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Abstract
We propose a semismooth Newton-type method for nonsmooth optimal control prob-
lems. Its particular feature is the combination of a quasi-Newton method with a
semismooth Newton method. This reduces the computational costs in comparison
to semismooth Newton methods while maintaining local superlinear convergence.
The method applies to Hilbert space problems whose objective is the sum of a smooth
function, a regularization term, and a nonsmooth convex function. In the theoretical
part of this work we establish the local superlinear convergence of the method in an
infinite-dimensional setting and discuss its application to sparse optimal control of
the heat equation subject to box constraints. We verify that the assumptions for local
superlinear convergence are satisfied in this application and we prove that conver-
gence can take place in stronger norms than that of the Hilbert space if initial error and
problem data permit. In the numerical part we provide a thorough study of the hybrid
approach on two optimal control problems, including an engineering problem from
magnetic resonance imaging that involves bilinear control of the Bloch equations. We
use this problem to demonstrate that the new method is capable of solving nonconvex,
nonsmooth large-scale real-world problems. Among others, the study addresses mesh
independence, globalization techniques, and limited-memory methods. We observe
throughout that algorithms based on the hybrid methodology are several times faster
in runtime than their semismooth Newton counterparts.
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1 Introduction

In Mannel and Rund (2019) we developed the convergence theory of a hybrid semi-
smooth quasi-Newtonmethod to solve structured operator equations in Banach spaces.
In the present paper we address applications and numerical realizations of that work.
Specifically, we propose a novel algorithm to solve infinite-dimensional nonsmooth
optimization problems of the form

min
u∈U f̂ (u) + γ

2
‖u‖2U + ϕ(u), (P)

show that its theoretical requirements are met by certain optimal control problems
that are special instances of (P), and provide an extensive numerical study for the new
method on convex and nonconvex optimal control problems. In (P), U is a Hilbert
space, γ > 0, ϕ : U → R∪{+∞} is convex but possibly nonsmooth, and f̂ : U → R

is smooth but possibly nonconvex. The precise problem setting is given in Sect. 3. A
prototypical example from PDE-constrained optimal control is

min
u∈L2(�)

1

2
‖y(u) − yd‖2L2(�)

+α

2
‖u‖2L2(�)

+β ‖u‖L1(�) s.t. a ≤ u ≤ b a.e. in �,

where a < 0 < b and α, β > 0 are real numbers, � is a bounded Lipschitz domain,
yd ∈ L2(�), and y = y(u) is for u ∈ L2(�) the solution of the semilinear equation
−�y+ y3 = u with appropriate boundary conditions. As f̂ (u) = 1

2‖y(u)− yd‖2L2(�)

in this instance of (P), the evaluation of f̂ and its derivatives requires PDE solves.
The new algorithm is a semismooth Newton-type method that exploits the presence

of the smooth term∇ f̂ in the optimality conditions of (P) by applying a quasi-Newton
method. Specifically, the operator∇2 f̂ (uk) that appears in semismooth Newtonmeth-
ods is replaced by a quasi-Newton approximation Bk . In PDE-constrained optimal
control problems this lowers the runtime significantly because it omits the PDE solves
that occur in the evaluation of Hessian-vector products ∇2 f̂ (uk)d while maintain-
ing superlinear convergence. Note that a direct application of quasi-Newton methods
to semismooth equations cannot ensure superlinear convergence. For instance, Broy-
den’s method on a piecewise affine (hence semismooth) equation in R may converge
only r-linearly, cf. (Griewank 1987, Introduction). We present the hybrid method and
its convergence properties for problems of the form (P) in Sect. 3. Its application to
a model problem from PDE-constrained optimal control, the time-dependent sparse
optimal control of linear and semilinear heat equations subject to box constraints,
constitutes Sect. 4 and concludes the theoretical part.

The remainder of the paper is devoted to numerics. We devise various numerical
realizations of the hybrid method and compare them as part of an extensive numer-
ical study. This study addresses many theoretical and practical aspects of the hybrid
approach: We verify experimentally the superlinear convergence with respect to dif-
ferent norms, we investigate mesh independence properties, we compare different
globalization strategies including a trust-region method, and we examine different
quasi-Newton updates (Broyden, SR1, BFGS).
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The numerical study is based on two optimal control problems, starting with the
time-dependent box-constrained sparse optimal control of the linear heat equation
from the theoretical part. This model problem allows us to display very clearly the
convergence properties of the hybrid method, e.g., its local superlinear convergence.
The second problem deals with the design of radio-frequency pulses for magnetic
resonance imaging, a topic from medical engineering. A realistic modeling yields a
nonsmooth and nonconvex optimal control problem that serves as a benchmark for the
performance of the hybrid approach on real-world applications. The numerical results
underline that the hybrid approach can be competitive on such problems. Indeed, a
previous version of the presented trust-region method formed the kernel of the code
Rund et al. (2018a, b) that won the ISMRM challenge on radio-frequency pulse design
in magnetic resonance imaging Grissom et al. (2017). Here we provide an improved
successor.

Since quasi-Newtonmethods involve theHilbert space structure ofU in an essential
way, it may be surprising that the numerical results for both problems clearly indicate
convergence of the control u with respect to stronger norms than that of U . In Sect. 4
we establish rigorous theoretical results that explain this behavior for the control of
the heat equation. It is related to the regularity of the problem and the quality of the
initial approximation.

Although quasi-Newton methods have been applied to PDE-constrained opti-
mal control problems, for instance in (Borzì and Schulz 2012, Chapter 4), Hinze
and Kunisch (2001), and (Ulbrich 2011, Chapter 11), there are rather few infinite-
dimensional convergence results available for algorithms that incorporate quasi-
Newton methods and can handle nonsmoothness. We are aware of Sachs (1985),
Griewank (1987), Muoi et al. (2013), Adly and Ngai (2018), but none of these yield
superlinear convergence for (P).

State-of-the-art methods for solving optimal control problems of the form (P) are
semismooth Newton methods, cf. Ito and Kunisch (2008), Hinze et al. (2009), Ulbrich
(2011) and De los Reyes (2015). In particular, they have been applied successfully to
sparse optimal control problems, cf., e.g., Stadler (2009), Amstutz and Laurain (2013),
Herzog et al. (2012), Herzog et al. (2015), Kunisch et al. (2016) and Boulanger and
Trautmann (2017). Since the problems thatwe address in the numerical study are of this
type, we consistently compare the hybrid approach to semismooth Newton methods.

In finite-dimensional settings there are many works available that treat (modified
and unmodified) quasi-Newton methods for nonsmooth equations. The idea to apply
a quasi-Newton method to the smooth part of a structured nonsmooth equation, which
is at the core of the hybrid approach, appears in Chen and Yamamoto (1992), Wang
et al. (2011), Qi and Jiang (1997), Han and Sun (1997), Sun and Han (1997). Among
these contributions, Han and Sun (1997) is the closest to our work because it is based
on finding the root of a normal map; after reformulating the optimality conditions
of (P) we are faced with the same task (which we tackle by the hybrid semismooth
quasi-Newton method). However, Han and Sun (1997) does not address the infinite-
dimensional setting and, in finite dimensions, is less general than our approach in
regard to the set of constraints, which in Han and Sun (1997) has to be polyhedral. On
the other hand, Han and Sun (1997) offers a deeper treatment for the specific setting
of normal maps with polyhedral sets in finite dimensions.
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2090 F. Mannel, A. Rund

This paper is organized as follows. Section 2 specifies some notions that are impor-
tant for this work, e.g., semismoothness. In Sect. 3 we provide the problem under
consideration in full detail, introduce the hybrid method, and establish convergence
results for it. Section 4 discusses the application of the method to sparse optimal con-
trol of linear and semilinear heat equation with box constraints. In Sect. 5 we comment
on implementation issues. Section 6 contains the numerical study and in Sect. 7 we
draw conclusions from this work. In “Appendix A” we provide the algorithm that we
found most effective in the numerical studies—a matrix-free limited-memory trun-
cated trust-region variant of the hybrid method.

2 Preliminaries

In this short section we fix the notation, recall the notion of proximal maps, and specify
which concept of semismoothness we use.

We set N := {1, 2, 3, . . .}. All linear spaces are real linear spaces. Let X and Y
be Banach spaces. We denote Bδ(x̄) := {x ∈ X : ‖x − x̄‖X < δ} for δ > 0 and
x̄ ∈ X . Moreover, L(X ,Y ) represents the space of bounded linear maps from X to
Y . If X can be continuously embedded into Y , this is indicated by X ↪→ Y . In the
Hilbert space U we write (v,w)U for the scalar product of v,w ∈ U and (v, ·)U for
the linear operator w 	→ (v,w)U from U to R. Furthermore, we recall the definition
and elementary properties of the proximal map.

Definition 1 Let U be a Hilbert space and let γ > 0. Let ϕ : U → R ∪ {+∞} be
a proper, convex, and lower semicontinuous function and denote its effective domain
by C := {u ∈ U : ϕ(u) < +∞}. The proximal mapping of ϕγ := ϕ

γ
is given by

Proxϕγ : U → U , Proxϕγ (u) := argminũ∈C
[
1

2
‖ũ − u‖2U + ϕγ (ũ)

]
.

It is easy to see that Proxϕγ is single-valued, has image C , and satisfies the relation

û = Proxϕγ (u) ⇐⇒ γ (u − û) ∈ ∂ϕ(û) (1)

for u, û ∈ U and arbitrary γ > 0, where ∂ϕ denotes the convex subdifferential of ϕ.
If ϕ is the characteristic function of a closed convex set, then Proxϕγ is the projection
onto that set. More on proximal mappings in Hilbert spaces can be found in (Bauschke
and Combettes 2017, Section 24), for instance.

We will use the rather general notion of semismoothness from (Ulbrich 2011,
Definition 3.1) that includes, for instance,Newtondifferentiability, cf. (Ito andKunisch
2008, Definition 8.10).

Definition 2 Let X ,Y be Banach spaces and let x̄ ∈ X . LetG : X → Y be continuous
in an open neighborhood of x̄ . Moreover, let ∂G : X ⇒ L(X ,Y ) satisfy ∂G(x) �= ∅
for all x ∈ X . We say that G is semismooth at x̄ with respect to ∂G iff there holds

sup
M∈∂G(x̄+h)

‖G(x̄ + h) − G(x̄) − Mh‖Y = o(‖h‖X ) for ‖h‖X → 0.
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The set-valued mapping ∂G : X ⇒ L(X ,Y ) is called a generalized derivative of G.
For x ∈ X every M ∈ ∂G(x) is called a generalized differential of G at x .

3 Problem setting, algorithm, and convergence results

In this section we introduce the problem class in full detail and present the hybrid
method to solve it.We provide its convergence properties and recall a result concerning
local uniform invertibility of generalized differentials.

