
A Hybrid Prefetch Scheduling Heuristic to Minimize at Run-Time the
Reconfiguration Overhead of Dynamically Reconfigurable Hardware*

Javier Resano1 (javier1@dacya.ucm.es), Daniel Mozos1, Francky Catthoor2

1 Department of Computer Architecture (DACYA), Universidad Complutense de Madrid
2 IMEC vzw, Leuven, also Professor at Katholieke Universiteit Leuven, Belgium

Abstract
Due to the emergence of highly dynamic multimedia

applications there is a need for flexible platforms and run-
time scheduling support for embedded systems. Dynamic
Reconfigurable Hardware (DRHW) is a promising
candidate to provide this flexibility but, currently, not
sufficient run-time scheduling support to deal with the
run-time reconfigurations exists. Moreover, executing at
run-time a complex scheduling heuristic to provide this
support may generate an excessive run-time penalty.
Hence, we have developed a hybrid design/run-time
prefetch heuristic that schedules the reconfigurations at
run-time, but carries out the scheduling computations at
design-time by carefully identifying a set of near-optimal
schedules that can be selected at run-time. This approach
provides run-time flexibility with a negligible penalty.

1. Introduction

Current multimedia applications, such as digital video

and 3D games, present highly dynamic and non-
deterministic behavior, and a very variable workload.
Dealing with this kind of applications involves a complex
trade-off between carrying out the scheduling
computation at design-time or at run-time. On the one
hand, performing the whole scheduling process at design-
time is very ineffective because the scheduler does not
have enough information and must often assume a
pessimistic worst-case scenario. On the other hand, very
stringent timing requirements exist at run-time. Hence the
scheduler must accomplish its task in a greatly limited
time-slot applying only simple scheduling policies.
Hybrid design/run-time scheduling approaches are a very
effective way to overcome this problem. They split the
computation into a design-time phase and a run-time
phase. The design-time phase generates sets of optimal
(or near-optimal) schedules for certain run-time
conditions. Later, a run-time scheduler analyses the
running tasks and the run-time conditions and selects the
most convenient schedule among them. The hybrid
approach provides run-time flexibility and, at the same

time, it generates only a small run-time penalty due to
scheduler execution because most of the exploration and
computation is done at design time. A very good example
of this approach is the TCM [9] (Task Concurrency
Management) scheduling environment initially developed
for heterogeneous multiprocessor platforms. However, in
order to cope with the demanding requirements of current
multimedia applications, it is very interesting to extend
the hybrid scheduling approach to emerging platforms
containing also Dynamically Reconfigurable Hardware
(DRHW) resources. These resources provide both high
performance and run-time flexibility because their
functionality can be updated at run-time to meet the
variable requirements of the running applications. In
particular, for embedded systems the amount of resources
is highly constrained and, at the same time, the number of
applications that they have to support is constantly
increasing. In order to meet the performance requirements
of these applications, specific HW support is often
required. However, it is infeasible to provide Application
Specific Integrated Circuits (ASICs) for all them. Using
the partial reconfiguration capabilities, DRHW resources
can be shared to provide this HW support for the whole
set of applications.
We are targeting heterogeneous multiprocessor

platforms where some of the processing elements are
DRHW resources which are equivalent to any other
processing elements. Hence, the scheduler assigns tasks to
them at run-time according to the computational load of
the system and its real-time constraints. An example of
such a platform was presented in [4, 5]. Using an
InterConnection Network (ICN) model (Figure 1) that
provides inter-task communication and run-time
allocation support, an FPGA is turned into a network-on-
chip multiprocessor platform. The basic idea of the ICN
model is that the DRHW resources are split into a set of
identical tiles. Each tile is wrapped by a communication
interface. These tiles are independently reconfigured at
run-time and can communicate with each other using
message-passing primitives over a network-on-a-chip.
The model includes also support for embedded Instruction

* Research supported by the Spanish Government TIC 2002-00160

1530-1591/05 $20.00 © 2005 IEEE

Set Processors (ISPs) and can be extended to support
other types of DRHW resources, like coarse-grain arrays.
This model has been successfully implemented on Virtex,
and Virtex-II FPGAs [11] coupled with an ISP.

