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ABSTRACT Accurate forecast of the hourly spot price of electricity plays a vital role in energy trading

decisions. However, due to the complex nature of the power system, coupled with the involvement of

multi-variable, the spot prices are volatile and often difficult to forecast. Traditional statistical models

have limitations in improving forecasting accuracies and reliably quantifying the spot electricity price

under uncertain market conditions. This paper presents a hybrid model that combines the results from

multiple linear regression (MLR) model with an auto-regressive integrated moving average (ARIMA) and

Holt–Winters models for better forecasts. The proposed method is tested for the Iberian electricity market

data set by forecasting the hourly day-ahead spot price with dataset duration of 7, 14, 30, 90, and 180 days.

The results indicate that the hybrid model outperforms the benchmark models and offers promising results

under most of the testing scenarios.

INDEX TERMS ARIMA, energy price, forecasting, Holt-Winters, hybrid model and regression.

I. INTRODUCTION

The energy trading has seen a rapid growth as result of

deregulation and competitive energy markets in the recent

years. The electricity price changes hour by hour and these

changes typically reflect the variations in the availability of

generation resources, fuel costs and demand. This volatility

increases as the integration of intermittent sources of electric

power generation (e.g., wind and solar) continues to rise.

Furthermore, participants in the electricity spot market must

submit price bids the day before buying or selling electricity

(day-ahead), which means that buyers and sellers must make

significant decisions regarding prices well in advance. There-

fore, the producers of electric power require reliable forecast-

ing methods to offer competitive bids to the buyers of electric

power, while the consumers require reliable forecasting tools

to acquire lowest possible price of electricity. Thus, the accu-

rate forecasting methods are crucial for economic decision

making and implementation of incentive based ‘‘time-of-use

pricing’’ scheme for consumers. Moreover, the power grid is

a highly complex system, governed by many variables, such

as generation and transmission constraints, environmental

variables, and seasonal demand variations. Thus, there is a
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need for an accurate forecasting model that accommodates

these influential variables.

This paper presents a method for predicting ‘‘day-ahead’’

spot electricity prices for the Iberian electricitymarket, result-

ing in forecasted prices for each hour of the following day.

The dataset available to the authors contains the hourly spot

price for 3 and 6 months period ranging from approximately

February to July of 2015. In addition, several other variables

such as lagged values of price and demand, power production

rates from coal and hydroelectric plants, and environmental

variables such as temperature, wind speed, and irradiance

are available in this dataset. The spot price for the last day

available in the dataset (i.e., July 31, 2015) is forecasted using

a novel hybrid method that combines typical forecasting

methods such as Auto-Regressive Integrated Moving Aver-

age (ARIMA) and the Holt-Winters method with a multiple

linear regression (MLR) model. In this model, the ‘‘predictor

variables’’ such as hourly energy production and environmen-

tal variables are combined with forecasted variables using a

weighted average.

II. LITERATURE REVIEW

The accurate forecast of short-term price is challenging

for the electricity markets due to the complex nature of

power system. Furthermore, the data series of electricity

prices is typically non-stationary and highly volatile [1],

VOLUME 7, 2019
2169-3536 
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

36833

https://orcid.org/0000-0001-5176-587X


D. Bissing et al.: Hybrid Regression Model for Day-Ahead Energy Price Forecasting

making fundamental forecasting methods such as the lin-

ear regression (LR), moving averages (MA), or exponen-

tial smoothing (ES) presented in [2] unsuitable for robust

price forecasting. On the other hand, Auto-Regressive Inte-

gratedMovingAverage (ARIMA) is amore sophisticated and

widely used forecasting method that combines predictions

based on past values of the target variable (Auto-Regressive)

with a moving average of the target value [2], and it is

often used as a benchmark for comparing newer candidate

models [1].

Chinnathambi et al. [3] discuss several forecasting meth-

ods for Iberian electricity markets using multiple variables.