3.1 Problem setting and algorithm

Throughout this work we consider optimization problems of the form

min
u∈U f̂ (u) + γ

2
‖u‖2U︸ ︷︷ ︸

=: f (u)

+ ϕ(u), (P)

the details of which are contained in the following assumption.

Assumption 1 Let the following conditions be satisfied.

1) U is a Hilbert space.
2) (P) has a local solution, denoted ū ∈ U .
3) The function ϕ : U → R ∪ {+∞} is proper, convex, and lower semicontinuous.
4) The function f̂ : U → R is continuously differentiable.
5) There is a Banach space Q ↪→ U such that

∇ f̂ (u) ∈ Q for all u ∈ U , (2)

such that
∇ f̂ : U → Q is differentiable,

and such that

∇2 f̂ : U → L(U , Q) is locally Hölder continuous.

6) There are γ, δ,CM > 0 such that

Proxϕγ : Q → U is semismooth at q̄ := − 1

γ
∇ f̂ (ū)

and such that for each q ∈ Bδ(q̄) and all M ∈ ∂ Proxϕγ (q) there holds

‖M‖L(Q,U ) ≤ CM .
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2092 F. Mannel, A. Rund

7) Defining
H : Q → Q, H(q) := ∇ f̂ (Proxϕγ (q)) + γ q (3)

with generalized derivative

∂H : Q ⇒ L(Q, Q), ∂H(q) :=
{
∇2 f̂ (ū) ◦ M + γ I : M ∈ ∂ Proxϕγ (q)

}
(4)

there are δ̄,CM̄−1 > 0 such that for each q ∈ B
δ̄
(q̄) all M̄ ∈ ∂H(q) are invertible

and satisfy
‖M̄−1‖L(Q,Q) ≤ CM̄−1 .

Remark 1 Note that Proxϕγ is an operator from U to U , but is required to be semi-
smooth from Q to U in 6). Note, furthermore, that q̄ ∈ Q holds in 6) due to (2).

Remark 2 Under Assumption 1 there are constants LP , L∇ > 0 such that

‖Proxϕγ (q)−Proxϕγ (q̄)‖U ≤ LP‖q−q̄‖Q and ‖∇ f̂ (u)−∇ f̂ (ū)‖Q ≤ L∇‖u−ū‖U
are satisfied for all q close to q̄ , respectively, for all u close to ū. The constants LP

and L∇ will appear in the convergence results below.

Remark 3 It would be enough to require 3)–5) only locally around ū.

Since f can be nonconvex and since ϕ can be nonsmooth, (P) is a nonconvex and
nonsmooth optimization problem, in general. It may also feature a convex admissible
set, as ϕ is extended real-valued.We tackle (P) by reformulating its first order optimal-
ity condition as operator equation H(q) = 0. The approach to use Robinson’s normal
map Robinson (1992) for the reformulation is inspired by (Pieper 2015, Section 3),
which is one of the rather few references that we are aware of where a prox-based
reformulation of the optimality conditions is used in the context of infinite dimensional
PDE-constrained optimal control. This approach is, however, quite common in finite
dimensional optimization, in particular in connectionwith first ordermethods, cf., e.g.,
Beck (2017) and Parikh and Boyd (2014). Also, let us point out that semismoothness
of proximal maps is addressed in (Xiao et al. 2018, Section 3) and (Milzarek 2016,
Section 3.3) for finite dimensions as well as in (Pieper 2015, Section 3.3) for infinite
dimensions.

Lemma 1 Let Assumption 1 hold. Then ū satisfies the necessary optimality condition
0 ∈ ∇ f (ū)+∂ϕ(ū)of (P)and q̄ satisfies H(q̄) = 0, where H is givenby (3).Moreover,
for any q̂ ∈ Q with H(q̂) = 0 the point û := Proxϕγ (q̂) satisfies 0 ∈ ∇ f (û)+ ∂ϕ(û).

If the objective in (P) is convex, then any such û is a global solution of (P).

Proof It is well-known that the local solution ū of (P) satisfies 0 ∈ ∇ f (ū) + ∂ϕ(ū).
Since q̄ = − 1

γ
∇ f̂ (ū) by definition, we obtain γ (q̄ − ū) = −∇ f (ū) ∈ ∂ϕ(ū), hence

ū = Proxϕγ (q̄) by (1). Inserting this into q̄ = − 1
γ
∇ f̂ (ū) implies H(q̄) = 0.

If q̂ ∈ Q with H(q̂) = 0 is given and we set û := Proxϕγ (q̂) ∈ U , then we have

H(q̂) = 0 �⇒ −∇ f̂ (û) − γ û = γ
(
q̂ − û

) �⇒ −∇ f (û) ∈ ∂ϕ(û),
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where the final implication involves (1). The last identity yields 0 ∈ ∇ f (û) + ∂ϕ(û).
The assertion concerning convexity is true since it just restates that the necessary

optimality condition is sufficient for global optimality in convex optimization. ��
Nextwe provide the new algorithm. It aims at solving the operator equation H(q) =

0. Note that H acts on the artificial variable q that is related to the control u by
uk = Proxϕγ (qk) for k ≥ 1, respectively, q̄ = − 1

γ
∇ f̂ (ū).

The key idea of the new method is to replace the Hessian ∇2 f̂ (uk) that appears in
semismooth Newton methods by a quasi-Newton approximation Bk . In contrast, the
generalized derivative of the proximal map Proxϕγ is left unchanged. The algorithm
thus combines a quasi-Newton method with a semismooth Newton method and can
be regarded as a hybrid approach. It reads as follows.

Algorithm 1: Hybrid semismooth quasi-Newton method for (P)

Input: u0 ∈ U , B0 ∈ L(U , Q), 0 ≤ σmin ≤ σmax ≤ 2, γ > 0
1 Let q0 := − 1

γ
∇ f (u0)

2 for k = 0, 1, 2, . . . do
3 if H(qk) = 0 then let ū := Proxϕγ (qk); STOP
4 Choose Mk ∈ ∂ Proxϕγ (qk)

5 Let M̃k := BkMk + γ I

6 Solve M̃ksk = −H(qk) for sk

7 Let qk+1 := qk + sk and uk+1 := Proxϕγ (qk+1)

8 Let sku := uk+1 − uk and yk := ∇ f̂ (uk+1) − ∇ f̂ (uk)
9 Choose σk ∈ [σmin, σmax]

10 if sku �= 0 then let Bk+1 := Bk + σk(yk − Bksku )
(sku ,·)U
‖sku‖2U

;

11 else let Bk+1 := Bk

12 end
Output: ū

In the numerical study in Sect. 6 we work exclusively with (σk) ≡ 1 in line 9,
i.e., the classical Broyden update, as already this simple choice results in efficient
algorithms. Also, we will compare this update to other update formulas, specifically

Bk+1 = Bk +
(
yk − Bks

k
u

) (
yk − Bksku , ·

)
U(

yk − Bksku , s
k
u

)
U

(SR1)

and

Bk+1 = Bk + yk
(
yk, ·)U(
yk, sku

)
U

− Bks
k
u

(
Bksku , ·

)
U(

Bksku , s
k
u

)
U

. (BFGS)

Moreover, it should be clear that Algorithm 1 needs to be globalized for the numerical
experiments. We will observe in the first half of Sect. 6 that if f̂ is convex, then a
simple line search suffices for this. In contrast, if (P) is severely nonlinear, then a
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2094 F. Mannel, A. Rund

trust-region globalization yields better results, cf. the optimal control of the Bloch
equation in the second half of Sect. 6.

3.2 Convergence results

For the iterates (qk) of Algorithm 1 we have the following convergence result.

Theorem 1 Let Assumption 1 hold and let μ ∈ (0, 1). Then:

1) There exists ε > 0 such that for every initial pair (u0, B0) ∈ U × L(U , Q)

with ‖u0 − ū‖U < ε and ‖B0 − ∇2 f̂ (u0)‖L(U ,Q) < ε, Algorithm 1 either
terminates after finitely many iterations or generates a sequence of iterates (qk)
that converges q-linearly with rate μ to q̄. If, in addition, σmin, σmax ∈ (0, 2) in
Algorithm 1 and B0 −∇2 f̂ (ū) is compact, then the convergence is q-superlinear.

2) If ∇2 f̂ (u0) − ∇2 f̂ (ū) is compact, then the compactness of B0 − ∇2 f̂ (ū) in 1)
can be replaced by the compactness of B0 − ∇2 f̂ (u0).

Proof This follows from (Mannel and Rund 2019, Theorem 4.2 and Theorem 4.18)
for F(u) := ∇ f̂ (u), G(q) := Proxϕγ (q), Ĝ(q) := γ q, and V := Q. We remark that

the results in Mannel and Rund (2019) require (q0, B0) to be close to (q̄,∇2 f̂ (ū)),
but this is implied by the fact that (u0, B0) is close to (ū,∇2 f̂ (ū)) since ‖q0 − q̄‖Q =
‖ 1

γ
∇ f̂ (u0) − 1

γ
∇ f̂ (ū)‖Q ≤ L∇

γ
‖u0 − ū‖U . ��

Regarding convergence of (uk), (∇ f̂ (uk)) and (H(qk)) we obtain the following.

Corollary 1 Let Assumption 1 hold and let (qk) be generated by Algorithm 1. If (qk)
converges q-linearly (q-superlinearly) to q̄, then:

1) (uk) converges r-linearly (r-superlinearly) to ū and satisfies, for all k sufficiently
large, ‖uk − ū‖U ≤ LP‖qk − q̄‖Q.

2) (∇ f̂ (uk)) converges r-linearly (r-superlinearly) to ∇ f̂ (ū) and satisfies, for all
k sufficiently large, ‖∇ f̂ (uk) − ∇ f̂ (ū)‖Q ≤ L∇‖uk − ū‖U and ‖∇ f̂ (uk) −
∇ f̂ (ū)‖Q ≤ L∇LP‖qk − q̄‖Q.

3) (H(qk)) converges r-linearly (q-superlinearly) to zero and satisfies, for all k
sufficiently large, ‖H(qk)‖Q ≤ (L∇LP + γ )‖qk − q̄‖Q.

Proof This follows from (Mannel and Rund 2019, Corollary 4.4 and Corollary 4.20)
for F(u) := ∇ f̂ (u), G(q) := Proxϕγ (q), Ĝ(q) := γ q, and V := Q. ��

3.3 A general approach for local uniform invertibility

The following result is taken from (Pieper 2015, Section 3). It allows to conveniently
establish condition 7) of Assumption 1.

