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Anomaly detection, which aims to identify observations that deviate from a nominal sample, is a challenging task for high-
dimensional data. Traditional distance-based anomaly detection methods compute the neighborhood distance between each
observation and su	er from the curse of dimensionality in high-dimensional space; for example, the distances between any pair of
samples are similar and each sample may perform like an outlier. In this paper, we propose a hybrid semi-supervised anomaly
detection model for high-dimensional data that consists of two parts: a deep autoencoder (DAE) and an ensemble �-nearest
neighbor graphs- (�-NNG-) based anomaly detector. Bene
ting from the ability of nonlinear mapping, the DAE is 
rst trained
to learn the intrinsic features of a high-dimensional dataset to represent the high-dimensional data in a more compact subspace.
Several nonparametric KNN-based anomaly detectors are then built from di	erent subsets that are randomly sampled from the
whole dataset. �e 
nal prediction is made by all the anomaly detectors. �e performance of the proposed method is evaluated on
several real-life datasets, and the results con
rm that the proposed hybrid model improves the detection accuracy and reduces the
computational complexity.

1. Introduction

Anomalies are known as outliers [1], exceptions [2], aber-
rations, and surprises [3] in di	erent application domains.
Anomaly detection is the identi
cation of samples that do not
conform to expected behaviour. In reality, normal samples
usually have similar distributions, whereas abnormal samples
have di	erent distributions. Anomaly detection has been
applied in many 
elds, including fraud detection [4], intru-
sion detection [5], and healthcare [6]. Anomaly detection
can be generalized as constructing a model from the given
training data and predicting the status of unknown data.
Various algorithms have been proposed and can be grouped
into three classes based on the characteristics of the training
data [3]:

(i) Supervised approaches: both normal and anomalous
samples exist in the training dataset, and they are
used together to train the detection model. �e
trained model identi
es the test samples as normal or
anomalous.

(ii) Semi-supervised approaches: only normal samples
are available in the training set; that is, the user cannot
obtain information about anomalies. Unknown sam-
ples are classi
ed as outliers when their behaviour is
far from that of the known normal samples.

(iii) Unsupervised approaches: the class information of
all samples in the training data is unknown to the
researchers; that is, the samples in the training setmay
contain both normal and anomalous samples, but the
classi
cation of each sample is unknown.

A large amount of labelled training data is required by
supervised approaches, and the collection of both positive
and negative samples is di
cult and time consuming. Fur-
thermore, the detection of new outlier patterns with a model
trained on known outliers is challenging. Unsupervised
approaches do not require label information for the training
data but o�en su	er from high false alarm rates and low
detection rates [7]. In many applications, normal samples are
easy to obtain, whereas anomalous samples are expensive to
gather; thus, we focus on semi-supervised anomaly detection.
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Most of the current anomaly detection approaches
are designed for low-dimensional datasets and face chal-
lenges as the dimensions increase. Direct application of
these approaches to high-dimensional datasets may pro-
duce bad results [8]. One widely used method to address
this challenge is mapping high-dimensional data into
lower-dimensional subspace and processing the new data
with conventional detection algorithms. Various dimension-
reduction approaches have been proposed, such as feature
bagging [9], principle component analysis [10], genetic algo-
rithm [11], linear discriminant analysis [12], and machine
learning [13, 14].

�e deep belief network (DBN), which consists of layer-
stacked restricted Boltzmann machines (RBMs), has been
proposed as a multiclass classi
er and dimension-reduction
tool [15]. Several advantages of DBNs have been identi
ed
[13, 16]: they are parametric models whose training time
scales linearly with the number of records; they are nonlinear
mapping methods that may extract the internal correlations
among dimensions; and they can be trained with unlabelled
data to represent complex and high-dimensional data in
a lower-dimensional subspace. Here, we adopt DBNs as a
dimension-reduction tool.

