smooth}} + \underbrace{R(z)\overline{Q}(z)}_{\mathcal{C}_s - \text{smooth}} + \underbrace{R(z)S(z)}_{\mathcal{C}_{\text{min}(s,t)} - \text{smooth}}$$

Given is a function $C(z) = \sum_{n} c_n z^n$ of finite order a, $C(z) = O(1 - |z|)^a$.

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_{\ell}} \cdot \underbrace{Q(z)}_{C_s - \text{smooth}}$$
2. Sum-decompositions:

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{R(z)}_{C_t - \text{smooth}} || Q(z) = \underbrace{\overline{Q}(z)}_{\text{of order } c} + \underbrace{S(z)}_{\text{high contact}}$$

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{R(z)}_{C_t - \text{smooth}} || Q(z) = \underbrace{\overline{Q}(z)}_{\text{of order } c} + \underbrace{S(z)}_{\text{high contact}}$$

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{R(z)}_{C_u - \text{smooth}} + \underbrace{R(z)}_{C_s - \text{smooth}} + \underbrace{R(z)}_{C_{\min(s,t)} - \text{smooth}}$$

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{\Sigma(z)}_{C_u - \text{smooth}} + \underbrace{R(z)}_{C_s - \text{smooth}} + \underbrace{R(z)}_{C_{\min(s,t)} - \text{smooth}}$$

$$P(z) = \underbrace{\Sigma(z)}_{\text{log-power}} + \underbrace{\Sigma(z)}_{C_u - \text{smooth}} + \underbrace{P(z)}_{C_s - \text{smooth}} + \underbrace{R(z)}_{C_{\min(s,t)} - \text{smooth}} + \underbrace{R(z)}_{T_s - \text{smooth}} + \underbrace{P(z)}_{T_s - \text{smooth}} + \underbrace{P(z)}_{T_s$$

Given is a function $C(z) = \sum_{n} c_n z^n$ of order a, $C(z) = O(1 - |z|)^a$.

Given is a function $C(z) = \sum_{n} c_n z^n$ of order a, $C(z) = O(1 - |z|)^a$.

1. Check that there exists a product-decomposition

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_\ell} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$

Given is a function $C(z) = \sum_{n} c_n z^n$ of order a, $C(z) = O(1 - |z|)^a$.

1. Check that there exists a product-decomposition

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_\ell} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$
(then, with $t = \lfloor \frac{s + \lfloor a \rfloor}{2} \rfloor$, $c = \lfloor \frac{s - \lfloor a \rfloor}{2} \rfloor$,

$$[z^n]C(z) = [z^n] \underbrace{\Sigma(z)}_{\text{of order } t} \cdot \underbrace{\overline{Q}(z)}_{\text{of order } c} + o(n^{-t}))$$

Given is a function $C(z) = \sum_n c_n z^n$ of order a, $C(z) = O(1 - |z|)^a$.

1. Check that there exists a product-decomposition

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_\ell} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$
(then, with $t = \lfloor \frac{s + \lfloor a \rfloor}{2} \rfloor$, $c = \lfloor \frac{s - \lfloor a \rfloor}{2} \rfloor$,
$$[z^n]C(z) = [z^n] \underbrace{\Sigma(z)}_{\text{of order } t} \cdot \underbrace{\overline{Q}(z)}_{\text{of order } c} + o(n^{-t}))$$

Theorem: $\Sigma(z)\overline{Q}(z)$ is the sum of the radial singular expansions of order t of C(z) at $\zeta_1, \ldots, \zeta_\ell$.

Given is a function $C(z) = \sum_n c_n z^n$ of order a, $C(z) = O(1 - |z|)^a$.

1. Check that there exists a product-decomposition

$$C(z) = \underbrace{P(z)}_{\text{sing. } \zeta_1, \dots, \zeta_\ell} \cdot \underbrace{Q(z)}_{\mathcal{C}_s - \text{smooth}}$$
(then, with $t = \lfloor \frac{s + \lfloor a \rfloor}{2} \rfloor$, $c = \lfloor \frac{s - \lfloor a \rfloor}{2} \rfloor$,

$$[z^n]C(z) = [z^n] \underbrace{\Sigma(z)}_{\text{of order } t} \cdot \underbrace{\overline{Q}(z)}_{\text{polynomial of } Q} + o(n^{-t}))$$

Theorem: $\Sigma(z)\overline{Q}(z)$ is the sum of the radial singular expansions of order t of C(z) at $\zeta_1, \ldots, \zeta_\ell$.