Here, they use a two-stage approach, where ARIMA method

is first deployed in stage 1, and the resulting residuals are

used as inputs to stage 2. In stage 2, authors use Locally

Weighted Scatterplot Smoothing (LOWESS), Support Vector

Machines (SVM), Random Forest (RF), Generalized Linear

Model (GLM) for further improving forecasts. de Marcos

et al. [1] claim that hybrid models combined with con-

ventional forecasting models produce better forecasts. Here,

the authors use an optimization model that outputs an esti-

mated price based on different parameters of the power sys-

tem such as supply, demand, and transmission constraints.

This estimated price is then fed to a Function Fitting Neu-

ral Network (FFNN) that forecasts hourly prices based on

the estimated price and predictor variables such as lagged

prices and expected wind and solar generation. The results

indicate that the hybrid model produces lower forecast error

in terms of mean absolute percentage error (MAPE) and

Mean Squared Error (MSE) as compared to ARIMA and

FFNN model without the estimated fundamental price from

the Cost-Production optimization model. Nowakowska and

Lis [4] use a similar hybrid optimization model based on

generation and demand in which they first seek to predict

the hour-ahead demand using an optimization model that

forecasts using the demand for the previous hour and histori-

cal data from the previous year. Previous demand forecasts

are then compared with the real demand values and used

along with the current price and ‘‘price elasticity’’ coefficient

to forecast the next price. Alshejari and Kodogiannis [5]

present the Asymmetric Gaussian Fuzzy Inference Neural

Network (AGFINN) that combines neural networks, fuzzy

logic, and clustering schemes in a hybrid model to produce

improved price forecasts. Saini et al. [6] propose a hybrid

method that combines linear regression with Support Vector

Machine (SVM). Several linear equations are generated using

linear regression with different combinations of the predictor

variables, and a set of predictor variables resulting in a linear

equation with the smallest MAPE is selected as the optimal

set of predictor variables. The results of the linear forecasts

are then used as the inputs to SVM.

There are also studies [7]–[10] focusing on different meth-

ods of using predictor variables as inputs to the forecasting

model. Portela et al. [7] present an Autoregressive Mov-

ing Average Hilbertian (ARMAHX) forecasting method that

offers improved capabilities of ARIMA to model seasonal

effects and accounts for the effect of predictor (‘‘explana-

tory’’) variables to produce lower MAPE values than that

of other benchmark methods. A Singular Spectrum Analy-

sis along with an Artificial Neural Network (ANN) is used

to develop a non-linear relationship between the electricity

price and the predictor (‘‘exogenous’’) variables, such as

temperature (t), and grid conditions [8]. In [9], the method of

SVR (Support Vector Regression) for developing nonlinear

regression relationships between predictor variables and the

electricity price is proposed. Mohamed and El-Hawary [10]

stress the importance of selecting the right predictor vari-

ables (‘‘input features’’) for electricity price forecasting, and

they propose different methods of predictor variable selection

including Attribute Evaluator methods such as ‘‘CFsSubsetE-

val’’ and ‘‘WrapperSubsetEval’’ and search methods such as

the ‘‘Best-First’’, ‘‘Greedy-StepWise’’, and other Exhaustive

methods.

The contribution of this paper is to expand the work of

Chinnathambi et al. [3] by strategically selecting the sig-

nificant predictor variables for the Iberian electricity market

data and using them as inputs to hybrid models that com-

bine multiple linear regression with ARIMA and the Holt-

Winters method. Chinnathambi et al. [3] do not perform

a detailed analysis of the predictor variables to determine

which predictor variables are truly significant to the model,

and instead they have used all 17 predictor variables. This

paper expands the work of Chinnathambi et al. [3] with the

following contributions:
• A multiple regression method in MATLAB is used to

perform an exhaustive search of multiple regression

models of all possible combinations of predictor vari-

ables and select the best model based on various mea-

sures of a predictor variable. Each predictor variable is

represented by one digit in a binary number which is

toggled to either include or remove the variable from the

model between iterations. This method is described in

more detail in the following section.

