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a b s t r a c t

Numerous Image Quality Measures (IQMs) have been proposed in the literature with

different degrees of success. While some IQMs are more efficient for particular artifacts,

they are inefficient for others. The researchers in this field agree that there is no

universal IQM which can efficiently estimate image quality across all degradations. In

this paper, we overcome this limitation by proposing a new approach based on a

degradation classification scheme allowing the selection of the ‘‘most appropriate’’ IQM

for each type of degradation. To achieve this, each degradation type is considered here

as a particular class and the problem is then formulated as a pattern recognition task.

The classification of different degradations is performed using simple Linear Discrimi-

nant Analysis (LDA). The proposed system is developed to cover a very large set of

possible degradations commonly found in practical applications. The proposed method

is evaluated in terms of recognition accuracy of degradation type and overall image

quality assessment with excellent results compared to traditional approaches. An

improvement of around 15% (in terms of correlation with subjective measures) is

achieved across different databases.

& 2012 Published by Elsevier B.V.

1. Introduction

During the last decade, we have witnessed an increasing

demand for quality multimedia material. This is essentially

due to the development of advanced image/video produc-

tion technologies. Indeed, the progress achieved in these

domains is unprecedented. Despite such a progress, quanti-

fying and reducing image degradation continues to be a

challenging problem. A typical example is that of image

degradation due to blocking effects in JPEG compression and

ringing effect in JPEG2000 compression [1]. These artifacts

are among the most limiting factors in compression.

In recent years, substantial research efforts in image

quality have led to the development of a number of Image

Quality Measures (IQMs) [2,3]. These quality assessment

methods are broadly classified into three categories, Full

Reference (FR), Reduced-Reference (RR) and No-Reference

(NR) metrics. In the first class, both the original image and its

distorted version are available. In the case of RR methods,

the image quality is estimated using some features extracted

from the original and the degraded image. When neither the

reference image nor any of its features is known, NR or blind

methods are used. It is worth noting that most of the

currently known methods, especially the universal ones,

use the whole original image (FR methods). Furthermore,

most NR techniques are not universal and respond effec-

tively only to one or two types of distortions (e.g. block

effects in JPEG and/or image blurring). To test the proposed

algorithm across the largest range of possible distortions, we

opted to focus on FR methods.

The most common FR measure is the traditional Peak

Signal to Noise Ratio (PSNR). Unfortunately, PSNR pro-

vides poor results in terms of correlation with subjective

measures such as the Mean Opinion Score (MOS) [4].
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Some methods, such as the PSNR-HVS, have been pro-

posed to improve the PSNR by taking into account some

Human Visual System (HVS) characteristics [5]. Such

measures exploit the limitations of the HVS in discerning

fine details and textures in an image. This limitation is

expressed as a filtering process modeled though a band-

pass filter called Contrast Sensitivity Function (CSF) [6]. A

more recent version of the PSNR-HVS has been developed

by taking into account masking effects in the DCT domain

[7,8].

Many others HVS-inspired image quality measures

have been proposed in the literature (see Refs. [9,10] for

an overview of IQMs). The Visible Differences Predictor,

proposed by Daly is one of the earliest and most popular

IQMs based on HVS characteristics discussed in the

literature [11]. However, the computational complexity

of this IQM makes it less attractive than other simpler and

more efficient measures. Other image quality measures,

such as the SSIM [12], use local structural characteristics,

or mutual information concepts [13] to quantify image

quality.

Despite all these available IQMs, there is no universal

or unique IQM that can predict or measure image quality

across all degradations. Indeed, the efficiency of a given

IQM may be very high for a given type of degradation but

inefficient for others. This is essentially due to the fact

that generally Full Reference (FR) IQMs cannot take into

account the particular type of visual distortion contained

in a given image. Moreover, it is worth noting that images,

in real setups, may be subjected, simultaneously, to a

multitude of degradations.