Lemma 2 Let conditions 1)–6) of Assumption 1 hold and let H and ∂H be given by (3),
respectively, (4). Moreover, suppose that ∂ Proxϕγ can be extended to U in such a way
that ∂ Proxϕγ (u) ⊂ L(U ,U ) for every u ∈ U. Then condition 7) of Assumption 1 is

satisfied if there exist ν, δ̂ > 0 such that for each u ∈ B
δ̂
(ū) and all M ∈ ∂ Proxϕγ (u)

we have
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– ‖M‖L(U ,U ) ≤ 1,
– (Mh, h)U ≥ 0 for all h ∈ U,
– (Mh1, h2)U = (h1, Mh2)U for all h1, h2 ∈ U,
– and

γ (h, Mh)U +
(
∇2 f̂ (ū)Mh, Mh

)
U

≥ ν (h, Mh)U for all h ∈ U . (5)

Proof This is (Pieper 2015, Lemma 3.15) for the situation at hand. ��

Remark 4 Inequality (5) is, in particular, valid if ∇2 f̂ (ū) is positive semidefinite.

4 Application to PDE-constrained optimal control

In this section we show for a model problem how the hybrid approach can be applied
to PDE-constrained optimal control problems. These problems are well-suited for the
application of the hybrid method because the assumptions for fast local convergence
are typically satisfied.

4.1 An important proximal map

To facilitate the discussion of the model problem in Sect. 4.2, we study the associated
proximal map in this section. To this end, let N ∈ N, T > 0, andU := L2(I )N , where
I := (0, T ) for some T > 0. We are interested in the proximal map of

ϕ : U → R ∪ {+∞}, ϕ(u) := δUad (u) +
N∑
i=1

βi‖ui‖L1(I ),

where βi , 1 ≤ i ≤ N , are nonnegative real numbers, Uad is given by

Uad :=
{
u = (u1, . . . , uN )T ∈ U : ai ≤ ui ≤ bi a.e. in I , 1 ≤ i ≤ N

}

for functions a, b ∈ L∞(I )N that satisfy a ≤ b a.e. in I (the inequality is meant
componentwise), and δUad : U → {0,+∞} denotes the characteristic function of
Uad. For reasons that become clear in Sect. 4.2, we fix positive weights α1, . . . , αN

and endowU with the norm ‖u‖U := (
∑N

i=1 αi‖ui‖2L2(I )
)1/2. This norm is equivalent

to the standard norm inU and it is derived from a scalar product, henceU is a Hilbert
space with respect to it. We write �Uad : U → U for the projection onto Uad, i.e.,

�Uad (u) := max(a,min(u, b)) for a.e. x ∈ I .
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2096 F. Mannel, A. Rund

Furthermore, let us introduce the soft-shrinkage operator σ : U → U , which is given
componentwise for 1 ≤ i ≤ N and the constants αi > 0 and βi ≥ 0 by

σi (u)(t) := ρi (ui (t)) for ρi : R → R, ρi (s) :=
(
s − βi

αi

)+
+

(
s + βi

αi

)−
,

where (r)+ := max(0, r) and (r)− := min(0, r) for all r ∈ R.
The proximal map for γ = 1 can now be characterized as follows.

Lemma 3 The proximal map Proxϕ1 : U → Uad is given by Proxϕ1 = �Uad ◦ σ .

Proof This can be established as in (Pieper 2015, Section 3.3) or through direct com-
putation. ��

It is important to note that Proxϕ1 is semismooth.

Lemma 4 Proxϕ1 is semismooth at every q ∈ Q when considered as a mapping from
Q := C([0, T ])N to U with respect to the generalized derivative ∂ Proxϕ1(q) ⊂
L(Q,U ) given by

∂ Proxϕ1(q) :=
⋃

r∈L∞(I )N with
0≤r≤1 a.e. in I

{
M(q, r)

}
,

where 0 ≤ r ≤ 1 is meant componentwise and M = M(q, r) ∈ L(Q,U ) is for
(q, r) ∈ Q × L∞(I )N defined as

(Mh)i (t) :=

⎧⎪⎨
⎪⎩
hi (t) if |qi (t)| >

βi
αi

∧ σi (q)(t) ∈ (ai (t), bi (t)),

0 if |qi (t)| <
βi
αi

∨ σi (q)(t) /∈ [ai (t), bi (t)],
ri (t)hi (t) else

(6)

if i ∈ {1, . . . , N } is such that βi > 0. If βi = 0, then the conditions involving βi
αi

have to be dropped in (6) and there holds σi (q) = qi . In any case, ‖M‖L(Q,U ) ≤
T

1
2 (

∑N
i=1 αi )

1
2 holds for each q ∈ Q and all M ∈ ∂ Proxϕ1(q).

Proof Since Proxϕ1 = �Uad ◦ σ , respectively, Proxϕ1 = �Uad is a superposition
operator, the representation (6) can, for instance, be deduced from (Hinze et al. 2009,
Theorem 2.13). The estimate for ‖M‖L(Q,U ) follows since for h ∈ Q with ‖h‖Q ≤ 1
we have (Mh)i (t) ≤ 1 for a.e. t ∈ I and all 1 ≤ i ≤ N . ��

Remark 5 We emphasize that the superposition operator �Uad ◦ σ is not semismooth
from U to U , cf. Ulbrich (2011); Schiela (2008). Correspondingly, the role of the
additional space Q in Assumption 1 is to ensure the necessary norm gap. In turn, the
demand for ∇ f̂ to map U to Q, cf. 5) of Assumption 1, is a smoothing property.
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4.2 Time-dependent control of the heat equation

4.2.1 The linear heat equation

Let N ∈ N, Q := C([0, T ])N , U := L2(I )N , and Y := P := W (I ; L2(�), H1
0 (�)),

whereW (I ; L2(�), H1
0 (�)) is the usual solution space for weak solutions of the heat

equation, cf., e.g., (Hinze et al. 2009, (1.53)) or (Chipot 2000, (11.12)). We consider
the optimal tracking of the linear heat equation in I × � with N time-dependent
controls u(t) = (u1(t), . . . , uN (t))T , where � ⊂ R

d , 1 ≤ d ≤ 3, is a nonempty and
bounded Lipschitz domain, and the time domain is I := (0, T ) for a fixed final time
T > 0:

min
(y,u)∈Y×Uad

1

2
‖y − yd‖2L2(I×�obs)

+
N∑
i=1

αi

2
‖ui‖2L2(I ) +

N∑
i=1

βi‖ui‖L1(I )

s. t.

⎧⎨
⎩

yt − �y = ∑N
i=1 gi (x)ui (t) in I × �,

y = 0 on �,

y(0, x) = y0(x) in �,

(OCP)

where � := I × ∂�. Moreover, yd ∈ L2(I × �obs) is the desired state, �obs ⊂ � is
the observation domain, αi > 0 are the control cost parameters per control function,
βi ≥ 0 influences the size of the support of ui , y0 ∈ L2(�) is the initial state,
and gi ∈ L2(�) are fixed spatial functions whose support is denoted by ωi ⊂ �,
1 ≤ i ≤ N . For instance, gi could be the characteristic function χωi of a given control
domain ωi ⊂ �. The set of admissible controls is given by

Uad :=
{
u = (u1, . . . , uN )T ∈ U : ai ≤ ui ≤ bi a.e. in I , 1 ≤ i ≤ N

}
(7)

with functions a, b ∈ L∞(I )N that satisfy a ≤ b a.e. in I . By using the same norm
on U as in Sect. 4.1 we can regard (OCP) as a special instance of (P) with γ = 1.
From (Tröltzsch 2010, Theorem 3.13) we obtain that for every u ∈ U there exists
a unique y = y(u) ∈ Y such that the PDE-constraints in (OCP) are satisfied; the
dependence u 	→ y(u) is linear and continuous from U to Y . This implies that the
solution operator u 	→ y(u) is infinitelymany times continuously differentiable. Thus,
f̂ (u) := 1

2‖y(u) − yd‖2L2(I×�obs)
is continuously differentiable from U to R. Since

the control reduced version (P) of (OCP) is a convex problem with strongly convex
objective, it is standard to show that it possesses a unique solution ū ∈ Uad; the
associated state is denoted by ȳ := y(ū) ∈ Y . We can now derive the following result.

Lemma 5 For the control reduced version of (OCP) the mapping H defined in (3) is
for γ = 1 given by

H : Q→Q, Hi (q)(t)=
∫

ωi

gi (x)p
(
�Uad (σ (q))

)
(t, x) dx+αi qi (t), 1 ≤ i ≤ N .

(8)
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Here, p = p(u) ∈ P is the adjoint state, i.e., the unique solution of the adjoint equation

⎧⎨
⎩

−pt − �p = χI×�obs · (y(u) − yd) in I × �,

p = 0 on �,

p(T ) = 0 in �.

(9)

Proof Adjoint calculus yields (∇ f̂ (u))i (t) = ∫
ωi

gi (x)p(t, x)/αi dx for 1 ≤ i ≤ N ,

where p = p(u) is the adjoint state. Inserting this in H(q) = ∇ f̂ (Proxϕ1(q)) + q
yields (8) due to Lemma 3. Moreover, the assumptions on the problem data imply
p(u) ∈ P for the solution of the adjoint equation, cf. (Tröltzsch 2010, Lemma 3.17).
To show that H maps to Q we deduce from the continuous embedding P ↪→
C([0, T ]; L2(�)), cf. (Chipot 2000, Theorem 11.4), that p(u) ∈ C([0, T ]; L2(�)).
Therefore, defining λ = λ(u) by λi (t) := ∫

ωi
gi (x)p(t, x)/αi dx , t ∈ [0, T ], where

1 ≤ i ≤ N , implies λ ∈ Q. Since λ(u) = ∇ f̂ (u), it follows that ∇ f̂ maps U to Q
and hence that H maps to Q. ��
Remark 6 The proof of Lemma 5 demonstrates that we have to choose Q in such
a way that t 	→ ∫

ωi
gi (x)p(t, x) dx belongs to Q, where p solves (9). Thus, the

available regularity of the adjoint state p, respectively, of the multiplier λ, restricts
the choice of Q. If additional regularity is available, then Q may be chosen as a
space of smoother functions than C([0, T ])N . For instance, from (Hinze et al. 2009,
Theorem 1.39) we deduce that if �obs = � and yd ∈ Y , then there holds ∂ p(u)

∂t ∈
W (I ; L2(�), H1

0 (�)), hence p(u) ∈ H1(I ; H1
0 (�)). This implies λ ∈ Q for the

choice Q := H1(I )N . In fact, using W (I ; L2(�), H1
0 (�)) ↪→ C([0, T ]; L2(�)) we

obtain p ∈ C1([0, T ]; L2(�)), which implies λ ∈ Q for Q := C1([0, T ])N . We
stress that Lemma 5 is valid for all these choices of Q.

Assumption 1 holds unconditionally for (OCP).

Lemma 6 The control reduced version of (OCP) fulfills Assumption 1 with H : Q →
Q given by (8). Moreover, H has a unique root q̄ ∈ Q.