• A weighted averaging technique is developed for com-

bining ARIMA, and regression methods for better fore-

casts for data duration of 7, 14, 30, 90, and 180 days.

III. STATIONARITY CHECK

Stationarizing a time series data is an essential step to obtain

the statistical parameters such as mean, variance and correla-

tion along with other variables, if the original series is non-

stationary. If the data series is steadily growing over time, then

the mean and variance will also increase with the size of the

sample. This may result in underestimated values of mean

and variance for the future periods. Hence, the stationarity

check was performed for all data series using ‘R’ software.

The stationary test such as Augmented-Dickey-Fuller Unit

Root Test was performed for different dataset durations such

as 7, 14, 30, 90, and 180 days. Table 1 shows the p-values

for the unit root test (URT). Generally, a p-value of less than

0.05 indicates that the data is stationary, and greater than

0.05 requires differencing operations on the data. Hence, this
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TABLE 1. Stationarity test results for different datasets.

unit root test was performed using a function named ‘‘ur.df

()’’ under the library ‘‘urca’’.

Stationarity check involves a two-step process. In step 1,

the original data series is transformed into a time series

object using ‘ts’ function in R software. Step 2 requires

performing a unit root test (URT) for the time series data

or the non-differenced data to check the stationarity. The

URT results show that the original data set is non-stationary,

as p-values for various durations (except 180 days) are

greater than 0.05. Therefore, the first differencing for the

non-stationary data series is performed to make it stationary

and the resultant data is tested for stationarity. The results

indicate that the data series becomes stationary after the first

differencing and this is evident from lower p-values (p<0.05).

Therefore, the stationarized first-differenced data set is used

for the remainder of the paper except 180 days of data, where

the non-differenced dataset is used.

IV. SELECTION OF PREDICTOR VARIABLES

The 3-month and 6-month datasets from the Iberian electric-

ity market are used for this study and these datasets con-

tain the hourly electricity price along with the hourly value

of 17 other ‘‘predictor’’ variables that may or may not be

significantly related to the price. In order to construct a model

that can forecast hourly prices of electricity, it is important to

identify the significant variables and discard the insignificant

variables. The methods used to select the significant predictor

variables are described in the following sections.

A. MULTIPLE LINEAR LEAST SQUARES REGRESSION

Multiple linear regression is a widely used method that fits a

data set to amodel in which the forecasted variable yi depends

linearly on a number of predictor variables x1,i, x2,i . . . xk,i.

This multiple linear regression model can be expressed as,

yi = β0 + β1x1,i + β2x2,i + . . . βkxk,i + ei (1)

Here k is the number of predictor variables, β1, β2 . . . βk
are the regression coefficients and ei is an error term which

represents the difference between the forecasted value (ŷi)

and the measured value (yi) [11]. Therefore, the values of βj
(and the overall model) can be optimized by minimizing the

sum of the square of the error (SSE) term ei.
Equation (1) can be expressed in matrix form as:

Y = Xβ + E (2)

Here Y is anN x 1 matrix of the pastN measured values of yi,

β is a (k + 1) x 1 matrix of the β values, E is an N x 1 matrix

of the ei values, and X is given by equation (3).

X =





1 x1,1 . . . x1,k
. . . . . . . . . . . .

1 xN ,1 . . . xN ,k



 (3)

The SSE can be minimized and the optimum values of βj
can be selected by the equation:

β̂ = (XTX )
−1
XTY (4)

Here β̂ contains the optimized values of the linear coeffi-

cients [11].

