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Abstract  
Due to the emergence of highly dynamic multimedia 

applications there is a need for flexible platforms and run-
time scheduling support for embedded systems. Dynamic 
Reconfigurable Hardware (DRHW) is a promising 
candidate to provide this flexibility but, currently, not 
sufficient run-time scheduling support to deal with the 
run-time reconfigurations exists. Moreover, executing at 
run-time a complex scheduling heuristic to provide this 
support may generate an excessive run-time penalty. 
Hence, we have developed a hybrid design/run-time 
prefetch heuristic that schedules the reconfigurations at 
run-time, but carries out the scheduling computations at 
design-time by carefully identifying a set of near-optimal 
schedules that can be selected at run-time. This approach 
provides run-time flexibility with a negligible penalty. 
 
1. Introduction 
 
Current multimedia applications, such as digital video 

and 3D games, present highly dynamic and non-
deterministic behavior, and a very variable workload. 
Dealing with this kind of applications involves a complex 
trade-off between carrying out the scheduling 
computation at design-time or at run-time. On the one 
hand, performing the whole scheduling process at design-
time is very ineffective because the scheduler does not 
have enough information and must often assume a 
pessimistic worst-case scenario. On the other hand, very 
stringent timing requirements exist at run-time. Hence the 
scheduler must accomplish its task in a greatly limited 
time-slot applying only simple scheduling policies.  
Hybrid design/run-time scheduling approaches are a very 
effective way to overcome this problem. They split the 
computation into a design-time phase and a run-time 
phase. The design-time phase generates sets of optimal 
(or near-optimal) schedules for certain run-time 
conditions. Later, a run-time scheduler analyses the 
running tasks and the run-time conditions and selects the 
most convenient schedule among them. The hybrid 
approach provides run-time flexibility and, at the same 

time, it generates only a small run-time penalty due to 
scheduler execution because most of the exploration and 
computation is done at design time. A very good example 
of this approach is the TCM [9] (Task Concurrency 
Management) scheduling environment initially developed 
for heterogeneous multiprocessor platforms. However, in 
order to cope with the demanding requirements of current 
multimedia applications, it is very interesting to extend 
the hybrid scheduling approach to emerging platforms 
containing also Dynamically Reconfigurable Hardware 
(DRHW) resources. These resources provide both high 
performance and run-time flexibility because their 
functionality can be updated at run-time to meet the 
variable requirements of the running applications. In 
particular, for embedded systems the amount of resources 
is highly constrained and, at the same time, the number of 
applications that they have to support is constantly 
increasing. In order to meet the performance requirements 
of these applications, specific HW support is often 
required. However, it is infeasible to provide Application 
Specific Integrated Circuits (ASICs) for all them. Using 
the partial reconfiguration capabilities, DRHW resources 
can be shared to provide this HW support for the whole 
set of applications.  
We are targeting heterogeneous multiprocessor 

platforms where some of the processing elements are 
DRHW resources which are equivalent to any other 
processing elements. Hence, the scheduler assigns tasks to 
them at run-time according to the computational load of 
the system and its real-time constraints. An example of 
such a platform was presented in [4, 5]. Using an 
InterConnection Network (ICN) model (Figure 1) that 
provides inter-task communication and run-time 
allocation support, an FPGA is turned into a network-on-
chip multiprocessor platform. The basic idea of the ICN 
model is that the DRHW resources are split into a set of 
identical tiles. Each tile is wrapped by a communication 
interface. These tiles are independently reconfigured at 
run-time and can communicate with each other using 
message-passing primitives over a network-on-a-chip. 
The model includes also support for embedded Instruction 
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Set Processors (ISPs) and can be extended to support 
other types of DRHW resources, like coarse-grain arrays. 
This model has been successfully implemented on Virtex, 
and Virtex-II FPGAs [11] coupled with an ISP. 
  
 
 
 
 
 
 
 
 
 

Figure 1.  ICN model for DRHW.  
 
