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Abstract: A method employing conjugated polymer thin film blends is 

shown to provide a simple and convenient way of greatly enhancing the 

ultraviolet response of silicon photodetectors. Hybrid organic 

semiconductor/silicon photodetectors are demonstrated using fluorene 

copolymers and give a quantum efficiency of 60% at 200 nm. The quantum 

efficiency is greater than 34% over the entire 200-620 nm range. These 

devices show promise for use in high sensitivity, low cost UV-visible 

photodetection and imaging applications. 
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1. Introduction 

There is a need for convenient photodiodes and multi-pixel detectors with high responsivity 

across the ultraviolet and visible spectral regions. Such detectors have applications in fields 

such as spectroscopy [1], nuclear physics [2] and astronomy [3,4]. Ideally these devices 

should be compatible with existing silicon technology for ease of processing and to be able to 

take advantage of the wide availability and high spatial resolution of modern silicon CCD 

detectors. 

Silicon photodetectors have very poor responsivity for wavelengths shorter than 400 nm, 

but increasing responsivity at longer visible wavelengths. Wide bandgap semiconductors do 

exist for UV detection in the 200-400 nm range such as SiC and GaP [5], as do recently 

developed evaporated all-organic photodiodes [6–8]. Unfortunately the inorganic devices have 

no visible sensitivity and the organic devices have narrow spectral responsivity. In addition 

neither type can be incorporated directly into silicon chips and are difficult to make into multi-

pixel imaging devices. As a result, silicon photodetectors with an enhancement layer are 

widely used for broadband ultraviolet to visible detection [9]. Enhancement layers work by 

absorbing light at short wavelengths where the silicon photoresponse is poor, and re-emitting 

it at longer wavelengths, where the photoresponse of silicon is higher. 

In order to act as an effective enhancement layer, a material must have high 

photoluminescence quantum yield (PLQY), broad absorption over ultraviolet wavelengths, 

and a long emission wavelength to emit photons where silicon detectors have high sensitivity. 

It should be simple to apply to silicon, and have low self absorption of the emitted light. It 

should absorb strongly so that a thin film can be used, particularly for imaging applications, as 

the film needs to be much thinner than the pixel size to avoid blurring of the pixels. Ideally the 

material should be transparent at visible wavelengths, so as not to degrade longer wavelength 

performance. 

Organic semiconductors have many of these properties: they have strong absorption, high 

quantum yield in the solid state and can be deposited on a wide range of substrates. 

Conjugated polymers in particular can be readily spin-coated to make thin films. Previous 

reports, however, have concentrated on materials deposited by the slower process of 

evaporation in high vacuum. These have included aluminum tris-8-hydroxyquinoline (Alq3), 

N,N’-diphenyl-N,N’-bis-(3-methylphenl)-1,1’-biphenyl-4,4’-diamine, and bis-(8-

hydroxyquinaldine)-chlorogallium (Gaq2’Cl) [10], lumogen and coronene [4,9,11]. Detector 

quantum efficiencies of 20-30% and 30-40% have been obtained over the 122 nm – 280 nm 

wavelength range using lumogen and coronene respectively [11] and evaporated organic 

coatings are currently widely used for sensitising commercial CCDs [12]. 
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In our study we have focussed on solution-processed materials because they enable 

simpler fabrication [13] and enable us to easily produce hybrid organic-inorganic 

semiconductor devices. 

2. Photodiode measurements 

We started with poly[2,7-(9,9-dioctylfluorene)] (PFO) [14–16], a conjugated polymer shown 

in Fig. 1, which has good PLQY of 50 ± 10% in thin films [16]. The PFO was purchased from 

American Dye Source Inc. (Canada) with part number ADS129BE. This was spin-coated from 

toluene solution onto fused silica discs and onto a Silonex Inc. (Canada) SLSD-71N5 silicon 

photodiode. The thickness of the film was determined using a Veeco Instruments (USA) 

DekTak 150 surface profilometer. The absorption spectrum of the sample on the silica 

substrate was measured with a Varian Inc. (USA) Cary 300 dual-beam spectrophotometer, and 

its fluorescence spectrum was measured with a Horiba Jobin-Yvon (USA) Flouromax 2 

fluorimeter, giving the results shown in Fig. 2. 