Figure 1. ICN model for DRHW.

As it is shown in figure 1, with the ICN model an FPGA-

based platform can be considered as a multiprocessor
system where subtasks are assigned to FPGA tiles instead
of to ISPs. On top of this model, a multiprocessor
scheduler (like TCM) can be easily applied. However, the
run-time flexibility of DRHW often comes at the price of
a very large reconfiguration overhead. For instance,
reconfiguring one tenth of a Virtex XC2V6000 FPGA
requires at least 4 ms. This overhead is not always
acceptable for highly dynamic applications, since they
may demand reconfigurations every few milliseconds.
However, multiprocessor schedulers for embedded
systems often neglect this overhead. Hence, in order to
efficiently include DRHW resources, the scheduling flow
must be extended adding specific support to deal with the
reconfiguration overhead.
As it was explained in [6], there are two key-factors to

reduce this overhead. Firstly, previously loaded subtasks
must be reused. Thus, if a subtask is executed several
times in a DRHW resource, it may remain loaded from
one execution to another and no reconfiguration is
needed. Secondly, reconfigurations must be scheduled in
order to hide their latency. However, for highly dynamic
applications, the reusable subtasks cannot be identified at
design-time. Hence, which subtasks must be loaded and
which ones can be reused is only known at run-time.
Therefore, the reconfiguration schedule must be at least
partially accomplished at run-time. In [7] we presented a
reconfiguration scheduling technique fully performed at
run-time. This technique was able to drastically reduce
the reconfiguration overhead even for highly dynamic
applications. However, it was not fully scalable. Hence,
for large number of reconfigurations, it consumed
significant time to carry out the schedule.
 In this paper we present a novel hybrid design-time/run-

time configuration scheduling approach that achieves
almost as good results as the previous run-time heuristic
while generating a very limited run-time penalty since it

carries out all the computation intensive parts of the
scheduling heuristic at design-time and just some minor
computations are performed at run-time to tackle the non-
deterministic dynamic behavior.
The remainder of the paper is organized as follows. The

next section introduces the related work. Section 3
explains the reconfiguration-scheduling problem. Section
4 motivates the need of a hybrid scheduling heuristic.
Sections 5 and 6 describe the prefetch scheduling design-
time and run-time phases. Section 7 presents the
experimental results and, finally, section 8 summarizes
our conclusions.

2. Related work

Previously, other research groups have addressed the

minimization of the reconfiguration overhead. Much of
these works propose the development of new types of
architectures, like multi-context FPGAs and especially
coarse-grain architectures. Thus, several interesting
coarse-grain platforms that can be reconfigured much
faster than standard fine-grain architectures have emerged
recently [1,2]. Nevertheless, the reconfigurable market is
still being clearly dominated by the FPGAs.
In [12] a very interesting configuration prefetching

approach to reduce the reconfiguration overhead for
FPGAs is presented. This technique attempts to predict
which task is going to be executed next and load it in
advance. If the prediction is a success, the reconfiguration
latency is, at least, partially hidden. Otherwise, an
erroneous configuration is loaded with the consequent
penalization. Our prefetching approach presents three
main advantages compared to this one. First, it allows
reducing the computational overhead, since all the
prefetch decisions for a whole graph are taken at once and
almost all the computation is done at design-time. Second,
it prevents prediction misses, since our heuristic
collaborates with a run-time scheduler receiving
information about the subtasks scheduled in the near
future. Finally, it reduces the overall execution time of the
system, since our scheduling heuristic is aware of how its
prefetch decisions affect the system performance and it
uses this information to minimize the execution time.
Other good approaches regarding how to minimize the

influence of the reconfiguration overhead applying
scheduling techniques at design-time are found in [3] and
[8]. However, they do not include any run-time
component. Therefore, they can only be applied when
very limited dynamic behavior exists.