Parameter tuning is another challenging task for para-
metric semi-supervised anomaly detection.�e conventional
criteria for measuring the performance of a trained model
cannot be used owing to the lack of measurements for
outliers. Moreover, the bias between false alarm and false
acceptance is di
cult to control. Some researchers generated
arti
cial outliers in the validation set to tune the parameters
of trained models [3, 13, 17], but arti
cial outliers may
not re�ect the distribution of real outliers. Reference [18]
proposed a nonparametric adaptive detection algorithm that
estimated an anomaly score for each query sample via a
nearest neighbor graph. �e query sample was classi
ed as
anomalous when the score fell below the desired false alarm
level. However, the nearest neighbor graph was calculated in
full space, so it might su	er from the curse of dimensionality
in high-dimensional data.

In this paper, we propose a semi-supervised anomaly
detection model for high-dimensional data that consists of
two components: a deep autoencoder (DAE) and an ensem-
ble �-nearest neighbor graphs- (�-NNG-) based anomaly
detector. �e DAE is trained in unsupervised mode and
is used to map high-dimensional data into a feature space
with lower dimensionality. �is process solves the curse of
dimensionality that exists in nearest neighbor calculations.
Several anomaly detectors are then built from randomly sam-
pled subsets. �is process greatly reduces the computational
cost of calculating the nearest neighbors and improves the
detection accuracy compared to building a single anomaly
detector using the complete dataset.

�e remainder of this paper is organized as follows. Sec-
tion 2 brie�y introduces the related work of other researchers.
We detail the proposed hybrid model in Section 3. Section 4
provides the performance evaluation and discussion, and we
summarize the paper in Section 5.

2. Related Work

Anomaly detection is widely used in many 
elds, and various
methods have been proposed in past years. We refer the
readers to good survey papers [3, 19–21] for more details.
In this section, we review several of the most widely used
anomaly detection methods and recent developments.

One-class support vector machine (OCSVM) [22] was
developed from the theory of SVM to identify anomalies in
the feature space by 
nding a hyperplane that best separates
the data from the origin. Support vector data description
(SVDD) [23] was also developed from SVM. Instead of 
nd-
ing a hyperplane, SVDDattempts to 
nd the smallest possible
hypersphere that encloses the majority of the training set
while excluding potential anomalous points. Reference [24]
indicated that the performance of SVM was limited on high-
dimensional records due to the curse of dimensionality. In
addition, OCSVM and SVDD cannot control the false alarm
rate by picking hyperparameters when only normal samples
are available in the training set [18].

Reference [25] proposed the local outlier factor (LOF)
score to measure the degree of abnormality. �e authors 
rst
found the smallest hypersphere centered at the given sam-
ples that contained the �-nearest neighbors. �e LOF was
calculated by dividing � by the volume of the hypersphere.
Anomalous samples are usually located in a sparse region
compared to normal samples. Hence, anomalous samples
receive higher LOF scores. �e desired decision boundary
can be obtained by varying the LOF threshold. Reference
[26] proposed a kNN-CF imputation method that uses the
certainty factor (CF) associated with the Euclidean distance
to measure the similarity in the feature space. Reference [27]
proposed a one-shell neighbors imputationmethod to handle
the missing values in given dataset.

Reference [28] proposed an ensemble classi
er that com-
binedOCSVM and the 
re�y algorithm. Some base one-class
classi
ers were 
rst created to form the classi
er pool using
di	erent subsets of the training data. �e 
re�y algorithm
was then selected as the framework to reduce the size of the
classi
er pool.

Reference [29] proposed a supervised outlier detection
method based on the normalized residual (NR). �e NR
value was chosen to identify outliers and to achieve constant
false alarm rate (CFAR) control. For a query point, the NR
was calculated from its nearest neighbors and normalized
by the median distance of the latter. Reference [30] utilized
reverse nearest neighbors, rather than nearest neighbors, to
determine the outliers. Reference [31] proposed the local
projection score (LPS) to represent the degree of deviation of
an observation relative to its neighbors.�enearest neighbors
were 
rst obtained for a given observation; then, the low-
rank approximation, calculated from the nearest neighbors,
was used to calculate the LPS. Observations with higher LPS
were considered to be points with a high probability of being
outliers.�e suitable LPS threshold was di
cult to determine
without information about anomalous observations.

