
Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 3, September 2017 
DOI: http://dx.doi.org/10.1590/2179-10742017v16i3925 

Brazilian Microwave and Optoelectronics Society-SBMO received 16 Feb 2017; for review 23 Feb 2017; accepted 11 May 2017 

Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074 

 

708 

 

Abstract — This article presents the analysis of a hybrid, error 

correction-based, neural network model to predict the path loss for 

suburban areas at 800 MHz and 2600 MHz, obtained by combining 

empirical propagation models, ECC-33, Ericsson 9999, Okumura 

Hata, and 3GPP’s TR 36.942, with a feedforward Artificial Neural 

Network (ANN). The performance of the hybrid model was 

compared against regular versions of the empirical models and a 

simple neural network fed with input parameters commonly used 

in related works. Results were compared with data obtained by 

measurements performed in the vicinity of the Federal University 

of Rio Grande do Norte (UFRN), in the city of Natal, Brazil. In the 

end, the hybrid neural network obtained the lowest RMSE indexes, 

besides almost equalizing the distribution of simulated and 

experimental data, indicating greater similarity with 

measurements. 

 
  

Index Terms— Artificial Neural Networks – ANN; Long Term Evolution – 

LTE; Long Term Evolution Advanced – LTE-A; propagation models; path 

loss. 

I. INTRODUCTION 

4G networks comes to fulfil the demands created by a new communications landscape, where 

smartphones make use of a large amount of online applications, requiring improvements in the quality 

and coverage of cellular networks, besides the use of higher data rates, which requires more 

bandwidth. In this context, Long Term Evolution (LTE) and LTE Advanced (LTE-A) represent the 

last step of 3G networks towards the fourth generation. Both technologies work at the same frequency 

band [1]. 

LTE’s peak data rate for downlink and uplink can reach 326.4 and 86.4 Mbps, respectively [2], 

while LTE-A significantly enhances these specifications:  it increases peak rates, achieving 3 Gbps for 

downlink and 1.5 Gbps for uplink; for such, it requires a bandwidth up to 100 MHz [3]. 

A Hybrid Path Loss Prediction Model based 
on Artificial Neural Networks using Empirical 
Models for LTE And LTE-A at 800 MHz and 

2600 MHz  

Bruno J. Cavalcanti, Gustavo A. Cavalcante 
Federal Institute of Education, Science and Technology Paraíba Campus Campina Grande, Campina Grande - 

PB, 58.432-300, Brazil, bruno.cavalcanti@ifpb.edu.br, gustavo.cavalcante@ifpb.edu.br 
Laércio M. de Mendonça, Gabriel M. Cantanhede, Marcelo M.M.de Oliveira, Adaildo G. D’Assunção 

Federal University of Rio Grande do Norte, Caixa Postal 1655, CEP: 59078-970, Natal, RN, Brazil, 

laercio@ct.ufrn.br, gabrielmocan@bct.ect.ufrn.br, marcelo_medeiros_5@yahoo.com.br, adaildo@ct.ufrn.br, 

http://dx.doi.org/10.1590/2179-10742017v16i3925


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 3, September 2017 
DOI: http://dx.doi.org/10.1590/2179-10742017v16i3925 

Brazilian Microwave and Optoelectronics Society-SBMO received 16 Feb 2017; for review 23 Feb 2017; accepted 11 May 2017 

Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074 

 

709 

To reach the conditions for fulfilling the LTE and LTE-A requisites [2], an efficient and accurate 

network planning during the preliminary system deployment is necessary, where accurate propagation 

characteristics of the environment should be known. 

Path loss models are important for predicting coverage area, interference analysis, frequency 

assignments, and cell parameters - basic components for the network-planning process in the project 

of a mobile communications system [4].  Understanding the radio channel for the network deployment 

is utmost, being the modelling of the radio channel using the most appropriate path loss model, an 

essential factor. 

