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Abstract: Melanoma, a kind of skin cancer that is very risky, is distinguished by uncontrolled cell
multiplication. Melanoma detection is of the utmost significance in clinical practice because of the
atypical border structure and the numerous types of tissue it can involve. The identification of
melanoma is still a challenging process for color images, despite the fact that numerous approaches
have been proposed in the research that has been done. In this research, we present a comprehensive
system for the efficient and precise classification of skin lesions. The framework includes prepro-
cessing, segmentation, feature extraction, and classification modules. Preprocessing with DullRazor
eliminates skin-imaging hair artifacts. Next, Fully Connected Neural Network (FCNN) semantic
segmentation extracts precise and obvious Regions of Interest (ROIs). We then extract relevant skin
image features from ROIs using an enhanced Sobel Directional Pattern (SDP). For skin image analysis,
Sobel Directional Pattern outperforms ABCD. Finally, a stacked Restricted Boltzmann Machine (RBM)
classifies skin ROIs. Stacked RBMs accurately classify skin melanoma. The experiments have been
conducted on five datasets: Pedro Hispano Hospital (PH2), International Skin Imaging Collaboration
(ISIC 2016), ISIC 2017, Dermnet, and DermIS, and achieved an accuracy of 99.8%, 96.5%, 95.5%, 87.9%,
and 97.6%, respectively. The results show that a stack of Restricted Boltzmann Machines is superior
for categorizing skin cancer types using the proposed innovative SDP.

Keywords: skin melanoma; AI-based detection; Restricted Boltzmann Machines; Sobel image
processing

1. Introduction

An extremely dangerous type of melanoma, termed malignant melanoma, develops in
skin cells known as melanocytes [1]. Melanocytes are skin cells that are located in the top
layer of skin. They are responsible for the production of the pigment known as melanin,
which is responsible for the color of skin. Eumelanin and pheomelanin are the two forms
of melanin that can be found in the human body. The melanocytes are stimulated to
create more melanin when skin is damaged by ultraviolet (UV) radiation from the sun or
tanning beds. However, only the eumelanin pigment in the skin makes an effort to protect
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the skin by causing the skin to darken or tan. Melanoma arises when DNA is damaged
from sunburns or tanning beds as a result of ultraviolet radiation, which then causes
alterations (mutations) in the melanocytes, which ultimately leads to uncontrolled cellular
proliferation [2]. This form of skin cancer is riskier than other common types including
basal cell carcinoma and squamous cell carcinoma. If it is not treated at an early stage, it
has the potential to swiftly spread to other organs, making it more difficult to cure [3].

In the United States in 2022, it was anticipated that there would be 99,780 recently
diagnosed occurrences of invasive melanoma and 97,920 newly diagnosed instances of in
situ melanoma and that cancer would claim the lives of 7650 individuals [4]. Occurrence
rates are greater in women than in men prior to the age of 50, whereas, after that age, they
are increasingly higher in men. This is mainly due to age gaps in historical workplaces
and outdoor exposure to UV radiation, as well as the usage of in-door tanning among
many young women. Men have a higher risk of developing skin cancer after the age
of 50. Variations in the methods of early detection and the utilization of health care
could also be contributing factors. About 300,000 new cases of melanoma were reported
worldwide in 2018, making it the most frequent malignancy in both men and women [2].
Over a million new cases of basal cell carcinoma (BCC) and squamous cell carcinoma
(SCC) were diagnosed in 2018, making them the second and third most common forms of
skin cancer after melanoma [5]. A greater number of cases of skin cancer are diagnosed
annually compared to any other type of cancer in the United States. The good news is that
early detection considerably increases the likelihood of a successful treatment. Without
spreading, a 99% 5-year survival rate is reported for melanoma patients [5]. When it
spreads to other parts of the body, the prognosis is not as good. However, the success
of a dermatologist’s diagnosis depends heavily on their experience and training, as the
earliest signs of skin cancer are usually not obvious. Skin cancer of the non-melanoma
variety is quite prevalent. A total of 300,000 new cases of melanoma, which is ranked 19th
among the most prevalent cancer kinds, were discovered in 2018. In 2019 alone, there were
approximately 2490 females and 4740 males who lost their lives to melanoma. There are an
estimated 2–3 million new cases annually [4], with over 40% attributable to disorders other
than melanoma. It is especially common in those with very fair skin. A lower mortality rate
can be achieved with earlier cancer detection. Better treatment for the patient is another
benefit.

Clinicians typically do screenings for skin cancer via eye inspection, which is not
only more time-consuming but also more prone to error and subjectivity. Dermoscopy
is a noninvasive imaging technology that removes the skin’s surface reflection, allowing
for better illumination and magnification of skin abnormalities. Melanoma is generally
predicted by using the ABCDE rule. Specialists assess a mole based on its Asymmetry,
Border, Dimension, Color, and Edge. Yet, diagnoses based solely on visual inspection tend
to be more off-base. Different methods have been proposed in the literature. However,
diagnosing the specific form of skin cancer might be challenging. Reduced mortality
rates from skin cancer can be achieved with diligent early detection efforts. Professionals
need some time to make a correct early diagnosis. However, the dermatologist accuracy
in detecting melanoma using dermoscopy images was lower than 80% in traditional
clinical settings [6–8]. Using machine learning techniques [9–11], this analysis could be
automated, leading to a framework in medicine that would provide experiential relevance,
improve clinical accuracy, aid physicians in interacting objectively, reduce errors caused
by human stress, and lower mortality rates [12–15]. One step in the right direction is the
development of a machine-learning algorithm that can distinguish between malignant
and benign lesions [16,17]. To identify cancerous skin lesions as soon as possible, this
work makes use of Machine Learning, and deep learning algorithms to reliably categorize
pigmented lesions in dermoscopic skin images.

Skin malignancies develop as a result of aberrant cell growth and can spread to other
body parts [1]. The PH2 dataset divides skin cancer into three major types. They are
atypical nevus, melanoma, and common nevus. A common nevus is a benign skin growth
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that occurs because melanocytes, or pigment cells, proliferate. It appears as a little dot in the
epidermis, and determining whether it is benign or malignant is exceedingly challenging. A
typical application of biopsy is also not acceptable. The creation of a completely automated
melanoma identification system is crucial for assisting dermatologists with diagnosis [2].

In general, the classification of skin cancer is difficult due to the presence of artifacts,
differences in picture resolution, and fewer distinguishing characteristics across the many
forms of cancer. As a result of these issues, the efficient framework may be deemed an ideal
model for skin cancer classification due to its compound scaling property. This will help to
strengthen the accuracy of the classification. Within the scope of this study, an end-to-end
framework for the effective and accurate classification of skin lesions is provided. The
proposed framework is composed of preprocessing, segmentation, feature extraction, and
classification modules. During the preprocessing stage, the DullRazor algorithm is utilized
to remove hairs from the material. This assists in reducing the influence of artifacts caused
by the presence of hairs in skin imaging. After that, a semantic segmentation strategy that
makes use of Fully Connected Neural Networks (FCNNs) is developed to extract precise
and clear Regions of Interest (ROIs). After that, the key features included within the ROIs
are retrieved by utilizing an enhanced version of the Sobel Directional Pattern (SDP), a
methodology we are proposing here in this research to extract relevant features contained
within skin images. When it comes to analyzing skin images, the Sobel Directional Pattern
approach is preferable to the more conventional feature extraction strategy known as the
ABCD rule [18]. As a last step, a stacked Restricted Boltzmann Machine, also known as a
stacked RBM, is introduced as a solution for the classification of skin ROIs. The stacked
RBMs are being presented due to their outstanding performance in the classification of skin
melanoma [19].