Reference [32] proposed a nonparametric method to
estimate the outlier degree for each test sample. Samples
with higher scores were considered likely to be outliers. �ey
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Figure 1: Model architecture of DAE, DBN, and RBM.

proposed a novel neighbor concept called natural neighbor
(NN). Subjects A and B were NNs if A was one of the nearest
neighbors of B and B was one of the nearest neighbors of
A. �e natural outlier factor (NOF) was calculated from the
natural value to measure the outliers, but a suitable threshold
for outlier degree was di
cult to determine without known
countersamples.

3. Methods

3.1. Deep Autoencoder. DAE was developed from DBN,
which was 
rst proposed in [15]. A DAE is composed of
two symmetrical DBNs that typically have more than one
shallow layer representing the encoding half of the net and
corresponding to the decoding net. A DBN can be obtained
by stacking multiple RBMs. An RBM is an undirected graph-
ical model with visible units V representing observations and
hidden units ℎ learning to represent features. In contrast to
the general Boltzmannmachine, the nodes of an RBM are not
connected at the same level.�e trained RBMmaps the input
vector x (also known as V) to a feature space of dimensions� = |ℎ|, where � < � and � is the dimensionality of V. Figure 1
illustrates the model architectures of DAE, DBN, and RBM.

As an autoencoder method, DAE seeks the solution by
minimizing the reconstruction error. In the simplest case,
where there is one hidden layer, the DAE encoder stage maps
input into a smaller feature space that can be formulated as

h = � (� ⋅ x + b) , (1)

where x represents the input vector, � is an elementwise
activation function, such as a sigmoid function or a recti
ed
linear unit,� is a weight matrix, and b is a bias vector.

In the decoder stage, the output x̂ is reconstructed from
the mapped h, which has the same dimensions as x:

x̂ = �� ⋅ h + ��, (2)

where �� is the decoding matrix and �� is a vector of biases
of the output layer.

�e parameters are determined by optimizing the recon-
struction error, such as the squared error:

� (x, x̂) = ‖x − x̂‖2 . (3)

In practice, the deep architecture of DBN demonstrates
great power in nonlinear mapping. However, the presence of

many layers implies a large number of parameters to learn,
and the traditional back-propagation (BP) is not e
cient
without a good initialization of the weights.�us, pretraining
is adopted to improve the initialization of the parameters.
One widely used pretraining method is to train each DBN
layer as an individual RBM, where the hidden output of the
previous layer is treated as the visible input for the subsequent
layer.

RBM encodes the energy between visible input vector k
and hidden output h as given by

� (k, h) = −�∑
�=1
��V� − �∑

�=1
��ℎ� −∑

�,�
V�ℎ����, (4)

where V� and ℎ� are the visible and hidden units, respectively;��� is the weight connecting units � and �; � denotes the
number of visible units; � represents the number of hidden
units; and �� and �� are the biases for the visible and hidden
units, respectively. �e conditional distribution �(h | k) can
be calculated as

� (h | k) = ∏
�
� (ℎ� | k) = ∏

�
�( �∑
�=1

���V� + ��) . (5)

�e conditional distribution �(h | k) is calculated as

� (k | h) = ∏
�
� (V� | h) = ∏

�
�(�∑
�=1
���ℎ� + ��) . (6)

RBM is trained to determine the values of parameters such that (4) is minimized. A�er the RBM pretraining is
complete, the parameters learnt on the layerwise basis are
used as the initial parameters to train the whole DAE via the
traditional BP algorithm.

3.2. Anomaly Detector. Let ! = {"1, . . . , "�} be the given

normal training set sampled from a density #0 and "� ∈ %�.
Assume that the test sample is from amixed distribution of#0
and#1.�e task of anomaly detection is to determinewhether
the test sample is consistentwith normal data or deviates from
normal under the speci
ed signi
cance level: &(declare'1 |'	) ≤ -. Reference [18] proves that anomaly detection is
equivalent to the thresholding � value for multivariate data.
�e � value of a test sample / is de
ned as

� (/) = &0 (" : #1 (")#0 (") ≥
#1 (/)#0 (/)) . (7)

Equation (7) can be considered to be a mapping / →[0, 1]. For a given signi
cance level -, / will be declared as
anomalous if �(/) ≤ -.