As it is shown in figure 1, with the ICN model an FPGA-

based platform can be considered as a multiprocessor 
system where subtasks are assigned to FPGA tiles instead 
of to ISPs. On top of this model, a multiprocessor 
scheduler (like TCM) can be easily applied. However, the 
run-time flexibility of DRHW often comes at the price of 
a very large reconfiguration overhead. For instance, 
reconfiguring one tenth of a Virtex XC2V6000 FPGA 
requires at least 4 ms. This overhead is not always 
acceptable for highly dynamic applications, since they 
may demand reconfigurations every few milliseconds. 
However, multiprocessor schedulers for embedded 
systems often neglect this overhead. Hence, in order to 
efficiently include DRHW resources, the scheduling flow 
must be extended adding specific support to deal with the 
reconfiguration overhead. 
As it was explained in [6], there are two key-factors to 

reduce this overhead. Firstly, previously loaded subtasks 
must be reused. Thus, if a subtask is executed several 
times in a DRHW resource, it may remain loaded from 
one execution to another and no reconfiguration is 
needed. Secondly, reconfigurations must be scheduled in 
order to hide their latency. However, for highly dynamic 
applications, the reusable subtasks cannot be identified at 
design-time. Hence, which subtasks must be loaded and 
which ones can be reused is only known at run-time. 
Therefore, the reconfiguration schedule must be at least 
partially accomplished at run-time. In [7] we presented a 
reconfiguration scheduling technique fully performed at 
run-time. This technique was able to drastically reduce 
the reconfiguration overhead even for highly dynamic 
applications. However, it was not fully scalable. Hence, 
for large number of reconfigurations, it consumed 
significant time to carry out the schedule. 
 In this paper we present a novel hybrid design-time/run-

time configuration scheduling approach that achieves 
almost as good results as the previous run-time heuristic 
while generating a very limited run-time penalty since it 

carries out all the computation intensive parts of the 
scheduling heuristic at design-time and just some minor 
computations are performed at run-time to tackle the non-
deterministic dynamic behavior.   
The remainder of the paper is organized as follows. The 

next section introduces the related work. Section 3 
explains the reconfiguration-scheduling problem. Section 
4 motivates the need of a hybrid scheduling heuristic. 
Sections 5 and 6 describe the prefetch scheduling design-
time and run-time phases. Section 7 presents the 
experimental results and, finally, section 8 summarizes 
our conclusions. 
 
2. Related work 
 
Previously, other research groups have addressed the 

minimization of the reconfiguration overhead. Much of 
these works propose the development of new types of 
architectures, like multi-context FPGAs and especially 
coarse-grain architectures. Thus, several interesting 
coarse-grain platforms that can be reconfigured much 
faster than standard fine-grain architectures have emerged 
recently [1,2]. Nevertheless, the reconfigurable market is 
still being clearly dominated by the FPGAs.   
In [12] a very interesting configuration prefetching 

approach to reduce the reconfiguration overhead for 
FPGAs is presented. This technique attempts to predict 
which task is going to be executed next and load it in 
advance. If the prediction is a success, the reconfiguration 
latency is, at least, partially hidden. Otherwise, an 
erroneous configuration is loaded with the consequent 
penalization. Our prefetching approach presents three 
main advantages compared to this one. First, it allows 
reducing the computational overhead, since all the 
prefetch decisions for a whole graph are taken at once and 
almost all the computation is done at design-time. Second, 
it prevents prediction misses, since our heuristic 
collaborates with a run-time scheduler receiving 
information about the subtasks scheduled in the near 
future. Finally, it reduces the overall execution time of the 
system, since our scheduling heuristic is aware of how its 
prefetch decisions affect the system performance and it 
uses this information to minimize the execution time. 
Other good approaches regarding how to minimize the 

influence of the reconfiguration overhead applying 
scheduling techniques at design-time are found in [3] and 
[8]. However, they do not include any run-time 
component. Therefore, they can only be applied when 
very limited dynamic behavior exists.  
 