Artificial intelligence (AI) and associated technologies are starting to be adopted
by healthcare organizations as they become increasingly widespread in the industrial
and medical sectors [20–24]. Studies [25–33] have proven that AI is as good as, or better
than, human doctors when it comes to medical diagnosis. Recently, machine learning
and deep learning algorithms [18] have been more accurate than radiologists in detecting
malignant tumors. They are also aiding researchers in figuring out how to assemble
study populations for costly clinical trials. Since modern graphics processing units (GPUs)
are capable of handling massive amounts of data, such models may also have hundreds
of thousands of hidden features. One of the most common uses of deep learning in
healthcare is the detection of potentially malignant tumors in medical images. The field
of radiomics, which uses deep learning to reveal hidden clinically relevant patterns in
imaging data, is gaining traction. Typically, radiomics and deep learning are used together
in oncology-specific picture analysis. With both, CAD systems can make more accurate
and precise diagnoses. Artificial intelligence has been supported by many researchers
recently as a means to automatically detect and diagnose skin disorders [34–38]. Gonzalez-
Castro et al. [39] suggested categorizing skin lesions using color and texture descriptors
based on morphology. In their method, the hue and mathematical morphology of the color
texture are examined. Additionally, they have employed Kohonen Self-Organizing Maps
(SOM). They do not segregate anything at all. For each pixel, mathematical morphology
generates a descriptor. Clusters are produced in SOM. The descriptors do not depend
on location. Color Adaptive Neighborhoods are represented mathematically through
morphology. However, it is never easy to get a perfect mapping using this method. Using
the ABCD rule, Kasmi et al. [3] used ABCD instruction of dermoscopy as a procedure to
detect melanoma in their patients.

For categorization, the shape, color, and Pyramid Histogram of Oriented Gradients
(PHOG) properties are provided in the literature. This method [3] proposes an approach
that automatically identifies melanoma using the ABCD rule. Gabor filters are used in
the preprocessing step to identify the hair and geodesic contours are used to identify
the borders. The strategy used by Kasmi et al. [3] incorporates both conventional and
cutting-edge techniques. To extract the properties of ABCD attributes, algorithms are used.



Diagnostics 2023, 13, 1104 4 of 24

This method’s disadvantage is that the performance needed to be raised. Convolutional
neural network (CNN) use has been suggested by Zhang et al. [7] for the categorization
of skin cancer. This approach has produced positive outcomes. Color characteristics
and an instance-based learning method were utilized by Pereira et al. [4], achieving an
accuracy of 61.7 percent. Deep Convolutional Neural Networks for classification have been
proposed by Harangi et al. [5]. For classification, they used convolutional neural networks
(CNNs). The results of various deep network topologies were combined. However, this
proposed method had a flaw in that it required more data for training and took a long
time due to the multiple layers involved [8]. The idea of melanoma detection using image
processing techniques was put forth by Garg et al. [16]. Dermoscopy and light microscopy
were employed in the procedure. However, the automatic diagnosis technique was less
expensive. To reduce the additional noise in the image, preprocessing was done. After
that, segmentation was applied. Mukherjee et al. [17] suggested a metaheuristic technique
that is inspired by nature and finds ideal solutions quickly and effectively. Multi-Layer
Perceptron (MLP) classifies melanoma, achieving an accuracy of more than 91 percent.
When compared to other works in the literature, it produces positive outcomes. The
parameters of the optimization approaches are examined in a two-dimensional space. The
optimization process for this method takes a long time. By combining the features from
the various methodologies, Hagerty et al. [40] suggested a strategy that blends traditional
image processing and deep learning. Deep learning and traditional image processing were
the two methods they suggested. For classification, deep learning with the ResNet-50 is
utilized. For prediction, logistic regression is used. It identifies only color features when
there is a lesion, which is a drawback. According to Kaur et al. [41], dermoscopy picture
classification might be accomplished by combining texture and color data. The texture
is extracted using a local binary pattern (LBP), which abstracts a histogram and scale-
adaptive patterns from each pixel. Their histograms were HSV ones. For categorization,
concatenated features are provided. Although this method produced good results, it has
the disadvantage that the LBP does not collect border information. For more accuracy
than current methods, the suggested Sobel Directional Pattern (SDP) for feature extraction
integrates key characteristics of skin melanoma, such as texture, color, and boundary
information, into a feature vector. Compared to other approaches, this model uses stacked
Restricted Boltzmann Machines (SRBMs) that are quicker and more precise. When dealing
with unbalanced datasets, the stacked RBM also produces good results. The currently
used feature descriptors either record edge or texture information. The suggested method
successfully captures edge, texture, and color information.

The pixels of biomedical images are used by computer vision to categorize the different
forms of skin cancer. Shape, borders/edges, texture, color, and other details are estimated
using the dermoscopy images individually in the literature. In the present efforts, Support
Vector Machines (SVMs) are primarily utilized [42]. These can only classify things in binary.
When utilized as a one vs. one model for multiclassification, this method takes more time.
When there are fewer samples available, Deep Neural Networks (DNN) [43] are employed
in some works, which leads to the overfitting issue. There is a lack of generalization and
poor classification accuracy because of images with lower resolution and the differences in
dermoscopy of the images. In order to emphasize the importance of the work that we are
about to discuss, we have made a list of the contributions that the current study has made,
which are as follows:

• A hybrid AI-based framework based on stacked Restricted Boltzmann Machines and
Sobel Directional Patterns is proposed for Skin Melanoma Prediction;

• The Sobel Directional Pattern (SDP) is a new method for feature extraction that com-
bines texture, color, and edge data into a single feature vector using a Sobel filter.
The presented image preprocessing phase helps in removing the noise, enhancing the
image quality by stitching the histogram, and removing the hairs from the images.
This process also removes the random noise that is introduced to an image during its
acquisition;
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• An automatic semantic segmentation using FCCNs is provided for extracting the ROIs
from the skin melanoma lesions. Stacked RBMs are used to accurately classify the
segmented cutaneous lesions;

• Preprocessing is performed to reduce the hairs, and the need to align images into
random datasets during image acquisition is eliminated;

• The newly discovered and adapted Sobel filter-based Sobel Directional Pattern (SDP)
extracts features and mixes texture, color, and edge data into a single feature vector.