Proof Assumption 1 holdsConditions 1)–4) ofAssumption 1were already established,
cf. the remarks above Lemma 5. In the proof of Lemma 5 we have demonstrated that
∇ f̂ maps U to Q. Since ∇ f̂ : U → Q is linear and continuous, it is infinitely
many times continuously differentiable. This yields 5). Condition 6) follows from
Lemma 4. To establish 7) we use Lemma 2. The representation in Lemma 4 shows
that ∂ Proxϕ1(q), q ∈ Q, can be extended in a canonical way to ∂ Proxϕ1(u), u ∈ U .
From the linearity of u 	→ y(u) we obtain that f̂ (u) = 1

2‖y(u) − yd‖2L2(I×�obs)
is

convex, hence (5) is fulfilled. Also, we readily check that the first three properties listed
in Lemma 2 are satisfied by the elements of ∂ Proxϕ1(u), u ∈ U . Thus, (7) holds.
H has a unique root From Lemma 1 we infer by convexity that the unique solution ū
of the control reduced version of (OCP) corresponds to a unique root q̄ of H . ��
Remark 7 If �obs = � and yd ∈ Y , then Lemma 6 is also true for the choices
Q := H1(I )N and P := H1(I ; H1

0 (�)) as well as Q := C1([0, T ])N and P :=
C1([0, T ]; L2(�)), cf. Remark 6.
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Weobtain the following convergence result for Algorithm 1, inwhichwewrite∇2 f̂
for the constant Hessian. Note in (2) and (3) that (uk) converges in various norms.

Theorem 2

1) Let (ȳ, ū) ∈ Y × Uad be the solution of (OCP), let H be given by (8), and
denote by q̄ ∈ Q the unique root of H. Moreover, let μ ∈ (0, 1). Then there
exists ε > 0 such that for every initial pair (u0, B0) ∈ U × L(U , Q) with
‖u0 − ū‖U < ε and ‖B0 −∇2 f̂ ‖L(U ,Q) < ε, Algorithm 1 either terminates after
finitely many iterations or generates a sequence of iterates (qk) that converges
q-linearly with rateμ to q̄ in Q. If, in addition, σmin, σmax ∈ (0, 2) in Algorithm 1
and (B0 − ∇2 f̂ ) ∈ L(U , Q) is compact, then the convergence is q-superlinear.

2) If (qk) is generated by Algorithm 1, then (uk)k≥1 ⊂ Uad, i.e., every uk except
possibly the starting point u0 is feasible for (OCP). Moreover, (uk)k≥1, {ū} ⊂
L∞(I )N and there are L y, L p > 0 such that

‖uk − ū‖Ls (I )N ≤ ‖qk − q̄‖Ls (I )N , ‖uk − ū‖L2(I )N ≤ T
1
2 ‖qk − q̄‖C([0,T ])N ,

‖y(uk) − ȳ‖Y ≤ Ly‖qk − q̄‖Q, ‖p(uk) − p̄‖P ≤ L p‖qk − q̄‖Q
hold for all k ≥ 1 and all s ∈ [1,∞].

If, in addition, a, b ∈ Q holds, then we have (uk)k≥1, {ū} ⊂ Q and for all k ≥ 1

‖uk − ū‖Q ≤ ‖qk − q̄‖Q . (10)

In particular, ‖qk − q̄‖Q → 0 for k → ∞ implies ‖uk − ū‖Q → 0.
3) If (qk) is generated by Algorithm 1 and converges q-linearly (q-superlinearly) to

q̄ in Q, then (uk), (y(uk)) and (p(uk)) converge r-linearly (r-superlinearly) in
Ls(I )N , respectively, Y and P, where s is as in 2). Moreover, (H(qk)) converges
r-linearly (q-superlinearly) in Q to zero, then.

Proof Proof of 1) The claim of 1) follows from Theorem 1, part 1), which can be
applied since Assumption 1 is satisfied, cf. Lemma 6.

Proof of 2) The feasibility of the uk is valid since Proxϕ1(Q) ⊂ Uad and since
uk = Proxϕ1(q

k) for k ≥ 1. Moreover, the property (uk)k≥1, {ū} ⊂ L∞(I )N follows
from Uad ⊂ L∞(I )N . To show the first inequality, we remark that qk, q̄ ∈ Q implies
qk, q̄ ∈ Ls(I )N for all s ∈ [1,∞] and all k ≥ 0. It is straightforward to infer for
q, q̄ ∈ Ls(I )N that |ρi (qi (t)) − ρi (q̄i (t))| ≤ |qi (t) − q̄i (t)| for a.e. t ∈ I , 1 ≤
i ≤ N . The same can be established for ρi replaced by (�Uad )i . Together, this implies
|ui (t)− ūi (t)| ≤ |qi (t)− q̄i (t)| for a.e. t ∈ I , 1 ≤ i ≤ N , proving the first error bound
in 2). Moreover, this also implies (10) provided that (�Uad ◦ σ)(Q) ⊂ Q if a, b ∈ Q.
This property of �Uad ◦ σ is elementary to see, for instance by showing it separately
for σ and �Uad . The second error bound follows from the first for s = 2 by use of

‖qk−q̄‖L2(I )N ≤ |I | 12 ‖qk−q̄‖C([0,T ])N , where |I | is the Lebesguemeasure of I . Since
u 	→ y(u) and u 	→ p(u) are linear and continuous fromU toY = P , they are globally
Lipschitz, too. This in combinationwith the estimate ‖uk−ū‖L2(I )N ≤ ‖qk−q̄‖L2(I )N

and the continuous embedding Q ↪→ L2(I )N yields the third and fourth error bound.
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Proof of 3) The claims follow from the error estimates in 2) and, for (H(qk)), from
part 3) of Corollary 1. ��
Remark 8 It is not difficult to argue that Theorem 2 also holds for Q := Lŝ(I )N for
any ŝ ∈ (2,∞]. Of course, the Ls estimates of that theorem are then only true for
s ∈ [1, ŝ]. The use of a weaker norm in Q relaxes the assumption on (u0, B0) and the
compactness requirement in that theorem.

In Theorem 2 we have worked with Q = C([0, T ])N , P = W (I ; L2(�), H1
0 (�)),

and yd ∈ L2(I × �obs), and we have allowed �obs �= �. If �obs = � and yd is
more regular, then we can exploit this in two ways. First, by letting Q and P be
spaces of smoother functions the convergence results of Theorem 2, that contain the
norms of Q and P , become stronger (but a better quality of the initial approximation
(u0, B0) is required for the theorem to apply). Second, the operator ∇2 f̂ (ū) becomes
compact. In view of Theorem 2, part 1), this suggests to choose a compact initial B0
to achieve q-superlinear convergence, for instance B0 = 0. In contrast, B0 = �I for
� > 0 can only be expected to yield q-linear convergence, presumably the faster the
smaller � is. Indeed, the numerical results in Sect. 6 show that B0 = 0 is most often
superior to scaled identities and that the results for B0 = �I improve as � becomes
smaller. The following two lemmas offer several choices for P and Q and provide the
corresponding convergence results. For simplicity we consider constant bounds.

Lemma 7 Let Q := H1(I )N , U := L2(I )N , Y := W (I ; L2(�), H1
0 (�)), and P :=

H1(I ; H1
0 (�)). Suppose that �obs = � and yd ∈ Y , and let ai , bi be constant for

each 1 ≤ i ≤ N. Then all claims of Theorem 2 except (10) are true. If Q := L∞(I )N

or Q := C([0, T ])N is used instead, then all claims of Theorem 2 are true and the
operator ∇2 f̂ ∈ L(U , Q) is compact.

Proof Proof for Q := H1(I )N The proof is completely analogue to the one of The-
orem 2, except for the claim above (10) and the one below (10). That is, we have to
establish that (uk)k≥1, {ū} ⊂ Q = H1(I )N and uk → ū in Q provided that qk → q̄
in Q. In fact, this follows since Proxϕ1 = �Uad ◦ σ satisfies Proxϕ1(Q) ⊂ Q and
since Proxϕ1 : Q → Q is continuous. Both properties can be proven separately for
�Uad and σ . For �Uad these properties follow from (Kinderlehrer and Stampacchia
2000, Chapter II, Corollary A.5), which shows that �Uad (W

1,s(I )N ) ⊂ W 1,s(I )N for
all s ∈ [1,∞], and from (Appell and Zabrejko 1990, Theorem 9.5). Using the fact
that cut-off does not increase the H1-norm, cf. (Kinderlehrer and Stampacchia 2000,
Theorem A.1), the corresponding proof for σ is elementary.
Proof for Q := L∞(I )N and for Q := C([0, T ])N The compactness of ∇2 f̂ fol-
lows from the compactness of H1(I )N ↪→ L∞(I )N , respectively, of H1(I )N ↪→
C([0, T ])N . All other claims can be established as in the proof of Theorem 2. ��

Still higher regularity is available in the situation of Lemma 7.

Lemma 8 Let Q := C0,ŝ([0, T ])N , ŝ ∈ (0, 1], U := L2(I )N , Y := W (I ; L2(�),

H1
0 (�)), and P := C1([0, T ]; L2(�)). Suppose that �obs = � and yd ∈ Y , and let

ai , bi be constant for each 1 ≤ i ≤ N. Then all claims of Theorem 2 except (10) and
the convergence assertion below it are true. Moreover, qk → q̄ in Q implies uk → ū
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in C0,ŝ−τ ([0, T ])N for any τ ∈ (0, ŝ) and for ŝ �= 1 the operator ∇2 f̂ ∈ L(U , Q) is
compact.

Proof The main task is to establish that Proxϕ1 = �Uad ◦ σ satisfies Proxϕ1(Q) ⊂ Q
and that Proxϕ1 : Q → C0,ŝ−τ ([0, T ])N is continuous at q̄ for any τ ∈ (0, ŝ). The
proof can be undertaken separately for �Uad and σ . The property Proxϕ1(Q) ⊂ Q
follows from (Appell and Zabrejko 1990, Theorem 7.1), and the continuity at q̄ is a
consequence of (Appell and Zabrejko 1990, first part of Theorem 7.6). The compact-
ness of ∇2 f̂ ∈ L(U , Q) is implied by the fact that C0,1([0, T ])N ↪→ C0,ŝ([0, T ])N
is compact for ŝ ∈ (0, 1). ��

4.2.2 The semilinear heat equation

We show that our method also applies to nonlinear state equations. To this end, we
consider the same setting as in Sect. 4.2.1 but replace the linear heat equation in (OCP)
by a semilinear variant. For ease of presentation we use the rather concrete

⎧⎨
⎩

yt − �y + m0(t, x) + m1(t, x)y2κ+1 = ∑N
i=1 gi (x)ui (t) in I × �,

y = 0 on �,

y(0, x) = y0(x) in �,

(sem)

defined on the nonempty and bounded Lipschitz domain � ⊂ R
d , 1 ≤ d ≤ 3, and

the time interval I = (0, T ), T > 0. Here, κ ∈ N, y0 ∈ L∞(�), gi ∈ L2(�) for
all 1 ≤ i ≤ N with support ωi ⊂ �, m0 ∈ L2(I × �), yd ∈ L p(I × �) with
p > 1 + d

2 for d > 1 and p ≥ 2 for d = 1, and m1 ∈ L∞(I × �) is nonnegative.
We set Y := W (I ; L2(�), H1

0 (�)) ∩ L∞(I × �) and P := Y ∩ C([0, T ] × �̄). For
convenience let us recall that N ∈ N, Q = C([0, T ])N , U = L2(I )N . The set of
admissible controls is still given by (7) with a, b ∈ L∞(I )N , a ≤ b a.e. in I . From
(Casas et al. 2017, Proposition 2.1) we obtain that for every u ∈ U there exists a unique
y = y(u) ∈ Y such that (sem) is satisfied. The solution operator u 	→ y(u) isC2 from
U to Y by the implicit function theorem, cf. also (Casas et al. 2017, Proposition 2.2).
Thus, f̂ (u) := 1

2‖y(u) − yd‖2L2(I×�obs)
is continuously differentiable from U to R.

