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ABSTRACT 

The Black-Scholes model is the standard approach used for pricing financial options. 

However, although being theoretically strong, option prices valued by the model often 

differ from the prices observed in the financial markets. This paper applies a hybrid 

neural network which preprocesses financial input data for improving the estimation 

of option market prices. This model is comprised of two parts. The first part is a 

neural network developed to estimate volatility. The second part is an additional 

neural network developed to value the difference between the Black-Scholes model 

results and the actual market option prices. The resulting option price is then a 

summation between the Black-Scholes model and the network response. The hybrid 

system with a neural network for estimating volatility provides better performance in 

terms of pricing accuracy than either the Black-Scholes model with historical 

volatility, or the Black-Scholes model with volatility valued by the neural network. 
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INTRODUCTION 

 
Option pricing has been of great interest for many years. Predicting the correct 

value of an option can be beneficial for both hedgers and speculators. The Black-Scholes 

and Merton (1973) model has become a common method to value option prices and has 

been honored with the award of the Nobel Prize in economics. Nonetheless, even though 

it has been widely accepted, actual market prices often differ from the value obtained 

from the Black-Scholes model. Part of this difficulty in predicting the proper price results 

since the closed-form solution of the Black-Scholes model was developed under 

assumptions that do not hold in the real world and the model has been shown to exhibit 

systematic biases from observed option prices (Rubinstein, 1985). The Black-Scholes 

formula is derived based on various assumptions, such as geometric motion of stock price 

movements, European style options, constant interest rate, continuous trading without 

dividends or taxes applied to the stocks, and a frictionless market.  

The problems of the conventional model have motivated many researchers to 

develop option pricing models using a number of methodologies to provide a more 

accurate and realistic price calculation. Merton (1973) developed a model in which 

dividends are continuous and proportional to the price of the underlying asset for 

European options. The model has been extended and improved by calculating values for 

American call options on dividend paying stocks (Roll, 1977; Geske, 1979; and Whaley, 

1981). In 1979, Cox, Ross and Rubinstein developed a binomial tree methodology for 

American option pricing which is a simple discrete-time model.  

In the last decade, nonparametric approachs using neural networks have been 

studied for option pricing and volatility estimation, including studies by Hutchinson (et. 

al, 1994) and Hanke (1999). Chen and Lee (1997) and Chidambaran, et al. (1998) applied 

genetic algorithms as an alternative approach for option pricing. Salchenberger (1994) 
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and Karaali et al. (1997) and Malliaris (1994) applied neural networks for volatility 

prediction benchmarked with conventional techniques in time series, digital signal 

processing, historical volatility, and implied volatility. Schittenkopf and Dorffner (2001) 

developed a method of risk-neutral density extraction from option prices based on 

mixture density networks.  

A hybrid approach to estimate the residuals between the actual option price and 

the Black-Scholes model has also been analyzed by various researchers. Gultekin et al. 

(1982) developed a model to estimate the residuals by linear regression. Jacquier and 

Jarrow (1996) selected a Bayesian approach to model the residuals.  Lajbcygier, et al. 

(1997) applied a neural network to estimate the residuals, showing statistically and 

economincally significant performance. Lajbcygier and Connor (1997) improved the 

hybrid model using bootstrap methods to reduce bias in the hybrid model. 

In this paper, an alternative and new hybrid between the Black-Scholes model and 

a nonparametric pricing model is developed and comprised of two parts. The first neural 

network estimates the implied volatility for each option by using the parameters in the 

Black-Scholes model, excluding volatility. The result from the first part, along with the 

other necessary parameters for the Black-Scholes model, are inputed to the second part, 

which is comprised of the hybrid model and the Black-Scholes model. The neural 

network at this stage is applied to estimate the difference between the Black-Scholes 

option price and the actual market price.  The option price is then derived from the 

summation of the Black-Scholes model and the second neural network model. The 

method is applied to data from traded options on stocks selected from different sectors for 

diversification, all of which are listed in the Dow Jones Industrial Index. Numerical 

results are presented that show a superior pricing accuracy for the new hybrid model.   
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The remainder of this paper is organized into seven sections. Section 1 provides a 

summary of general option knowledge, option terminology, option pricing, and the Black-

Scholes model. Section 2 summarizes volatility estimation methods, along with the 

volatility smile. Section 3 describes the neural network architecture which is applied in 

this work. Section 4 presents the experiment details: the architectures of the three models 

developed, dataset information, and implementation. Section 5 reports the performance in 

terms of prediction accuracy. Finally, Section 6 concludes the paper with a discussion of 

the results and directions for future research.  