If there is little or no relationship between the dependent

and a predictor variable xj, the value of βj should be very close

to 0. Therefore, a hypothesis test is performed with the null

hypothesis that βj = 0. Therefore, with a 95% confidence

interval, if a value of βj has a p-value greater than 0.05,

the corresponding predictor variable xj does not significantly

contribute to the model. Thus, a predictor variable xj can be

removed from the data and a newmodel can be generatedwith

updated values of β̂ and the error term (SSE’). If the value of

SSE’ determined using hypothesis tests and p-values are not

significantly larger than the SSE of the original model, then

xj does not add significantly to the model and it can be elimi-

nated [11]. This process is repeated for all predictor variables,

removing them one by one as seen unfit and testing if the

SSE increases significantly. This procedure is implemented

using the matrix and statistical functions of Microsoft Excel

using the 3-month data, and it is observed that the predictor

variables 5, 7, 8, 9, 10, and 16 are insignificant.

B. MEASURES OF PREDICTIVE VALUE IN MATLAB

Some statisticians warn against the use of selecting variables

based on hypothesis tests and p-values, as these methods

solely prove statistical significance, which is not neces-

sarily an accurate measure of predictive value [2]. Rather,

it is recommended to test all possible models and compare

them based on measures of predictive value, such as the

adjusted R2, corrected Akaike’s Information Criterion (AICc)

or Bayesian Information Criterion (BIC).

The coefficient of determination (R2) is a common statistic

used to measure the correlation between variables and it is

given by:

R2 =

∑

(ŷi − ȳ)2

∑

(yi − ȳ)2
(5)

Here ŷi is the forecasted target variable, yi is the measured

target variable, and ȳ is the mean target variable [2]. However,

R2 is not necessarily a useful tool for measuring the accuracy

of a model (only correlation). Therefore, the value of R2 can

be adjusted as shown below:

R2adj = 1 − (1 − R2)
N − 1

N − k − 1
(6)
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The adjusted R2 overcomes the limitations of the conven-

tional R2.

A second measure of predictive value is Akaike’s Informa-

tion Criterion, corrected (AICc), which is given by:

AICc = Nlog

(

SSE

N

)

+ 2 (k + 2) +
2(k + 2)(k + 3)

N − k − 3
(7)

A third measure of predictive value is the Schwarz

Bayesian Information Criterion (BIC), which is given by:

BIC = Nlog

(

SSE

N

)

+ (k + 2) log(N ) (8)

Thus, the best model for a given data set is typically the

one with the largest value of R2, lowest values of AICc and

BIC [2].

To select the best model for a given data, the values of

adjusted R2, AICc, and BIC must be calculated for all pos-

sible models [2] as shown in Table 2.

TABLE 2. Predictive values for all possible regression models.

A data set with k predictor variables has 2k-1 possible

models, but it can become unwieldy for data set with a

large number of predictor variables [2]. Therefore, a novel

MATLAB program is developed to compute the Adjusted R2,

AICc, and BIC for the 217 − 1 = 131, 071 possible models.

The program performs multiple regression on the data set

in order to compute the predictive values which are then

stored after each regression. This cycle is looped, and the

loop index variable (w) is converted to a binary number

during each iteration. For example, in the first iteration,

w = 1, and this index is converted to the binary number

00000000000000001. Each digit of the binary number is

then used to ‘‘turn on’’ or ‘‘turn off’’ a predictor variable.

Therefore, for the first iteration where w = 1, the only

predictor variable included in the data set is the 17th variable

that corresponds to the first binary digit on the extreme right

of the binary number and it is represented by ‘‘1’’ and all other

variables are marked ‘‘0’’, resulting in 00000000000000001.

This regression process is looped 131,071 times to obtain

the regression models from every possible combination of

predictor variables.

The results of the MATLAB program are shown in Fig. 1,

which plots the values of adjusted R2, AICc, and BIC versus

the iteration number. The maximum adjusted R2 and min-

imum AICc and BIC occur at 129,021th iteration and the

corresponding values are 0.6159, 18028, and 18055 respec-

tively. This optimized model contains all the variables except

variables 6 and 16.

FIGURE 1. Measures of predictive value returned by MATLAB function.
The optimal model occurs at run when the adjusted R2 (gray) is
maximized and the AICc and BIC (blue, orange) are minimized at iteration
129,021 when variables 6 and 16 are removed.

