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Abstract: In this paper, a hybrid smoothed finite element method (H-SFEM) is developed for solid 

mechanics problems by combining techniques of finite element method (FEM) and Node-based 

smoothed finite element method (NS-FEM) using a triangular mesh. A parameter α  is equipped 
into H-SFEM, and the strain field is further assumed to be the weighted average between 

compatible stains from FEM and smoothed strains from NS-FEM. We prove theoretically that the 

strain energy obtained from the H-SFEM solution lies in between those from the compatible FEM 

solution and the NS-FEM solution, which guarantees the convergence of H-SFEM.  Intensive 
numerical studies are conducted to verify these theoretical results and show that (1) the upper and 

lower bound solutions can always be obtained by adjustingα ; (2) there exists a preferable α  at 

which the H-SFEM can produce the ultrasonic accurate solution.   

Keywords: Meshfree methods, point interpolation method, superconvergence, upper bound 

solution. 
 

1 Introduction  

The finite element method (FEM) is well developed, and is currently the dominant 

numerical approach for solids and structures. Most of FEM models are displacement 

methods based on the potential energy principle, in which the displacement is the primary 

variable. Displacement-based fully compatible FEM usually has the “overly-stiff” 

phenomenon and provides a lower bound solution in energy norm for the exact solution 

[1]-[2]. In addition, fully compatible FEM usually also has the poor accuracy for stresses 

especially when the triangular meshes are used. In the past several decades, many assumed 

strain methods have been made in solving these issues in the framework of FEM [3].  

The point interpolation method (PIM) [4]-[8] is one of the meshfree methods [9]-[14] 

using polynomial basis (or radial basis) shape function with the Kronecker delta function 



 
 

 

property.  In order to guarantee the stability and the convergence of the PIM, a generalized 

strain smoothing technique [15] has been proposed based on the weakened weak (W2) 

formulation [16]-[17].  Recently, some PIM schemes and techniques have also been 

proposed and applied to many fields of engineering and sciences [18]-[27]. 

The node-based smoothed point interpolation method (NS-PIM) [28] is evolved from 

the point interpolation method (PIM) with the use of gradient smoothing technique [29]. It 

can guarantee linear accuracy, monotonic convergence, and volumetric locking free. 

Node-based smoothed finite element method (NS-FEM) [30] is a special case of NS-PIM 

with linear displacement fields. The detailed discussions and theoretical analysis on the 

bound properties and convergence for NS-FEM can be found in Ref. [30]. An important 

property of NS-FEM is that it provides a simple way to obtain an upper solution in energy 

norm for elasticity problems (with homogenous essential boundary conditions).  It has 

been shown that the node-based smoothing operation can produces a model that is 

sufficiently “softer” than the real solids, and hence can offer an upper bound to the exact 

solutions. 

 The important point is that the fully-compatible FEM and the node-based smoothed 

FEM play complementary roles in the numerical solution bounds: the fully-compatible 

FEM produces the lower bound solution and NS-FEM produces the upper bound solutions.  

Hence we have now a general way to bound the solution from the both sides of the exact 

solution using a usual FEM mesh. 

Thus, a question naturally arises: can we develop a method by combining the good 

features of two methods to improve the accuracy of the numerical solution? In this paper, a 

strain-constructed hybrid smoothed finite element method (H-SFEM) is proposed using the 

existing FEM and NS-FEM techniques. A parameter α is equipped into the H-SFEM.  By 

adjusting the parameter, both the upper and lower bound solutions of exact solution can be 

obtained. Furthermore, a superconvergent solution very close to the exact solution can be 

obtained for a preferable parameter preα .  

2. The idea of the H-SFEM  

The H-SFEM first uses the background cells of 3-node triangles for shape functions 

construction, which ensures efficiency and reliability. The problem domain Ω  is then 



 
 

 

divided into a set of smoothing domains kΩ  containing node k as shown in Fig. 1. By 

connecting node k  to the centroids of the surrounding triangles, the kΩ  is further 

sub-divided into M sub-domains 1,kΩ , 2,kΩ ,…, Mk ,Ω  and the union of all ik ,Ω  forms kΩ  

exactly.  