1. OPTIONS  

1.1 OPTION FUNDAMENTALS 

 An option is the right to take an action in the future without any obligation. 

Therefore, the option holder must pay some money for this previlage, often called the 

option price or premium. There are two basic types of options, call options and put 

options. A call option gives the holder the right to buy the underlying asset by a certain 

date, called maturity or expiration date, for a certain price, called exercise price or strike 

price. A put option gives the holder the right to sell the underlying asset by a certain date 

(maturity date, expiration date), for a certain price (exercise price, strike price). Most 

traded options expire on the third Friday of the expiration month. 

 Options can generally be divided into two types, American options and European 

options, based on the flexibility of when the option can be exercised. American options 

give the right to the holder to exercise the option any time up to the expiration date. 

European options give the right to the holder to exercise the option only on the expiration 

date. As a result of the added flexibility, American options are priced higher than 

European options, given that all other factors remain the same. In U.S. markets,  most 
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exchange traded options are American (with the exception of some index options), with 

each contract being an agreement to buy or sell 100 shares of the underlying security. 

Nonetheless, the option prices shown in the market are per share, therefore, the trader 

needs to pay 100 times the quoted price to control 100 shares.  

 Options are mentioned as in-the-money, at-the-money, or out-of-the-money based 

on their relationship between the strike price and current underlying primitive asset. An 

in-the-money option is an option that gives the holder a positive cash flow if it was 

exercised immediately. For example, an in-the-money option for a call is one where the 

strike price is less than the current underlying asset market price. On the other hand, an 

in-the-money option for a put is one where the option strike price is greater than the 

current underlying asset market price. An at-the-money option is an option that gives the 

holder a zero cash flow if it was immediately exercised – the strike price and market price 

are identical. Out-of-the money options give the holder a negative payoff cash flow if the 

option is exercised immediately.  

 Every option contract is comprised of two positions: the trader who buys the 

option has taken the long position, while the trader who sells or writes the option has 

taken the short position. The buyer must pay premium or option price to enter the option 

position, while the seller will receive the cash premium upfront, with potential liabilities 

afterward. The writer is often required to make a security deposit or post margin to 

guarantee their capability to respect their obligations to sell or buy the underlying item; in 

other words, to ensure that the writer can pay any loss that results from the position going 

against them. The profit and loss for the writer and buyer are the reverse of each other, 

minus any transaction costs.  

 The option payoff is usually calculated without including the initial cost of the 

option. The profit must then consider the cost to enter the long position, or the premium 
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received from the short position. For instance, consider an option with an initial cost P, 

strike price X, and final price S of the underlying asset at maturity. Then, the profit and 

payoff from a long positon in a European call are max(S-X-P, -P) and max(S-X, 0), 

respectively (see Figure 1a). The profit and payoff for a short position in the European 

call are –max(S-X-P, -P) = min(P-X-S, P) and –max(S-X, 0) = min(X-S, 0), respectively 

(see Figure 1b).  

    

(Please insert Figure 1 here) 

 

The concept is the same for put options. The profit and payoff from a long 

position in a European put are max(X-S-P, -P) and max(X-S, 0), respectively (see Figure 

1c), while the profit and payoff from a short position are –max(X-S-P, -P) or min(P-S-X, 

P), and –max(X-S, 0) or min(S-X, 0), respectively (see Figure 1d).  

1.2 OPTION PRICING 

Accurate valuation of options is a significance issue for investors and practitioners 

in the financial markets. Researchers have devoted time to developing methodologies to 

price not only traditional stock options, but also other option problems, such as 

determining the value of employee stock options (Core and Guay, 2002; Bens, et. al, 

2002) and real options for project valuation. There are seven main factors that affect the 

premium of an option: 

 

 

1. The current price of the underlying asset 

2. The strike price of the option 
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3. The time remaining until expiration or maturity 

4. The volatility of the underlying asset price 

5. The risk-free interest rate 

6. The dividends expected for the underlying asset or stock during the option life 

7. The type of option (call, put, or exotic) 

These factors are essential and play a role in the option price. Fundamentally, each 

of these factors can be directly observed from the market, with the exception of the 

volatility of the stock price, which must be estimated. Therefore, the option prices in the 

market are often undervalued or overvalued depending on individual trader volatility 

estimation. The methodology of volatility estimation will be discussed in the next section. 