3. Scheduling the run-time reconfigurations

In order to evaluate the hybrid prefetch technique we

have developed a set of run-time modules and we have

DRHW tile

Communication
Interface

ICN router

DRHW tile

Communication
Interface

ICN router

integrated them into the TCM scheduling environment [9,
10] that provides a complete framework for the
experiments. Our heuristic is not specifically intended for
TCM, but it can be integrated in other scheduling
environments as long as they share the hybrid design-
time/run-time approach.
In TCM an application is described as a set of tasks,

where each task is represented as a subtask graph, that
interact dynamically among them. Thus, the non-
deterministic behavior must remain outside the
boundaries of the tasks. If the behavior of a task depends
on external data, different versions (graphs) of the same
task are generated. These versions are called scenarios. In
TCM the design-time scheduler generates a Pareto curve
for each scenario of each task. A Pareto curve is a set of
solutions where each solution is better than all the others
in at least one of the parameters to optimize (in this case
execution time and energy consumption). Each solution
(also called Pareto point) represents an assignment and a
schedule of the subtasks over the processing elements.
During the execution, a run-time scheduler [10] is called
periodically to identify the current scenario for each
running task and select the most suitable Pareto points,
i.e., those that consume less energy but still meet all the
timing constraints of the application.

Figure 2. Run-time scheduling flow.

Current TCM schedulers do not take into account the

reconfiguration overhead of the DRHW resources. We
have provided support to tackle this specific overhead by
including a set of modules in the TCM run-time
scheduling flow as is depicted in Figure 2. After the run-
time scheduler selects its schedule, for each task three
main decisions are taken sequentially following this initial
schedule. Firstly, the reuse module identifies which
subtasks can be reused from a previous iteration.
Secondly, if some subtasks cannot be reused, the prefetch
module schedules their loads attempting to minimize the
execution time overhead. Finally, when a subtask is
loaded, the replacement module decides to which tile it is
going to be assigned trying to maximize the percentage of
reused configurations. The reuse and the replacement
modules are described in detail in [6, 7]. This paper is

focused on the novel hybrid prefetch module. The hybrid
scheduling heuristic attempts to solve the following
problem:
Given an initial subtask schedule that neglects the

reconfiguration latency, we want to update it including
the needed reconfigurations scheduled in a way that
minimize the overhead they generate.
Basically, the scheduler attempts to overlap the latency

of each reconfiguration with the computation of the
previous subtasks. If this is possible this reconfiguration
does not penalize the system performance. A simple
example is depicted in Figure 3. In this figure the first
schedule (a) is the output of a scheduler that neglects the
loading overhead. The second schedule (b) includes the
subtask loads, but does not apply any technique to reduce
their impact, hence all of them introduce a delay. Finally,
the third schedule (c) applies a configuration prefetch
technique. Hence, just the first load penalizes the system
performance.

Figure 3. Impact of the loads over an initial subtask
schedule. L n: load of the subtask n. Ex n:
execution of the subtask n.

4. Hybrid configuration prefetch heuristic

In order to take advantage of the possibility of reusing

configurations, the reconfiguration prefetch schedule
must be generated at run-time. However, the time slot
assigned to the run-time scheduling process is typically
very small and the reconfiguration schedule is only a
small part of it that must be executed many times (once
for each task). Hence, it must generate good schedules
very fast or it would not be applicable at run-time.
In [7] we presented a run-time reconfiguration

scheduling heuristic based in list scheduling. This
heuristic generated near optimal schedules, and was able
to schedule 20 tasks with 14 subtasks on average in less
than 0.1ms. This heuristic was developed targeting
FPGAs. Therefore, the overhead generated due to the
scheduling process was very small compared to the
reconfiguration latency. However, currently it is also
possible to include DRHW resources with much smaller