In this work, we adopt a new strategy for quantifying

image quality. We start from the point of view that image

quality is rather a multidimensional problem as already

noted in [14,15]. To overcome the limitations of different

IQMs, we propose to identity first the degradation type

contained in an image then measure the quality of that

image, using the most appropriate IQM for that specific

degradation. Here, we do not focus on the particular

artifacts such as blocking effects or ringing effects, but

use a statistical framework that covers a large set of

common degradations.

The paper is organized as follows: In Section 2, we first

discuss the importance of the a priori knowledge of the

degradation type, we then describe the image database

used for our experimental setup, and the features used

for distortion classification. The experimental results

are discussed in Section 3 followed by some concluding

remarks in Section 4.

2. The proposed method

2.1. The distortion-IQM correlation

The efficiency of existing IQMs depends highly on the

type of degradation contained in a given image. For a given

degradation, some IQMs are more adapted to subjective

judgments than others. The idea developed here is to exploit

this limitation to better estimate the quality of a given

image. We propose to detect the type of degradation

contained in a given degraded image before quantifying

the quality of such an image using an appropriate distortion-

based IQM (D-IQM).

Before describing the proposed method, we will dis-

cuss the importance of knowing the type of distortion

contained in an image through the following simple

experiment. In this example, we analyze the performance

of some FR-IQMs across three common degradations,

namely: JPEG, JPEG2000 lossy compression artifacts, and

common blur distortion.

In JPEG compression, blocking effects appear quite

significantly at low bit rates. Such annoying artifacts

appear generally at block edges as artificial horizontal

and vertical contours. This is mainly due to the fact that

the blocks are transformed and quantized independently.

The effect of such blocking effects depends highly upon

the spatial intensity distribution in the image and its

frequency content. Moreover, the Human Visual System

(HVS) enhances the perceived contrast between adjacent

regions. Furthermore, these artificial block transitions are

accentuated by the Mach phenomena [16]. An example of

an image and its JPEG compressed version exhibiting

compression distortion is presented in Fig. 1.

Another type of distortion commonly encountered in

real applications is blur. This distortion mostly affects

salient features such as contours which correspond to high

frequencies components in the image. The lossy compres-

sion operation acts as a low pass filter on these components

leading to contrast attenuation around region transitions

such as object contours (see Fig. 2).

The more recent JPEG 2000 compression standard has

been shown to offer better performance than JPEG in

many aspects. However, still, other annoying artifacts

such as ringing effects, which commonly appear around

edges, limit the performance of this compression method

at very low bit rates (see Fig. 3). These artefacts result

from the decimation and the quantization processes [1].

This phenomenon has traditionally been known as the

Gibbs phenomenon.

Fig. 1. JPEG compression distortions: (a) original image, (b) JPEG blocking effect, (c) zoomed version of image (b).
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Many of the experiments we carried revealed that for a

given image subjected to various degradations with the

same level of image quality (as quantified by objective

measures), the perceptual appearance of the image can

clearly differ from one distortion to another. This obser-

vation confirms that the use of a single IQM for quantify-

ing different distortions cannot yield consistent results.

Therefore, it would be inappropriate to use the same IQM

for all types of distortions. For this reason, we started our

experiments by considering different classes of distortion

separately. For each type of distortion, we ranked the

different IQMs using the Pearson’s Correlation Coefficient

(PCC) between the IQM indices and the Mean Opinion

Score (MOS). For our experiments, we selected the most

commonly used IQMs, namely: VIF, VIFP [13], PSNR-HVS

(PSNRH) [5], PSNRHVS-M (PSNRM) [8], SSIM [12], UQI

[17], IFC [18], WSNR [16], VSNR [20], XYZ [21] and PSNR

(these measures will be briefly discussed in Section 2.3).

For the sake of completeness, the expression of the PCC

is given below:

CORRij ¼

PK
k ¼ 1ðIQMðkÞij$IQMij Þ:ðMOSðkÞi$MOSi Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PK
k ¼ 1 ðIQMðkÞij$IQMij Þ

2
q

:

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

PK
k ¼ 1 ðMOSðkÞi$MOSi Þ

2
q

ð1Þ

where i and j stand for the ith degradation and the jth

IQM, respectively. The index k stands for the kth image,

and K is the total number of images considered in the

experiment.