The residuals of this optimized model appear to be nor-

mally distributed with a mean of zero, indicating a good

fit. However, the autocorrelation function of the residuals

shows large spikes at the first several lags, indicating that an

autocorrelation forecasting model such as ARIMA may be

well-suited to this data.

C. STEPWISE AND SUBSET REGRESSION IN R

The Stepwise and Subset regression can be employed in

situations where it is undesirable or impossible to test every

possible model for determining the significant predictor vari-

ables. The Subset regression allows only a certain number of

variables to be evaluated as significant (a subset of the orig-

inal set of variables), while the Stepwise regression removes

one predictor variable at a time and keeps the newmodel if the

predictive measures are improved [2]. The process is repeated

until the model cannot be further improved.

Both Subset and Stepwise regression were performed on

the 6-month data set using R software. The largest subset

available in R allows 8 variables, and the best model (judged

by adjusted R2) consisting of a subset of 8 predictor variables

including the variables 1, 2, 3, 4, 9, 11, 15, and 17. The

Stepwise regression performed in R returned an optimized

model which is identical to the MATLAB based model that

includes all variables except 6 and 16.

The results of four different predictor selection tests are

presented in Table 3. If a test indicates that a given pre-

dictor variable should be included in the model, then that

particular predictor variable is assigned a value of ‘‘1’’ in the

column corresponding to the test or else ‘‘−1’’ is assigned

for removal of a predictor variable. If the test did not address

the predictor, the space is left blank. The last column adds

the corresponding row values and gives the total for each

predictor variable, with the largest and smallest sums corre-

sponding to the most and least significant predictor variables,

respectively. Based on these results, it is observed that hourly

price demand, wind generation (wg), temperature (t), and

wind speed (ws) (variables 1-4, 11, 15, and 17) are the most
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TABLE 3. Results of predictor variable selection tests.

significant predictor variables, while the lagged hydroelectric

generation and irradiance (variables 6 and 16) are the least

significant predictor variables.

Thus, a multiple regression equation is generated by using

all predictor variables except the lagged hydroelectric genera-

tion and solar irradiance in equation (1). The resulting values

of regression coefficients (βi) from equation (1) are shown

in Table 4. The regression equation therefore gives the hourly

electricity price and it is the sum of product of each predictor

variable xi and its corresponding regression coefficient βi
from Table 4.

The results indicate that the price has a negative co-relation

with variables 3, 5, 7, 10, 11, 13, and 17 and it is clear that

TABLE 4. Regression coefficients.

FIGURE 2. Forecast for July 31, based solely on multiple regression using
all variables except variables 6 and 16.

the increase in these predictor variables tends to decrease

the price and vice versa. Furthermore, the magnitude of each

coefficient may not be indicative of the significance of the

predictor variable because the variables have different units

and scales. Equation (1) without the insignificant predic-

tor variables was used to forecast the electricity price for

July 31 and compared with actual data points for that day. The

resulting forecast is shown in Fig. 2 and the Mean Average

Percent Error (MAPE) is 8.17%.

V. TIME SERIES DECOMPOSITION

Time series data, such as historical prices of electricity, can

typically be decomposed into three components: seasonal,

cyclic/trend, and remainder (error). The seasonal component

of a time series is the component that fluctuates regularly

with known duration and amplitude, while the cyclic/trend

component may cause the overall series to rise or fall without

any definite period or amplitude. The remainder component

is the error that remains when the seasonal and cyclic/trend

components have been removed from the data. The time

series decomposition for the first 48 days of the data is

shown in Fig. 3, where the x-axis represents the day number

(Jan 1 = 1, Jan 2 = 2, etc.).

The decomposition shown in Fig. 3 clearly shows a sea-

sonal (daily) component having a period of 24 hours. This

is expected, since energy usage has a similar trend from day

to day. The data is made stationary using unit root test for

forecasting as outlined in section III.