TCM Run-Time SchedulerPlatform
Description

Running Tasks Information

Initialization phase

For each task do:
Reuse Module

Prefetch Module
Replacement Module

Final Schedule

-Pareto curve of each
task
-Real-time constraints

Initial schedule that
neglects the
reconfiguration
overhead

TCM Run-Time SchedulerPlatform
Description

Running Tasks Information

Initialization phase

For each task do:
Reuse Module

Prefetch Module
Replacement Module

Final Schedule

For each task do:
Reuse Module

Prefetch Module
Replacement Module

Final Schedule

-Pareto curve of each
task
-Real-time constraints

Initial schedule that
neglects the
reconfiguration
overhead

Subtask graph
1

3

4

2
DRHW tile2

DRHW tile1

DRHW tile3

DRHW tile2

DRHW tile1

DRHW tile3

c) applying prefetchb) without prefetch

L 2 Ex 2

L 4 Ex 4

L 3 Ex 3

L 1 Ex 1

L 2 Ex 2

L 4 Ex 4

L 3 Ex 3

L 1 Ex 1

L 2

L 1 Ex 1

L 2

L 1 Ex 1

Ex 1

Ex 2

Ex 3

Ex 4

a) without overhead

Ex 2

L 3 Ex 3L 3 Ex 3

Ex 4Ex 4L 4

reconfiguration overhead (like coarse-grain arrays). In
these resources the reconfiguration overhead is still
significant, but not as large as in fine grain. In addition,
since the reconfiguration overhead of these architectures
is more affordable, subtasks with less execution time can
be assigned to them. Hence it is likely that the granularity
of the subtasks decreases and, as a consequence, the
number of subtasks assigned to DRHW increases.
However, the complexity of our previous full run-time
approach was N*Log(N), where N is the number of
subtasks that must be loaded. Therefore the time needed
to generate the schedule increases with the number of
subtasks. For instance, increasing the size of the subtask
graph by a factor of 32 was leading to a 192-increase
factor in the scheduling execution time. Hence, this initial
prefetch module was not fully scalable. For this reason,
we have developed a new hybrid prefetch heuristic
aiming to keep the good results obtained by the previous
one and, at the same time, to generate almost no run-time
overhead. In this heuristic the computations are split
between a design-time phase and a run-time phase. Thus,
all the computational intensive parts have been moved to
design-time (therefore they do not generate any run-time
overhead) and just some minor parts are still executed at
run-time. The basic idea of this heuristic is that the
design-time phase generates an optimal schedule of the
reconfigurations under certain assumptions for all the
possible subtask schedules selected by the TCM design-
time scheduler. Later, when one of them is executed the
run-time phase will guarantee that the initial assumption
is true before starting its execution.

5. Design-time phase

An efficient prefetch technique may succeed hiding most

of the reconfigurations (in [7] assuming that there was no
reuse, which is the worst possible case, our heuristic was
able to hide at least 75% of them). But for certain
subtasks, it may fail meeting its objective because there is
not always enough available time to schedule all the loads
in advance (e.g. subtask 1 of Figure 3). The objective of
the design-time phase of the hybrid heuristic is to identify
which are those subtasks whose loading latency cannot be
hidden. The hybrid heuristic is based on the definition of
a subset of Critical Subtasks (CS). We define the CS
subset for a given subtask graph that has been scheduled
neglecting the reconfiguration overhead and a given
scheduling heuristic that attempts to reduce this overhead,
as the minimal subset of subtasks of the graph assigned to
DRHW that fulfills the following property:
If all the subtasks that belong to the CS subset can be

reused, whereas all the remaining subtasks must be
loaded, the scheduling heuristic will totally hide the
latency of these loads. And therefore, they will not

generate any time overhead.
This definition is valid for any scheduling heuristic that