In general, the option price is comprised of two parts, the intrinsic value and the 

time value. The intrinsic value is definded as the maximum of zero and the value the 

option would have if it was exercised immediately (the difference between the strike price 

and the current stock price). The intrinsic value for call and put option are max(S-X, 0) 

and max(X-S, 0), respectively. The time value is derived from the possibility of future 

favorable movements in the stock price. For example, consider that the price of a six-

month call option with a strike price of $15 is $3, while the price of the underlying stock 

price is currently $17. This gives an intrinsic value of the call option at $17 - $15 = $2, 

while the time value is $3 - $2 = $1. Normally, the holder of an American option would 

not exercise the option if the holder does not intend to hold the stock, but rather sell the 

option back to the market. The trader will receive only the intrinsic value if the option is 

exercised. If the option is sold to close the position, the trader will receive both the 

intrinsic value and time value.  

1.3 THE BLACK-SCHOLES MODEL 
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A major breakthrough in stock option pricing occurred with the Black-Scholes 

model (Black and Scholes, 1973), leading to tremendous growth and success in financial 

engineering. The Black-Scholes model is derived for valuing European options on non-

dividend-paying stocks. It was developed and based on various assumptions and ideal 

conditions, as given below: 

1. The risk-free interest rate is known and constant  

2. The distribution of stock prices is lognormal with a constant variance rate of stock 

return 

3. There are no dividends during the life of the derivative 

4. The option is of the European type 

5. There are no transactions costs  

6. The source of funds is available at the risk-free interest rate 

7. The short selling of securities is permitted 

Under these assumptions, the option price based on the Black-Scholes model can 

be calculated from five parameters: volatility of the underlying asset (σ), exercise price of 

the option (X), price of the underlying asset (S0), number of days until the expriation date 

(t), and the risk-free interest rate (r). The Black-Scholes formulas for valuing call and put 

options at time zero are shown in equations (1) and (2), respectively: 
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                                                    (2) )()( 102 dNSdNXeP rt −−−= −
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and  C : European call option price  P : European put option price 
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 S0 : Stock price at time zero   X : Strike price 

 T : Time to maturity   σ : Stock price volatility 

 r  : Continuously compounded risk-free rate 

 N(x): Cumulative probability distribution function for a standardized normal 

distribution 

2. VOLATILITY 

2.1 VOLATILTIY ESTIMATION 

 Volatility measures the amount by which an underlying asset is expected to 

fluctuate in a given period of time. This factor significantly impacts the price of the 

option and heavily contributes to the time value of the option. A greater expectation in 

volatility tends to increase option prices. When the volatility of a stock is high, there is an 

inclination for the market to drive the option price higher (Van Horne, J.C., 1969). In the 

market there are two widely accepted and standard methods to estimate volatility: 

historical volatility and implied volatility.  

 2.1.1 Historical Volatility  

Historical Volatility (HV) estimates volatility using historical stock price data 

which is normally observed at fixed intervals of time, such as daily, weekly, or monthly. 

Historical volatility is regularly called statistical volatility and is calculated as the 

standard deviation of a stock's return over a fixed period of time, such as 30, 60, 90, 120, 

or 365 days. Stock return is often defined as the natural logarithm of the closing prices 

between each interval of time. The historical volatility and return can be calculated as 

shown in Equations 5 and 6. 
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where Xi : Return at end of i  interval th

P : Stock close price at end of i  interval i 
th

n+1 : Number of observations or number of observed days for daily basis

The procecure for determining the appropriate number of observations is not 

simple. Normally, more observations leads to increased accuracy, however, volatility 

does change over time and data from deep in the past may not be relevant for predicting 

the future. A basic rule is to set n equal to the number of days to which the volatility is to 

be applied (Hull, 2003). 

When historical volatility is high, the stock has previously been displaying 

increased movement in price. When it is low, the volatility implies quiet trading or low 

movement in price. Benchmarking with the historical volatility of other stocks allows you 

to compare the volatility of a stock with the general market, or the stocks within a specific 

sector. In the same way, benchmarking the volatility of a stock with its own historical 

volatility allows one to estimate the increased or decreased movement of volatility. For 

example, if the 15-day historical volatility of a stock is 10% and the 60-day historical 

volatility is 30%, this implies that the stock has had a recent sharp decrease in volatility. 