Reference [18] proposed a method to estimate the � value
for test samples based on nearest neighborhood graphs. �e� value was calculated from the whole dataset; thus, the
computational cost increased as a quadratic function of the
number of records. Reference [33] proved the e	ectiveness
and e
ciency of subsampling in anomaly detection. We
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Figure 2: �e �ow chart of the proposed hybrid anomaly detection model.

propose an ensemble method to calculate the nearest neigh-
borhood distance matrix for a test sample. �is subsampling
method can reduce the variance of the �-nearest neighbor
distance and increase the robustness.

We 
rst randomly sample � subsets with replacement
from the entire training set. Each subset has 6 elements

denoted as !
 = {"
1, . . . , "
�}, 7 = 1, . . . , �. For each element"
�, we calculate the �th nearest neighbor distance among

all subsets !
; thus, "
� has � �th nearest neighbor distances.

�e real �th nearest neighbor distance for each element is
averaged by these � values, which is formulated as

8("
�) = 1�

∑
�=1

(9� ("
�)) , (8)

where 9�(⋅) denotes the �th nearest neighbor distance cal-

culated from subset !� and 8(⋅) is the real �th nearest
neighborhood distance.

�e real �th nearest neighbor distance for a test sample/ is calculated using the methods mentioned above; then, its
estimated � value is calculated following (9) [18], by plugging

the value into each subset !
:
�̂ (/
) = 16

�∑
�=1

I�(��)≤�(���), (9)

where I is an indicator function.
For a given false alarm rate -, the 
nal decision of / is

determined by (11):

; (/
) = {{{
−1, �̂ (/
) > -
1, �̂ (/
) ≤ -, (10)

; (/) =
{{{{{{{{{{{

−1, 1�

∑

=1
; (/
) < 0

1, 1�

∑

=1
; (/
) ≥ 0, (11)

where 1 denotes an anomalous sample and −1 represents a
normal sample. ;(⋅) represents the prediction result. We set� as an odd number; thus, themean;(/
) cannot be zero.�e
value of - controls the false alarm rate in the training data.

�eproposedmodel is shown in Figure 2.We also provide
the persuasion of the hybrid model in Algorithm 1.

4. Results and Discussion

We evaluated the performance of the proposedmodel on sev-
eral datasets and compared the proposed hybrid model with
other widely used methods. Statistical tests were conducted
to determine whether the di	erences between methods were
signi
cant [34].

4.1. Experimental Methodology

4.1.1. Datasets and Experimental Setup. We chose four real-
life datasets from theUCI Repository to form our benchmark
dataset: opportunity activity recognition (OAR), gas sensor
array dri� (GAS), MiniBooNE particle identi
cation dataset
(MPID), and KDD 2008, with dimensionality of 110, 128, 50,
and 117, respectively. Detailed information about the selected
datasets is listed in Table 1.

�e original OAR dataset contains 128 attributes and has
four groups of labels for di	erent tasks. In our experiment,
we used only one group of labels. �e original dataset was
also processed by the script provided by the data owner. �e
dimension of the processedOARwas 110, and all recordswere
classi
ed into four groups representing the actions “Stand”,
“Walk”, “Sit”, and “Lie”. Several experiments were conducted
with this dataset. For each experiment, one class was treated
as the normal class, and the others were used as the
anomalous class. Similar experiments were also conducted
on GAS, which contained 6 classes: “Ethanol”, “Ethylene”,
“Ammonia”, “Acetaldehyde”, “Acetone”, and “Toluene”. �e
samples contained in MPID were labelled as “signal” and
“background” and both classes were alternately used as the
normal class. KDD 2008 is a breast cancer dataset that
contains benign and malignant samples. �ere were 101617
benign records and 623 malignant records, and we used only
the benign samples as the normal class. In each experiment,80% of the normal samples were randomly selected for
training, and we generated a testing set with an equal
number of normal samples and anomalous samples from the
remaining samples.�us,we can evaluate both the false alarm
rate and the false acceptance rate tomeasure the performance
of the proposed model.
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Input: Training set D, query sample /, desired false alarm rate -, nearest neighbor �,
number of subsets �, number of elements in one subset 6, hyperparameter
sets � for DAE.