attempts to hide the reconfiguration overhead. In our case
we apply a branch&bound algorithm that always finds the
optimal solution and for large graphs we keep the
heuristic presented in [7] since it generates near optimal
schedules in an affordable time.
Figure 4 depicts the steps followed to identify the critical

subtasks of a graph. The process starts executing the
prefetch scheduling heuristic assuming that none of the
subtasks assigned to DRHW can be reused (hence, all of
them must be loaded). Afterwards, all the subtasks that
generate any delay due to its reconfiguration are detected
and the one with greatest weight is included in the CS
subset. These weights represent how critical is the
execution of each subtask. They are assigned computing
the longest path (in terms of execution time) from the
beginning of the execution of the subtask to the end of the
execution of the whole graph with an As-Late-As-
Possible (ALAP) schedule. Hence the subtasks in the
critical path always have greater weight than the others.
The process continues assuming that all the subtasks
assigned to the CS subset are reused until the prefetch
heuristic hides the reconfiguration latencies of all the
remaining subtasks assigned to DRHW. When this
process finishes, the last schedule computed by the
prefetch heuristic is stored. This schedule is the input of
the run-time phase. In this schedule it is assumed that all
the subtasks from the CS subset are reused, whereas the
remaining subtasks assigned to DRHW must be loaded.
This assumption means, by definition of the CS subset,
that this schedule hides the latency of all these loads.
Hence the reconfiguration overhead is 0.

Figure 4. Pseudo code for the critical subtasks
selection. compute_penalty(CS) assumes that CS
subtasks are reused.

6. Run-time phase

The design-time schedules assume that all the nodes that

belong to the CS are always loaded. However, if there are
not enough DRHW resources this is not always true. The
task of the run-time phase of the hybrid heuristic is to
guarantee that all the subtasks from a CS subset are

For each schedule do
1. CS := ∅;
2. While (compute_penalty(CS) ≠ 0) do

S:= subtasks that generate delays;

S1:= MAX_weight(S);

Add_subtask(S1, CS);

loaded before starting the execution of the corresponding
design-time schedule. This is called initialization phase.
The loading order during this phase is also decided at
design-time according to the subtask weights (the subtask
with the greatest weight is loaded first), hence the run-
time phase must only identify which subtasks from the CS
subset must be loaded.
The design-time schedule assumes that all the subtasks

assigned to DRHW that do not belong to the CS subset
are going to be loaded. However, if some of them can be
reused it is an unnecessary waste of energy to load them
again. Hence, the run-time prefetch module will cancel
those loads without modifying the rest of the schedule.
The only task done so far during the run-time phase of the
hybrid heuristic is to identify which subtasks can be
reused and which must be loaded. However, the reuse
module already does this task. Hence, the prefetch hybrid
heuristic is not generating any run-time overhead.
Up to now the prefetch heuristic has been always applied
inside the boundaries of a task. The reason is that the
actual sequence of tasks executed is only known at run-
time. Therefore it is not possible to do inter-task
optimizations at design-time. However, they can be
performed at run-time if enough information is available.
In the TCM environment the TCM run-time generates as
output a sequence of scheduled tasks which can be used
to apply inter-task optimizations. Using again the idea of
critical subtasks, we have found a way to reduce the
reconfiguration overhead introducing an inter-task
optimization technique to our hybrid heuristic. Basically,
for each task the run-time prefetch module uses the final
idle period of the reconfiguration circuitry to carry out the
initialization phase of the subsequent task. If this is
possible, this task will not generate any overhead due to
its reconfigurations. Figure 5 illustrates how the example
introduced in Figure 3 is scheduled using the hybrid
prefetch heuristic. In the picture, b.1 is the initialization
phase, where the subtask 1 (that is the only CS) is loaded.
If subtask 1 could be reused b.1 would not be needed. b.2
is the design-time schedule where the load of subtask 3
has been removed because it was reused. And b.3 is the
final time-slot when the reconfiguration circuitry was idle.
This time is used to prefetch one critical subtask from the
subsequent task.