Similar to the conventional linear FEM, the displacements in H-SFEM can be 

approximated as follows. 

 ˆ ˆ
e

i i
i n∈

=∑u(x) Φ (x)v  (1) 

where, ˆ iv is the vector of nodal displacements and (x)Φi  is the matrix of the FEM shape 

functions for node i .  

The corresponding compatible strains are  

 d ˆ=ε(x) L u(x) , (2) 

where dL  is a matrix of differential operators. For the two-dimensional problem, dL  is 

defined as 
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Fig. 1Background elements and the smoothing cells 

 



 
 

 

In the present H-SFEM, the strain ε̂  at any points within any sub-domain ,k iΩ  for 

1,2,...,k N= , 1, 2,...,i M=  is assumed to be the linear combination of compatible strain 

from FEM and smoothed strain from NS-FEM:  

 , ,ˆ (1 )k i k i kα α= + −ε ε ε  (4) 

where 0 1α≤ ≤ , ,k iε  is the compatible stain, and  

 ,
1 d

k
k k i

kA Ω
= Ω∫ε ε  (5) 

is the smoothed strain from NS-FEM [30], where kA  is the area of smoothed domain kΩ . 

An extended Galerkin functional is then constructed for variational formulation as:  

 T T1 ˆ ˆ( ) ( ) ( ) d d
2 tΩ Ω Γ

Π = Ω− Ω− Γ∫ ∫ ∫Tv ε v Dε v v b v T  (6) 

where T  is the vector of the prescribed tractions on the natural boundary tΓ , b  is the 

vector of body forces.   

The stationary condition of (6) is  

 T Tˆ ˆ( ) ( ) ( ) d d 0
t

δ δ δ δ
Ω Ω Γ

Π = Ω− Ω− Γ =∫ ∫ ∫Tv ε v Dε v v b v T  (7) 

Substituting (4) into (7) leads to the discretized system equations as follows 

 ˆˆ ˆ =Kd f  (8) 

where K̂  is the stiffness matrix, and 

 T Tˆ d d
tΩ Γ

= − Ω+ Γ∫ ∫f Φ b Φ T  (9) 

 

3. Bound properties of the H-SFEM 

The H-SFEM has the following bound properties. 

Theorem 1: For any given admissible displacement field v , the strains at any points 

within sub-domain ,k iΩ  are obtained using (4); equation (6) is used to produce discretized 

system equations. We then have 

 ˆ( ) ( ) ( )U U U≤ ≤v v v  (10) 

where, )(~ vU  is the strain energy obtained from the FEM solution given by 
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)(vU  is the strain energy obtained from the NS-PIM solution given by 
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where N is the number of total nodes in the problem domain.  

Proof:  For the given displacement, the strain energy from H-SFEM can be written as 
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and 

 2 2

0 0

ˆ ( ) ( ) (1 ) ( )U U U U U U Uα α
≥ ≥

= + − = − − −v  (14) 

Note that the fully compatible FEM is “over-stiff”, and NS-FEM is “soft”. Therefore, 

we have ( ) ( ) 0U U− ≥v v  for the given displacement v, which further indicates from Eq. 

(14) that ˆ( ) ( ) ( )U U U≤ ≤v v v  when 0 1α≤ ≤ . This completes the proof. # 

Theorem 2: When the same mesh is used, the strain energy obtained from the H-SFEM 

solution is no-less than that from the FEM solution based on a fully compatible model, and 

no-larger than the strain potential for the NS-FEM model: 

 T T T1 1 1ˆˆ ˆ
2 2 2

≤ ≤v Kv v Kv v K v  (15) 

The proof of Theorem 2 is similar to that in Ref. [28]. For clarity, we give a simple proof as 

follows. 

Proof:  

Eqs. (11) and (12) can be written the matrix from as 



 
 

 

 T1( )
2

U =v v Kv , (16) 

and 

 T1( )
2

U =v v Kv , (17) 

where, T
d d=K L DL , and K  can be found in Ref. [7]. 