 2.1.2 Implied Volatility  

Implied Volatility is a measure of market expectations regarding the asset's future 

volatility. It is derived from an option pricing model such as the Black-Scholes model by 

adding all known variables and market option price into the formula, and then calculating 

 10



 

the only remaining unknown variable, volatility. This calculated volatility value is called 

implied volatility. 

In order to determine at any given point in time whether implied volatility is 

relatively high or low, it is important to compare the current value of volatility to the 

levels that existed in the past. Each option contract has a different value of implied 

volatility which changes over time, even though the Black-Scholes model suggests that 

every option implies the same volatility for the same underlying. In the market, the option 

price of deep-in-the-money and deep-out-of-the-money options are relatively insensitive 

to volatility. Therefore, the implied volatilities derived from these options tend to lack 

reliability.  

 2.1.3 Volatility Smiles 

 Most derivative markets exhibit persistent patterns of implied volatility calculated 

from actual market option prices that vary over the strike price and time to maturity, 

instead of being constant as assumed by the Black-Scholes model. The relationship 

between the implied volatility of an option as a function of its strike price is known as a 

volatility smile. In some markets, such as currency options, the volatility smile shows that 

deep out-of-the-money and deep in-the-money options are priced by the market at prices 

that are higher than theoretically forecasted by the lognormally distributed Black-Scholes 

model (volatility smile is shown in Figure 2(a)). In other markets, such as for individual 

stocks and stock indices, the implied volatility pattern is normally different and often 

referred to as a volatility skew, such that the volatility tends to decrease as the strike price 

increases, as shown in Figure 2(b). The reason behind this phenomena can be explained 

by leverage. While an underlying asset price declines, the leverage of the underlying asset 

increases. Thus, the volatility of underlying asset increases as there is more possibility for 

the price to decrease. In the same manner, when an underlying asset price increases, the 
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leverage of the underlying asset decreases as a result of decreasing volatility. For this 

situation, there is less possibility for the price to increase. 

 

(Please insert Figure 2 here) 

3. NEURAL NETWORK ARCHITECTURE 

For this research the General Regression Neural Network (GRNN) (Specht, 1991)  

is applied. The GRNN architecture is chosen because it provides comparable accuracy to 

feedforward networks using the backpropagation learning algorithm with substantially 

less training time and convergence to the optimal surface. There are many advantages 

when using the GRNN as compared to other nonlinear regression methods. First, it 

obtains the estimate in a single pass, therefore, no iterative training is needed.  Second, 

the estimate converges to the conditional mean regression surfaces and is bounded by the 

minimum and maximum of the observations. The estimate cannot converge to the poor 

outcomes corresponding to local minima of the error criterion. Lastly, the network also 

performs well under noisy environments when given sufficient data.  

The GRNN is a supervised feedforward network, subsuming the radial basis-

function method. It is based on nonlinear regression theory and computes its output using 

a variation of the “nearest-neighbor” approach. The forecast value for an input vector is a 

weighted average of the outputs in the training sample. The closer an input vector in the 

training sample, the larger the weight of its corresponding output. The GRNN is usually 

applied for function approximation.  

The GRNN is a regression network utilizing a probabilistic model between the 

independent (input or x) and the dependent (output or y) variable. Assume that f(x,y) 

represents the known joint continuous probability density function of x and y, where X is 

 12



 

a measured value of the variable x. The expected conditional mean of y given x is shown 

in Equation 7. A probability estimator  is based on sample values X),( YXf
∧

i and Yi of the 

ramdom variables x and y, as proposed by Parzen (1962) and shown in Equation 8. As a 

result, the expected value of y ( ) is shown in Equation 9.  )(XY
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where  and )()(2
i

T
ii XXXXD −−= σ  is a smoothing parameter of the radial basis 

function or kernel width. A small value of σ means that the output contribution is mainly 

derived from the nearby cells. A large value of σ  means that the output is dervied from 

both the nearby and more distant cells. The kernel width should be smaller than the 

typical distance between the input vectors to fit the data very closely. The larger the 

kernel width, the smoother the function approximation.  

The GRNN architecture is shown in Figure 3. The topology of a GRNN is 

comprised of four layers: input layer, pattern layer, summation layer, and output layer. 