Figure 5. a) Schedule computed at design-time.
b) Final schedule.

7. Experimental results

In order to compare our current approach with the

approach presented in [7] we have applied our techniques
to the same set of multimedia tasks. These tasks are a
sequential and a parallel version of the JPEG decoder, an
MPEG encoder, and a Pattern Recognition application
that applies the Hough transform over a matrix of pixels
in order to look for geometrical figures. In table 1 the
features of these tasks are presented. “Ideal ex. time” is
the execution time of the application when there is no
reconfiguration overhead. “Overhead” is the percentage
of the initial execution time that is added when the entire
set of subtasks must be loaded on to the DRHW. Finally,
”Prefetch” is the same overhead after applying an optimal
prefetch heuristic. For the MPEG encoder there are three
different scenarios corresponding to the decoding of B, P,
and I frames (the table includes the average data). The
appropriate scenario is selected at run-time following the
sequence of frames. We have simulated 1000 iterations of
the execution of this set of applications for different
number of DRHW tiles assuming that the reconfiguration
latency is 4 ms. In order to introduce unpredictable
behavior, the applications executed during each iteration
vary randomly. The simulation has been carried out five
times with different prefetching approaches. The fist one
did not include any prefetch module. In this case the
reconfiguration overhead is 23%. In the second execution
an optimal prefetch module is applied at design-time
(hence it is not possible to reuse previously loaded
subtasks since at design-time there is not enough
information available). With this module the overhead is
reduced to 7%.

Table1. Set of multimedia benchmarks.
Set of Task Sub-tasks Ideal ex time Overhead Prefetch
Pattern Rec. 6 94 ms +17% +4%
JPEG dec. 4 81 ms +20% +5%
Parallel JPEG 8 57 ms +35% +7%
MPEG encoder 5 33 ms +56% +18%

The results of the three remaining simulations are
depicted in Fig 6. In this figure run-time are the results
obtained applying the run-time heuristic from [7] with our
modules that support subtask reuse. In this case, with less
than 20% of the subtasks reused (for 8 tiles) the overhead
is reduced to 3%. run-time+inter-task are the results when
the run-time schedule is improved using the inter-task
optimization presented in section 6 and hybrid are the
results with the hybrid heuristic. In these two cases the
overhead is at most 1.3%, hence at least 95% of the
original overhead is hidden. It must be remarked that
hybrid and run-time+inter-task present very similar
results (of course, the run-time approach generates

DRHW tile2

DRHW tile1

DRHW tile3

DRHW tile2

DRHW tile1

DRHW tile3

a) design-time

Ex 4Ex 1

L 4

Ex 4

L 2

Ex 1

Reconfiguration
circuitry

L 1

Ex 4Ex 1

L 4

Ex 4

L 2

Ex 1

L 3

Ex 2

Ex 3

Ex 2

Ex 3

b) run-time
b.1 b.2 b.3

L 5

slightly better results). However the first approach is fully
carried out at run-time, whereas the second one performs
all the scheduling computations at design-time and only
identifies the reusable subtasks at run-time.

Figure 6 Reconfiguration overhead for the 4 tasks
depicted in table 1 running with dynamic behavior.

A coherent reason exists for these nice results. The

hybrid heuristic generates at design-time an optimal
schedule for the non-critical subtasks. Hence no run-time
approach can improve this part. The critical subtasks can
still generate an important overhead, but by definition,
they will generate also overhead even when applying the
prefetch schedule at run-time. Of course, in this case the
run-time heuristic may hide it partially. However, the
inter-task optimization allows hiding most of the loads of
the critical subtasks. As a result our hybrid heuristic
clearly outperforms the one presented in [7].

Figure 7. Reconfiguration overhead for a Pocket
GL 3D rendering application.