Output:�e label of query sample ;(/)
(1) Train DAE with the whole training set D and prede
ned parameter set �.
(2) Process D and / with the trained DAE. �e dimension-reduced training set D is

denoted as !.
(3) Generating � subsets !
 = {"
1, . . . , "
�}.
(4) for 7 = 1, . . . , � do
(5) for E = 1, . . . , 6 do
(6) for � = 1, . . . , � do

(7) Calculate the �th nearest neighborhood distance 9�("
�) for "
� in subset !�.
(8) end for

(9) Calculate 8("
�) with Eq. (8).

(10) end for

(11) end for

(12) Repeat (6)–(9) to calculate 8(/
).
(13) for 7 = 1, . . . , � do

(14) Calculate �̂(/
) with Eq. (9).

(15) Calculate ;(/
) with Eq. (10).
(16) end for
(17) Calculate the 
nal decision ;(/) using Eq. (11).

Algorithm 1: �e procedure of the proposed hybrid model.

Table 1: Details of the datasets used in the experimental investiga-
tion.

Dataset name
Number of
instances

Number of
attributes

Number of
classes

OAR 9699 110 4

GAS 3600 128 6

MPID 130065 50 2

KDD 2008 102240 117 2

To better evaluate the performance of the proposed
method, we compared the proposed model with other stan-
dalone algorithms, namely, SVDD, OCSVM, aK-LPE [35],
and one ensemble algorithm, OCSVMwith 
re�y (OCSVM-
FA) [28]. SVDD and OCSVMwere implemented in LIBSVM
[36], and aK-LPE and OCSVM-FA were implemented in
MATLAB following the original descriptions in [35] and [28],
respectively. DAE was also implemented in MATLAB with
the toolbox provided in [37].

4.1.2. Performance Measurement. Various measurements
have been proposed to evaluate classi
cation performance,
such as geometric means [38], F1 score, and recall
rate. We select the area under the curve (AUC) to
compare performance. �e curve is the receiver operating
characteristic (ROC) curve, which was developed to measure
the diagnostic ability of a binary classi
er system by plotting
the true positive rate (TPR) against the false positive rate

(FPR) at various threshold settings. �e TPR and FPR are
formulated as follows:

FPR = FP

FP + TN
,

TPR = TP

TP + FN
, (12)

where TP denotes the number of correctly classi
ed positive
samples, TN represents the number of correctly classi
ed
negative samples, FP indicates the number of negative sam-
ples classi
ed as positive, and FN is the number of posi-
tive samples classi
ed as negative. In our experiments, the
positive and negative samples are labelled as “+1” and “−1”,
respectively. Methods with higher AUC usually perform
better than those with lower AUC. Furthermore, the AUC of
an ideal classi
er is 1, whereas the AUC for random guessing
is 0.5.

4.1.3. Parameter Settings. �e parameter values strongly
impact the performance of anomaly detectionmodels.�ere-
fore, careful tuning is required to determine themost suitable
parameter sets. As the determination of the best parameter set
is dependent on the analyzed data, it is di
cult or impossible
to 
nd a universal set of parameters that is suitable for all
datasets. �erefore, we determine the optimal parameters for
each dataset.

In our model, anomaly detection is performed in two
stages: dimension reduction and detection.�e hyperparam-
eters of DAE, learning rate (for pretraining 0.001–0.1), num-
ber of epochs (for pretraining 5–50, for 
ne tuning 5–200),
number of hidden units, and size of minipatch (10) are set
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Table 2: Average AUC and corresponding standard deviation of the di	erentmethods.�e 
rst class listed in the bracket indicates the normal
class. Results were calculated from 50 iterations.