Propagation models can be classified [5, 6] as: deterministic, empirical, and physical/statistical. The 

first ones can be considered the most accurate method. They are based on the behavior of radio waves 

propagated in space, calculating propagation losses mathematically, based on theoretical formulation. 

For such, accurate information is necessary, not only about buildings and terrains, but also about 

reflection and diffraction coefficients of the surfaces which are in the propagation path.  

Meanwhile, empirical models do not accurately predict the radio waves comportment, depending 

more on field strength from that specific environment to give an approximation based on 

measurements. Lastly, physical/statistical models combines empirical and statistic information about 

the environment, aiming to decrease computational cost.  

In order to make the communications systems more accurate - to have a more efficient planning, 

many efforts have been made towards the development of coverage prediction simulation methods 

and tools able to accurately estimate on measured data.  In this sense, some techniques can help to 

provide more efficient simulation methods, reducing errors and providing more trustworthy results. 

Artificial Neural Networks, also known as ANN, are computational techniques that present a 

mathematical model inspired by the neural structure of intelligent organisms and their ability to 

acquire knowledge through experience. ANNs are experiencing a great development for the last years, 

where a huge number of applications can be numbered: signal processing, forecasting, data mining, 

data clustering, pattern classification, pattern recognition, image generation and process control, 

among other features [7-9]. 

The neural network performs a nonlinear mapping of a given set of input values to a set of output 

values, performed by means of layers of neurons, where the input values are added to the respective 

synaptic weights of each layer to produce an appropriate output according with the entries [10].  

The problem in path loss prediction between two points can be interpreted as a solution to obtain a 

function of several inputs and a single output, where the inputs contain information like locations of 

the transmitter and receiver, frequency and surrounding buildings. 

Thus, the prediction of path loss can be described as the transformation of an input vector 

containing topographical and morphological information about the environment to the desired output 

value [11]. Since neural networks can be effectively employed in the solving of nonlinear function 

approximation problems, they are fit for path loss prediction. 
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Plenty of works involving ANN approaches to predict path loss can be found in literature. Most of 

them differ in the type and architecture of the ANN, but mainly in the parameters used as inputs of the 

neural network. This information can vary from a single input involving the distance from the 

transmitter to the receiver [12], to robust data about the environment and propagation features, such as 

construction heights, land cover, clearance angle, and street widths [13-15]. 

In [13], measurements performed in rural Australia were used to train an artificial neural network 

model used for the prediction of macro cell radio wave propagation. The inputs of the network were 

the distance to base station, transmitting/base antenna height, terrain clearance angle, and portion 

through terrain.  The network performance was compared against ITU-R P.1546 model. In the end, 

the ANN presented, in general, better predictions than P.1546. Authors discovered that larger feed-

forward networks are more sensitive to training data and obtained less accurate predictions when fed 

with inputs outside the training parameter space. They also noted that, when they are fed with data 

similar to the training set, the predictions are more accurate. 

 Years later, the same authors continued the study [14], using the same experiment to evaluate 

networks now with different numbers of hidden layers and neurons, and other training algorithms 

(gradient descent and Levenberg–Marquardt). The objective was to obtain statistics regarding their 

training time, prediction accuracy, and generalization properties. Input parameters remained the same 

from previous work. 

In [15], researchers evaluated the viability of a neural network-based path loss prediction model as 

an alternative to physical and empirical models. The network has the particularity of, instead of use 

actual path loss measurements in different receiver locations, employing simulation data based on the 

Longley-Rice model for the ANN training. Three inputs are required: the distance to the transmitter, 

the direction bearing (azimuth) from the transmitter to the receiver and the elevation above sea level 

at the receiver location. The performance was compared against physical propagation model, Free 

Space Loss (FSL), and empirical Egli model. Authors concluded that the ANN-based path loss 

prediction model performed very well in comparison to commonly used propagation models. 