VI. FORECASTING METHODS

In this study, hybrid models of ARIMA with multiple regres-

sion and Holt-Winters with regression are used to predict the

day-ahead electricity price. These methods are implemented

using R software.

A. ARIMA METHOD

ARIMA is a commonly used forecasting method that uses

three significant time-series components. These components

include AR (Auto-Regressive), I (Integrated), andMA (Mov-

ing Average) which are denoted as p, d, and q respectively.
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FIGURE 3. Times series decomposition of 48 days of the 3-month data
exhibiting trends and seasonality.

Each of these components is optimized to find the best-fit

forecast determined by the smallest residual values. ARIMA

is a valuable forecasting tool for data that incorporates trend

and seasonality [12].

The first step in ARIMA is the computation of the Inte-

grated (I) component in which the data is integrated. This

is accomplished by subtracting each data point from the

previous data point. The goal of this step is to create a trend-

less/stationary data set, which can be accomplished through

a single difference or multiple differences depending on the

characteristics of the dataset. Once the differenced data is

trendless, or as close to trendless as possible, the method

proceeds to the next step.

The second step involves the computation of Auto-

Regressive (AR) component which predicts future values of

the trendless dataset based on a weighted sum of past values

as shown in equation (9).

Yt= c+ ø1Yt−1+ø2Yt−2+ldots.øpYt−p + et (9)

Here, Yt is the price at time t , øt denotes the regression

coefficient, and et denotes the error term.

The final step of ARIMA is the computation of Moving

Average (MA). A moving average is similar to auto-

regression, but instead of using previous target values, it uses

previous error values to determine the current value as

shown in equation (10). The R software package uses an

auto-ARIMA function that optimizes the values to produce

the best fit forecast.

Yt = c+ et + θ1et−1 + θ2et−2 + . . . . .θpet−p (10)

B. HOLT-WINTERS METHOD

The Holt-Winters Method, also known as triple exponential

smoothing, uses the principle of exponential smoothing to

forecast the data points. Exponential smoothing is a technique

used for smoothing time series data that can also be used

for forecasting future values of the data. By assigning an

exponentially decreasing weight to previous values of data,

the future values are predicted with higher deference given

to the most recent values. A smoothing factor dictates the

amount of weight given to the previous values [13]. The equa-

tion for basic exponential smoothing is given in equation (11).

St = α∗x t + (1 − α)∗St−1 (11)

Here St is the predicted value, α is the smoothing factor, and

xt is the value at time t . The smoothing factor ranges from

0 to 1 with smaller values giving more weight to previous

data.

The Holt-Winters method uses triple exponential smooth-

ing, allowing it to account for trend and seasonality. Triple

exponential smoothing is achieved through equation (12).

y = St + Bt + Ut (12)

Here:

Ut = γ (xt − −St−s) + (1 − α)(Ut−1 + Bt−1)

Bt = β(Ut − −Ut−1) + (1 − −β)Bt−1

St = α(yt − −Ut ) + (1 − α)St−s

Here γ , β, and α are the smoothing factors for their respective

levels.

The R software automatically optimizes the value of γ , β,

and α using this method and Sum of Squared Error (SSE)

metric is used to understand the residual errors.

VII. HYBRID FORECASTING METHOD

To provide a forecasting model with higher accuracy,

hybrid approaches are explored that include combinations

of ARIMA, Holts-Winters and regression methods. These

hybrid methods are then tested using dataset of varying dura-

tions. The dataset includes the hourly electricity price for 7,

14, 30, 90, and 180 days.

The flowchart for the proposed hybrid model is shown

in the figure 4. Step-1 involves data collection phase that

collects the information on price, load, generation and

temperature for the Iberian electricity market. In step-2,

the important predictor variables are selected using differ-

ent variable selection methods as explained in section-IV.