Since the control reduced problem (P) does no longer have a convex objective function,
it is possible that (P) has multiple local and global minimizers; it is, however, standard
to show that at least one global minimizer ū ∈ Uad exists, for instance by following the
arguments of (Tröltzsch 2010, Theorem 5.7). The associated state is ȳ := y(ū) ∈ Y .
Similarly to Lemma 5 the following holds.

Lemma 9 For the control reduced version of (OCP)with (sem) themapping H defined
in (3) is for γ = 1 given by

H : Q → Q, Hi (q)(t) =
∫

ωi

gi (x)p
(
�Uad (σ (q))

)
(t, x) dx+αi qi (t), 1 ≤ i ≤ N .
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Here, the adjoint state p = p(u) ∈ P uniquely solves the linear problem

⎧⎨
⎩

−pt − �p + (2κ + 1)m1(t, x)y2κ p = χI×�obs · (y(u) − yd) in I × �,

p = 0 on �,

p(T ) = 0 in �.

Proof Adjoint calculus yields (∇ f̂ (u))i (t) = ∫
ωi

gi (x)p(t, x)/αi dx for 1 ≤ i ≤
N . Inserting this in H(q) = ∇ f̂ (Proxϕ1(q)) + q and using Lemma 3 establishes
the formula for H . Moreover, the assumptions on the problem data together with
y ∈ Y ⊂ L∞(I × �) imply p(u) ∈ P , cf. (Tröltzsch 2010, Theorem 5.5). From
p ∈ P ⊂ C([0, T ] × �̄) it follows that H maps to Q. ��

Assumption 1 holds for the semilinear problem under the following condition.

Lemma 10 Assumption 1 holds for the control reduced version of (OCP) with state
equation (sem) provided

2κ(2κ + 1)m1y(ū)2κ−1 p(ū) ≤ 1 pointwise a.e. in I × �obs. (11)

Proof Conditions 1)–4) of Assumption 1 were already established, cf. the remarks
above Lemma 9 and those above Lemma 5. In the proof of Lemma 9 we have demon-
strated that ∇ f̂ maps U to Q. As u 	→ p(u) is C2 from U to P , it is not hard
to deduce that ∇ f̂ : U → Q is C2, so (5) is satisfied. Condition 6) follows from
Lemma4.To establish (7)weuseLemma2.Except for (5) the assumptions ofLemma2
follow as in the proof of Lemma 6. A computation reveals that (∇2 f̂ (ū)h, h)U =
(y′(ū)h, r y′(ū)h)U for all h ∈ U , where r := 1 − 2κ(2κ + 1)m1y(ū)2κ−1 p(ū). This
shows that (5) is fulfilled for ν := γ . Thus, 7) holds. ��

We obtain the following convergence result for Algorithm 1. Note in (2) and (3)
that (uk) converges in various norms.

Theorem 3 1) Let (ȳ, ū) ∈ Y × Uad be a solution of (OCP) with (sem) as state
equationand suppose that (11) is satisfied. Let H bedefinedaccording toLemma9
and denote q̄ := −∇ f̂ (ū) ∈ Q. Moreover, letμ ∈ (0, 1). Then there exists ε > 0
such that for every initial pair (u0, B0) ∈ U × L(U , Q) with ‖u0 − ū‖U < ε

and ‖B0 − ∇2 f̂ (u0)‖L(U ,Q) < ε, Algorithm 1 either terminates after finitely
many iterations or generates a sequence of iterates (qk) that converges q-linearly
with rate μ to q̄ in Q. If, in addition, σmin, σmax ∈ (0, 2) in Algorithm 1 and
(B0 − ∇2 f̂ (ū)) ∈ L(U , Q) is compact, then the convergence is q-superlinear.

2) If (qk) is generated by Algorithm 1, then (uk)k≥1 ⊂ Uad, i.e., every uk except
possibly the starting point u0 is feasible for (OCP). Moreover, (uk)k≥1, {ū} ⊂
L∞(I )N , and if limk→∞‖qk − q̄‖Q = 0 then there are L y, L p > 0 such that

‖uk − ū‖Ls (I )N ≤ ‖qk − q̄‖Ls (I )N , ‖uk − ū‖U ≤ T
1
2 ‖qk − q̄‖Q,

‖y(uk) − ȳ‖Y ≤ Ly‖qk − q̄‖Q, ‖p(uk) − p̄‖P ≤ L p‖qk − q̄‖Q
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hold for all k ≥ 1 and all s ∈ [1,∞].
If, in addition, a, b ∈ Q holds, then we have (uk)k≥1, {ū} ⊂ Q and for all k ≥ 1

‖uk − ū‖Q ≤ ‖qk − q̄‖Q .

3) If (qk) is generated by Algorithm 1 and converges q-linearly (q-superlinearly)
to q̄ in Q, then (uk), (y(uk)) and (p(uk)) converge r-linearly (r-superlinearly)
in L∞(I )N , respectively, Y and P. Moreover, (H(qk)) converges r-linearly (q-
superlinearly) in Q to zero, then.

Proof Proof of 1) The claim of 1) follows from Theorem 1, part 1), which can be
applied since Assumption 1 is satisfied, cf. Lemma 10.

Proof of 2) The proof is almost identical to the one for part 2) of Theorem 2. The
only necessary change is that u 	→ y(u) and u 	→ p(u) are no longer globally
Lipschitz, but only locally Lipschitz. The existence of Ly and L p thus follows from
uk → ū in U , the latter being a consequence of the assumption that qk → q̄ in Q.

Proof of 3) The claims follow from the error estimates in 2) and, for (H(qk)), from
part 3) of Corollary 1. ��

5 Implementation

The hybrid framework is tested with three different quasi-Newton updates: Broy-
den, SR1, and BFGS. The methods are implemented with limited-memory techniques
storing the last up to L (called the limit) updates as vectors and matrix-free. Con-
sequently, the Newton systems are solved with iterative methods, specifically with
GMRES or cg. The limited-memory BFGS method is implemented in the compact
variant according to Byrd et al. (1994), see also (Nocedal and Wright 2006, (7.24)).
Additionally, the quasi-Newton methods are compared to Newton’s method itself, i.e.,
setting Bk = ∇2 f̂ (uk) for all k and dropping lines 8–11 in Algorithm 1. Here, the
matrix-free evaluation in a direction is implemented via forward-backward solve. We
stress that when Newton’s method is used, Algorithm 1 is a standard semismooth
Newton method.

The methods are applied with three different globalization techniques. First, a
standard backtracking line search on the residual norm ‖H‖U is used together with
GMRES (ls-GMRES). The line search selects the smallest integer 0 ≤ j ≤ 18 with
‖H(qk + 0.5 j sk)‖U < ‖H(qk)‖U , and j = 19 otherwise. GMRES from Matlab is
used with a tolerance of 10−10 and a maximum number of 50 iterations to solve the
full Newton system. Second, a non-monotone line search (nls-GMRES) with Nls ∈ N

steps is used, where the step size ρ j = 0.5 j , 0 ≤ j ≤ 18, is accepted as soon as
R(qk + ρ j sk) < max{R(qk), R(qk−1), . . . , R(qk−Nls+1)} holds, and j = 19 oth-
erwise. Therein, R will be the residual norm ‖H(·)‖U or the objective f (·) + ϕ(·)
of (P). Third, a trust-region method is investigated based on Steihaug-cg (tr-cg), cf.
Steihaug (1983). The precise algorithm is included in “Appendix A”. It is started with
a radius �0 = 0.1 and stopped with a relative tolerance of 10−5. The parameters are
σ1 = 0.05, σ2 = 0.25, σ3 = 0.7, radius factors f1 = 0.4, f2 = 2, f3 = 0.6, and a
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maximum radius �max = 2. Up to 300 iterations are allowed. The update of the quasi-
Newton matrix is also carried out at rejected steps. Additionally, in case of BFGS, the
update is only applied if the curvature condition (yk, sku )U > 0 holds. To be able to
use Steihaug-cg, the linear system is first reduced to a symmetric one by restricting
to the Hilbert space induced by the inner product (·, Mk ·)U with Mk ∈ ∂ Proxϕγ (qk),
cf. Lemma 2 and (Pieper 2015, Def. 3.4). Then a correction step gives the full update,
cf. (Pieper 2015, (3.25)). The cg method is limited to 100 iterations and stopped with
a relative tolerance of 10−10. We use small tolerances to suppress the influence of
inexact linear system solves.

6 Numerical experiments

Thenumerical experiments below show the application of the hybridmethod to optimal
control problems. The first example is the heat equation, the second the bilinear control
of the Bloch equation inmagnetic resonance imaging. As nonsmooth problem parts we
deal with pointwise box constraints on the controls and sparsity promoting objectives.
All computations are carried out using Matlab 2017a and a workstation with two
Intel Xeon X5675 (24GB RAM, twelve cores with 3.06GHz). All time measurements
are performed on a single CPU without multi-threading.

6.1 Time-dependent tracking of the heat equation

The first example problem is sparse control of the linear heat equation with �obs =
� = (−1, 1)2 and time domain I = (0, 1). Specifically, we consider

min
(y,u)∈Y×Uad

1

2
‖y − yd‖2L2(I×�obs)

+ α

2
‖u‖2L2(I ) + β‖u‖L1(I )

s. t.

⎧⎨
⎩

yt − �y = χω(x)u(t) in I × �,

∂ν y = 0 on �,

y(0, x) = y0(x) in �.