In [16], the results of the application of a General Regression Neural Network (GRNN) in the 

modeling of path loss in urban and suburban areas are presented. Different numbers of neural network 

models were tested for both environments, differing only in the input parameters. The main inputs 

considered were the distance between transmitter and receiver, width of the streets, buildings 

separation, and buildings height. Measured data collected in the city of Kavala and in Santorini Island, 

in Greece, was used for training. GRNN-based model was compared against Walfisch-Bertoni (WB) 

and a modified version of COST231-Walfisch-Ikegami (CWI).  The proposed neural network based 

model obtained significant improvement in the prediction due to its generalization property. Results, 

in terms of Root Mean Squared Error (RMSE), varied from 5.35 dB to 8.66 dB and from 3.68 dB to 

5.23 dB in urban and suburban scenarios, respectively. 

The paper also presented a hybrid error-correction model, based on the combination of 

http://dx.doi.org/10.1590/2179-10742017v16i3925


Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 3, September 2017 
DOI: http://dx.doi.org/10.1590/2179-10742017v16i3925 

Brazilian Microwave and Optoelectronics Society-SBMO received 16 Feb 2017; for review 23 Feb 2017; accepted 11 May 2017 

Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074 

 

711 

deterministic model COST-Walfisch-Ikegami (CWI) and a neural network. This approach was later 

expanded in [11].  GRNN-based model is, just as if a Multilayer Perceptron Neural Network (MLP-

NN), built over two types of networks: a simple NN model, with five inputs: distance between 

transmitter and receiver, width of the streets, height of the buildings, buildings separation, and street 

orientation, together with the hybrid error correction NN model, using COST-Walfisch-Ikegami. 

CWI is considered a physical/statistical (or semi-empirical) model, requiring information about the 

terrain profile, such as the distance between transmitter and receiver, rooftop heights, and space 

between buildings.  

In the end, there was no significant difference between the prediction done by simple and hybrid 

models. For urban environments, simple RBF and MLP obtained a RMSE of 5.35 dB and 6.55 dB, 

respectively, while an RMSE of 5.30 dB and 6.07 dB was computed for hybrid RBF and MLP. 

Regarding suburban areas, hybrid RBF and MLP computed a RMSE of 3.71 dB and 3.77 dB, while 

simple RBF and MLP obtained a RMSE of 3.68 dB and 3.74 dB, respectively.  

This paper simplifies the approach from [11], also developing a hybrid error-based model, but using 

empirical propagation models instead. This will require that only basic elements used by the models, 

such as frequency assigned and the distance between transmitter and receiver, are necessary to feed 

the network. 

Prediction data is calculated by models Ericsson 9999, Free Space, ECC-33, and TR 36. 942. The 

experiment was set in suburban areas, at the frequencies of 800 MHz and 2600 MHz. ECC-33 model 

was applied in 2600 MHz, while Free Space model was employed in the frequency of 800 MHz; 

Ericsson and TR 36.942 covered both bands.  The frequency of 800 MHz is present in bands 20                   

(791 MHz – 821 MHz), 28 (758MHz – 823MHz), and 44 (703MHz – 803MHz) of LTE, being 

deployed in countries like France, Germany, Italy, Morocco, and Tunisia. In concern to 2600 MHz, 

this frequency is present in bands 7 (2620 MHz – 2690 MHz), 38 (2570 MHz – 2620 MHz), and 69 

(2570 MHz – 2620 MHz) adopted by, among other countries, Ghana, Canada, Colombia Chile, and 

Brazil. 

In order to test the hybrid model performance against other neural network approaches presented in 

related works, comparisons were made for the same data using a simple neural network model, with 

inputs being terrain and propagation features. The main terrain/propagation characteristics, present in 

[13-16] were chosen as inputs: distance from transmitter to receiver, transmitting/base antenna height, 

terrain clearance angle, direction bearing to from the transmitter to the receiver, and streets width. The 

output node is the measured path loss.  

From now on, these two ANN-based approaches present in this paper will be defined as Hybrid 

Neural-Network (HNN) model and Simple Neural-Network (SNN) model. A comparison is also made 

with the regular versions of the empirical propagation models. 