In our experiments, we used the Tampere Image Data-

base [22]. We first started by ranking the different FR-IQMs

for the 3 considered distortions. Table 1 summarizes the

obtained results. It is important to note that the ranking

changes across the three types of degradations. Indeed, the

best IQM for blur is the VIFP, while PSNRH appears as the

most appropriate IQM for JPEG and JPEG 2000 compression

artifacts.

The estimated PCCs obtained for VIFP and PSNRH under

each of the degradations above, are given in Table 2.

The results above prompted us to investigate the

effects of different distortions on quantifying image qual-

ity in more details. More specifically, we postulate here

that one should first identify the distortion type before

selecting the most appropriate IQM for quantifying image

quality [23]. A relatively similar scenario for no reference

Fig. 2. Blur distortion: (a) original image and (b) its blurred version.

Fig. 3. JPEG2000 compression distortions: (a) original image, (b) ringing and blur effects, (c) zoomed version of (b).

Table 1

IQM ranking for blur, JPEG and JPEG2000 distortions.

IQM

ranking

Degradation type

Blur (Class 8) JPEG (Class 10) JPEG2000 (Class 11)

1 VIFP PSNRH PSNRH

2 VIF PSNRM PSNRM

3 WSNR VIF NQM

4 VSNR WSNR WSNR

5 PSNRM NQM VIFP

6 PSNRH VIFP VSNR

7 SSIM VSNR UQI

8 UQI SSIM VIF

9 NQM PSNR PSNR

10 IFC XYZ SSIM

11 PSNR UQI IFC

12 XYZ IFC XYZ
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IQM estimation was independently proposed by Moorthy

and Bovik in [24].

In summary, the flowchart of the proposed algorithm is

presented in Fig. 4. First, some characterizing features are

extracted from the original image and its degraded version.

Then, after projecting these features onto a new space, the

type of degradation is determined by using a simple mini-

mum distance criterion. The new space is obtained using

Linear Discriminant Analysis (LDA) projection.

Once the specific type of distortion is identified, the most

appropriate IQM will then be used to quantify the quality of

the distorted image. This will be discussed in more details.

Next, we briefly present the image database used in

our experiments. Then, we introduce the feature extrac-

tion process and distortion classification followed by the

final IQM estimation stage.

2.2. The Tampere Image Database (TID 2008)

In order to evaluate the performance of the proposed

approach, we need a comprehensive database that covers

the widest range of possible distortions. A number of

image databases are available in the literature for testing

IQM algorithms including the LIVE database [25], the IVC

database [26], the Cornel database [27], and so on. In this

work, we opted to use the TID 2008 image database [22].

This database consists of 17 types of degradations with

100 images per distortion from 25 reference images (i.e. 4

distortion levels per image and per degradation). Fig. 5

shows some reference images taken from the TID 2008

database. Table 3 lists the degradation types available in

the database. We note that the database covers a wide

range of possible distortions: compression artifacts such

as JPEG and JPEG2000, blur, noise, and others. The MOS

values for all the observed images are also available for

this database.

Table 2

PCC for blur, JPEG and JPEG2000 distortions.

Degradation type Pearson Correlation Coefficient

VIFP PSNRHVS

Blur 0.94 0.91

JPEG 0.91 0.95

Ringing 0.94 0.95

Classifier

Image Quality

Assessment

using the most

appropriate

IQM

Feature

Extraction

IQMs

Original

Image

Degraded

Image

Data

Projection

(new space)

Data

Learning

(offline)

Distance

Computation

Degradation

Type

Fig. 4. Flowchart of the proposed system.