Therein, Uad = {u ∈ U : a ≤ u(t) ≤ b for a.e. t ∈ I } with a = −1 and b = 1,
yd(t, x) = 2 sin(2π t), α > 0, β ≥ 0, χω(x) ∈ L∞(�) is the characteristic function
of the right half ω = (0, 1) × (−1, 1), and y0 ≡ 0. The example is a special case of
(OCP)with N = 1, however usingNeumann instead ofDirichlet boundary conditions.
We emphasize that the results of Sect. 4.2 can also be developed for these boundary
conditions. In view of Lemmas 7 and 8 we expect convergence in rather strong norms.
Specifically, we are interested in q-superlinear convergence of (qk) in H1(I ) and in
C0,s([0, T ]) for all s ∈ (0, 1), convergence of (uk) in H1(I ) and inC0,s−τ ([0, T ]) for
all τ ∈ (0, s), and r-superlinear convergence of (uk) in L2(I ) and L∞(I ). Furthermore,
we should be able to observe the error estimates ‖uk − ū‖Ls (I ) ≤ ‖qk − q̄‖Ls (I ) for
s ∈ {2,∞}, cf. part 2) of Theorem 2. We will investigate these properties numerically.

We use an unstructured triangular mesh with 725 P1 elements generated byMat-
lab’s initmesh with Hmax=0.1, see Fig. 1. As time-stepping scheme the CG(1)
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Fig. 1 Optimal control ū for differentαwithβ = 0 (left),withβ > 0 (mid), and domain�with triangulation
(right)

Table 1 Iterations of the quasi-Newton implementations for differentα (rows) and for different B0 (columns
per method) with β = 0. |A| is the number of control components on the bounds out of 101, − means no
convergence within 50 iterations

α |A| SN Broyden SR1 BFGS

α I yT s
sT s

I yT y
yT s

I 0 α I yT s
sT s

I yT y
yT s

I 0 α I yT s
sT s

I yT y
yT s

I I

100 12 2 12 10 10 6 8 9 10 5 12 7 9 12

10−1 80 4 12 15 − 7 10 17 − 6 14 11 14 18

10−2 95 6 11 19 − 7 9 − − 7 10 13 20 22

10−3 99 11 10 17 − 9 9 − − 12 9 12 12 14

method is chosen (corresponding to the Crank-Nicolson method) with 101 equidistant
time points and a piecewise constant discretization of q and u. We initialize the algo-
rithm with u0 = 0, corresponding to q0 = 0. Since the problem is strongly convex,
the solution is possible based on the simple globalization ls-GMRES (for β = 0 and
sufficiently large α we expect based on a global convergence result in Kunisch and
Rösch (2002, Theorem 3) that it would even be possible to drop the line search and
use only full steps). The optimal controls for different α, β are depicted in Fig. 1. We
will use varying parameters α, β, with α = 0.01 as default value. For the limit we use
L = 30.

The proximal mapping is �Uad (σ (q)) from Lemma 3. In the algorithm we select
the differential Mk ∈ ∂(�Uad ◦ σ)(qk) that satisfies, for all h ∈ Q, (Mkh)(t) =
h(t) if |qk(t)| ≥ β/α and a < σ(qk)(t) < b, and (Mkh)(t) = 0 otherwise. In
(6) this corresponds to the choice r(t) = 1 for all t satisfying |qk(t)| = β/α and
a < σ(qk)(t) < b, and r(t) = 0 for all remaining t ∈ I .

The first study shows the performance of the optimization methods for different
initializations of B0. Table 1 shows the results for β = 0. The first two columns show
α and the resulting number of active points |A| (optimal control on upper or lower
bound) out of 101. The other columns depict the iteration numbers that are needed
to reach the relative tolerance 10−8, separately for semismooth Newton (SN) and
the three hybrid methods. Here, four different initializations are applied, including
the scaled identity α I , the zero matrix 0 (except for BFGS, where this produces a
vanishing denominator), and the two formulas (Byrd et al. 1994, Eq.(3.23)) B0 =
yT s/(sT s)I and (Nocedal and Wright 2006, Eq.(7.20)) B0 = yT y/(yT s)I . We note
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Table 2 Iteration counts for
different α and β. |A| and |O|
denote the number out of 101
control points that are on the
bounds, respectively, that are
zero

α β |A| |O| SN Br SR1 BFGS

1.00 0.1 0 18 4 6 5 8

0.10 0.1 68 20 4 8 6 12

0.01 0.1 79 20 6 6 6 13

1.00 0.2 0 34 3 6 5 7

0.10 0.2 56 30 4 8 7 12

0.01 0.2 68 31 5 7 6 17

1.00 0.5 0 48 3 5 5 7

0.10 0.5 41 53 3 6 5 8

0.01 0.5 45 53 5 7 6 9

1.00 1.0 0 71 3 4 4 6

0.10 1.0 14 77 4 6 5 10

0.01 1.0 21 77 5 7 6 9

that both formulas are implemented in the first step with B0 = 0 for Broyden/SR1
and B0 = α I for BFGS. A good performance for any α and for all three methods
can be obtained by choosing B0 = α I . However, Broyden and SR1 show faster
convergence with the zero initialization, and BFGS shows in the mean less iterations
with B0 = yT s/(sT s)I , which are the default initializations for all other studies below.
We stress that from an infinite-dimensional point of view the choice B0 = 0 results in
B0 − ∇2 f̂ (ū) ∈ L(U , Q) being compact, cf. Lemma 7 and Lemma 8, whereas this is
not the case for the scaled identities. Therefore, BFGS may be inherently slower than
Broyden and SR1 in the following experiments, cf. also the reasoning provided above
Lemma 7. This will indeed turn out to be true.

The results for β > 0 are depicted in Table 2. Here, |O| collects the number of
time points with zero control out of 101. We note that the inequality constraints are in
general inactive (|A| = 0) in the optimum if α ≥ 1. On the other hand, smaller values
α ≤ 0.01 result in only one or two inactive points (the number of inactive points is
101−|A|− |O|). Increasing the parameter β between 0.1 and 1 increases the sparsity
from around 20% to 80%. Forβ ≥ 2 the optimal solution is zero. The four last columns
show the iteration counts of the four methods with default initializations. All methods
convergence quickly for all values of α and β. They tend to require fewer iterations
for larger β, which corresponds to more degrees of freedom being fixed to zero. The
desired tolerance is reached after at most 8 iterations for Broyden (Br), respectively,
7 iterations for SR1. BFGS needs up to 17 iterations.

The iteration counts of the hybrid methods for different discretizations are depicted
in the upper part of Table 3 for α = 0.01, β = 0 using Nc + 1 equidistant time
points and three different meshes from initmesh with Nx nodes. The results show
mesh independence for all three quasi-Newtonmethods with respect to both the spatial
and the temporal discretization. The lower part of the table shows the corresponding
runtimes in seconds. All values are averages of five runs. Broyden and SR1 show
nearly identical runtimes in this example and are twice as fast as BFGS. All three
methods outperform the semismooth Newton method in runtime. For all time and
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Table 3 Iterations and runtimes (in sec.) for different discretizations with α = 0.01, β = 0

Iterations SN Broyden SR1 BFGS

Nc\Nx 725 1938 7701 725 1938 7701 725 1938 7701 725 1938 7701

100 6 6 6 7 7 7 7 7 7 13 13 13

400 5 5 5 7 8 7 7 7 7 14 14 14

1600 5 5 5 7 7 7 7 7 7 14 14 14

6400 5 5 5 7 8 7 7 7 7 14 14 14

Runtimes

100 11 40 210 2 5 33 2 6 31 3 9 56

400 40 128 681 6 22 112 6 20 111 12 37 211

1600 158 486 2755 27 83 446 27 82 449 51 154 841

6400 643 1971 10855 137 456 2095 148 419 2102 290 763 3945

The rows show results for Nc control points. The three columns per method show results for triangulations
with Nx = 725, 1938, 7701 nodes. All runtimes are mean values of five runs

space discretizations a speedup factor of five to six is observed for Broyden and SR1,
and three to four for BFGS.

The next study analyzes the superlinear convergence properties numerically. For
comparison the optimal solution q̄ is first computed in high precision with the semis-
mooth Newton method and GMRES using fine relative tolerances of 10−14 for both.
Then the indicators of superlinear convergence

rku := ‖uk+1 − ū‖Z
‖uk − ū‖Z and rkq := ‖qk+1 − q̄‖Z

‖qk − q̄‖Z
are computed for each method for the norms Z = L2(I ), L∞(I ) and the seminorms
Z = H1(I ),C0,1([0, T ]). For q-superlinear convergence these indicators should con-
verge to zero in the last steps of an optimization run. Table 4 depicts the indicators for
the last four iterations. The results are obtained for α = 0.1, β = 0.2, and a relative
tolerance of 10−8. We observe that the semismooth Newton method converges in one
step as soon as the active set has converged. Broyden and SR1 show fast superlinear
convergence with final indicators between 7× 10−3 and 6× 10−4 both for the control
u and the optimization variable q. For BFGS the indicators are slightly larger, but
also decrease towards the end. If α is further reduced to 0.01, we observe one-step
convergence for all three limited-memory methods, too, which can be explained by
the fact that all but one time point are either active or zero then.

Next we consider the convergence of u and q in different norms. Table 5 displays
the following errors for the last four steps of each optimization method:

eku,L2 := ‖uk − ū‖L2 , eku,H1 := ‖uk − ū‖H1 , eku,L∞ := ‖uk − ū‖L∞ , (12)

and analogue definitions ek
q,L2 , e

k
q,H1 , e

k
q,L∞ for q. The semismooth Newton method

exhibits one-step convergence as soon as the active sets have converged. The other
methods show a quick decrease of all values towards the relative tolerance during
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the last four steps of the optimization run. In particular, SR1 yields the fastest reduc-
tion, while BFGS shows a significantly slower convergence here. As predicted by
Theorem 2, part (2), we have ek

u,L2 ≤ ek
q,L2 and eku,L∞ ≤ ekq,L∞ (since these inequal-

ities are a consequence of the fact that Proxϕ1 : Ls → Ls is nonexpansive for any
s ∈ [1,∞], they hold in all four methods under consideration). We observe that,
in contrast, ek

u,H1 ≤ ek
q,H1 does not hold in general. However, the results indicate

that ek
u,H1 still goes to zero, which agrees with part (2) of Theorem 2 for the choice

Q = H1(I ) described in Lemma 7.