3. Scheduling the run-time reconfigurations 
 
In order to evaluate the hybrid prefetch technique we 

have developed a set of run-time modules and we have 
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integrated them into the TCM scheduling environment [9, 
10] that provides a complete framework for the 
experiments. Our heuristic is not specifically intended for 
TCM, but it can be integrated in other scheduling 
environments as long as they share the hybrid design-
time/run-time approach.  
In TCM an application is described as a set of tasks, 

where each task is represented as a subtask graph, that 
interact dynamically among them. Thus, the non-
deterministic behavior must remain outside the 
boundaries of the tasks. If the behavior of a task depends 
on external data, different versions (graphs) of the same 
task are generated. These versions are called scenarios. In 
TCM the design-time scheduler generates a Pareto curve 
for each scenario of each task. A Pareto curve is a set of 
solutions where each solution is better than all the others 
in at least one of the parameters to optimize (in this case 
execution time and energy consumption). Each solution 
(also called Pareto point) represents an assignment and a 
schedule of the subtasks over the processing elements. 
During the execution, a run-time scheduler [10] is called 
periodically to identify the current scenario for each 
running task and select the most suitable Pareto points, 
i.e., those that consume less energy but still meet all the 
timing constraints of the application.  
 
 
 
 
 
 
 
 
 
 
 
Figure 2. Run-time scheduling flow. 
 
Current TCM schedulers do not take into account the 

reconfiguration overhead of the DRHW resources. We 
have provided support to tackle this specific overhead by 
including a set of modules in the TCM run-time 
scheduling flow as is depicted in Figure 2. After the run-
time scheduler selects its schedule, for each task three 
main decisions are taken sequentially following this initial 
schedule. Firstly, the reuse module identifies which 
subtasks can be reused from a previous iteration. 
Secondly, if some subtasks cannot be reused, the prefetch 
module schedules their loads attempting to minimize the 
execution time overhead. Finally, when a subtask is 
loaded, the replacement module decides to which tile it is 
going to be assigned trying to maximize the percentage of 
reused configurations. The reuse and the replacement 
modules are described in detail in [6, 7]. This paper is 

focused on the novel hybrid prefetch module. The hybrid 
scheduling heuristic attempts to solve the following 
problem:  
Given an initial subtask schedule that neglects the 

reconfiguration latency, we want to update it including 
the needed reconfigurations scheduled in a way that 
minimize the overhead they generate.  
Basically, the scheduler attempts to overlap the latency 

of each reconfiguration with the computation of the 
previous subtasks. If this is possible this reconfiguration 
does not penalize the system performance.  A simple 
example is depicted in Figure 3. In this figure the first 
schedule (a) is the output of a scheduler that neglects the 
loading overhead. The second schedule (b) includes the 
subtask loads, but does not apply any technique to reduce 
their impact, hence all of them introduce a delay. Finally, 
the third schedule (c) applies a configuration prefetch 
technique. Hence, just the first load penalizes the system 
performance. 

 
Figure 3. Impact of the loads over an initial subtask 
schedule.  L n: load of the subtask n. Ex n: 
execution of the subtask n. 
 
4. Hybrid configuration prefetch heuristic 
 
In order to take advantage of the possibility of reusing 

configurations, the reconfiguration prefetch schedule 
must be generated at run-time. However, the time slot 
assigned to the run-time scheduling process is typically 
very small and the reconfiguration schedule is only a 
small part of it that must be executed many times (once 
for each task). Hence, it must generate good schedules 
very fast or it would not be applicable at run-time.  
In [7] we presented a run-time reconfiguration 