The suggested method improves image quality by removing hairs through prepro-
cessing. The suggested SDP also eliminates noisy data, improving accuracy. The most
discriminating data are determined as a feature vector utilizing SDP. The SDP feature
extraction approach is used in this method to encode the color, edges, and op-ponent color
and texture data as a feature vector. For categorization, a stacked RBM is employed. The
suggested model is faster and more accurate than the ones currently in use. For comparing
grayscale and color texture features, the SDP operator is created as a combined color-texture
operator. Accuracy is enhanced by the use of both color and texture elements. The term
“Opponent colors” refers to all pairs of color channels. Here, each color channel receives a
distinct application of the directional pattern produced by the Kirsch masks operator. For
further calculations, only the maximum responses are employed.

This eliminates the erratic noise that was picked up during image capture. Each pair
of color channels is also used to derive the patterns of the opposition. A neighborhood’s
center pixel and surrounding pixels are drawn from different channels. Feature extraction,
preprocessing, and classification are the steps in the proposed system’s framework for
classifying skin cancer. With its greater processing power and quicker learning, the stacked
RBM in the Deep Belief Network achieves accurate prediction in a shorter period. For
unbalanced datasets, the stacked RBM in the Deep Belief Network also performs well.

The suggested methodology is described in Section 3, which also covers the capture
of images, the preprocessing method, feature extraction with SDP, and classification with
RBM. Section 4 of the report discusses the experimental findings. The proposed strategy is
also contrasted with other cutting-edge methods in Section 4.

2. Materials and Methods
2.1. Skin Image Datasets

The data that were used in this study were gathered from five different public datasets
including PH2 [44], ISIC 2016 [45], ISIC 2017 [45], DermIS (https://www.dermis.net/
doia/ accessed on 1 December 2022), and DermNet NZ (https://dermnetnz.org/image-
library accessed on 1 December 2022). The images in PH2 are divided into melanoma
and non-melanoma categories. Both cancerous (melanoma) and noncancerous (benign)
skin lesions are represented in the 2016 dataset collected by the International Skin Imaging
Collaboration (ISIC). There are a total of 1279 images available in the ISIC 2016 dataset,
including 900 training images and 379 test images. Both the training and testing sets
include ground truth data that indicate whether or not each lesion is cancerous. Out
of a total of 2600 images, 2000 are used for training and 600 are used for testing in the
ISIC 2017 dataset. Melanoma, seborrheic keratosis, and nevus are the classes that are
represented, and the ground truth and patient metadata are included in the training and
testing sets. The Dermnet Skin Disease Atlas has tagged 23,000 images on the platform.
Images from 23 classes are included in this dataset. The tests use three kinds of disorders
from Dermnet, including Molluscum contagiosum, Seborrheic Keratosis, and Metastatic
Melanoma. Melanoma, Seborrheic keratosis, and lupus erythematosus are the three skin
conditions from DermIS that are taken into consideration for the tests. Figure 1 depicts
several sample images.

https://www.dermis.net/doia/
https://www.dermis.net/doia/
https://dermnetnz.org/image-library
https://dermnetnz.org/image-library
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Figure 1. Samples of utilized images in different datasets.

2.2. Proposed End-to-End CAD Framework for Skin Lesions

This research presents an end-to-end system for the diagnosis of skin melanomas using
SDP and stacked RBM algorithms. Major elements of the introduced framework are shown
in Figure 2. Preprocessing techniques are used on captured images to improve their quality,
to align images, and to get rid of distracting hairs. Then, in order to extract informative
Regions of Interest (ROIs), a semantic segmentation technique based on FCNN is created.
This study introduces a comprehensive framework for identifying skin melanomas with
the use of SDP and stacked RBMs. Once the image has been removed of its noise, it is put
into the SDP feature extraction algorithm, which chooses just the maximum response data
produced by the customized Sobel filter-based masks. This technique can be used to isolate
subtle color differences, textures, and outlines of fine lines. If you use one of the alternative
filters, you will get a significant amount of extra noise around the edges. The resulting
feature vectors are then used as input for classification by the stacked RBM. According
to the attributes extracted by SDP, the images are then classified into several skin cancer
classes.

Figure 2. Proposed framework of the current study.
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2.2.1. Image Preprocessing

The first thing that has to be done is some preprocessing on the images in order to find
and get rid of any hairs that are visible on the skin. It is possible that classification errors
will occur if there are hairs present in the skin imaging data. As a consequence of this, the
procedure of removing hairs using DullRazor is utilized at this stage of preparation. It is
able to do this by carrying out an activity called broad grayscale morphological closing,
which allows it to recognize the locations of dark hair. It does this by alternating the pixels
that have been validated with bilinear interpolation and confirming that the structure of
the hair pixel outline is thin and extended. An adaptive median filter is applied in order to
smooth out the pixels that represent the changed hair. In order to generate a hair mask, the
images including hair must first undergo preprocessing. As can be seen in Figure 3, images
are preprocessed to eliminate hair by making use of an algorithm called DullRazor [46].
Because the images are not all the exact size, each one of them has to have its dimensions
adjusted. Each image has been scaled down to the exact dimensions, which are 760 pixels
wide by 570 pixels tall. Images were selected from the Pedro Hispano Hospital (PH2)
dataset in accordance with their respective average sizes and are given after hair removal
in Figure 3.

Figure 3. Stages of hair removal of images after applying the DullRazor algorithm.

2.2.2. Image Segmentation

Using the segmentation method, the skin lesion is divided into its subcomponents [47].
Figure 4 presents the images after they have been segmented. Morphological operations
can be performed on the data obtained from skin imaging to help locate skin lesions. It is
also possible to obtain the image’s complementary black and white version. There is a clear
distinction between the background and the skin lesion. It has been shown that the strategy
of increasing regions is particularly helpful for detecting skin. The region-growing strategy
is another method that can be utilized in the process of extracting the lesion from the images
of the skin. In this proposed work, FCCNs are utilized for segmentation purposes. Fully
Connected Convolutional Networks are a form of architecture that are utilized in semantic
segmentation. They exclusively employ convolution, pooling, and up sampling as their
locally connected layers to build their models. FCCNs give each pixel a classification in
order to achieve a certain level of semantic segmentation for images. Figure 4 depicts an
example of a segmented image.
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Figure 4. An example for a segmented skin image.

2.2.3. Feature Extraction

Dermatologists define melanoma using the ABCD rule [3], which they utilize to
evaluate skin lesions. Images are examined for irregular borders, asymmetry, and uneven
distribution. DermIS, PH2, ISIC 2016, and ISIC 2017 are the datasets that were utilized. For
categorizing the images of skin cancer in this study, novel SDP and stacked RBM are used.
It is no longer necessary to use different computational methods to extract information
about texture, color, and edges from skin cancer images.