Fig. 5. Sample images from the TID2008 database.
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2.3. Features extraction for distortion identification

In order to identify the type of distortion affecting

a certain image, some characterizing features need to be

extracted from both the original image and its degraded

version. Numerous features can be used for this purpose

such as contrast, homogeneity and textured descriptors.

Here, we propose to use directly the different IQMs as

features. We consider that for a given degradation type,

each FR-IQM exhibits a specific response. In other words,

the FR-IQMs are used to discriminate between different

degradations.

In the following, and for the sake of completeness, we

describe the IQMs cited previously and considered here as

features to be associated with the appropriate distortions.

Note that in this study, we assume that we have access to

both the original and the degraded images (i.e. Full

Reference Measures are thus considered). We selected a

range of IQMs commonly used in this research area. While

some of the selected IQMs are HVS-based (such as the

PSNRHVS), others are based on pixel-wise differences

(MSE-based metrics), or local structural information such

as the SSIM.

2.3.1. Peak Signal to Noise Rate (PSNR)

The Peak Signal to Noise Rate (PSNR) is the most

commonly used measure for quantifying signal distortion

[4]. In the absence of a well-accepted IQM, it is still in use

in many applications and especially for real-time perfor-

mance evaluation of some video and image processing

systems.

2.3.2. Universal Image Quality Index

The Universal image Quality Index (UQI) [17] is based

on a local analysis of the image. This measure represents

structural information obtained by extracting some local

statistical parameters from non-overlapping blocks.

This IQM has been shown to adapt well for measuring

artifacts due to blur. Indeed, blur tends to decrease the

gray-levels scatter around the mean of pixels of a given

block in an image. However, this measure is unstable over

homogeneous regions where the standard deviation is

close to zero. Furthermore, it has recently been shown

that this measure is directly related to the conventional,

and often unreliable, mean squared error [28].

2.3.3. Structural SIMilarity and its multi-scale version

Another improved version of the UQI, called the

Structural SIMilarity image quality index (SSIM), is a

measure based on local structural information [39]. The

SSIM measure is a function of three terms: luminance (l),

contrast (c), and structure (s) factors. In [12], a multi-scale

version of the SSIM was proposed. The same features (l, c

and s) are extracted. However, l is derived from the last

level of decomposition, whereas, c and s are computed at

each level of decomposition. The overall image quality

index is finally obtained by multiplying l, the sum of c,

and the sum of s. Similarly to the UQI, blur degradation is

well quantified by this measure. Note that both the SSIM

and the MSSIM can be seen as improved versions of the

UQI [17].

2.3.4. PSNRHVS and PSNRHVS-M

In [5], a perceptually motivated PSNR called PSNR-HVS

index quality was proposed. The main rationale was to

improve the performance of the PNSR by integrating some

characteristics of the HVS. To achieve this, the authors

incorporated the CSF model in the DCT domain.

A more recent version, named PSNRHVS-M, has also

been proposed in [8] where a masking model was incor-

porated. It is worth noting that blocking effect can be well

estimated using these measures for DCT-based com-

pressed images. This is mainly due to the fact that these

measures themselves are based on a block analysis and

the DCT transform.

2.3.5. Weighted Signal to Noise Ratio (WSNR)

Contrary to the previous measures, the WSNR index is

based on a frequency domain analysis [19]. The measure is

basically a perceptually weighted signal-to-noise ratio. It is

expressed as the ratio of the CSF-weighted Fourier spectrum

of the original image over that of the distorted image.

2.3.6. Information Fidelity Criterion (IFC)

In [18], an IQM, based on some concepts from informa-

tion theory, was proposed. This measure, called Information

Fidelity Criterion (IFC) is computed using a source (C) and a

distortion (D) model for some selected subbands in the

wavelet domain. The wavelet coefficients of the different

subbands are modeled using a Gaussian Mixture model.

2.3.7. Visual Information Fidelity (VIF)

An extension of the IFC measure, called Visual Infor-

mation Fidelity (VIF), was proposed in [13]. The main

difference is the incorporation of some characteristics of

the HVS. Another version of VIF in spatial domain, called

VIFP, was also proposed.