By theorem 1, Eq. (10) can be written in discrete form of arbitrary nodal displacement 

v  as 

 T T T1 1 1ˆ
2 2 2

≤ ≤v Kv v Kv v Kv  (18) 

From Eq.(18) , it is easy to see that 

 T1 ˆ( ) 0
2

− ≥v K K v , (19) 

 T1 ˆ( ) 0
2

− ≥v K K v . (20) 

Eqs. (19) and (20) show that matrix )ˆ( KK −  and )ˆ~( KK −  are symmetric and positive 

definite. In mechanics, it implies that K̂  is “stiffer” than K , and “softer” than K~ .  

In addition, the discrete solutions of FEM, NS-FEM and H-SFEM at their stationary 

points can be written as 

 −= 1v K f , −= 1v K f , ˆˆ −= 1v K f  (21) 

where f  is commonly defined by Eq. (9) for all the three models. 

At the stationary point we have the total energy as follows 
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The difference between the strain energies of FEM and H-SFEM solution becomes 



 
 

 

 1ˆ ˆˆ( ) ( ) ( ) 0
2

U U − −− = − ≤T 1 1v v f K K f  (23) 

and the difference between the strain energies of NS-FEM and H-SFEM becomes 

 1ˆ ˆˆ( ) ( ) ( ) 0
2

U U − −− = − ≥T 1 1v v f K K f  (24) 

Eqs. (23) and (24) give 

 ˆ ˆ( ) ( ) ( )U U U≤ ≤v v v  (25) 

This completes the proof. # 

Theorem 1 and Theorem 2 indicate that the H-SFEM is bounded by NS-FEM from 

above and FEM from below. Note that both FEM and NS-FEM are convergent to the exact 

solution when the dimension of mesh approaches to zero. Therefore, H-SFEM is also 

convergent to the real solution.  

4 Numerical examples and discussions 

In this section, a number of numerical examples will be examined using the newly 

developed H-SFEM. To investigate quantitatively the numerical results, the error indicators 

in both displacement and energy norms are defined as follows, 
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where the superscript ref denotes the reference or analytical solution, num denotes a 

numerical solution obtained using a numerical method. 

4.1 Standard path test 

For a numerical method working for solid mechanics problems, the sufficient 

requirement for convergence is to pass the standard path test [1]. Therefore, the first 

example is the standard path test. A rectangular patch of 50x10  is considered, and the 

displacements are prescribed on all outside boundaries by the linear function: 

0.6 , 0.6x yu x u y= = . All the errors for any [0,1]α ∈  in displacement norm defined in (26)

are found less than 141.0 10−× . This example demonstrates numerically that the H-SFEM 



 
 

 

can pass the standard path test, which at least guarantees linearly conforming.  
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Fig. 2 A 2D cantilever solid with a parabolic traction. 

4.2 Cantilever 2D solid 

A 2D cantilever solid is now studied as shown in Fig. 2. The solid is subjected to a 

parabolic traction at the free end, and the analytical solutions can be found in Ref. [31]. To 

study the convergence property, the strain energy of H-SFEM with linear displacement field 

for different α  is computed and plotted in Fig. 3. It is easy to see that H-SFEM has upper 

and lower bound solutions when 0.2α = , 0.25α =  and 0.3α = . Furthermore, the strain 

energy for this model is no-less than those from the compatible FEM solution, and 

no-larger than the strain potential from the NS-FEM solution. These findings verify the 

Theorem 2. From this figure, we can also get that 0.25α =  leads to a more accurate result 

than other α .  
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Fig. 3 Solution bounds of the H-SFEM for 2D solid 
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Fig. 4 Displacement error of H-SFEM for 2D solid 

Using (26), errors in displacement and energy norms are computed and plotted in Fig. 

4 and Fig. 5. When 0.25α = , the convergence rates in displacement norm and energy 

norm are respectively about 3.12 and 1.76, which are much higher than the theoretical 

values of linear FEM. This shows that we achieved superconvergence in displacement and 

energy solution.  
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Fig. 5 Energy error of the H-SFEM for 2D solid 
 

 



 
 

 

4.3 Infinite 2D solid with a circular hole 

An infinite 2D solid with a central circular hole and subjected to a unidirectional 

tensile is studied. Owing to its two-fold symmetry, one quarter is modeled as shown in Fig. 