SVDD OCSVM aK-LPE OCSVM-FA Our model

OAR
(Stand versus others)

AUC
AUCstd

0.94±0.01 0.95±0.01 0.96±0.00 0.98±0.02 0.99±0.00
OAR
(Sit versus others)

AUC
AUCstd

0.88±0.01 0.87±0.02 0.90±0.04 0.90±0.01 0.95±0.01
OAR
(Lie versus others)

AUC
AUCstd

0.95±0.01 0.95±0.01 0.97±0.00 0.98±0.01 0.99±0.00
GAS
(Ethanol versus others)

AUC
AUCstd

0.92±0.02 0.92±0.02 0.94±0.01 0.93±0.02 0.97±0.01
GAS
(Ethylene versus others)

AUC
AUCstd

0.91±0.04 0.91±0.04 0.92±0.03 0.94±0.02 0.98±0.01
GAS
(Ammonia versus others)

AUC
AUC

std

0.92±0.02 0.93±0.02 0.95±0.01 0.96±0.01 0.99±0.00
GAS
(Acetone versus others)

AUC
AUCstd

0.81±0.03 0.77±0.04 0.80±0.03 0.80±0.03 0.92±0.01
MPID
(background versus signal)

AUC
AUCstd

0.70±0.04 0.77±0.03 0.75±0.03 0.79±0.03 0.82±0.01
MPID
(signal versus background)

AUC
AUCstd

0.66±0.09 0.72±0.11 0.73±0.03 0.70±0.03 0.76±0.01
KDD 2008
(benign versus malignant)

AUC
AUCstd

0.50±0.03 0.51±0.03 0.34±0.01 0.50±0.01 0.52±0.01
Rank 4.3 3.90 3.10 2.65 1.05

according to [39]. If the hidden layers of the DAE are too
shallow, the DAE cannot fully learn the correlations among
the dimensions. However, too many hidden layers require
more training records and result in greater computational
cost. We empirically set 3 coding layers in our experiments.
�e number of subsets is also set to 3, and the �th nearest
neighbor is set to � = 60.4, following [18]. �e parameters
of SVDD, OCSVM, and OCSVM-FA are selected following
[23], [40], and [28], respectively.

4.2. Results Analysis. We obtain di	erent decision bound-
aries by varying - in our model. �e di	erent boundaries
lead to di	erent false positive and true positive rates on
the test data, which form di	erent operating points in the
ROC curves used to calculate the AUC. We summarize
the experimental results in Table 2. For each dataset, the
algorithms were run 50 times to eliminate random e	ects.

Table 2 shows that our proposed method has the best
AUC performance and the smallest standard deviation
among the tested algorithms. �e proposed model always
performs better in transformed feature space than aK-LPE,
which is conducted in the original high-dimensional space.

We also note that all the tested methods perform poorly
on the KDD 2008 dataset when using benign records as
the normal class. One possible reason is that the malignant
records have a similar distribution to that of one subset of
the benign records.Whenwe build an anomaly detector from
benign records, the malignant information is also treated as
benign. �us, the performance of all the methods is close
to random guessing. Since only a few malignant records are
provided in KDD 2008, it is challenging to train the DAE;
therefore, we did not run the experiments using malignant
records as the normal class.

Table 3: Sche	e test for comparison of the proposed model and
other methods. “+” indicates that the method on the le� is better.

Methods � value

Our model versus SVDD +0.0005

Our model versus OCSVM +0.0043

Our model versus aK-LPE +0.0020

Our model versus OCSVM-FA +0.0916

4.2.1. Statistical Analysis. In addition to obtaining the AUC
values in Table 2, statistical tests were conducted to determine
whether the di	erences among methods were signi
cant.
Both pairwise and multiple comparison tests were used. We

rst ranmultiple comparison tests to obtain a global perspec-
tive of the performance of the algorithms over the complete
dataset and then conducted pairwise tests to provide an
outlook of the speci
c performance of themethods for a given
dataset. �e signi
cance level was set to 0.1.

�e Friedman rank test was used to determine whether
the assigned ranks were signi
cantly di	erent from assigning
an average rank to each classi
er [41]. �e Friedman test
was 
rst adopted to compare the performance of the tested
anomaly detection methods and to determine their perfor-
mance relationships.�e Friedman rank of theAUC is shown
at the bottom of Table 2, with a � value of 0.0002. �erefore,
the null hypothesis that there is no di	erence between the
tested methods is rejected. A smaller rank represents better
performance. Furthermore, the Sche	e post hoc test was
conducted for pairwise comparisons, and the results are
shown in Table 3. �e � values are all smaller than our
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Table 4: Performance of the proposed model with di	erent anomaly detectors.