The function of the input layer is to pass the input vector to all the units in the pattern 

layer. The neurons of pattern layer are created to compute the kernel function. The 

summation layer has two neurons to compute the numerator and denominator. The output 

layer provides a result by dividing the values of these two neurons. 
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(Please insert Figure 3 here) 

 

4. EXPERIMENT  

 4.1 GENERAL HYBRID NEURAL NETWORK 

A hybrid neural network model for options pricing was introduced by Lajbcygier 

et al. (1997). This approach is a combination of the standard Black-Scholes model and a 

neural network. The concept is to use the conventional Black-Scholes model as the core 

calculation and then apply a neural network to value the difference between the actual 

market price and the Black-Scholes model value. The inputs of this model are the risk-

free interest rate (r), time to maturity (T), volatility (σ), and the ratio of the stock price 

and strike price (S/X). The volatility is obtained from the historical volatility that is 

calculated from past market data. The target is the difference between the Black-Scholes 

model and the ratio of call option price and strike price (C/X), as shown in Figure 4.  

 

(Please insert Figure 4 here) 

 

 This methodology effectively learns the differences between the actual market 

price and the theoretically estimated value from the Black-Scholes model, and also allows 

the neural network to be trained on these differences.  

4.2 BENCHMARK MODELS 

 For this research, two models are benchmarked with the proposed new hybrid 

model. The first model (HV-BS) is the simplest model since it is easy to set up and 

calculate, as shown in Figure 5. The volatility provided as input to the Black-Scholes 
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(BS) model is calculated by way of historical volatility (HV). Past prices (P) are also used 

as input. The prices are converted into a return format which is then used to calculate the 

standard deviation of the stock’s return (σ).  Next, the standard deviation of stock’s 

return, along with the other input variables, including stock price (S), strike price (X), 

risk-free rate (r), and time to maturity (T) are provided as input to the Black-Scholes 

model to price the option. The disadvantage of this model is that there is merely one 

calculated volatility value for a single trading day. In fact, the option price for different 

strike price and maturity are valued by different implied volatilities, even for the same 

underlying asset. Not surprisingly, this model provides unsatisfactory results compared to 

the actual market price. Nonetheless, the reason to apply this basic model is to observe 

the rough capability of the standard Black-Scholes model and further investigate the 

possible development of an advanced alternative model.  

 

(Please insert Figure 5 here) 

 

 The second benchmarked model incorporates the advantages of GRNN to capture 

the characteristic of each option volatility more precisely. Instead of single variable, the 

developed GRNN is multivariate with four inputs: stock price (S), strike price (X), risk-

free rate (r), and time to maturity (T), which are the standard inputs for the Black-Scholes 

model. The GRNN is applied to generate volatility for every combination of inputs. Thus, 

the different strike prices, different times to maturity, and the value of the other inputs 

leads to different volatility values, regardless the same underlying asset. The generated 

volatility from the GRNN is combined with the four original inputs sent to the GRNN to 

provide five inputs to the Black-Scholes model for pricing the option. The benefit of the 

GRNN for this model is that the volatility for different strike prices and times to maturity 
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are not constant, as highlighted and discussed in Section 2.1.3. The GRNN can provide 

different values of volatility for different combinations of input. It should provide an 

improvement in terms of pricing accuracy and allow the characteristics of volatility skew 

to be modeled.  

 

(Please insert Figure 6 here) 

 

4.3 NEW HYBRID NEURAL NETWORK MODEL 

A hybrid neural network model was also developed and tested. For the model, the 

stock price and strike price are applied individually, instead of using their ratio as 

previously applied. Futhermore, the actual market option price replaces the ratio of the 

call option price and the strike price to obtain the actual difference between the Black-

Scholes model and the market option price. 

The major difference between the proposed model and the original model is an 

additional neural network module for improving the volatility estimation for feeding to 

the original hybrid model. Historical volatility estimates are typically poor since they tend 

to equally weigh each data point. In fact, the more recent data points will often provide 

more influence on the predicted volatility with regard to directing a more short-term 

volatility estimation. Several techniques are often applied to solve this problem, such as 

an exponentially weighted moving average (EWMA) (Robert, 1959; Hunter, 1986; Lucas, 

and Saccucci, 1990), autoregressive conditional heteroscedasticity (ARCH) proposed by 

Engle (1982), generalized autoregressive conditional heteroscedasticity (GARCH) 

(Bollerslev, 1986; Engle and Mezrich, 1996), and the sophisticated GARCH family 

models, such as EGARCH (Nelson, 1991). Some studies have shown that neural 
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networks for estimating volatility outperform other commonly used techniques (Karaali et 

al., 1997; Refenes and Holt, 2001).  