Step-3 involves forecasting the initial price using ARIMA

for 7, 14, 30, 90 and 180 days. Finally, two hybrid models

are developed by combining (i) ARIMA with multiple lin-

ear regression and (ii) ARIMA with Holt-Winters and these

models are tested on Iberian electricity market dataset to

forecast the day-ahead electricity price. These hybrid models

are discussed in detailed in the following subsections.

A. ARIMA COMBINED WITH MULTIPLE REGRESSION

The ARIMA forecast is based on the previous price data (e.g.

D-1, D-6), so the addition of forecasting information based on

the multiple regression model should increase the accuracy of

the forecast.

The following steps were used to combine ARIMA with

multiple linear regression model:

Step 1: The dataset of previous price variables

(e.g., D-1 and D-6) is fed into the auto-ARIMA function
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FIGURE 4. Flowchart for the proposed hybrid Model.

of R software and a forecast for the following day (7/31) is

generated.

step 2: A multiple regression model is used to forecast for

the same day.

step 3: A new forecast is estimated by averaging the

hourly forecasts from steps 1 and 2. This equal allocation of

weights (50 % each) is termed as ‘‘ARIMA + Reg’’ method.

In ‘‘ARIMA + RegW’’ method, the weights for ARIMA and

Regression are adjusted to 70 % and 30 % respectively.

The forecasters may notice that the error in one of the mod-

els is larger inmagnitude than that of the other model. In these

cases, the forecast having a larger magnitude of error can be

given less weight. This strategy will result in a more accurate

forecast while still incorporating the predictions from both

forecasting methods.

B. ARIMA COMBINED WITH HOLT-WINTERS

Generally, the residuals from the ARIMA forecast are trend-

less. However, auto-ARIMA finds the best-fit model, which

is not necessarily perfect. Therefore, the residuals having

noticeable trends can be detected and forecasted by the Holt-

Winters model. The incorporation of trends from the residuals

into the ARIMA forecast will result in higher accuracy. The

following steps were used to combine the ARIMA forecast

with Holt-Winters method:

step 1: The dataset of previous price is fed into the auto-

ARIMA function of R software and a forecast for the follow-

ing day (7/31) is produced.

step 2: The residuals produced by the auto-ARIMA func-

tion are extracted and converted to time series data.

step 3. The residuals are then fed into the Holt-Winters

function in the R software and a forecast for the following

day (7/31) is generated.

step 4: The forecasted residual values are added to the

ARIMA forecast to generate an optimized forecast.

VIII. RESULTS AND DISCUSSION

The day ahead electricity price was predicted using two

hybrid models discussed in the previous section and each

model was trained using dataset durations of 7, 14, 30, 90, and

180 days. A 24-hour forecast for July 31, 2015 was generated

including one data point for each hour of the day.

Mean Average Percentage Error (MAPE) was used as the

metric for determining accuracy of the forecast, which is

a common technique used in the forecasting field [1], [3].

MAPE is calculated using equation (13).

MAPE =

(

100

n

)

∗

n
∑

t=1

(

At − Ft

At

)

(13)

Here At = actual price at time t , Ft = forecasted price

at time t , and n = number of data points being considered.

In this case, the MAPE is determined using all 24 hours of

the forecasted day. The MAPE values of different forecast

methods for dataset durations of 7, 14, 30, 90, and 180 days

are shown in Table 5.

The day-ahead electricity price forecasted for 7/31

(July 31, 2015) and the MAPE values of different forecasting

methods for 7, 14, 30, 90 and 180 days are shown in Fig. 5 to

Fig. 14. It is clear from Fig. 5 and Fig. 6 that ARIMA
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TABLE 5. MAPE values for different forecast methods.

FIGURE 5. 24 hour forecast for 7/31 (July 31, 2015) using different
forecast methods trained by the previous 7 days of data.

FIGURE 6. MAPE values for different forecasting models trained by the
previous 7 days of data.

combined with multiple regression forecasting is the most

accurate forecast when using seven days of data to train the

model. The weighted model that gives the regression forecast

a 30 % weight and the ARIMA forecast a 70 % weight has

the least error at 3.14 %. It is also worth noting that the

ARIMA combined with Holt-Winters forecast outperforms

the ARIMA forecast.