2. Compute the radial expansions of C(z) of order t (all computations within the disk of convergence)

 ${\cal C}(z)$ is the EGF of permutations with dist. cycle lengths

$$C(z) = \prod_{k \ge 1} \left(1 + \frac{z^k}{k} \right)$$

C(z) is the EGF of permutations with dist. cycle lengths

$$C(z) = \prod_{k \ge 1} \left(1 + \frac{z^k}{k} \right)$$

1. exp-log transformation gives

$$C(z) = (1+z) \exp(\sum_{\ell \ge 1} \frac{(-1)^{\ell-1}}{\ell} (A_{\ell}(z))),$$

where $A_{\ell}(z) = \operatorname{Li}_{\ell}(z^{\ell}) - z^{\ell}, \ \operatorname{Li}_{\ell}(t) = \sum_{n \ge 1} \frac{t^n}{n^{\ell}} \ (\text{polylog.})$

C(z) is the EGF of permutations with dist. cycle lengths

$$C(z) = \prod_{k \ge 1} \left(1 + \frac{z^k}{k} \right)$$

1. exp-log transformation gives

$$C(z) = (1+z) \exp(\sum_{\ell \ge 1} \frac{(-1)^{\ell-1}}{\ell} (A_{\ell}(z))),$$

where $A_{\ell}(z) = \operatorname{Li}_{\ell}(z^{\ell}) - z^{\ell}$, $\operatorname{Li}_{\ell}(t) = \sum_{n \ge 1} \frac{t^n}{n^{\ell}}$ (polylog.)

2. $\operatorname{Li}_{\ell}(t)$ is \mathcal{C}_{s} -smooth for $\ell \geq s+2$, so prod.-decomp. is $C(z) = \underbrace{P(z)}_{(1+z)\exp(\sum_{\ell \leq s+1}A_{\ell}(z))} \cdot \underbrace{Q(z)}_{\exp(\sum_{\ell \geq s+2}A_{\ell}(z))}$

C(z) is the EGF of permutations with dist. cycle lengths

$$C(z) = \prod_{k \ge 1} \left(1 + \frac{z^k}{k} \right)$$

1. exp-log transformation gives

$$C(z) = (1+z) \exp(\sum_{\ell \ge 1} \frac{(-1)^{\ell-1}}{\ell} (A_{\ell}(z))),$$

where $A_{\ell}(z) = \operatorname{Li}_{\ell}(z^{\ell}) - z^{\ell}$, $\operatorname{Li}_{\ell}(t) = \sum_{n \ge 1} \frac{t^n}{n^{\ell}}$ (polylog.)

- 2. $\operatorname{Li}_{\ell}(t)$ is \mathcal{C}_{s} -smooth for $\ell \geq s+2$, so prod.-decomp. is $C(z) = \underbrace{P(z)}_{(1+z)\exp(\sum_{\ell \leq s+1}A_{\ell}(z))} \cdot \underbrace{Q(z)}_{\exp(\sum_{\ell \geq s+2}A_{\ell}(z))}$
- 3. Singularities of P(z) are roots of unity till order s+1,
 ⇒ compute the radial expansions of C(z) at these roots,
 using the singular expansions of polylogarithms
 (Zagier-Cohen'91, Flajolet'99)

Example (results)

Proposition: The probability that a permutation is made of cycles of distinct lengths admits a full asymptotic expansion of the form

$$f_n \sim e^{-\gamma} + \frac{e^{-\gamma}}{n} + \frac{e^{-\gamma}}{n^2} \left(-\log n - 1 - \gamma + \log 2 \right) \\ + \frac{1}{n^3} \left[e^{-\gamma} \left(\log^2 n + c_{3,1} \log n + c_{3,0} \right) + 2(-1)^n + \Re \left(\frac{18\Gamma(\frac{2}{3})\omega^{-n}}{\Gamma(\frac{1}{6} + \frac{i\sqrt{3}}{6})\Gamma(\frac{1}{2} - \frac{i\sqrt{3}}{6})} \right) \right] \\ + \sum_{r \ge 4} \frac{P_r(n)}{n^r},$$

where $c_{3,1}$ and $c_{3,0}$ are explicit constants. Each $P_r(n)$ is a polynomial of degree r-1 in $\log n$ with coefficients that are periodic functions of n with period $D(r) = \operatorname{lcm}(2, 3, \ldots, r)$.

Scope of applications

- The hybrid method typically applies for a function ${\cal C}(z)$ of the form

$$C(z) = \prod_{n \ge 1} (1 + c_n z^n), \text{ with } c_n \sim n^{-\alpha}, \ \alpha \ge 1$$

- Outside of scope:
 - Partitions dist. summands: $\prod_{n>1}(1+z^n)$
 - Set partitions dist. sizes. $\prod_{n\geq 1} \left(1+\frac{z^n}{n!}\right)$

- p.14/14