The new hybrid model (NN-HB) is comprised of two parts, as shown in Figure 7. 

The first part of the model applies a GRNN to predict volatility. This part has four inputs: 

stock price (S), strike price (X), time to maturity (T), and the risk-free interest rate (r). 

The implied volatility (σ) is the target output of this model. The system then combines the 

predicted volatility obtained from the first network with the first four parameters to 

provide five inputs to the second part of the model. The second part applies these inputs 

to obtain a value from the Black-Scholes model. The same five inputs are also applied to 

a second GRNN which is used to predict the price and to value the discrepancy of the 

Black-Scholes model. For the model, the difference between the Black-Scholes model 

and actual price are represented as targets. The estimated call or put option prices (C, P) 

are obtained from the combination of the Black-Scholes model and the second GRNN.  

 

(Please insert Figure 7 here) 

4.4 DATA SET 

This research utilizes the call option data from five different primitive stock 

assets, including Coca-Cola (KO), McDonald’s Corporation (MCD), Boeing (BA), 

Citigroup (C), and International Business Machines (IBM) to train and test the model. 

These securities were chosen because of their liquidity and stability. These stocks, 

selected from different sectors for diversification, are all listed in the Dow Jones 

Industrial Average Index (DJIA) and often labeled as blue-chip stocks due to their 

relatively stable businesses and large capitalization. These stocks are also listed in the 
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Standard and Poor’s 500 (S&P500). Table I provides the symbol, company name, sector, 

and industry of these stocks.  

 

(Please insert Table I here) 

 

The daily data of these stocks were either collected or calculated for a total of 

27,496 records from July 1, 2002 to October 15, 2002. Even though the data seems like a 

short period of time, each stock offers various option types based on strike price and time 

to maturity for each trading day. The data were divided into two periods. The first period 

included the variable values for the three calendar month period from July 1, 2002 to 

September 30, 2002 for a total of 23,319 records. The second period contained the 

variable values for the fifthteen calendar day period from October 1, 2002 to October 15, 

2002, for a total of 4,177 records. The first period was applied to train the network and 

the latter period was reserved for out-of-sample evaluation.  

This study is focused on the closing prices for each day, which is used to compare 

the results of the system for pricing accuracy. Table II provides the number of training 

and testing records for each scenario. Each underlying asset is tested and trained under 

three situations, in-the-money, out-of-the-money, and all (in-the-money and out-of-the-

money) to investigate their difference characteristic in terms of moneyness. This 

experiment focuses on the 90 day historical volatility since the networks are trained under 

a three-month period, allowing each model to be compared during the same time frame. 

The option data was gathered from http://www.ivolatility.com/, a paid subscribtion 

website. In addition, the risk-free rate information is gained from 

http://www.federalreserve.gov/. The volatility data used to train the network was derived 

from the past data using the implied volatility concept. 
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(Please insert Table II here) 

4.5 IMPLEMENTATION 

Data preparation is one of the significant steps necessary for obtaining a satisfying 

result when modeling a system. This is especially true for neural networks, where 

network training can be made more efficient if normalization steps are performed on the 

network inputs and targets. Normalization helps prevent attributes with initially large 

ranges from outweighing attributes with initially smaller ranges.  

There are many normalization processes, such as min-max, decimal scaling, and 

the z-score method. Min-max normalizes data into a linear transformation which 

encounters an “out of bounds” problem in situations where the future input data falls 

beyond the original data range. The decimal scaling normalizes the data by moving the 

decimal point of values but still preserves most of the original character of the value. This 

study uses a z-score method to normalize the data set. The value for an input A is 

normalized based on the mean and standard deviation of A. A value  of A is normalized 

to v’ by Equation (10).  

v

                                                 
A

Avv
σ
−='                                                          (10) 

where   A : mean of input A         v : original value  

            Aσ : standard deviation of input A           : normalized value  'v

 After the normalization process, inputs and targets have zero mean and unity 

standard deviation. There are advantages and disadvantages among these normalization 

methods. However, the selected z-score method is best suited to this dataset since upper 

the limits (maximum) and lower limits  (minimum) are unknown (Han and Kamber, 
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2001). After this preprocessing step and the training of the network, a reversing of the 

normalization is needed to transform the output back to the original data pattern.   