 

Fig. 1. The molecular structures of poly[2,7-(9,9-dioctylfluorene)] (PFO), 4,4’-N,N’-

dicarbazolyl-biphenyl (CBP) and poly(9,9’-dioctylfluorene-co-benzothiadiazole) ((F8)9BT). 

 

Fig. 2. Absorption and normalised photoluminescence spectra of (F8)9BT:CBP blended 80 

wt%/20 wt% films, neat PFO and (F8)9BT films. The thickness of the films used for absorption 

measurements is given. The photoluminescence spectrum of (F8)9BT neat films were found to 

be the same as those in the blend (not shown). Photoluminescence spectra were excited at 325 

nm. 

The photodiode responsivity was measured by using the two beams of the 

spectrophotometer by comparing the photocurrent from the photodiode to a calibrated 

Newport Corp. (USA) 818-UV photodetector to determine its spectral responsivity. In turn the 

spectral response was related to absolute power using a photodiode of known responsivity. 

The beams were chopped at 30 Hz and the photocurrent was measured using synchronous 

detection using a pair of Stanford Research Systems (USA) SR830 DSP lock-in amplifiers. 

The performance of an uncoated Silonex SLSD-71N5 photodiode was also measured. A 

comparative picture of the measured responsivity and quantum efficiency is reported in Fig. 3, 

alongside other materials quoted further in this paper. 
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Fig. 3. Responsivity (fig. a) and quantum efficiency (fig. b) of the unmodified photodiode, and 

of the photodiodes enhanced with 53 nm PFO, 26 nm of neat (F8)9BT and 63 nm, 100 nm and 

153 nm of 20 wt% (F8)9BT blended with CBP. Responsivity is shown in terms of photocurrent 

per unit incident power. Quantum efficiency is defined in terms of electrons of photocurrent per 

incident photon. All measurements were made at zero bias. 

The unmodified photodiode shows very little blue and UV response with less than 6% 

quantum efficiency and 0.015A/W responsivity below 370 nm. The PFO-coated photodiode 

shows an enhanced response peaking at 210 nm with 17% quantum efficiency, 0.029 A/W 

responsivity or 5 times better than the unmodified photodiode. There is also strong 

enhancement at 390 nm with 14% quantum efficiency, 0.044 A/W responsivity. These peaks 

appear in the absorption spectrum of PFO. The improvement is modest because the 

photoluminescence peak of PFO is at 440 nm where the silicon detector still has limited 

responsivity and there is a large gap in the enhancement in the range 250-350 nm where the 

PFO has little absorption. 

Silicon photodiodes have much higher responsivity at longer wavelength so, to improve 

the UV efficiency of the hybrid device, we wanted a material with efficient longer wavelength 

emission, whilst retaining the strong short-wavelength absorption of PFO. Two ways of 

achieving this are to blend a guest and host material and use energy transfer between them 

[17], or to use a copolymer containing units with short wavelength absorption capable of 

transferring energy to a longer wavelength emitter [18]. We chose the latter approach and used 

a co-polymer containing 90% (9,9-dioctylfluorenyl-2,7-diyl) and 10% (1,4-benzo-{2,1’,3}-

thiadiazole) units ((F8)9BT) which has an emission peak at 550 nm due to efficient energy 

transfer to the BT unit [19,20]. This material was obtained from American Dye Source with 

part number ADS233YE. 
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Further advantages of this material are that it retains the UV absorption of PFO, the low 

BT concentration minimises self-absorption of emission, and it has a very high PLQY of 80% 

[20]. 