scheduling heuristic based in list scheduling. This 
heuristic generated near optimal schedules, and was able 
to schedule 20 tasks with 14 subtasks on average in less 
than 0.1ms. This heuristic was developed targeting 
FPGAs. Therefore, the overhead generated due to the 
scheduling process was very small compared to the 
reconfiguration latency. However, currently it is also 
possible to include DRHW resources with much smaller 
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reconfiguration overhead (like coarse-grain arrays). In 
these resources the reconfiguration overhead is still 
significant, but not as large as in fine grain. In addition, 
since the reconfiguration overhead of these architectures 
is more affordable, subtasks with less execution time can 
be assigned to them. Hence it is likely that the granularity 
of the subtasks decreases and, as a consequence, the 
number of subtasks assigned to DRHW increases. 
However, the complexity of our previous full run-time 
approach was N*Log(N), where N is the number of 
subtasks that must be loaded. Therefore the time needed 
to generate the schedule increases with the number of 
subtasks. For instance, increasing the size of the subtask 
graph by a factor of 32 was leading to a 192-increase 
factor in the scheduling execution time. Hence, this initial 
prefetch module was not fully scalable. For this reason, 
we have developed a new hybrid prefetch heuristic 
aiming to keep the good results obtained by the previous 
one and, at the same time, to generate almost no run-time 
overhead. In this heuristic the computations are split 
between a design-time phase and a run-time phase. Thus, 
all the computational intensive parts have been moved to 
design-time (therefore they do not generate any run-time 
overhead) and just some minor parts are still executed at 
run-time. The basic idea of this heuristic is that the 
design-time phase generates an optimal schedule of the 
reconfigurations under certain assumptions for all the 
possible subtask schedules selected by the TCM design-
time scheduler. Later, when one of them is executed the 
run-time phase will guarantee that the initial assumption 
is true before starting its execution. 
 
5. Design-time phase 
 
An efficient prefetch technique may succeed hiding most 

of the reconfigurations (in [7] assuming that there was no 
reuse, which is the worst possible case, our heuristic was 
able to hide at least 75% of them). But for certain 
subtasks, it may fail meeting its objective because there is 
not always enough available time to schedule all the loads 
in advance (e.g. subtask 1 of Figure 3). The objective of 
the design-time phase of the hybrid heuristic is to identify 
which are those subtasks whose loading latency cannot be 
hidden. The hybrid heuristic is based on the definition of 
a subset of Critical Subtasks (CS). We define the CS 
subset for a given subtask graph that has been scheduled 
neglecting the reconfiguration overhead and a given 
scheduling heuristic that attempts to reduce this overhead, 
as the minimal subset of subtasks of the graph assigned to 
DRHW that fulfills the following property:  
If all the subtasks that belong to the CS subset can be 

reused, whereas all the remaining subtasks must be 
loaded, the scheduling heuristic will totally hide the 
latency of these loads. And therefore, they will not 

generate any time overhead. 
This definition is valid for any scheduling heuristic that 

attempts to hide the reconfiguration overhead. In our case 
we apply a branch&bound algorithm that always finds the 
optimal solution and for large graphs we keep the 
heuristic presented in [7] since it generates near optimal 
schedules in an affordable time.  
Figure 4 depicts the steps followed to identify the critical 

subtasks of a graph.  The process starts executing the 
prefetch scheduling heuristic assuming that none of the 
subtasks assigned to DRHW can be reused (hence, all of 
them must be loaded). Afterwards, all the subtasks that 
generate any delay due to its reconfiguration are detected 
and the one with greatest weight is included in the CS 
subset. These weights represent how critical is the 
execution of each subtask. They are assigned computing 
the longest path (in terms of execution time) from the 
beginning of the execution of the subtask to the end of the 
execution of the whole graph with an As-Late-As-
Possible (ALAP) schedule. Hence the subtasks in the 
critical path always have greater weight than the others. 
The process continues assuming that all the subtasks 
assigned to the CS subset are reused until the prefetch 
heuristic hides the reconfiguration latencies of all the 
remaining subtasks assigned to DRHW. When this 
process finishes, the last schedule computed by the 
prefetch heuristic is stored. This schedule is the input of 
the run-time phase. In this schedule it is assumed that all 
the subtasks from the CS subset are reused, whereas the 
remaining subtasks assigned to DRHW must be loaded. 
This assumption means, by definition of the CS subset, 
that this schedule hides the latency of all these loads. 
Hence the reconfiguration overhead is 0. 

 
Figure 4. Pseudo code for the critical subtasks 
selection. compute_penalty(CS) assumes that CS 
subtasks are reused. 
 