There are several performance measurements that can be used for neural network 

testing. This research is focused on estimation accuracy. An accuracy measure is often 

defined in terms of the difference between the actual (desired) and the estimated value.   

Let ( ) denotes the estimated values and ( ) represents the 

actual values, where N is the sample size. The mean squared error (MSE) and mean 

absolute error (MAE) are applied to compare the performance, as shown in Equations 11 

and 12, respectively.  

Nyyy
∧∧∧

,...,, 21 Nyyy ,...,, 21

MSE =                                                                             (11) ∑ − ii y )1
=

N

i
y

N 1

2(

MAE =    ∑
=

−
N

i
ii yy

N 1

||1                                                  (12) 

5. RESULTS  

Once again, the research tested three models. The first model uses the 90 day 

Historical Volatility with the Black-Scholes model (HV-BS). The second model attempts 

to improve the volatility estimate by using a Neural Network to predict volatility before 

providing this value to the Black-Scholes model (NN-BS). The third model is the 

proposed new Hybrid model (NN-HB). The results of the MSE and MAE for the testing 

dataset of the all (in-the-money and out-of-the-money), in-the-money, and out-of-the-

money options are shown in Tables III, IV, and V, respectively.  

As seen from Table III, the MAE and MSE for each stock decreases as each 

system is modified and improved. For example, MAE of KO with HV-BS system 

(0.4329) is about three times higher than the MAE of NN-BS (0.1464), and about four 

times higher than the MAE of NN-HB (0.1025). Between the NN-BS (0.1464) and NN-
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HB (0.1025) models, MAE decreases approximately 40 percent. The MSE result also 

follows the same direction as the MAE. The all (in-the-money and out-of-the-money), in-

the-money, and out-of-the-money results converge to the same conclusion with 

decreasing error. 

(Please insert Table III here) 

(Please insert Table IV here) 

(Please insert Table V here) 

 

The results show that the Black-Scholes model with volatility calculated from the 

neural network estimates the option price significantly better than when historical 

volatility is used as an input to the Black-Scholes model. Futhermore, the neural network 

trained on the difference between the Black-Scholes model and the neural network result 

presents an improvement in option pricing estimation for the tested data set and 

demonstrates the usefulness of combining these two methods.  

Normally for parametric modeling, when two samples need to be compared 

concerning their mean value for some variable of interest, a t-test is applied, whereas an 

analysis of vaiance is used for multiple samples. For nonparametric modeling, testing 

must be performed using different tools. In this paper, nonparametric tests are performed 

for the MAE and MSE results to test whether the three models (HV-BS, NN-BS, and NN-

HB) provide statistically significant different results. These tests are based on the 

following scores: Wilcoxon (also known as the Kruskal-Wallis test), median, Van der 

Waeden, and Savage (each under the null hypothesis that there is no difference in location 

for MSE and MAE results among the three models). The p-values for each test of MAE 

and MSE results are shown in Tables VI and VII, respectively. 
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(Please insert Table VI here) 

(Please insert Table VII here) 

 

 The p-values are less than 0.05 in all situations except the median scores for the 

in-the-money case. This leads to rejection of the null hypothesis at a 0.05 significant 

level. Nonetheless, in general these tests support the conclusion that there are differences 

in location for the MAE and MSE among the three models.  

6. CONCLUSIONS AND FUTURE WORK 

The research demonstrates the benefits of using neural networks for option pricing 

since neural networks can be used to learn from the past data, predict volatility, and 

account for non-ideal conditions that cause problems for the Black-Scholes model. The 

hybrid neural network has been shown to improve the performance of the Black-Scholes 

model to capture deviations hidden by the strict assumptions of the Black-Scholes model. 

The results here are highlighted by the dramatic and statistically significant decrease of 

the MAE and MSE results, at least for in- and out-of-the-money options. When 

combining a neural network for estimating volatility with the hybrid neural network, 

superior performance is achieved. 