It is noted from Fig. 7 and Fig. 8 that the error increases

when 14 days of data are used to train the model. It can be

seen that the most accurate model is ARIMA combined with

Holt-Winters, and the least accurate is the regression model.

Thus, the ARIMAmodels combined with multiple regression

forecast are less accurate than ARIMA alone and this may

be due to the large error caused by regression model with a

14-day dataset. Fig. 9 and Fig. 10 show results similar to that

of forecast models for 14 days (Fig. 7 and Fig. 8), but with

slightly less error. Again, the increased error magnitude of

FIGURE 7. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 14 days of data.

FIGURE 8. MAPE values for different forecasting models trained by the
previous 14 days of data.

FIGURE 9. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 30 days of data.

ARIMA + regression models is attributed to larger error of

stand-alone regression model.

Fig. 11 and Fig. 12 show that the error decreases when

the training data is increased to 90 days. Though the error

in regression method remains high, the ARIMA + regres-

sion models have the lowest error values. This indicates

that the magnitude of error in the individual regression and

ARIMA models generally has contradictory signs as seen

from Fig. 11.

It can be seen from Fig. 13 and Fig. 14 that there is

an overall decrease in error for 180 days of data and it is

evident that the hybrid models have performed better than the

stand-alone method regression model. Thus, it is clear from

the results that the accuracy of the ARIMA forecast decreases
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FIGURE 10. MAPE values for different forecasting models trained by the
previous 30 days of data.

FIGURE 11. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 90 days of data.

FIGURE 12. MAPE values for different forecasting models trained by the
previous 90 days of data.

with an increase in the size of the training data. However,

the hybrid models such as ARIMA+Holt, ARIMA+ RegW

models are performing better for 180 days as compared to the

previous training datasets. This gives a clue to the forecaster

that the models need to be trained with sufficient amount of

data in order to produce good results while the most relevant

data for the next day forecast is the most recent data. Future

forecastingmodels can further build on this method by adding

data from the same 7-day period of the previous years. This

may be useful in maintaining the consistency of accuracy by

including more ‘‘training’’ data.

The hybrid models presented in this study have yielded

lower values of MAPE in comparison to other hybrid models

(ARIMA-GLM, ARIMA-SVM and ARIMA-RF) proposed

in [3] for the same Iberian electricity market for the duration

FIGURE 13. 24 hour forecast for 7/31 using different forecast methods
trained by the previous 180 days of data.

FIGURE 14. MAPE values for different forecasting models trained by the
previous 180 days of data.

of 7, 14, and 30 days. The results also confirm that the hybrid

combination of ARIMA with Holt-winters proposed in this

study outperforms other hybrid models discussed in [3].

IX. CONCLUSION

Ahybrid forecastingmethod that investigates the possibilities

of combining the regression with Holt-Winters and ARIMA

models is explored. Several variable selection methods are

deployed to identify the predictor variables (e.g., hourly price,

demand, wind generation, temperature, and wind speed) that

significantly affect the hourly spot price of electricity.

The multiple regression model of predictor variables

appears to be accurately determining the shape of the actual

day-ahead electricity price, but it overfits themagnitude of the

price. The ARIMA method is good at maintaining the mag-

nitude within range; however, it could not capture the shape

very well. A combination of these two methods provide a

forecast having a proper magnitude and similar shape on a

price versus hour plot, which resulted in a more accurate

forecast. The varying weighted approach with regression and

ARIMA model also yielded lower MAPE values, with 70 %

weight assigned to ARIMA, and 30 % to regression based

model. The combination of ARIMA with Holt-Winters out-

performed other methods in most scenarios as well as other

hybrid methods presented in the literature. It also strengthens

the fact that the proposed hybrid model is a promising model

to improve the accuracies of the short-term price forecasting

model.
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