6.2 Sparse control of the Bloch equation

As example for a nonconvex optimization problem we investigate the bilinear control
of the Bloch equations in magnetic resonance imaging (without relaxation, in the
rotating frame, and on-resonance). A realistic optimal control modeling for radio-
frequency (RF) pulse design in slice-selective imaging is considered based on Rund
et al. (2018a). However, we add sparsity to the control model, which is a desirable
feature in practice since the duty cycle of the RF amplifier is often limited. For details
on magnetic resonance imaging we refer to Bernstein et al. (2004). As model problem
we consider the slice-selective imaging with a single slice. Here, imaging data of
a whole slice is to be acquired. The spatial field of view is described by its extent
� ⊂ R perpendicular to the slice direction. The slice itself is described by �in ⊂ �

while the remaining part of � is denoted by �out = � \ �in. The latter should not
contribute to the data acquisition. The control problem is modeled as tracking of the
nuclear magnetization vector M = M(u) = (M1, M2, M3) at the terminal time T .
Specifically, we consider

min
u∈Uad

f̂ (u) + α

2
‖u‖2L2(I ) + β‖u‖L1(I ) s.t. (13)

Ṁ(t, x) = γM(t, x) × B(t, x) a.e. in I × �, M(0, x) = M0(x) a.e. in �

(14)

with α > 0, proton gyromagnetic ratio γ = 267.5380 [rad/s/μT], given initial
condition M0(x), spatial domain x ∈ � = (−c, c) with c = 0.06 [m], and time
t ∈ I = (0, T )with T = 2.69 [ms]. The term f̂ (u) is a tracking-type functional at the
terminal time T describing the intended use of the RF pulse, see below. The external
magnetic fieldB(t, x) = (u(t), v(t), w(t)x) depends on the RF pulse (u, v) ∈ L2(I )2

and the slice-selective gradient amplitude w = w(t) ∈ L2(I ). While these three time-
dependent functions can often be controlled, we consider for simplicity the situation
in which w ≡ 2 is given and the RF pulses are real-valued, i.e., v ≡ 0. Hence, u is
the control variable. Technical limitations of the RF amplifier are modeled as control
constraints Uad = {u ∈ L2(I ) : |u| ≤ umax} with umax = 1.2 [102μT]. This value
reflects a typical 3T magnetic resonance scanner hardware.

The specific example here is the optimization of a refocusing pulse, which is, among
others, a central building block of the clinically important turbo spin echo based
sequences. The initial condition results from assuming that an ideal 90◦-excitation
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pulse for the same slice has been applied before, keeping the net magnetization vectors
out of the slice in the steady state (0, 0, 1)T while exciting the slice itself. In particular,
we set M0 = χ�out(x)(0, 0, 1)

T + χ�in(x)(0, 1, 0)
T . A slice of 1.65 [cm] thickness

is assumed: �in = [−0.00825, 0.00825]. The aim of the refocusing is to flip the
magnetization vectors in the x − y−plane in the interior �in of the slice, which
is modeled as rotation around the x axis with angle π . This desired magnetization
pattern at the end time t = T of the refocusing pulse is given by

f̂ (u) = 1

2

∫
�in

(M1(T , x))2 + (M2(T , x) + 1)2dx + 1

2

∫
�out

(1 − M3(T , x))2dx,

recalling that M = M(u). However, this tracking term for basic refocusing pulses is
typically not used in numerical practice. Instead, we apply a more involved formu-
lation of the desired state at the terminal time for advanced refocusing pulses, that
we describe now. Because of practical reasons including robustness issues, refocusing
pulses are generally applied within crusher gradients, cf. Bernstein et al. (2004), which
are additional sequence elements surrounding the RF pulse. These crusher gradients
cannot be modeled by the depicted f̂ (u). It seems that the only practical way to model
tracking terms for refocusing pulses with ideal crusher gradients is to define them in
the spin domain, cf. Bernstein et al. (2004), Rund et al. (2018a). Therefore, we choose
an equidistant time grid tk = (k − 1)τ , k = 1, . . . , Nt with Nt = 270 points and step
size τ = T /(Nt − 1) = 0.01 [ms], together with piecewise constant w and control
u with values wm, um , m = 1, . . . , Nt − 1. This implies that the magnetic field B
is piecewise constant. It is well-known that for piecewise constant magnetic field the
Bloch equations (14) in a spatial point x0 can be solved analytically as a sequence of
rotations. This is expressed by using the Cayley–Klein parameters (am), (bm) ∈ C,
m = 1, . . . , Nt − 1 with evolution

am = αmam−1 − β∗
mbm−1, bm = βmam−1 + α∗

mbm−1,

and with initial conditions a0 = 1, b0 = 0, cf. Pauly et al. (1991). For the formula
relating am, bm andM(tm−1, x0) see (Bernstein et al. 2004, eq.(2.15)). The coefficients
αm , βm are given by

αm = cos(φm/2) + iγ τ x0wm sin(φm/2)/φm, βm = iγ τum sin(φm/2)/φm,

with φm = −γ τ
√
u2m + (x0wm)2. Since it is well-known that perfect refocusing with

ideal crusher gradients is obtained through |b(T , x)|2 = χ�in(x) for a.e. x ∈ �, the
tracking term is given by

f̂ (u) = 1

2

∥∥∥ |b(T , x)|2 − χ�in(x)
∥∥∥2
L2(�)

. (15)

Note that b = b(u). In the numerical experiments we use f̂ as defined in (15).
The adjoint equation and the reduced gradient for this formulation are derived in the
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appendix of Rund et al. (2018a). The spatial domain is discretized equidistantly in
Nx = 481 points.

In accordance with the presentation in Sect. 4 we use a control-reduced problem
formulation for (13–14). For the problem at hand this bears the advantage to iterate
only on the small control vector with Nt − 1 = 269 entries, but not on the large state
vector with 3Nx Nt = 389610 entries. Consequently, Bk is a rather small matrix of
format 269 × 269, and the linear algebra operations for its update and evaluation are
cheap. In effect, the numerical effort is dominated clearly by the state and adjoint
solves; concrete values are reported below.

We consider the same four optimization methods as in Sect. 6.1, i.e., a semismooth
Newton method and the hybrid method with the Broyden, SR1 and BFGS update,
respectively. If not mentioned otherwise, these methods are globalized with tr-cg. The
stopping criterion is a relative tolerance of 10−5 for the residual norm ‖H‖L2(I ). Unless
declared otherwise, the following settings are applied for the hybrid methods: a limit
of L = 75, B0 = 0 for Broyden and SR1 methods, and B0 = α I for BFGS. These
initializations are selected because they turned out to be the most effective for the
respective methods on this problem. Note that for Broyden and SR1 this is consistent
with the numerical results for the optimal control of the heat equation in Sect. 6.1,
cf. Table 1. Also, let us stress one more time that B0 = 0 can be expected to yield
a better performance than scaled identities, so we anticipate that Broyden and SR1
may be somewhat superior to BFGS in the following experiments whenever B0 = 0,
respectively, B0 = α I are used. This turns out to be true.

6.2.1 Comparison of the optimization methods

The optimization is initialized with a sinc-shaped RF pulse f 0(t) = 1.8 · sinc(−2.2+
4t/T ). To maintain a good initial slice profile we use q0 = f 0 + sign( f 0)β/α, which
implies f 0 = σ(q0) and u0 = �Uad (σ (q0)) = �Uad ( f

0). The initialization, the cor-
responding slice profile M3(T , x), and the desired slice profile are depicted in the top
of Fig. 2. Also depicted are optimal controls for different α, β. The sparsity and bound
properties of the solutions for different α, β are depicted in Table 6. If not mentioned
otherwise, then we use α = 5 × 10−4 and β = 10−4 below. In all experiments we
monitor that only runs leading to the same local minimizer are compared, which is
important since the problem possesses several different minimizers.

The first study compares the performance of four different semismooth Newton-
type methods embedded in a trust-region cg framework for varying α, β and for
different initializations of the quasi-Newton matrix B0. First, the limited-memory
methods are analyzed in Table 7 and compared to the semismooth Newton method.
The up to four columns per method show the iteration counts for different B0. The
last row shows the mean value per column taken over the converged runs only. The
runs that do not converge are marked with −. The first three columns display the
parameters α, β and the iteration number of SN. The next two column groups show
that the hybrid method with Broyden updates behaves quite similar to the variant with
SR1 updates, the latter often requiring slightly fewer iterations. The choices B0 = 0
and B0 = α I yield fast convergence throughout all (α, β)-pairings, while the other
two formulas turn out to be less efficient in this setting. Looking at the hybrid method
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Fig. 2 Top: Initial q0 and u0 = �Uad (σ (q0)) (left) and the corresponding slice profile M3(T , x) compared

to the desired slice profile (right). Bottom: Optimal controls for different α with β = 5 × 10−4 (left) and
β = 5 × 10−5 (right)

with BFGS in the last column group we observe that its performance degenerates for
large values of α. In view of the comment before Lemma 7 this is not entirely unex-
pected, but the extent of this behavior still appears somewhat surprising. Apart from
this phenomenon the scaled identity yields good results also for BFGS. Using the best
choice B0 for each method, Broyden requires 41 iterations on average, SR1 35, and
BFGS 83, compared to 16 for the semismooth Newton method. Since the latter has
much more costly iterations due to the forward-backward solve of the second-order
equations, it is important to compare the corresponding runtimes. They are included
below, cf. Table 9.

To address the choice of the limit parameter L we compare the performance of the
hybrid methods for different limits in Table 8 based on the iteration counts. Depicted
are four columns per method which differ in the choice of the limit ranging from
L = 25 to L = 100. The rows show results for different α while keeping β = 10−4

fixed. We stress that in combination with tr-cg it is appropriate to choose a limit L that
is larger than typical values from the literature for globalization by line searchmethods.
This is due to the fact that Steihaug-cg employs earlier breaks in the cgmethod leading
to smaller and more steps. We observe that a limit of 25 is only adequate for Broyden
and SR1 in the case of large α ≥ 5×10−4. For smaller α the limit should be increased
to 50. In contrast, the performance of BFGS is less sensitive to the values of L that
are investigated.
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Table 8 Iterations of the hybrid quasi-Newton methods for different α and different limits L

Broyden SR1 BFGS

α\L 25 50 75 100 25 50 75 100 25 50 75 100

10−3 23 23 23 23 23 23 23 23 − − − −
5 × 10−4 61 35 35 35 69 30 30 30 54 58 58 58

10−4 82 48 48 48 − 39 39 39 53 44 44 44

5 × 10−5 127 73 56 56 150 67 54 54 64 54 54 54

The symbol − stands for not converging within 300 iterations

In the particular setting of optimal control problems with many state variables and
few control variables, which is typically the case in practical applications of PDE-
constrained optimization or Bloch-models, it pays off in runtime to use larger limits
since this helps to save some iterations of the trust-region method while it increases
the required time per trust-region iteration only marginally. This is due to the fact that
the costs per trust-region iteration are largely dominated by the evaluation of objective
and gradient. For example, the runtime of Broyden with α = 5 × 10−5 for a limit of
75 (56 iterations) is 5.1 seconds, which is significantly lower than the 6.4 seconds that
are needed with a limit of 50 (73 iterations). In both cases, around 90% of the runtime
is spent on the evaluation of objective and gradient. Therefore, a limit of L = 75 is
chosen for all subsequent studies. We emphasize that all runs converge to the same
local minimizer independently of the limit parameter.