6. Run-time phase 
 
The design-time schedules assume that all the nodes that 

belong to the CS are always loaded. However, if there are 
not enough DRHW resources this is not always true. The 
task of the run-time phase of the hybrid heuristic is to 
guarantee that all the subtasks from a CS subset are 

For each schedule do  
1. CS := ∅;  
2. While (compute_penalty(CS) ≠ 0) do

S:= subtasks that generate delays;

S1:= MAX_weight(S);  

Add_subtask(S1, CS); 



loaded before starting the execution of the corresponding 
design-time schedule.  This is called initialization phase. 
The loading order during this phase is also decided at 
design-time according to the subtask weights (the subtask 
with the greatest weight is loaded first), hence the run-
time phase must only identify which subtasks from the CS 
subset must be loaded.  
The design-time schedule assumes that all the subtasks 

assigned to DRHW that do not belong to the CS subset 
are going to be loaded. However, if some of them can be 
reused it is an unnecessary waste of energy to load them 
again. Hence, the run-time prefetch module will cancel 
those loads without modifying the rest of the schedule. 
The only task done so far during the run-time phase of the 
hybrid heuristic is to identify which subtasks can be 
reused and which must be loaded. However, the reuse 
module already does this task.  Hence, the prefetch hybrid 
heuristic is not generating any run-time overhead.  
Up to now the prefetch heuristic has been always applied 
inside the boundaries of a task. The reason is that the 
actual sequence of tasks executed is only known at run-
time. Therefore it is not possible to do inter-task 
optimizations at design-time. However, they can be 
performed at run-time if enough information is available. 
In the TCM environment the TCM run-time generates as 
output a sequence of scheduled tasks which can be used 
to apply inter-task optimizations. Using again the idea of 
critical subtasks, we have found a way to reduce the 
reconfiguration overhead introducing an inter-task 
optimization technique to our hybrid heuristic. Basically, 
for each task the run-time prefetch module uses the final 
idle period of the reconfiguration circuitry to carry out the 
initialization phase of the subsequent task. If this is 
possible, this task will not generate any overhead due to 
its reconfigurations. Figure 5 illustrates how the example 
introduced in Figure 3 is scheduled using the hybrid 
prefetch heuristic. In the picture, b.1 is the initialization 
phase, where the subtask 1 (that is the only CS) is loaded. 
If subtask 1 could be reused b.1 would not be needed. b.2 
is the design-time schedule where the load of subtask 3 
has been removed because it was reused. And b.3 is the 
final time-slot when the reconfiguration circuitry was idle. 
This time is used to prefetch one critical subtask from the 
subsequent task.  

Figure 5. a) Schedule computed at design-time.     
b) Final schedule.  

7. Experimental results 
 
In order to compare our current approach with the 

approach presented in [7] we have applied our techniques 
to the same set of multimedia tasks. These tasks are a 
sequential and a parallel version of the JPEG decoder, an 
MPEG encoder, and a Pattern Recognition application 
that applies the Hough transform over a matrix of pixels 
in order to look for geometrical figures. In table 1 the 
features of these tasks are presented. “Ideal ex. time” is 
the execution time of the application when there is no 
reconfiguration overhead. “Overhead” is the percentage 
of the initial execution time that is added when the entire 
set of subtasks must be loaded on to the DRHW. Finally, 
”Prefetch” is the same overhead after applying an optimal 
prefetch heuristic. For the MPEG encoder there are three 
different scenarios corresponding to the decoding of B, P, 
and I frames (the table includes the average data). The 
appropriate scenario is selected at run-time following the 
sequence of frames. We have simulated 1000 iterations of 
the execution of this set of applications for different 
number of DRHW tiles assuming that the reconfiguration 
latency is 4 ms. In order to introduce unpredictable 
behavior, the applications executed during each iteration 
vary randomly. The simulation has been carried out five 
times with different prefetching approaches. The fist one 
did not include any prefetch module. In this case the 
reconfiguration overhead is 23%. In the second execution 
an optimal prefetch module is applied at design-time 
(hence it is not possible to reuse previously loaded 
subtasks since at design-time there is not enough 
information available). With this module the overhead is 
reduced to 7%. 
 