The method of mining the essential data from the obtainable raw images is called
feature extraction. When used as input by a machine learning algorithm, the collected
features have to be non-redundant and produce good outcomes. Using the feature extrac-
tion method, the dataset’s images are condensed into a tiny feature vector. The suggested
feature extraction method uses a minimal number of computations to merge the edge, color,
and texture data into a feature vector. The skin pictures with the lesion are given measur-
able information via the proposed SDP approach. This method can be utilized as a skin
cancer early detection tool. By doing this, more painful procedures of skin cancer diagnosis
are avoided. Digital images are used in this manner. The ABCD rule of dermoscopy is the
foundation for the feature extraction techniques seen in the literature. ABCD stands for
Asymmetry, Border, Color, and Diameter. Dermatologists utilize these characteristics to
categorize melanomas. Asymmetry, irregular boundaries, hue, uneven distribution, and a
diameter larger than 6 mm are the characteristics examined:

� Asymmetrical Shape: Lesions are uneven or asymmetrical in shape, denoted by the
letter A. Other moles are regular and benign;

� Border: The borders of non-cancerous moles are even and smooth. The borders of the
melanoma lesions are erratic;

� Color: More hues including blue, black, brown, and tan are found in melanoma. The
uneven distribution of hue is an indication of possible melanoma. Moles that are
benign only come in one hue of brown;

� Diameter: Lesions with melanoma have a diameter of more than 6 millimeters.

The suggested SDP takes the skin cancer images and extracts the color, texture, and
edge-based properties. In the suggested study, the characteristics can be taken from the
various color spaces, such as RGB, HSV, and YCbCr, and provided as input to the classifier
for melanoma prediction [45]. The RGB, HSV, and YCbCr color spaces all allow for effective
color discrimination. The RGB, HSV, and YCbCr space color and texture information can
be extracted using the SDP operator. The SDP operator is applied separately to each color
channel in an HSV image in this proposed approach as follows. The various color channel
pairs are employed to collect various color patterns. Numerous color channels are used
to choose the epicenter and location pixels. In SDPH,S, the middle pixel in a 3×3 region
is designed with the pixel at center position from H and the nearby pixels from S. In the
H-channel image, Hc,d is the pixel at the center and Hc,d, Hc+1,d, Hc−1,d, Hc−1,d+1, Hc,d+1,
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Hc+1,d+1, Hc−1,d−1, Hc,d−1, and Hc+1,d−1 are the eight adjacent pixels in a block. In the S-
channel image, Sc,d is the pixel at the center and Sc,d, Sc+1,d, Sc−1,d, Sc−1,d+1, Sc,d+1, Sc+1,d+1,
Sc−1,d−1, Sc,d−1, and Sc+1,d−1 are the pixels present at the eight adjacent sides in a block. In
the V-channel image, Vc,d is the pixel at the center and Vc,d, Vc+1,d,Vc−1,d, Vc−1,d+1, Vc,d+1,
Vc+1,d+1, Vc−1,d−1, Vc,d−1, and Vc+1,d−1 are the pixels present at the eight adjacent sides in
a block. SDPH,H, SDPS,S, SDPV,V, SDPH,S, SDPH,V, and SDPS,V are the combined channel
images. Here, each 3 × 3 block is formed with the subsequent equations:

SDPH,H (p,q,θ) = <center (Hc,d), neighbors (Hc + i,d + j) >,
SDPS,S (p,q,θ) = <center (Sc,d), neighbors (Sc + i,d + j) >,

SDPV,V (p,q,θ) = <center (Vc,d), neighbors (Vc + i,d + j) >,
SDPH,S (p,q,θ) = <center (Hc,d), neighbors (Sc + i,d + j) >,
SDPH,V (p,q,θ) = <center (Hc,d), neighbors (Vc + i,d + j) >,
SDPS,V (p,q,θ) = <center (Sc,d), neighbors (Vc + i,d + j) >,

(1)

where, for a 3 × 3 block 1 ≥ p ≤ 4 and 1 ≥ q ≤ T, T is the total number of blocks in each
image.

(i, j) =



i = 1, j = 1 i f θ = 45◦

i = 1, j = −1 i f θ = 315◦

i = −1, j = −1 i f θ = 225◦

i = −1, j = 1 i f θ = 135◦

i = 0, j = −1 i f θ = 270◦

i = 0, j = 1 i f θ = 90◦

i = 1, j = 0 i f θ = 360◦

i = −1, j = 0 i f θ = 180◦

. (2)

The greatest value obtained after the convolution of the mask and the picture is used to
calculate the edge magnitude. The mask that creates the greatest magnitude determines the
orientation of the edge. The different channel combinations of the skin images (combined
channel images) SDPH,H, SDPS,S, SDPV,V, SDPH,S, SDPH,V, and SDPS,V are provided to SDP
as input to create the feature vector. Three stages make up the feature extraction procedure
for each channel image: compass mask filtering of skin images, code image generation
based on the maximum response, and feature vector construction. The feature extraction
procedure is also applied to the other color channels, such as RGB and YCbCr [19,47,48].
After taking into account the preprocessed images, fractional-order Sobel masks [49] are
combined with them to analyze the pattern using the proposed SDP. The fractional-order
masks, have shown in Figures 5–7.

Figure 5. The adapted Sobel representation.
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Figure 6. Left fractional-order Sobel.

Figure 7. Right fractional-order Sobel.

The customized Sobel illustration can be made by altering the design of the Ga and Gb
parts of the special Sobel filter. Both the x- and y-axes contain the gradient-based parts of
the integer-order Sobel operator. The components’ differential form is denoted by:

Ga = 2
(

∂f(a + 1, b− 1)
∂a

+ 2
∂f(a + 1, b)

∂a
+

∂f(a + 1, b + 1)
∂a

)
(3)

Gb = 2
(

∂f(a− 1, b + 1)
∂b

+ 2
∂f(a, b + 1)

∂b
+

∂f(a + 1, b + 1)
∂b

)
(4)

In the actual Sobel filter, the Ga and Gb components are reorganized as in Figures 5 and 7.
The differential form of the effective Sobel filter is determined from the gradient operator
in the equation above, and it is then translated to the fractional-order domain. Two novel
masks, the left fractional Sobel mask and the right fractional mask, are produced using the
Grunwald–Letnikov (GL) fractional-order differential operator. The left GL derivative is
signified as:

Mag (∇α f )Sα
t f(t) = lim

m→0+
1
mα ∑∞

j=0(−1)j
(

α
j

)
f (t− jm) = |Ga|+|Ga|. (5)

To attain a symmetric filter, the GL operator is functional on the updated Sobel filter.
The right GL derivatives are signified as:

Sα
t f(t) = lim

m→0+
1
mα ∑∞

j=0(−1)j
(

α
j

)
f (t + jm). (6)

When applied to the images, these modified fractional-order Sobel masks assist in
extracting the thin edges as opposed to the thick edges produced using the integer-order
Sobel masks. Some responses are created after convolution of each pixel with the adapted
fractional-order Sobel masks/filters. Using the maximum intensity value among the
responses obtained for each pixel, a code image is created. The DOG filtering method
is used to remove noise from the code image. After that, the code image is divided into
smaller grids, and the histogram is measured for each grid. The final feature vector is
produced after computing the feature vector for each grid, grouping it, and then combining
it. In order to get a better presentation compared to the standard feature descriptors, a
multi-scale feature descriptor with rotation invariance and low complexity is suggested in
this work as SDP.
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2.2.4. Enhanced Sobel Masks Representation

The cropped images are convoluted with the fractional-order Sobel masks. As the
value α of the fractional mask varies, the convoluted output differs. The fractional-order
filters are highly sensitive to variations in edge compared to the normal Sobel masks. These
fractional-order masks, as shown in Figures 5–7, help to capture more details regarding
the texture, resulting in high classification accuracy of the human emotions. The values of
α range from 0.1 to 1 and λ ranges from 1 to 5 (λ = {3.5, 7, 14, 28, 56}). The value of α = 1
results in a conventional Sobel mask.