This paper aims to obtain the method whose results present more similarity to experimental data. 

The methodology is based on the comparison of the versions, looking for which models – regular or 
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ANN-based; achieve simulation values more close to measurements. For such, a campaign was 

conducted, comprising two different routes in the district of Lagoa Nova, in the city of Natal, Brazil.  

MATLAB (R2011a, version 7.12, The Mathworks) software was used to perform the 

implementation of the computational methods. For benchmarking the performance of each technique, 

two metrics will be applied: the root mean squared error, which will estimate the difference error, in 

dB, between the datasets; meanwhile, the Wilcoxon rank-sum will provide a similarity test among the 

datasets distribution. 

The remaining of this paper is organized as follows. In Section 2, we provide some principles of the 

path loss models applied in this article, while in Section 3 the measurement campaign is detailed. 

Meanwhile, in Section 4, more information about the hybrid ANN model, are provided.  A 

comparative test among simulations and experimental data collected is reported in section 5. Finally, 

in Section 6, we bring the conclusions of the study and give guidelines for further works. 

II. PREDICTION PROPAGATION MODELS 

For this study, path loss is calculated using four different propagation models. ECC-33 (for small 

and medium cities) will be analyzed for the frequency of 2600 MHz, Free Space will be applied for 

800 MHz, while Ericsson and TR 36.942 will cover both frequency bands. Table I present the main 

equations from these path loss models. 

TABLE I. PROPAGATION MODELS EQUATIONS  

Model  Equations   

Free Space           𝑃𝐿𝐹𝑆𝑃𝐿 = 32.45 + 20 log(𝑑) + 20log (𝑓) (1) 

3GPP TR 36.942  𝑃𝐿𝑇𝑅 = 40[1 − 0.004ℎ𝑇𝑥]𝑙𝑜𝑔10(𝑑) −18𝑙𝑜𝑔10(ℎ𝑇𝑥) + 21𝑙𝑜𝑔10(𝑓) + 80 

(2) 

 

Ericsson 

    𝑃𝐿𝐸 = 𝑎0 + 𝑎1𝑙𝑜𝑔10(𝑑) + 𝑎2𝑙𝑜𝑔10ℎ𝑅𝑥 +𝑎3𝑙𝑜𝑔10ℎ𝑇𝑥𝑙𝑜𝑔10(𝑑) − 3.2(𝑙𝑜𝑔1011.75ℎ𝑅𝑥)2 + 𝑔(𝑓) (3) 𝑔(𝑓) = 44.9𝑙𝑜𝑔10(𝑓) − 4.78[𝑙𝑜𝑔10(𝑓)] (4) 

 

 

 

 

 

 

ECC-33 

 𝑃𝐿𝐸𝐶𝐶 = 𝐴𝑓𝑠 + 𝐴𝑏𝑚 − 𝐺𝑏 − 𝐺𝑟 
(5)                 𝐴𝑓𝑠 = 92.4 + 20𝑙𝑜𝑔10(𝑑) + 20𝑙𝑜𝑔10(𝑓) (6) 𝐴𝑏𝑚 = 20.41 + 9.83𝑙𝑜𝑔10(𝑑) +7.894𝑙𝑜𝑔10(𝑓) + 9.56[𝑙𝑜𝑔10(𝑓)]2 

 

(7)          𝐺𝑏 = 𝑙𝑜𝑔10 (ℎ𝑇𝑥200) {13.958 + 5.8[𝑙𝑜𝑔10(𝑑)]2} 
 

 (8) 

            𝐺𝑟 = [42.47 + 13.7𝑙𝑜𝑔10(𝑓)𝑙𝑜𝑔10(𝑓)] [𝑙𝑜𝑔10(ℎ𝑅𝑋) − 0.585]  

(9)   𝐺𝑟 = 0.759(ℎ𝑅𝑥) − 1.862 (10) 

  

 

where 𝑑 is the distance between base station-UE (User Equipment), 𝑓 is the frequency (MHz), ℎ𝑇𝑋  is 

the transmission antenna height (m) and ℎ𝑅𝑋 is the reception antenna height (m). Regarding ECC 

equations 𝐺𝑟  is the receiver antenna gain in (9) for small/medium cities and in (10) for big cities.  
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More information about the models covered can be obtained in [17-20]. 