We have also tested our hybrid heuristic with a highly

dynamic 3D rendering application. This application is
composed of 6 dynamic tasks that have in total 10
subtasks. For each task several scenarios can be selected
at run-time. The amount of scenarios depends on the
dynamism of the task. Thus, task 5 has four scenarios,
whereas task 4 has ten. In total there are 40 different
scenarios. However, due to the inter-task dependencies, at
run-time just 20 feasible combinations exist, which are
called inter-task scenarios. The run-time scheduler does
the selection among the inter-task scenarios. The average
execution time of a subtask in this application is 5.7ms,
which is comparable with the 4ms needed to load a
subtask onto a DRHW tile. This execution time heavily
varies, going from 0.2 ms to 30ms. In this experiment
62% of the subtasks are critical. However, as it is seen in
the Figure 7 the hybrid heuristic still generates almost as

good results as the fully run-time approach. In this case,
the reconfiguration overhead was initially 71% of the
ideal execution time. Applying an optimal configuration
prefetch technique at design-time it is reduced to 25%.
Finally, with the hybrid heuristic the overhead is reduced
to 5% for five tiles and less than 2% for eight tiles.
Hence, at least 93% of the initial overhead is hidden.

8. Conclusions

The reconfiguration overhead of DRHW resources can
drastically degrade the system performance if no active
scheduling policies are applied. In addition, when dealing
with dynamic applications, this problem must be tackled
at run-time, when the time-slot for the scheduling process
is heavily constrained. We have overcome this restriction
by developing a hybrid scheduling heuristic that selects at
run-time a schedule almost as good as a pure run-time
approach while generating a negligible overhead since all
the computation intensive parts of the scheduling process
are carried out at design-time. In addition, we have
improved our results by applying a simple run-time inter-
task optimization technique that leads to very significant
reconfiguration overhead reductions. In our experiments
our hybrid heuristic has eliminated from 93% to 100% of
the initial execution time overhead.

References
[1] www.ipflex.com
[2] www.elixent.com
[3] Maestre, R. et al, "Configuration Management in Multi-
Context Reconfigurable Systems", ISSS'00, pp. 107-113, 2000.
[4] Marescaux, T. et al., "Interconnection Network enable Fine-
Grain Dynamic Multi-Tasking on FPGAs", FPL'02, pp. 795-
805, 2002.
[5] Mignolet, J-Y. et al. “Infrastructure for Design and
Management of Relocatable Tasks in a Heterogeneous
Reconfigurable System-on-Chip” DATE'03, pp. 986-991, 2003.
[6] Resano, J. et al. “Specific scheduling support to minimize
the reconfiguration overhead of dynamically reconfigurable
hardware”. DAC’04, pp. 119 – 124, 2004.
[7] Resano, J. et al. “A hybrid design-time/run-time scheduling
flow to minimise the reconfiguration overhead of
FPGAs”. Journal on Microprocessors and Microarchitectures.
Elsevier publishers. Volume 28, Issues 5-6, pp. 291-301, 2004.
[8] Shang, Li et al., "Hw/Sw Co-synthesis of Low Power Real-
Time Distributed Embedded Systems with Dynamically
Reconfigurable FPGAs", ASP-DAC'02, pp. 345-360, 2002.
[9] Yang, P. et al., "Energy-Aware Runtime Scheduling for
Embedded-Multiprocessors SOCs", IEEE Design&Test of
Computers, pp. 46-58, 2001.
[10] Yang, P. et al "Pareto-Optimization-Based Run-Time Task
Scheduling for Embedded Systems". ISSS'03, pp 120-125. 2003.
[11] www.xilinx.com
[12] Zhiyuan Li, “Configuration management techniques for
reconfigurable computing” Ph.D. thesis, 2002.

0

1

2

3

4

8 9 10 11 12 13 14 15 16

run-time
run-time+inter-task
hybrid

Overhead
(%)

Number of DRHW tiles

0

5

10

15

20

5 6 7 8 9 10

R un-tim e
R un-tim e + inte r- ta s k
H ybr id

Overhead
(%)

Number of DRHW tiles