The fractional-order Sobel masks are convoluted with the cropped images. The output
of the convolved algorithm differs depending on the value of the fractional mask. Com-
pared to the standard Sobel masks, the fractional-order filters are much more sensitive
to edge alterations. These fractional-order masks, as displayed in Figures 3 and 4, aid in
capturing additional texture-related features and have a high classification accuracy for
human emotions. Furthermore, α have values ranging from 0.1 to 1 and λ from 1 to 5,
respectively (λ = 3.5, 7, 14, 28, 56). A conventional Sobel mask is produced when α = 1.

To determine the best value for, experiments we have conducted using a range of
values between α = 0.1 and α = 1, and the dataset images are classified using a K-Neural
Network (KNN) classifier. The left and right fractional Sobel masks are combined with
the segmented images. The segmented images are convolved with the fractional Sobel
masks that are suggested in this paper. The highest response value possible is chosen since
each pixel receives four responses. The answers are { Sθ0 , Sθ1 . . . .Sθ7

}
. The following is the

formula for choosing the Maximum Response (MR):

MR(x, y) = max(Si(a, b)|0 ≤ i ≤ 4). (7)

Here, Tθi(a, b) denotes the response attained at an exact pixel position (a, b). Then,
the Difference of Gaussian (DOG) filter is applied on the MR image as follows:

D = DOG((a, b);σ1,σ2) =
1

2πσ1
2 e
− a2+b2

2σ1
2 − 1

2πσ22 e
− a2+b2

2σ2
2 , (8)

where σ1 is the standard deviation that is higher than σ2.

f(x, y) = M(x, y)∗D. (9)

Convolution of the response images and the DOG filter help to improve classification
accuracy by removing random noise and sharpening the edges. Figure 8 represents the
code images created as a result of SDP. The code images for R, G, and B channels, as in
Figure 8a–c, signify both the textural and edge-based information gathered from images
and also indicate the portions of the image that result in effective classification. The grids
made over the code image are used to construct the histogram. The feature vectors are fed
to a stack of Restricted Boltzmann Machines for prediction.

Figure 8. Sobel code images of the PH2 dataset; the size of the images are 238.2 pixels/mm.



Diagnostics 2023, 13, 1104 12 of 24

2.2.5. Skin ROIs Classification

In this work, SRBM is utilized for classification purposes. When compared to stacked
Restricted Boltzmann Machines, SRBM is distinguished by the fact that it prohibits lateral
connections inside a layer in order to make analysis simpler. On the other hand, the stacked
Boltzmann method combines a supervised top layer for class recognition with an unsuper-
vised three-layer network that has symmetric weights. This results in a hybrid model. The
stacked Boltzmann method is applied in the comprehension of natural languages, the re-
trieval of documents, the creation of images, and the classification of these. These functions
can be trained through either unsupervised preliminary training or through supervised
fine-tuning. In contrast to the top layer, which is symmetric but without any direction,
the RBM connecting layer is asymmetric and bidirectional. The restricted Boltzmann con-
nection, which brings together two separate networks into a single entity, is composed of
three layers with asymmetric weights. Both stacked Boltzmann Machines and Restricted
Boltzmann Machines have this in common: the neural building pieces that make up their
networks are composed of stochastic binary Hopfield neurons. Gibb’s probability measure
takes into account the energy from Restricted Boltzmann as well as RBM; Boltzmann is
analogous to RBM. There is no back propagation in the restricted Boltzmann train, which
processes one layer at a time, makes a three-segment pass to an approximation of the
equilibrium state, and does not use back propagation. The Restricted Boltzmann method
performs pre-training for classification and recognition using supervised and unsupervised
training on different RBMs.

2.3. Evaluation Methods

For the experiments, ten-fold cross-validation is used. The proposed strategy is
compared to other cutting-edge techniques using the following metrics. Regarding ac-
curacy, Harmonic Mean (HM), positive predictive rate (pp), sensitivity, specificity, and
F-score [32,50–54] are the measures used to assess performance and they are defined by
Equations (10)–(15). Sensitivity refers to the percentage of true positives that have been
accurately detected or the number of individuals who have been appropriately identified
as having melanoma. Accuracy refers to the proportion of a sample out of the complete
population that has been correctly classified. Specificity is evidence that the patients con-
cerned do not relate to any kind of skin melanoma. The percentage of tests that correctly
identify a patient is referred to as the positive predictive rate. The F1-score represents the
weighted mean harmonic average. The definition of these Metrics is represented by true
positives (TP), true negatives (TN), false positives (FP), and false negatives (FN).

Accuracy (ACC) =
TP + TN

TP + TN + FP + FN
, (10)

Specificity (SP) =
TN

TN + FP
, (11)

Positive Predictive Rate (pp) =
TP

TP + FP
, (12)

Sensitivity (SE) = 1− TP
FN

, (13)

F− Score =
2∗Sensitivity ∗ pp

Sensitivity + pp
, (14)

Harmonic Mean (HM) =
2∗Sensitivity ∗ Specifity
Sensitivity + Specifity

. (15)

2.4. Model Training and Hyperparameters

Cross-validation is an iterative method for preventing the practice of overfitting in
predictive methods. Each individual part of the dataset had to be separated out into its
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own section. In order to carry out a standard K-fold cross-validation, the data had to be
segmented into k-folds first. Then, while we were repeatedly retraining the algorithm on
k−1 folds, we included the remaining holdout fold as the test set. In this research we used
k cross-validation on to 10-fold.

The hyper-parameter values that are used in RBM are detailed in Table 1. Because
it is more capable of generalization than the conventional DNN, the suggested model
makes use of a stacked RBM in order to classify the images of skin cancer. The particle
swarm optimization approach is utilized in order to fine-tune the RBM hyper-parameters.
The persistent contrastive divergence is utilized in order to generate a rough estimate of
the likelihood gradient. Only the very first and very last repetitions of the convergence
process are successful when the Markov chain has a low mixing. After that, an RBM model
constructed with each training sample is used. Following the completion of each Gibbs
iteration, the model is reconstructed, and the aforementioned method is then repeated for
each epoch.

Table 1. The hyper-parameters in RBM.