III. MEASUREMENT CAMPAIGN SCENARIO 

The campaign took place at the district of Lagoa Nova, in the city of Natal, Brazil. Measurements 

were performed between Federal University of Rio Grande do Norte (Universidade Federal do Rio 

Grande do Norte - UFRN) and streets near the campus. The site presents a regular density of 

vegetation and medium-sized buildings: this characterizes the environment as suburban (Fig. 1). 

The set of equipment used for the transmission and reception of signals comprised a Rhode & 

Schwarz broadband amplifier, R&SBBA150 (9 kHz - 6 GHz), and an Anritsu radio transmitter, model 

MG3700A (50 Hz - 6 GHz). 15 Watts of power were used to transmit the signal; two pairs of 

directive antennas from Pasternack: a panel antenna (2.5 GHz - 2.7 GHz) with a nominal gain of 14 

dBi was employed in the 2600 MHz frequency. A panel dual band antenna (806-960MHz and 1710-

2500 MHz) with 7 dBi of nominal gain was used in the 800 MHz transmission. The same antennas 

were used in the reception of signals. The transmitted signal was a Continuous Wave (CW). The radio 

transmitter and the broadband amplifier are showed in Figure 2a. 

 

 

Fig. 1. One of the streets from Lagoa Nova district, highlighting the panel antenna used in reception. 

Regarding the measurement of the signal, an Anritsu spectrum master, model MS2721B (illustrated 

in Fig. 2b.), featuring an integrated GPS - responsible for giving the precise location of measured 

points, was employed.  

The transmitter antenna was installed on the rooftop of the Engineering Technological Complex 

(Complexo Tecnológico de Engenharia - ECT) building, in UFRN campus (Figure 3a.), at a height of 

20 meters. A high-grade coaxial cable was used to connect the antenna to the broadband amplifier, 

which in turn was connected to the digital transmitter. 

With the purpose to cover the different points along the site, a mobile laboratory was set - a car, 

granted by UFRN, duly equipped with a receiving antenna installed at the top of the vehicle, at a total 

height of 3.6 meters, measured from the floor, and connected to the spectrum master. The vehicle 

travelled along two different routes, near the university (Figure 3b.), with a constant speed of 20 km/h 
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(12.5 mph, approximately). 

 

 

            a)        b) 

Fig. 2. a) Radio transmitter and broadband amplifier.  b) Spectrum master employed in the reception.  

 

 

            a)        b)  

Fig. 3. a) The mobile laboratory, highlighting the CET building in the background. b) Map containing the routes covered by 
the campaign [21]. 

IV. HYBRID ERROR CORRECTION-BASED MODEL 

In this research, an error correction-based ANN model, based in [11, 16], using empirical models, is 

applied in the prediction of path loss. The ANN is trained to learn the error between measured values 

and the ones calculated by the propagation models.  The difference error is obtained by: 

 𝐸 =  𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝑃𝐿𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑         (11) 

http://dx.doi.org/10.1590/2179-10742017v16i3925
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The two input vectors comprise the distance between the transmitting antenna and the receiving 

station, and the difference error, E, for each point. The output vector, also known as the target of the 

neural network, comprises the corrected path loss, given by (12): 

                                                       𝑃𝐿𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑒𝑑 = 𝑃𝐿𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑑 − 𝐸        (12) 

The training phase of the neural network structure is represented in Fig.4, while in Figure 5, the 

network architecture is depicted. 