A neat film of (F8)9BT was spin coated from a toluene solution on a photodiode and the 

resulting responsivity curves are shown in Fig. 3. At 210 nm, the quantum efficiency was 34% 

and the responsivity 0.057 A/W, 11 times higher than for the unmodified photodiode. At 390 

nm the response is increased to 30% quantum efficiency, 0.095 A/W responsivity. The 

performance is improved in spite of the film used being only 26 nm thick, thus showing the 

advantage of increasing the separation of the absorption and emission. 

A limitation of the above materials is that there is a dip in their absorption spectra in the 

region of 250-350 nm, leading to a corresponding dip in the photoresponse of the hybrid 

photodiode. We therefore sought to address this by blending the polymer with a material that 

complements the (F8)9BT absorption. This requires a material that combines appropriate 

absorption with appropriate energy levels to transfer energy to the polymer and the ability to 

produce uniform blends with the polymer. We found that 4,4’-N,N’-dicarbazolyl-biphenyl 

(CBP) was particularly suitable and, after some optimisation, used a guest-host blend 

consisting of 80 wt% CBP and 20 wt% (F8)9BT. This gave the desired strong UV absorption, 

with little absorption at longer wavelengths and strong green emission. 

The CBP:(F8)9BT blend’s film PLQY was measured in an integrating sphere under 

nitrogen purge. The sample was excited by the 325 nm line of a He:Cd laser and the light was 

collected by a calibrated photodiode. The quantum yield was calculated in accordance with 

the method published by Greenham et al. [21] and found to be 84 ± 10% 

The blend was spin-coated onto substrates from a dichloromethane solution. Photodiodes 

were enhanced with films of thickness 63, 100 and 153 nm, leading to very high quantum 

efficiencies at 200 nm of 55%, 60% and 61% respectively. These correspond to responsivities 

of 0.089, 0.097 and 0.098 A/W or enhancement factors of 18-20 times the unmodified 

photodiode. Notably the dip in the responsivities has now vanished meaning the 153 nm 

device has >49% quantum efficiency from 200 to 360 nm and the 100 nm device gives >34% 

quantum efficiency across the entire 200-620 nm range. This exceptional performance was 

achieved despite the fact that all processing stages and measurements were performed in air. 

These results imply that solution-coated organic semiconductor enhancement layers could be 

easily fabricated in air to provide a pathway to simple fabrication of enhanced 

organic/inorganic hybrid photodetectors. 

We note that a report of the use of PFO to enhance photodiode responsivity exists in the 

patent literature [22]. It does not contain quantitative information about quantum efficiency, 

but the response of the enhanced device falls by a factor of 100 between 500 nm and 250 nm. 

In contrast in our blended devices the quantum efficiency is similar at these wavelengths, 

suggesting that our methodological approach in designing the material structure gives 

performances two orders of magnitude higher than this early report. 

3. Modelling 

We have developed a simple model of these hybrid photodiodes, which is similar to the one 

previously used by Garbuzov [10]. When light is incident on the enhanced photodiode it is 

either reflected, absorbed by the enhancement layer or passes directly into the silicon detector. 

Of the light absorbed by the enhancement layer, a fraction of the incident photons (given by 

the photoluminescence quantum yield) are re-emitted, and a fraction of those reach the silicon 

photodiode. Any light reaching the silicon detector is converted into a photocurrent by the 

device’s internal quantum efficiency at that wavelength which can be deduced from the 

unmodified photodiode’s reflectivity (not shown) and its responsivity. 

Due to the fact the enhancement films are of thicknesses comparable to optical 

wavelengths they exhibit thin film interference effects which greatly affect their wavelength 

response. This can be seen in the reflectivity spectra of the enhanced devices shown in Fig. 4 
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as measured at a 7 degree angle of incidence measured using the absolute reflectivity 

attachment on the spectrophotometer. 