Table1. Set of multimedia benchmarks.  
Set of Task Sub-tasks Ideal ex time Overhead Prefetch
Pattern Rec. 6 94 ms +17% +4% 
JPEG dec. 4 81 ms +20% +5% 
Parallel JPEG 8 57 ms +35% +7% 
MPEG encoder 5 33 ms +56% +18%
 

The results of the three remaining simulations are 
depicted in Fig 6. In this figure run-time are the results 
obtained applying the run-time heuristic from [7] with our 
modules that support subtask reuse. In this case, with less 
than 20% of the subtasks reused (for 8 tiles) the overhead 
is reduced to 3%. run-time+inter-task are the results when 
the run-time schedule is improved using the inter-task 
optimization presented in section 6 and hybrid are the 
results with the hybrid heuristic. In these two cases the 
overhead is at most 1.3%, hence at least 95% of the 
original overhead is hidden. It must be remarked that 
hybrid and run-time+inter-task present very similar 
results (of course, the run-time approach generates 
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slightly better results). However the first approach is fully 
carried out at run-time, whereas the second one performs 
all the scheduling computations at design-time and only 
identifies the reusable subtasks at run-time.  

Figure 6 Reconfiguration overhead for the 4 tasks 
depicted in table 1 running with dynamic behavior. 
 
A coherent reason exists for these nice results. The 

hybrid heuristic generates at design-time an optimal 
schedule for the non-critical subtasks. Hence no run-time 
approach can improve this part. The critical subtasks can 
still generate an important overhead, but by definition, 
they will generate also overhead even when applying the 
prefetch schedule at run-time.  Of course, in this case the 
run-time heuristic may hide it partially. However, the 
inter-task optimization allows hiding most of the loads of 
the critical subtasks. As a result our hybrid heuristic 
clearly outperforms the one presented in [7].  

Figure 7. Reconfiguration overhead for a Pocket 
GL 3D rendering application. 
 
We have also tested our hybrid heuristic with a highly 

dynamic 3D rendering application. This application is 
composed of 6 dynamic tasks that have in total 10 
subtasks. For each task several scenarios can be selected 
at run-time. The amount of scenarios depends on the 
dynamism of the task. Thus, task 5 has four scenarios, 
whereas task 4 has ten. In total there are 40 different 
scenarios. However, due to the inter-task dependencies, at 
run-time just 20 feasible combinations exist, which are 
called inter-task scenarios. The run-time scheduler does 
the selection among the inter-task scenarios. The average 
execution time of a subtask in this application is 5.7ms, 
which is comparable with the 4ms needed to load a 
subtask onto a DRHW tile. This execution time heavily 
varies, going from 0.2 ms to 30ms. In this experiment 
62% of the subtasks are critical. However, as it is seen in 
the Figure 7 the hybrid heuristic still generates almost as 

good results as the fully run-time approach. In this case, 
the reconfiguration overhead was initially 71% of the 
ideal execution time. Applying an optimal configuration 
prefetch technique at design-time it is reduced to 25%. 
Finally, with the hybrid heuristic the overhead is reduced 
to 5% for five tiles and less than 2% for eight tiles. 
Hence, at least 93% of the initial overhead is hidden. 

 
8. Conclusions 

 

The reconfiguration overhead of DRHW resources can 
drastically degrade the system performance if no active 
scheduling policies are applied. In addition, when dealing 
with dynamic applications, this problem must be tackled 
at run-time, when the time-slot for the scheduling process 
is heavily constrained. We have overcome this restriction 
by developing a hybrid scheduling heuristic that selects at 
run-time a schedule almost as good as a pure run-time 
approach while generating a negligible overhead since all 
the computation intensive parts of the scheduling process 
are carried out at design-time. In addition, we have 
improved our results by applying a simple run-time inter-
task optimization technique that leads to very significant 
reconfiguration overhead reductions. In our experiments 
our hybrid heuristic has eliminated from 93% to 100% of 
the initial execution time overhead. 
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