Dataset � = 1 � = 3 � = 11 � = 31
GAS
(Acetone versus
others)

0.917±0.022 0.916±0.007 0.915±0.007 0.914±0.007
OAR
(Sit versus others)

0.957±0.017 0.951±0.011 0.948±0.008 0.941±0.004

Table 5: �e average AUC of the proposed model with di	erent�-
nearest neighbors.

Dataset � = 3 � = 10 � = 30
OAR 0.99 0.99 0.97

GAS 0.97 0.97 0.94

MPID 0.75 0.76 0.74

prede
ned signi
cance level of 0.1; therefore, the results are
statistically signi
cant.

4.2.2. In�uence of Subsets. In our experiments, we randomly
generated � subsets to build ensemble anomaly detectors.
�eoretically, the randomness in the prediction should be
reduced compared to building a single classi
er with the
whole dataset [33]. We also determined the performance of
the proposed method with varying numbers of subsets, and
the results are shown in Table 4. �e average AUC decreases
slightly as the number of subsets increases. Meanwhile, the
standard deviation of the AUC also decreases. A similar trend
is observed with the other datasets. In our experiments, we
set � to 3 as a trade-o	 between reduced random e	ects in
the classi
cation and increased computational cost. All the
results reported in Table 2 were obtained with 3 anomaly
detectors.

4.2.3. In�uence of the Nearest Neighbor. As a nonparametric
method, the most important issue in KNN is to determine
a suitable value of �. Di	erent � values lead to di	erent
decision boundaries. Reference [18] found that � can be
set to �0.4. To better evaluate the e	ect of �, we performed
experiments with varying�. �e size of the training set is set
to 500, and all the results are shown in Table 5.�e theoretical
value of � is 5000.4 ≈ 12.

Table 5 shows that the proposedmodel is relatively robust
to changes in �; that is, the performance of the proposed
method is stable for a wide range of�. �e features extracted
from DAE have a more compact distribution compared with
that of the original dataset, which is why our model is
relatively robust to changes in �.

4.2.4. Time Complexity. Two major factors a	ect the time
consumption of the proposed model: DAE training and
anomaly detector construction. ADAE is a parametricmodel
that has to be trained before its 
rst use. Training theDAE is a
time-consuming task with large-scale and high-dimensional
data. However, once the DAE is successfully trained, the

architecture of the network is determined and the time con-
sumed to map new test samples is negligible. Furthermore,
a�er the original high-dimensional data are transformed
into lower-dimensional space, they have a more compact
distribution, and creating ensemble anomaly detectors from
subsets of the dataset can greatly reduce time consumption.

In our model, the time consumed to build the anomaly
detector is a quadratic function of the number of records.
Assume that the time complexity to build one anomaly

detector using the whole dataset is D(�2), where � is the
number of records. If we created � anomaly detectors from �
subsets and each subset contained 10% of the whole dataset,
the time complexity would be reduced to D(0.01 ∗ � ∗ �2).
5. Conclusion

In this paper, we proposed a hybrid semi-supervised anomaly
detection model for high-dimensional data. �e model con-
sists of a DAE and an ensemble KNN-based anomaly detec-
tor. �e DAE is trained in unsupervised mode to transform
high-dimensional data into a more compact feature space.
Considering that the distribution of the training set is more
compact in the compact feature space, it is possible to build
powerful anomaly detectors with a portion of a dataset rather
than using the whole training set. �e ensemble anomaly
detectors have a smaller standard deviation than a single
detector built from the whole dataset. Moreover, this process
greatly reduces the computational cost.

�e experimental results and statistical signi
cance anal-
ysis of a wide range of real-life datasets demonstrate that
the proposed model performs better than standalone algo-
rithms. Considering that DAE training has been thoroughly
researched and almost no parameters of the anomaly detector
need to be trained, the hybrid model can easily be applied in
various 
elds.
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