6. The analytical solution of this benchmark problem can be found in Ref. [31]. To study 

the convergence property, the strain energy of the H-SFEM with linear displacement field 

for different parameter α  are computed and plotted in Fig. 7. It is easy to see that 

H-SFEM has upper and lower bounds solutions of the exact solution when 

0.05, 0.18α α= =  and 0.25α = , respectively. Furthermore, the strain energy for these 

model is no-less than that from the compatible FEM solution, and no-larger than the strain 

potential from the NS-PIM solution.  
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Fig. 6 A quarter model of an infinite 2D solid with a hole. 
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Fig. 7 Solution bounds of the H-SFEM for 2D solid with hole 

Using (26), errors in displacement and energy norms are computed and plotted against 



 
 

 

the average nodal spacing (h) as shown in Fig. 8 and Fig. 9. It is clear that when 0.18α =  

the convergence rates in displacement and energy norms are, respectively, about 2.53 and 

1.82, which clearly show the superconvergence both the displacement and the energy 

norms. 
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Fig. 8 Displacement error of H-SFEM for 2D solid with hole 
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Fig. 9 Energy error of H-SFEM for 2D solid with hole 

4.4. The L-shaped Component 

An elastic L-shaped component subjected to a pressure load is shown in Fig. 10.  

Plane stress condition is assumed and the reference solution of strain energy is obtained 



 
 

 

using FEM with a very fine mesh. The convergence and energy bound for the H-SFEM are 

investigated in similar ways as in the previous examples. The computed strain energy and 

convergent rate in energy norm are plotted in Fig. 11 and Fig. 12, respectively. It is found 

that the convergent rate in energy norm of H-SFEM is 1.72, and accuracy is also very high 

which is about 10 times more accurate than that of linear FEM using the same mesh.  This 

further verifies the superconvergence of NS-FEM. 
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Fig. 10 L-shaped plate subjected to uniform tensile stress. 
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Fig. 11 Solution bound of H-SFEM for L-shaped component 
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Fig. 12 Energy error of H-SFEM for L-shaped component 

 

4.5. Discussions 

From the above discussions, we know that the H-SFEM is equipped with an adjustable 

parameter α . Both the displacement field ˆ ( )αu  and strain field ˆ ˆ( ( ); )α α=ε u  are the 

functions of α . Therefore, an adjustment on α  can obviously influence the accuracy and 

convergence of solutions in both displacement and strain energy norms. This is a special 

superconvergent property that behaves very differently from the fully compatible FEM 

models. Furthermore, it is known that the solution of the H-SFEM with 1α =  is a lower 

bound of the exact solution in energy norm; while for 0α = , it is an upper bound. Thus, 

there exists a value (0,1)preα ∈  at which the strain energy is very close to the exact 

solution. Finding such a “prefer” α  is ideal; however, it is difficult to find that α  for a 

general problem.  Our study has found that such an preα  is in general problem-dependent 

and also mesh-dependent. To find a “preferable”α  that gives a “good” superconvergent 

solution, the following simple way is recommended [20] .   

 Our intensive study using numerical examples has discovered an important fact that 

the preα  is approximately a linear function of the mesh size h  for a given model of a 

problem. We can therefore assume 



 
 

 

      ( )pref h hα β γ≈ +    (27) 

where β and γ  are unknown and problem-dependent constants. This discovery leads to 

a simple curve-fitting method to find a preferable ( )pref hα  that is very close to the exactα  

for a given problem. The detailed process can be expressed as:   

(i). To create a model M(1) with a coarse mesh, and slightly finer model M(2) with 

elements of the same aspect ratio as model M(1).  The nodal spacing of the M(1) and M(2) is 

denoted as h1.  