To investigate mesh independence properties of the hybrid methods we perform
runs with different temporal and spatial mesh sizes. The results are shown in Table 9
using iteration counts in the left table, respectively runtime (mean runtime in 5 runs, in
seconds) in the right table. The rows depict results for different temporal refinements
with Nc = Nt − 1 control points. The two columns per method show different spatial
grids with Nx = 481, respectively, Nx = 4811 points. The finest example with Nc =
17216 and Nx = 4811 features 248 million degrees of freedom for the state variable.
In all cases the same initial guess is used. Furthermore, the same local minimizer is
attained in all runs, which allows for a direct comparison. The left table shows that the
iteration counts of all four methods do not increase with Nc or Nx . In particular, SN,
Broyden and SR1 exhibit nearly the same iteration count for any of the discretizations.
The hybrid method with BFGS displays a constant iteration number per column with a
reduced iteration count for the right column (larger Nx ). Interestingly, its performance
is rather similar to that of Broyden and SR1 for Nx = 4811, while for Nx = 481 it
requires roughly twice as many iterations and twice as much runtime as Broyden and
SR1.

The right table shows the mean values of five runtimes in seconds, measured for
a single CPU without parallelization. Despite their higher iteration counts, the three
hybrid methods have much smaller runtimes than the semismooth Newton method.
The bottom line depicts the mean value per column of the runtime in microseconds
divided by Nx Nc, a number that varies only slightly per column (and per row, although
not displayed). We regard this quantity as an efficiency index and denote it by E . In
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contrast, the runtime of the semismooth Newton method increases faster in Nc than
linearly. We attribute this to the fact that the cg method requires more iterations for
larger systems and that these iterations involve expensive operations for SN. Therefore,
the speedup factor of the Broyden variant of the hybrid method over the semismooth
Newton method rises with the number of time instances, starting at 7 and reaching 70
for Nc = 17216 and Nx = 481. Using SR1 updates leads to similar runtimes with
a speedup of up to 68. As already seen in the left table, the use of BFGS updates
produces higher iteration counts resulting in an increased runtime. Still, a speedup
factor of up to 37 over the semismooth Newton method is reached.

Let us take a closer look at the convergence properties of the different quasi-Newton
updates in the trust-region method. To this end, the solution is first computed in high
precision with the semismooth Newton method and a relative tolerance of 10−13.
Then the different optimization runs are performed with a relative tolerance of 10−7,
measured in ‖H(·)‖L2(I ). The results are displayed in Table 10, with the error norms
defined as in the first example, see (12). The table shows that all methods reduce all six
errors to approximately the size of the relative tolerance, but the semismooth Newton
method needs much fewer iterations to achieve this, cf. Table 9. We attribute this to
the strong nonconvexity of the bilinear problem at hand. As in the first example we
have ek

u,L2 ≤ ek
q,L2 and eku,L∞ ≤ ekq,L∞ , but this relationship is not satisfied for the

H1(I )-norm, which, however, does not impede ek
u,H1 → 0.

6.2.2 Comparison of the globalization techniques

This section is devoted to comparing the three globalizations tr-cg, ls-GMRES and
nls-GMRESon the bilinear control problemof theBloch equations. The globalizations
are paired with the semismooth Newton method and the three limited-memory quasi-
Newtonmethods. For each of these twelve combinations, 2000 optimization runs from
a random initial (Matlab rand) q0 are performed with the following parameters:
Nc = 269, Nx = 481,α = 5×10−4, β = 10−4, up to 300 iterations, relative tolerance
10−4, cg/GMRES tolerance 10−10, up to 100 cg/GMRES iterations. The monotone
line search operates on the residual ‖H(q)‖L2(I ), while the non-monotone line search
is tested with Nls = 2, 3, 4, 5 based on the objective f (u) + ϕ(u) and based on the
residual ‖H(q)‖L2(I ). Due to space limitations we show only the best results, which
are obtained with Nls = 2 and R(u) = f (u) + ϕ(u).

Throughout the 8000 optimization runswith tr-cg, twelve different stationary points
are observed, whose controls are depicted in Fig. 3, divided into three sets (top row).
Every set of four controls yields identical optimal values m̄ := f (ū) + ϕ(ū), control
norms ‖ū‖U , and final magnetization (bottom row). The four controls are related
by axial symmetry to the t-axis and the axis t = T /2. Since these four controls
are equivalent in practical application, they are counted henceforth as one solution
with multiplicity four. The relative occurrences of the resulting three candidates for a
minimizer are depicted in the upper three rows of Table 11 in columns five to eight.
The lower part of the table additionally displays the relative occurrences of runs that
do not reach the prescribed relative tolerance within 300 iterations; they are labeled
“not converged”. The average objective value returned by the optimizer ∅ m̄ and
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Fig. 3 Four optimized controls with the same objective value (top) and their slice profiles (bottom, desired
state in red) for the three best observed candidates m̄ × 103 = 0.61906 (left), m̄ × 103 = 0.64959 (mid),
and m̄ × 103 = 0.67280 (right)

the average runtime in seconds are also shown. In contrast to previous experiments
they are taken over all runs here, i.e., they include also the “not converged” runs.
In particular, we observe that SN, Br and SR always meet the relative tolerance. In
contrast, one seventh of the BFGS runs does not converge. In fact, these runs yield the
same twelve minimizers but fail to reach the prescribed tolerance, which is underlined
by the agreeing values of ∅ m̄. This mean objective value is ∅ m̄ = 0.64 × 10−3 for
all four methods with tr-cg, which is significantly smaller than the values achieved
with the other globalization techniques. The mean runtime shows a clear speedup of
the hybrid methods compared to SN, despite the fact that this is a small scale example
with Nt = 270 and Nx = 481.

In contrast to the trust-region method, the line search globalizations find many
more stationary points, 78 in total. However, 49 of these have a prohibitively high
cost. They are summarized in lines number 10 and 11 of Table 11. The results with
monotone line search (ls-GMRES) are depicted in the fourth columngroup of Table 11.
The semismooth Newton method with a basic monotone line search on the residual
‖H(q)‖L2(I ) quickly converges to a noncompetitive minimizer in nearly all cases. The
three quasi-Newton methods yield smaller cost values in the mean, but most of the
runs fail to match the prescribed relative tolerance. The mean optimal values of all
four methods are much larger than those obtained with tr-cg.

The non-monotone line search nls-GMRES is more effective than ls-GMRES for
all three quasi-Newton methods, see the last column group of Table 11. We note that
the number of runs that do not converge is smaller than for the monotone line search.
In particular, Broyden and BFGS converge in most of the cases. Moreover, the best
control and the top three controls are found more often leading to much better average
optimal values compared to ls-GMRES. However, excellent values similar to those of
tr-cg are attained only for BFGS. Notably, the semismooth Newton method does not
benefit from the non-monotone line search; it behaves similarly as with ls-GMRES. It
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is also worth mentioning that the average runtimes of the tr-cg hybrid quasi-Newton
methods are only slightly above those of the nls-GMRES variant.

Summarizing, in this application problem the tr-cg globalization robustly delivers
the top-three candidates for all four optimization methods. In contrast, the line search
globalizations often have difficulties with convergence for the quasi-Newton methods,
and tend to noncompetitive solutions for the semismooth Newton method. Thus, for
optimal control of the Bloch equations tr-cg should clearly be preferred over a line
search globalization for the semismooth Newton, the hybrid Broyden, and the SR1
method. For BFGS, both tr-cg and nls-GMRES work equally well.

7 Conclusions

In this paper we have studied a hybrid approach for nonsmooth optimal control prob-
lems that blends semismooth Newton and quasi-Newton methods. We established
its local superlinear convergence and provided numerical results to show that it has
significantly lower runtime than semismooth Newton methods. A matrix-free limited-
memory truncated trust-region variant seems to be particularly promising.
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A Trust-region globalization of the hybridmethod

We state the precise algorithm of tr-cg that is employed in the numerical experiments.
It is designed for solving (P) from Sect. 3 and uses the notation of that section. The
objective of (P) is denoted by J : U → R, i.e., J (u) := f (u) + ϕ(u). For the norm
‖·‖ that appears in the algorithm we used ‖·‖U , which worked well. The mapping H
is given by H(q) = ∇ f̂ (Proxϕγ (q)) + γ q, cf. Lemma 1.
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Algorithm 2: Hybrid semismooth quasi-Newton-cg method with trust-region
globalization

Input: 0 < toltr , tolcg � 1; maxittr , maxitcg ∈ N; initial guess (u0, B0);
trust-region parameters 0 < �0 ≤ �max, 0 < σ1 < σ2 < σ3 < 1, 0 < f1, f3 < 1 < f2

1 Set k = 0, � = �0; compute q0 := − 1
γ
∇ f̂ (u0); compute H(q0); choose M ∈ ∂ Proxϕγ (q0)

2 Define 〈x, y〉 = (x, My)U
3 while

[‖H(qk)‖ > toltr‖H(q0)‖ and k ≤ maxittr
]
do // trust-region loop

4 Set p0 = r0 = −H(qk), δq = 0, i = 0
5 while

[‖r i‖ > tolcg‖r0‖ and i ≤ maxitcg
]
do // Steihaug-cg loop

6 Set M̃ = BkM + γ I ; compute M̃ pi

7 if 〈pi , M̃ pi 〉 ≤ 0 then // negative curvature

8 Compute max{τ : ‖δq + τ pi‖ ≤ �} // go to boundary of

trust-region

9 Set δq = δq + τ pi , break

10 end
11 Compute α = ‖r i‖/〈pi , M̃ pi 〉
12 if ‖δq + α pi‖ ≥ � then // step too large

13 Compute max{τ : ‖δq + τ pi‖ ≤ �} // go to boundary of

trust-region

14 Set δq = δq + τ pi , break

15 end
16 Set r i+1 = r i − αM̃ pi

17 Set pi+1 = r i+1 + ‖r i+1‖2/‖r i‖2 pi
18 Set δq = δq + α pi , i = i + 1

19 end
20 Compute δ Ja = J (Proxϕγ (qk)) − J (Proxϕγ (qk + δq)) // actual decrease

21 Compute δ Jm = − 1
2 〈δq, M̃δq〉 − 〈δq, H(qk)〉 // predicted decrease

22 if
[
δ Ja > ε and δ Ja > σ1δ Jm

]
then // accept step

23 Set qk+1 = qk + δq
24 Compute H(qk+1); choose M ∈ ∂ Proxϕγ (qk+1)

25 Define 〈x, y〉 = (x, My)U
26 if |δ Ja/δ Jm − 1| ≤ 1 − σ3 then // increase radius

27 Set � = min { f2�, �max}
28 else if |δ Ja/δ Jm − 1| > 1 − σ2 then // decrease radius

29 Set � = f3�
30 end

31 else
32 Set � = f1�, qk+1 = qk // decrease radius

33 end

34 Set sku = Proxϕγ (qk+1) − Proxϕγ (qk), yk = ∇ f̂ (Proxϕγ (qk+1)) − ∇ f̂ (Proxϕγ (qk))
35 Compute Bk+1 by quasi-Newton update
36 Set k = k + 1

37 end
Output: (qk ,Proxϕγ (qk))
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