The implemented ANN is a feedforward Multilayer Perceptron type. Its architecture consists of 2 

inputs and 1 output, with 1 hidden layer. The input set consist of two vectors with 455 elements each 

(in the 2600 MHz scenario, while in 800 MHz case, it consists in 450 elements). 

The transfer functions used for hidden and output layers were the tangent-sigmoid and linear, 

respectively, while the algorithm chosen to train the network was the Levenberg-Marquardt 

backpropagation [22, 23].  

 

 

Fig.4. Fluxogram of the training process. 

The goal of the path loss prediction is not only produce small errors for the set of the training 

examples, but also to be able to present better results dealing with examples not employed in the 

training process [11]. This property is called generalization and it is very important to predict path 

loss and determine estimated coverage areas properly in different projects within a similar 

environment.  

A relevant problem that can occur during the ANN training is the over adaptation, or overfitting, 

where the network memorizes the training examples and does not learn how to deal with new 

situations [15].   
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Fig.5. Architecture of the designed ANN. 

Seeking to avoid overfitting and to make the network to acquire the generalization property, data 

was split into three sets (Table II): the first one was used in the training of the network for weights 

adjustment. The second set, used as a validation set, checks the efficiency concerning to the network 

generalization capability, also serving as a stopping criteria (using a cross-validation strategy [24]). 

Meanwhile, the third set, defined as testing set, gives a realistic estimate of the performance of the 

learned network on new data.  

TABLE II. HYBRID ANN PARAMETERS FROM BASIC CONFIGURATION 

Parameter  Value  

Training ratio 60% 
Validation ratio 25% 

Testing ratio 15% 

Max. Number of epochs 1000 

 

Mean Square Error (MSE) was used as performance function by the algorithm to evaluate the 

convergence rate. A performance progress plot regarding each set’s curves for ECC model at 2600 

MHz is illustrated in Fig.6. There is no indication of any major problems with the process, since the 

training, validation, and test curves are very similar. If the test curve had increased before the 

validation curve, it would indicate an overfitting problem [14].  

The network was designed with a single hidden layer. To find the optimum configuration, a 

convergence test was performed, based in a trial-and-error procedure, to select the appropriate number 

of hidden nodes for each scenario. The MSE for different numbers of hidden nodes with 5, 10, 20, 30, 

and 40 neurons were compared. Each case was executed 30 times, aiming to obtain the average 

values. 
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Fig.6. One of the performances of training, validation, and test sets. 

The average MSE for validation set versus the number of hidden nodes for each propagation model 

applied are depicted in Table III and Table IV for 800 MHz and 2600 MHz, respectively. Best values 

are marked in bold, while the worst outcomes are presented in italic. 

TABLE III. MSE OF VALIDATION SET DATA FOR ANNS VERSUS THE NUMBER OF HIDDEN LAYER NEURONS FOR 800 MHZ. 

Hidden Nodes  MSE-Ericson  MSE-TR 36.942 MSE- Free Space 

5 0.006364931 0.004739687 0.009545273 

10 4.173E-06 0.00147253 2.54E-07 
20 7.606E-06 0.000517946 0.003228987 
30 0.0002562 0.000500116 0.004230354 
40 0.0001815 0.001702118 0.00339153 

    

TABLE IV. MSE VERSUS THE NUMBER OF HIDDEN LAYER NEURONS FOR 2600 MHZ. 

Hidden Nodes  MSE-Ericson  MSE-TR 36.942 MSE- ECC 

5 9.671E-05 0.00665841 0.000473981 
10 0.0117833 0.000678807 5.7099E-07 
20 4.877E-06 0.000611772 0.027391162 

30 0.0077791 0.001425951 0.004246174 

40 0.2750327 

 
0.017003488 

 
0.003001516 

 

    

For the best configuration obtained for each model, we computed the RMSE achieved in the 

procedure, also running the neural network another 20 times (50 in total) and computed the value of 

RMSE. The results are presented in section V. 