Further research should consider other potential influence variables, such as 

dividend payment. Multivariate nonstationary volatility estimation methodologies from 

the ARCH family, such as GARCH, should be considered for benchmarking during future 

investigations. For the option pricing model described for this research, the basic Black-

Scholes model is applied. The various modified Black-Scholes models can also be 

considered for implementation with other statistical techniques to improve the option 

pricing results.  
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Table and Figure Name 

Figure 1. Profits and Payoffs for European Options 

(a) long call, (b) short call, (c), long put, and (d) short put 

Figure 2. The Relationship Between Implied Volatilities and Strike Price 

(a) Volatility Smile, and (b) Volatility Skew 

Figure 3. Generalized Regression Neural Network Architecture 

Figure 4. Hybrid Neural Network 

Figure 5. Historical Volatility – Black-Scholes Model (HV-BS) 

Figure 6. Neural Network – Black-Scholes Nodel (NN-BS) 

Figure 7. New Hybrid Option Pricing (NN-HB) Model 

Table I. Detail of Stocks Used in the Experiment 

Table II. Amount of Training and Testing Data for Each Stock 

Table III. Results for the All (In-the-money and Out-of-the-money) Scenario 

Table IV. Results for the In-the-money Scenario 

Table V. Results for the Out-of-the-money Scenario 

Table VI. The p-value for the Nonparametric Tests of the MAE Results 

Table VII. The p-value for the Nonparametric Tests of the MSE Results 
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Figure 3 
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Figure 5 
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Figure 7 
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Symbol Company Name Sector Industry 

KO Coca-Cola Co 
(Coke) 

Consumer 
Non-Cyclical 

Beverages 
(Non-Alcoholic) 

MCD McDonald’s Corp Services Restaurants 
BA The Boeing Co Capital Goods Aerospace & Defense 
C Citigroup Inc Financial Money Center Banks 

IBM International Business 
Machine Corp Technology Computer Hardware 

 

Table I 
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All (in and out) In-the-money Out-of-the-money  

Stock Train Test Train Test Train Test 

KO 3526 649 1676 345 1850 304 

MCD 2678 579 915 164 1763 415 

BA 4985 887 1755 194 3230 693 

C 5678 944 2087 386 3591 558 

IBM 6452 1118 2399 292 4053 826 

 

Table II 
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MAE MSE Stock 
HV-BS NN-BS NN-HB HV-BS NN-BS NN-HB 

KO 0.4329 0.1464 0.1025 0.3553 0.0388 0.0306 

MCD 0.1846 0.0554 0.0329 0.0845 0.0049 0.0028 

BA 0.2638 0.0812 0.0575 0.1695 0.0197 0.0057 

C 1.1378 0.1644 0.0810 3.5470 0.0580 0.0150 

IBM 0.7146 0.1451 0.0844 1.2099 0.0493 0.0184 

 

Table III 
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MAE MSE Stock 
HV-BS NN-BS NN-HB  HV-BS NN-BS NN-HB  

KO 0.2328 0.2233 0.1427 0.1279 0.0993 0.0535 

MCD 0.1132 0.0757 0.0479 0.0222 0.0089 0.0064 

BA 0.3317 0.1805 0.0992 0.1756 0.0571 0.0262 

C 0.9424 0.2332 0.0749 1.9558 0.1076 0.0128 

IBM 0.5478 0.2120 0.0896 0.7930 0.0847 0.0213 

 

Table IV 
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MAE MSE Stock 
HV-BS NN-BS NN-HB  HV-BS NN-BS NN-HB  

KO 0.4654 0.1252 0.1050 0.6134 0.0257 0.0229 

MCD 0.2095 0.0482 0.0290 0.1092 0.0042 0.0020 

BA 0.2996 0.0872 0.0834 0.2215 0.0156 0.0161 

C 1.2343 0.1257 0.0959 4.6478 0.0319 0.0205 

IBM 0.7494 0.1171 0.0782 1.3572 0.0329 0.0165 

 

Table V 
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Data Wilcoxon 
Scores 

Median 
Scores 

Van der Waerden 
Scores 

Savage 
Scores 

All (in & out) 0.0044 0.0035 0.0051 0.0055 

In-the-money 0.0254 0.1512 0.0231 0.0300 

Out-of-the-money 0.0039 0.0035 0.0048 0.0047 

 

Table VI 
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Data Wilcoxon 
Scores 

Median 
Scores 

Van der Waerden 
Scores 

Savage 
Scores 

All (in & out) 0.0039 0.0035 0.0046 0.0053 

In-the-money 0.0259 0.1512 0.0231 0.0239 

Out-of-the-money 0.0028 0.0035 00037 0.0029 

 

Table VII 
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