The learning rate 0.1
The momentum 0.7
Highest count of epochs in training 300
Batch size 25
The Delay of gap stop 3
The Delay of momentum 0.7

3. Results

In order to conduct our investigation, we relied on both a graphics processing unit
(GPU) and a central processing unit (CPU) developed by Intel. The algorithms were
implemented using version 7.12 of MATLAB. The different sets of images acquired from
the databases do not overlap with one another in any way. On five different datasets, we
conducted an analysis to determine how well the newly developed framework, Hybrid
SDP, and stacked RBM, classified skin lesions as either cancerous or benign. This analysis
was based on the values that were generated by the performance metrics. In addition,
the effectiveness of the classification system was evaluated alongside more traditional
techniques, such as the support vector machine (SVM), Gradient Boosting (GB), and
Random Forest (RF). Tables 2–11 present the findings of the experiments performed on
the five datasets. For specificity and sensitivity, the average of the values is reached.
Compared to Support Vector Machine (SVM) and Gradient Boosting (GB), the random
forest classifier produces better results. However, compared to the GB, Random Forest (RF),
and SVM, the stacked RBM used in the suggested approach produces the greatest results.
When distinguishing melanoma from dysplastic nevi, the suggested method produces
the best results. The texture, edge, and color information in the proposed study helps
all of the classifiers achieve better outcomes by producing greater SE and SP. There is a
0.2 percent increase in sensitivity for ISIC 2016 and ISIC 2017 when utilizing stacked RBM.
The proposed technique performs well for the Dermnet and DermIS datasets. The images
in the collection were captured using a variety of tools and under a variety of lighting
situations. SDP performs well in comparison to the other feature descriptors since it is
immune to variations in illumination. Tables denote specificity as SP, sensitivity as SE,
Positive predictive rate as PP, Harmonic Mean as HM, and accuracy as ACC. Three channel
images were created from the original photographs. Six possible combinations of the
three channel images were gained for the SDP algorithm. Using stacked RBM, the feature
vectors were predicted, and the outcomes were then obtained. Three channels made up the
image. The visuals for the red, green, and blue channels were then produced. Then, several
channel combinations were made, and the SDP method extracted the final feature vector
from the code image that SDP generated. Utilizing histograms, the code image produced
by the SDP technique was used to construct feature vectors. When the photos from the PH2
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dataset were utilized for the tests, the confusion matrix shown in Table 2 was created. The
overall positive rate for common nevi was found as 100%. Atypical nevi have a TPR of 99%,
while melanoma have a 100% TPR. The suggested SDP algorithm is compared to the other
feature extraction methods in the literature in Table 3. The findings show that the proposed
method obtains a high classification accuracy of 99.8%. The RBF kernel was utilized for
categorization using a Least Square Support Vector Machine (LS-SVM), SVM, and Extreme
Learning Machine (ELM). There are 1 to 50 hidden layers in a multi-layer perceptron,
which uses the Levenberg–Marquardt optimization. The TPR for the benign group is
100%, whereas the TPR for melanoma is 94%. The confusion matrix and the categorization
outcomes for the photos from the ISIC 2016 dataset are shown in Tables 4 and 5. Compared
to LBP (Local Binary Pattern), CLDP (Color Local Directional Pattern) [18,55–58] has the
highest accuracy. The accuracy of 97.2 percent shows that, compared to GLCM [59], LBP
more accurately captures the texture of skin cancer images [18]. In comparison to LBP,
CLDP achieves higher sensitivity and specificity. When used in conjunction with stacked
RBM, the suggested method for SDP yields the best accuracy. It has a 99.8% accuracy rate
for the PH2 dataset, which is the best. The achieved sensitivity is 98.8 and the achieved
specificity is 99.6. The HM is 99.4, the PP is 99.6, and the F-Score is 99.6. By choosing
only the most relevant answer information, the proposed SDP eliminates all the noisy
information and outperforms the other existing descriptors in terms of accuracy.

Table 2. PH2 dataset confusion matrix.

Type Total Amount of
Test Images

Atypical Nevus
(%)

Common Nevus
(%) Melanoma (%) Total Positive

Rate (TPR) (%)

Atypical Nevus 40 99 0 1 99
Common Nevus 40 0 100 0 100
Melanoma 20 4 0 96 96

Table 3. Classification evaluation performance for the PH2.

Descriptors Classifier SP SE PP F-Score HM ACC ± SD

LBP

K-NN 97.0 92.4 80.1 88.4 85.4 89.3 ± 1.23
Bayes 88.2 85.2 83.4 82.1 88.2 84.8 ± 0.25
LS-SVM 92.7 92.5 88.3 92.5 92.1 92.8 ± 1.26
ELM 89.2 82.3 93.2 82.1 79.0 91.9 ± 3.45
MLP 91.9 78.2 88.3 82.1 78.1 78.2 ± 4.53
Stacked RBM 99.2 99.4 96.3 97.4 96.6 81.1 ± 4.27

CLDP

K-NN 98.2 96.4 98.1 98.3 98.4 98.33 ± 0.44
Bayes 90.1 87.6 89.4 87.8 88.2 87.2 ± 2.34
LS-SVM(RBF) 94.7 92.9 90.3 94.5 94.1 94.8 ± 0.77
ELM(RBF) 91.2 82.3 93.2 82.1 79.0 91.9 ± 0.83
MLP 90.9 78.2 88.3 82.1 78.1 78.2 ± 2.34
Stacked RBM 98.5 97.8 98.6 98.6 98.4 98.8 ± 4.03

Proposed SDP

K-NN 97.2 95.4 97.1 97.3 98.4 98.3 ± 2.24
Bayes 91.2 87.2 89.1 86.5 87.6 87.1 ± 4.23
LS-SVM(RBF) 94.7 89.9 89.3 93.5 93.1 93.8 ± 0.23
ELM(RBF) 91.2 81.3 93.2 82.1 79.0 91.9 ± 4.03
MLP 90.9 77.2 89.3 82.1 78.1 78.2 ± 5.23
Stacked RBM 99.6 98.8 99.6 99.6 99.4 99.8 ± 1.20

Table 4. ISIC 2016 dataset confusion matrix.

Type Total Amount of Test Images Benign (%) Melanoma (%) TPR (%)

Benign type 250 100 0 100
Melanoma type 50 6 94 94
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Table 5. Classification outcomes for the pictures of ISIC 2016.

Descriptor Classifier SP SE PP F1-Score HM ACC ± SD

LBP

K-NN 83.0 82.4 81.1 76.3 71.3 71.3 ± 1.42
Bayes 71.2 78.2 76.4 72.1 72.2 76.3 ± 0.44
LS-SVM(RBF) 72.7 80.3 82.3 84.8 83.1 86.8 ± 1.45
ELM(RBF) 71.2 82.1 84.2 82.5 68.0 68.5 ± 2.54
MLP 71.9 79.2 89.3 82.1 87.1 79.2 ± 1.98
Stacked RBM 90.2 90.4 86.3 86.4 84.6 81.1 ± 7.14

CLDP

K-NN 88.2 86.4 90.1 98.3 88.4 90.3 ± 1.45
Bayes 80.0 80.2 89.0 87.9 88.3 87.0 ± 5.44
LS-SVM(RBF) 74.7 82.5 90.3 90.5 91.1 91.8 ± 2.57
ELM(RBF) 81.2 72.3 90.2 82.1 79.0 91.9 ± 4.54
MLP 80.9 78.2 88.3 82.1 78.1 78.2 ± 12.32
Stacked RBM 88.5 92.1 93.3 92.6 93.0 95.5 ± 2.54

Proposed SDP

K-NN 80.2 85.4 91.1 99.3 89.4 92.3 ± 2.67
Bayes 81.0 81.2 88.0 88.9 87.3 88.0 ± 5.54
LS-SVM (RBF) 72.7 83.5 91.3 92.5 90.1 92.8 ± 2.22
ELM (RBF) 83.2 71.3 91.2 83.1 77.0 90.9 ± 0.52
MLP 81.9 79.2 89.3 81.1 76.1 79.2 ± 0.54
Stacked RBM 92.5 95.7 95.3 95.6 95.2 96.5 ± 2.54

Table 6. ISIC 2017 dataset confusion matrix.