A trial-and-error procedure was also conducted to find an efficient configuration for the SNN 

model. A configuration with 30 neurons for 800 MHz and 20 neurons for 2600 MHz was then 

selected. Data was split using the same proportions as in the HNN model, presented in Table II. 

V. ANALYSIS OF RESULTS 

The performance of the HNN model, along with the SNN was obtained by comparing RMSE and 

applying the Wilcoxon rank-sum test. A box-and-whisker plot compare the datasets obtained by each 
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Journal of Microwaves, Optoelectronics and Electromagnetic Applications, Vol. 16, No. 3, September 2017 
DOI: http://dx.doi.org/10.1590/2179-10742017v16i3925 

Brazilian Microwave and Optoelectronics Society-SBMO received 16 Feb 2017; for review 23 Feb 2017; accepted 11 May 2017 

Brazilian Society of Electromagnetism-SBMag © 2017 SBMO/SBMag ISSN 2179-1074 

 

718 

approach against data gathered from the measurements. The simulation scenarios were performed for 

the operating frequency of 2600 MHz and 800 MHz, transmitted in the campaign.  

Figure 7 depicts the results for a) ECC model at the frequency of 2600 MHz (route 1), b) Ericsson 

model at 800 MHz in route 2 and c) TR 36.942 model at 800 MHz in route 1. In all scenarios, both 

ANN-based models showed a well-defined pattern in terms of performance.  

The regular variants, although performing satisfactorily, proved to be the less accurate method. 

From the beginning of the course of measurements in route 1, up to 500 meters, ECC model 

predictions, which obtained a RMSE of 10.33 dB, were positioned far from most measured points.  

A less efficient performance can be observed in the regular Ericsson model in route 2, which 

achieved 15.58 dB of RMSE, presenting a displacement in relation to measured points from 800 

meters until the end of the route.  TR 36.942 model presented the best performance among the three 

models analyzed, once its path loss curve was located near experimental data along almost the entire 

course, obtaining a RMSE of 8.68 dB. 

Regarding the SNN model, it obtained a trustworthy performance, following experimental data 

closely along the entire course, in all scenarios. This is reflected in the obtained RMSE: the method 

obtained 4.61 dB, 5.48 dB, and 4.51 dB for the cases presented in Fig.7.a, Fig.7.b, and Fig.7.c, 

respectively. 

However, the technique that achieved the highest level of excellence in performance was the hybrid 

neural network, once the marks were virtually equal to measured data. The RMSE obtained by the 

HNN model was close to 0 dB for all scenarios. 

 

  

         a)                                            b) 
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       c) 

Fig. 7. a) Path loss curves for ECC model at 2600 MHz in route 1. b) Results for Ericsson at 800 MHz in route 2. c) Curves 

for TR 36.942 model (800 MHz) in route 1. 

Fig.8. depicts a box-and-whisker plot with all five datasets from the scenario presented in Fig.7.b.  

It can be noted that data distribution from Ericsson model occupied most of the range above the 

interquartile range of experimental data, which indicates higher values of propagation loss predicted; 

these values deviates from the measurements average, represented by the red line, and only partially 

matches with its adjacent quartiles. 

Regarding SNN model in this scenario, although slightly flatter, it almost matched the interquartile 

range, presenting a high similarity with measured means. However, it obtained decreased data 

distribution fidelity, once the span occupied only part of the measured data sampling space. The 

hybrid model corrected these issues, obtaining a data distribution as close as it can get to measured 

values, reproducing also the outliers, which are represented by the red crosses. 

 

 

Fig.8. Box-and-whisker plot of Ericsson model in route 2 (800 MHz). 

Table V emphasizes the difference in performance between the evaluated methods, considering all 

models, concerning the RMSE and Wilcoxon rank-sum test results. The p value will determine the 
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statistical significance level in the experiment. Higher p values indicate that the data distribution is 

more similar to the measured values; the threshold for a result to be considered null is any value 

below 10−6
. The significance column expresses, based on p value, if the model is considered accurate 

and statistically equivalent to actual data. If the p value is below 0.05, the method is considered 

Significantly Different (S.D); otherwise, it is classified as Significantly Equivalent (S.E).  