 

Fig. 4. Reflectivity spectra of the unmodified photodiode, and of the photodiodes enhanced 

with 63 nm, 100 nm and 153 nm of 20 wt% (F8)9BT blended with CBP. 

From the reflectivity and enhancement layer absorption measurements it is possible to 

calculate the fraction of incident light absorbed by the fluorescent layer (A(λ)) and transmitted 

into the photodiode (T(λ)) using Eqs. (1) and (2) where R(λ) is the reflectivity, and α(λ) is the 

absorbance of the enhancement layer. 

 ( ) ( ) ( )
(1 )(1 10 )A R

α λλ λ −= − −   (1) 

 ( ) ( ) ( )
(1 )10T R

α λλ λ −= −   (2) 

The fluorescence of the enhancement layer is given by the product of A(λ) and the PLQY, φPL, 

of the fluorescent material. The fluorescence is trapped by the photodiode according to a 

coupling efficiency. We assume that fluorescence will be emitted isotropically and escape the 

device if it is emitted into the solid angle travelling away from the photodiode below the 

critical angle for total internal reflection [4,10]. It is assumed that light emitted at all other 

angles will be captured by the detector. Thus the coupling efficiency for fluorescent light into 

the silicon layers is given by Eq. (3) where n is the refractive index of the enhancement layer 

and β is the coupling efficiency. 

 
2

1 1
1 1

2 n
β

 
= + −  

 
  (3) 

This fluorescence is converted to photocurrent with the photodiode’s internal quantum 

efficiency G(λ). Thus the average detector quantum efficiency for the fluorescent light 

coupled into the photodiode, Q, is given by the average detector quantum efficiency over the 

emission spectrum, L(λ), as given in Eq. (4). 

 
( ) ( )

( )

G L d
Q

L d

λ λ λ

λ λ
=
∫
∫

  (4) 

Therefore the quantum efficiency of the enhanced photodiode, E(λ), is given by Eq. (5). 
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 ( ) ( ) ( ) ( )PL
E A Q T Gλ λ β λ λ= Φ +   (5) 

Ellipsometry of CBP films [23] has determined the refractive index at the fluorescence 

wavelengths to be 1.75. The coupling efficiency β predicted by the total internal reflection 

capture model is thus 91%. 

Using this model with the measured values for φPL and β allows us to obtain curves for the 

predicted quantum efficiency of the photodiodes, as shown in Fig. 5. These curves show good 

agreement with the measured photodiode response confirming the validity of this method for 

estimating the effect of photodiode enhancement layers. 

 

Fig. 5. Predicted and experimental quantum efficiencies of photodiodes enhanced with 63 nm, 

100 nm and 153 nm of 20 wt% (F8)9BT blended with CBP. Predicted curves use the 

experimentally determined values of 84% for the film PLQY and 91% for light coupling 

efficiency. 

4. Conclusions 

In conclusion, we have shown that organic semiconductors provide a very simple way of 

fabricating UV-enhanced organic/inorganic hybrid photodiodes. Our results illustrate the 

scope to exploit the complementary properties of organic and inorganic semiconductors in 

hybrid devices. We have studied photodiodes here, and our results complement other work on 

hybrid lasers [20] and solar cells [24]. Solution processed organic semiconductors offer a wide 

choice of materials, blend ratios can be easily altered, and layer thicknesses can be chosen by 

varying spin speed, solvent and solution concentration. This means that absorption, thin film 

optical properties and emission wavelength can easily be tuned to achieve an optimised 

photoresponse for the desired wavelength range. We have been able to obtain exceptional UV 

response (60% EQE at 200 nm wavelength) in a film only 100 nm thick. The use of such a 

very thin film not only saves material, but minimises pixel crosstalk for potential CCD 

applications. Accordingly we expect hybrid photodetectors to provide simple to fabricate UV-

enhanced photodetectors for both single channel and imaging applications. 
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