Type Total Amount of Test Images Benign (%) Melanoma (%) TPR (%)

Benign type 308 96 4 96
Melanoma type 58 3 97 97

Table 7. Classification outcomes of pictures from ISIC 2017.

Descriptors Classifier SP SE PP F-Score HM ACC ± SD

LBP

K-NN 71.0 62.4 65.1 66.3 62.3 60.3 ± 6.29
Bayes 61.2 68.2 66.4 62.1 63.2 65.3 ± 4.22
LS-SVM(RBF) 61.7 63.3 61.3 64.8 64.1 64.8 ± 2.29
ELM(RBF) 62.2 64.0 64.2 62.3 59.0 51.5 ± 4.27
MLP 64.5 69.2 67.3 62.1 68.0 68.2 ± 0.29
Stacked RBM 79.2 79.4 69.3 69.3 75.6 80.1 ± 2.34

CLDP

K-NN 65.2 66.4 70.1 88.3 78.4 70.3 ± 5.45
Bayes 60.0 60.2 79.0 77.9 78.3 77.0 ± 2.29
LS-SVM (RBF) 61.7 62.5 70.3 80.5 81.1 71.8 ± 0.88
ELM (RBF) 61.2 72.3 60.2 72.1 69.0 71.9 ± 6.23
MLP 70.9 72.2 68.3 72.1 68.1 68.2 ± 0.29
Stacked RBM 96.5 98.1 80.3 82.7 83.2 94.5 ± 1.28

Proposed SDP

K-NN 66.2 77.4 72.1 88.3 78.4 70.3 ± 5.29
Bayes 61.0 72.2 79.0 77.9 78.3 77.0 ± 4.29
LS-SVM (RBF) 62.7 74.5 72.3 80.5 81.1 71.8 ± 6.23
ELM (RBF) 63.2 73.3 62.2 72.1 69.0 71.9 ± 6.28
MLP 72.9 72.2 68.3 72.1 68.1 68.2 ± 4.54
Stacked RBM 98.5 99.9 82.3 84.7 85.2 95.5 ± 2.12

The ISIC 2016 dataset’s poor representation of the lesion’s size and location from the
PH2 dataset leads to incorrect classifications of the lesions. For the ISIC 2016 datasets, the
proposed technique achieves specificity of 92.5 and sensitivity of 95.7 in Table 5. When
compared to the outcomes obtained by LBP and CLDP, the suggested method’s classifica-
tion accuracy is 96.5 percent, which is high. The ISIC 2017 dataset’s confusion matrix is
shown in Table 6. The TPR for benign types is 96%, whereas the TPR for melanoma types is
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97%. The results obtained from utilizing the photos from the ISIC 2017 dataset are shown
in Table 7.

The classification outcomes for ISIC 2017 are shown in Table 7. For the ISIC 2017
datasets, the suggested method yields a specificity of 98.5 and a sensitivity of 99.9. Compar-
ing the suggested method’s classification accuracy to those obtained by LBP and GLCM [27],
it is high at 95.5 percent. In order to calculate the AUC, the average of the cross-validation
results obtained for each dataset is calculated.

Table 8. DermIS dataset confusion matrix.

Type Total Amount of
Test Images

Malignant
Melanoma (%)

Seborrheic
Keratosis (%)

Lupus
Erythematosus (%) TPR (%)

Malignant Melanoma (%) 18 97 2 1 97
Seborrheic keratosis (%) 48 0 99 1 99
Lupus Erythematosus (%) 24 3 0 97 97

Table 9. Classification outcomes of pictures from DermIS.

Descriptors Classifier SP SE PP F-Score HA ACC ± SD

LBP

K-NN 75.6 61.4 6.1 66.3 62.3 60.3 ± 0.22
Bayes 62.4 67.2 65.4 62.1 63.2 65.3 ± 2.22
LS-SVM(RBF) 65.8 62.3 60.3 63.8 63.1 65.8 ± 4.22
ELM(RBF) 64.2 62.0 63.2 76.3 65.0 61.5 ± 2.67
MLP 65.5 68.2 68.3 62.1 68.0 68.2 ± 8.75
Stacked RBM 69.9 79.4 67.3 68.3 77.6 83.1 ± 9.52

CLDP

K-NN 68.2 66.4 70.1 88.3 88.4 80.3 ± 0.29
Bayes 56.0 90.2 89.0 67.9 88.3 87.0 ± 9.29
LS-SVM(RBF) 82.7 92.5 90.1 90.1 81.1 81.8 ± 2.29
ELM(RBF) 89.2 72.3 90.2 79.1 89.0 71.9 ± 0.44
MLP 90.9 92.2 88.3 92.1 88.1 68.2 ± 0.56
Stacked RBM 95.9 99.9 90.3 92.7 83.2 96.6 + 3.44

Proposed SDP

K-NN 68.2 66.4 70.1 88.3 88.4 80.3 ± 6.29
Bayes 55.0 95.2 89.0 68.9 89.3 87.0 ± 5.44
LS-SVM(RBF) 85.7 98.5 97.1 92.1 89.1 81.8 ± 5.67
ELM(RBF) 89.2 72.3 92.2 79.1 89.0 72.9 ± 0.29
MLP 91.9 93.2 89.3 93.1 89.1 68.2 ± 4.54
Stacked RBM 96.9 99.9 92.3 94.7 84.2 97.6 ± 3.67

Table 10. Dermnet dataset confusion matrix.

Type Total Amount of
Test Images

Melanoma and
Melanocytic

Nevi (%)

Seborrhoeic
Keratosis and
Other Type of

Benign Tumors (%)

Common Warts,
Molluscum

Contagiosum
and Other (%)

TPR (%)

Melanoma and Melanocytic
Nevi (%) 635 89 10 1 89

Seborrhoeic Keratosis and other
type of Benign Tumors (%) 2397 10 87 3 87

Common Warts, Molluscum
contagiosum and other (%) 1549 9.5 1.5 89 89
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Table 11. Classification outcomes of Dermnet.