(ii). To use M(1) and M(2) to compute and plot two (1)ˆ ( ) ~U α α  and (2)ˆ ( ) ~U α α  

curves; 

(iii). To obtain the intersection point )( 1
)1( hα  of these two curves;  

(iv). To repeat (i)-(iii) to obtain another (2)
2( )hα  using M(2) and other model M(3) that 

is slightly finer than M(2) but with the same aspect ratio.  The average nodal spacing for 

these two models is denoted as 2h ; 

(v). To determine unknown β and γ in Eq. (27) using 

     
(1) (2)

1 2

1 2

( ) ( )h h
h h

α αβ −
=

−
 and (1)

1 1( )h hγ α β= −     (28) 

When such a “preferable” α  is found, the superconvergent solution can be obtained 

for both the strain energy and the displacement.  

We only use the Cantilever 2D solid detailed in Section 4.2 to verify the effectiveness 

of the above algorithm to find the preferable α . We then compute prefα  using the 

procedures detailed in this Section found ( ) 0.11 0.120pref h hα = + . The convergence rate of 

H-SFEM in displacement and energy norm, which are illustrated in Figures 13 and 14, 

respectively about 2.85 and 1.22 when )(hprefαα = , which is also much higher even than 

that of 3-node FEM and 4-node FEM. This example shows clearly the very high accuracy 

of the solution and excellent superconvergence property of the H-SFEM. 
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Fig. 13 Displacement error of H-SFEM for 2D solid 

-0.2 0.0 0.2

-2.0

-1.8

-1.6

-1.4

-1.2

-1.0

-0.8

-0.6

 FEM (0.90)
 NS-FEM (0.91)
 α=0.3 (0.95)
 α=0.11h+0.120 (1.22)
 α=0.25 (1.76)

lo
g 10

(E
e)

log10(h)
 

Fig. 14 Energy error of H-SFEM for 2D solid 

 
Comments 1: A disadvantage of the NS-FEM is that it behaves “overly-soft” 

observed as non-zero energy spurious modes that can result in temporal instability when it 

is used to solve the dynamic problems, particularly.  However, the above numerical 

examples show that the H-SFEM with preferable parameter α  usually produces the upper 

bound solutions which behave the “overly-stiff” behavior.  This phenomenon is confirmed 

by some other numerical experiments.  Therefore, H-SFEM with preferable parameter α  



 
 

 

can overcome the “overly-soft’ in the NS-FEM and can be used to solve the problems with 

non-zero energy spurious modes.  

Comments 2: In computing the strain field for establishing the stiffness matrix, 

H-SFEM takes a litter more time compared to the linear FEM and NS-FEM.  However, 

the total CPU time taken is usually dominated by the equation solver especially for large 

systems; one can expect that the CPU time for a H-SFEM model with a given parameter α  

will be largely the same as that of NS-FEM using the same mesh. Sections 2 and 3 show 

that the stiffness matrix in H-SFEM is symmetrical and has the same sparsity and 

bandwidth compared to the NS-FEM when the same mesh and node number system are 

used.  Hence the solution procedure for the discretized system equations can be exactly 

the same, and the computational complexity in solving these equations is the same for both 

NS-FEM and FEM when a direct solver is used.  When iterative solver is used, the 

SC-PIM equations can be solved more efficiently because of the better conditioning in 

stiffness matrix due to the softening effects. 

Comment 3: Equation (4) is used here only for the two-dimensional problems. It can 

be modified for solving the 3-D problems. In addition, can this method be applied to the 

dynamic problems and give a superconvergent solution? These two topics will be 

investigated in our future works.   

5 Conclusions 

In this paper, a hybrid smoothed finite element method (H-SFEM) is proposed by 

combining the techniques of the FEM and the NS-FEM using triangular meshes. The 

following conclusions can be drawn:  

1) We have proven theoretically that when the same mesh is used, the strain energy 

obtained from the H-SFEM solution is no-less than that from the compatible FEM solution 

and no-larger than the strain potential for the NS-FEM model;  

2) The exact solution is bounded by those of H-SFEM with 0α =  from above and 

1α =  from below;  

3) There exists an α  at which the H-SFEM gives the very high accurate solution in 

energy norm. A simple algorithm is proposed to determine the preferable α  that gives a 

superconvergent solution.  



 
 

 

Intensive numerical studies have verified the convergence, superconvergence and 

bounds property of the H-SFEM. Hence, H-SFEM is a good candidate to develop a 

powerful numerical simulation tool for broad applications in computational mechanics.  
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