TABLE V. RMSE AND P VALUE FOR ALL TECHNIQUES ANALYZED 

Route Model 

 

RMSE(dB)  

800 MHz 

Wilcoxon  

rank-sum p-

test 

800 MHz 

Significance 

@95% 

800 MHz 

 

RMSE(dB)  

2600 MHz 

Wilcoxon  

rank-sum 

p-test 

2600 MHz 

Significance 

@95% 

2600 MHz 

 
 

 
 

1 

Ericsson 14.9394 0.000316 S.D 10.3154 0.2699 S.E 
HNN Ericsson 0.00040766 0.9954 S.E 0.0016907 0.9984 S.E 

TR 36.942 8.6792 0.18 S.E 13.0016 0.002567 S.D 
HNN TR 36.942 0.00090938 1 S.E 0.000277 0.9860 S.E 

Free Space 25.2676 null S.D – – – 

HNN Free Space 0.0002416 0.9898 S.E – – – 

ECC – – – 9.0942 0.2773 S.E 
HNN ECC – – – 0.0015174 0.9727 S.E 

 SNN 4.5098 0.6871 S.E 4.6107 0.7756 S.E 

 
 
 

 
 

2 

Ericsson 15.5786 0.000123 S.D 10.4004 0.19386 S.E 
HNN Ericsson 0.00061889 0.9916 S.E 0.0013104 0.9992 S.E 

TR 36.942 7.75 0.0141 S.E 19.0032 null S.D 

HNN TR 36.942 0.00073811 0.9978 S.E 0.00026287 0.9959 S.E 
Free Space 25.4316 null S.D – – – 

HNN Free Space 0.00033739 0.9897 S.E – – – 

ECC – – – 10.3305 0.1439 S.E 

HNN ECC – – – 0.005393 0.9936 S.E 

SNN 5.4864 0.7311 S.E 4.3912 0.6415 S.E 

 

HNN model was able to decrease the RMSE while increasing the p value, rendering the difference 

between simulated and measured values to almost zero. This demonstrates the ability of the neural 

network to learn and naturally incorporate non-deterministic, uncertain aspects present in the 

experimental data. 

This feature can also be observed in the SNN approach, which obtained good results in terms of 

RMSE and similarity with measurements. Concerning to regular models, Ericsson and ECC models 

presented the best results in the 2600 MHz range, while TR 36.942 model stood out for the 800 MHz 

frequency range. 

VI. CONCLUSIONS 

This article proposed a hybrid error-based ANN model using empirical propagation models for the 

prediction of path loss in suburban environments. Unlike deterministic and statistical methods, 

empirical models require only basic elements present in these models to calculate the path loss. 

In order to avoid overfitting and to improve the generalization capability, a cross-validation strategy 

along with a test set were performed in the neural network execution. This strategy allows the network 

to be able to predict the path loss in different environments, although in similar circumstances. 
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The obtained results were compared against the ones achieved by regular propagation models and a 

simple neural network fed with terrain/propagation related inputs. The hybrid error-based model 

proved to be more accurate than the other methods in the tested scenarios, presenting the lowest 

RMSE indexes and highest p values. The model also performed well when compared with results 

obtained by related works, highlighting the difference obtained with respect to [11]. 

The use of prediction methods through simulation in the planning phase of communication systems 

can significantly increase efficiency and precision in diverse radio deployment environments, also 

representing the saving of time and money.  

Therefore, this new technique is a useful tool for LTE and LTE-A wireless network designers, 

proving to be an effective and accurate propagation loss prediction method, as it displayed simulation 

data close to actual field measurements.  For future works, we intend to expand the scope of the study, 

covering new types of terrains, operating frequencies, and propagation models. 
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