Descriptors Classifier SP SE PP F-score HM ACC ± SD

LBP

K-NN 72.3 61.4 69.1 66.3 62.3 60.3 ± 5.34
Bayes 63.9 60.2 64.4 62.1 62.2 65.3 ± 3.87
LS-SVM (RBF) 64.8 62.3 63.3 64.5 64.1 62.8 ± 0.29
ELM (RBF) 64.2 67.0 61.4 76.3 69.0 62.5 ± 0.32
MLP 65.5 62.2 64.3 62.1 68.0 65.2 ± 0.67
Stacked RBM 76.9 78.4 75.2 76.3 75.6 80.1 ± 4.53

CLDP

K-NN 67.2 66.4 70.1 78.3 78.4 80.3 ± 6.34
Bayes 72.0 70.2 78.0 67.9 78.3 77.0 ± 3.45
LS-SVM(RBF) 72.7 81.5 70.1 71.1 81.1 71.8 ± 6.78
ELM (RBF) 73.2 62.3 70.2 69.1 79.0 71.9 ± 5.89
MLP 70.9 72.2 78.3 72.1 78.1 68.2 ± 0.54
Stacked RBM 98.9 87.8 86.1 88.5 85.2 87.0 ± 6.29

Proposed SDP

K-NN 68.2 66.4 70.1 78.3 78.4 80.3 ± 3.22
Bayes 73.0 70.2 79.0 67.9 78.3 77.0 ± 2.23
LS-SVM (RBF) 71.7 80.5 70.1 70.1 81.1 71.8 ± 5.67
ELM (RBF) 71.2 62.3 70.2 69.1 79.0 71.9 ± 5.66
MLP 71.9 72.2 78.3 72.1 78.1 68.2 ± 0.23
Stacked RBM 99.9 88.3 86.3 88.7 85.2 87.9 ± 2.33

Tables 8–11 show that, when the suggested work is used to classify the datasets
Dermnet and DermIS, a high level of classification accuracy is attained. For unbalanced
datasets, the stacked RBM in the Deep Belief Network also performs well. The SDP feature
and the stacked RBM in the DBN are used to attain the highest classification. Several
descriptors from the literature are used in place of the proposed feature descriptor SDP,
and the results are equated for all those datasets, as shown in Figures 9–13. Comparing
the proposed feature descriptor SDP to all existing feature extraction methods in the litera-
ture, it obtains good performance because of its capacity to capture the edge information,
histogram information from rival colors, and texture information. SDP more successfully
recovers the spatial data of the texture, edges, and opponent color information while also
removing noise. Other feature descriptors, such as LTP, Color SIFT, Gradient information,
CLDP, Color Gabor wavelet, and multi-feature extraction, do not completely reduce the
noise [8,18,55,56,58]. In contrast to LBP and additional descriptors used in the existing
methods for the diagnosis of skin lesions, SDP is likewise insensitive to changes in light.

Figure 9. Comparison of performance using various feature descriptors in PH2.
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Figure 10. Comparison of performance using various features in ISIC 2016.

Figure 11. Comparison of performance using various features in ISIC 2017.

Figure 12. Comparison of performance using various features in DermIS.
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Figure 13. Comparison of performance using various features in Dermnet.

Differential diagnosis of melanoma includes other pigmented lesions such as basal
cell carcinoma (ISIC 2019), Bowen disease, Actinic keratosis, and squamous cell carcinoma,
which are also analyzed from the ISIC 2019 dataset from images that achieve a TPR rate of
91% for basal cell carcinoma, 83% for Bowen disease, and 62% for squamous cell carcinoma,
as in Supplementary Table S1. The proposed approach is compared with the other state-of-
the-art approaches in Supplementary Table S2. The effectiveness of various cutting-edge
techniques is measured against the outcomes shown in Supplementary Table S2 to compare
performance. For the datasets used in the research for the prediction of the images using
depth and 3-D shape, Satheesha et al. [60] have suggested a 3D skin lesion reconstruction.
Bi et al. [61] have proposed a method that uses a multiscale lesion-based portrayal and
classification utilizing a combined reverse approach. They used photos that had been
preprocessed to change the contrast. Waheed et al. [62] used color and texture factors as
well as contrast adjustments to categorize melanoma. Gutman et al. [45] analyzed skin
lesions with a 91.6 percent accuracy rate. Lopez et al. [63] used CNN [32] to analyze spatial
domain, but the suggested method makes use of color, structural, and textural data to
produce accurate classification findings. Matsunaga et al. [64] classified data using DNN.
Deep learning methods achieve good accuracy for skin cancer classification [65,66]. By
using the Newton–Raphson approach, Khan et al. [67] have presented a region-based
convolutional neural network. Using the DermIS dataset, DNN was implemented by
Bajwa et al. [68]. Using the Dermnet dataset, Rajinikanth et al. [69] employed the Bat
algorithm. As shown in Table S2, the suggested method using stacked RBM in the Deep
Belief Network delivers higher prediction accuracy compared to CNN, DNN, and other
cutting-edge methods.

4. Limitations and Future Work

The feature values acquired using feature extraction algorithms are frequently dis-
persed when the images have diverse zooming settings, variable lighting, and different
resolutions. In the suggested method, a normalization strategy is used to get around this
issue. The information required to complete the normalization procedure can be found
in [70]. The classification technique’s stacked RBM generates a reliable and ideal prediction.
When numerous boundaries or ambiguous borders are present in the images, the classifi-
cation fails. In those circumstances, crucial details are lost, which causes the accuracy to
drop, as demonstrated by the trials. Principal Component Analysis can be used to reduce
the feature vector’s rise in dimension. Even in unbalanced datasets, the stacked RBM in
the DBN produces good results. Even images with poor quality and little contrast produce
excellent results. There are not many works in the literature that discuss the categorization
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of melanoma and dysplastic lesions. The proposed effort produces superior outcomes in
this study, similar to those seen in the results presented for SE and SP. SDP is thus perfectly
suited for use in real-time applications because of its high accuracy and low processing
complexity. The suggested SDP enhances the image and eliminates any potential noise
using Difference of Gaussian filters. The retrieved features make this feature extraction
method superior to those currently in use, in addition to being scale- and rotation-invariant.
However, the Sobel operator’s primary shortcoming is its signal-to-noise ratio. As noise
levels increase, the gradient magnitude of the edges becomes smaller, which could lead
to some incorrect results. The use of derivatives based on fractional orders on better edge
detection methods will be used in the future to address this SDP restriction. Our proposed
model could be implemented by doctors and dermatologists for clinical use. Finally, many
challenges and ideas from other domains such as NLP and image processing can be in-
vestigated by applying hybrid models in future. The proposed work will be improved by
including other fractional-order-based derivatives to enhance the performance of these
categories in future works. Furthermore, it is possible to adapt the proposed algorithms
to identify features that are included in a seven-point checklist with pattern analysis for
dermoscopic equivocal melanocytic lesions while applying other fractional-order-based
derivatives with some other better edge detection methods in future works.

5. Conclusions

SDP results from the interaction of color, edge, and texture elements, which dynami-
cally acquires the structural qualities of the image and increases data discrimination. The
results show that the suggested methodology pulls more sensitive data from all of the
photographs when compared to other methods in the literature. Our findings illustrate that
the suggested strategy is a very valuable computational model. The goal is to evaluate this
method in additional databases for future research, in addition to integrating new repre-
sentations for application and investigation in dermoscopy images. As computer vision
technology develops, machine learning is gaining popularity as a technique of automated
medical picture recognition. Skin cancer screening techniques based on machine learning
have been presented in the past research projects. However, this procedure produces high
classification accuracy compared to other approaches. SDP and stacked RBM are employed
in this work to categorize skin cancer photos. Different computational techniques are no
longer required to extract color, texture, and edge information from skin cancer images.
Clinicians will benefit from real-time skin cancer diagnosis if the suggested method can be
implemented as a smartphone application.
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