Table 3

Types of degradation in the TID 2008 image database.

Degradation Type

1 Additive Gaussian noise

2 Additive noise in color components

3 Spatially correlated noise

4 Masked noise

5 High frequency noise

6 Impulse noise

7 Quantization noise

8 Gaussian blur

9 Image denoising

10 JPEG compression

11 JPEG2000 compression

12 JPEG transmission errors

13 JPEG2000 transmission errors

14 Non eccentricity pattern noise

15 Local block-wise distortions of different intensity

16 Mean shift (intensity shift)

17 Contrast change
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2.4. Distortion classification using Linear Discriminant

Analysis (LDA)

To identify the type of distortion affecting a given image,

we propose here to use a simple classifier based on Linear

Discriminant Analysis (LDA). Under this framework, we

consider the different IQMs as features extracted from the

test image [29]. Each degradation is considered as a class

among a set of M classes (here M¼17). The IQMs estimated

from a given image are concatenated as feature vectors of

dimension n (here n¼12).

Instead of dealing with all the extracted IQMs indivi-

dually, and since many IQMs may exhibit large correla-

tions as noted in [24], we propose to project these

‘‘feature’’ vectors onto an orthogonal space. The concept

of data projection is not new and has been used in

mathematics quite frequently. Linear subspace projection,

in particular, has been used in numerous signal proces-

sing applications. Three popular approaches generally

used under this class are: Principal Component Analysis

(PCA), Linear Discriminant Analysis (LDA) and Indepen-

dent Component Analysis. The PCA’s basic concept is to

find a set of the most representative projections such that

the projected samples retain most information about the

original samples and account for the most variance in the

data. LDA, on the other hand, uses class information and

finds as set of projection vectors that maximize the

between-class scatter while minimizing the within-class

scatter. Finally, ICA captures higher order statistics and

projects data onto the basis vectors that are as statistically

independent as possible.

While there were numerous attempts to compare the

three approaches (ICA, PC, LDA), there has never been a

consent of which one of the three performs best. One of the

earliest attempts was discussed by Martinez and Kak [31] in

which they say that even though LDA is seen a more

appropriate approach for classification, PCAmay outperform

LDA when the number samples/class is small or when

training data non-uniformly sample the underlying distri-

bution. Moghaddam [33], on the other hand, showed that

there was no significant difference between PCA and LDA.

Eleyan and Demirel [34] carried an extensive analysis in

which they analyze PCA and LDA both as classifiers and as

preprocessing stages for a Neural Network (NN) classifier.

They showed that LDA and NN-LDA consistently outperform

PCA and NN-PCA for a medium to large number of images

per class. Given that, in our application, we have a reason-

able number of images for each class (distortion type), we

opted to use the LDA approach.

As introduced above, Linear Discriminant Analysis (LDA)

is a popular method for dimensionality reduction and

classification that projects high-dimensional data onto a

low dimensional space where the data achieves maximum

class separability. The projection matrix or transformation is

obtained by minimizing the within-class variability and

maximizing the between-class distance simultaneously,

hence achieving maximum class discrimination. It has been

used successfully in many applications including face recog-

nition, microarray gene expression data analysis [36–38].

The optimal transformation is readily computed by solving a

generalized eigenvalue problem.

The original LDA formulation, known as the Fisher

Linear Discriminant Analysis dealt with binary-class clas-

sifications. The key idea was to find a projection direction

that separates the class means efficiently (when projected

onto that direction) while achieving a small variance

around these means. Discriminant Analysis is generally

used to find a subspace with M"1 dimensions for multi-

class problems, where M is the number of classes in the

training dataset.

Contrary to Principal Component Analysis (PCA) which

considers each observation vector as a class on its own,

LDA achieves dimensionality reduction while preserving

as much of the class discriminatory information as possi-

ble [30,31] and takes into account the fact that several

observations may come from the same class. Linear

Discriminant Analysis searches for those vectors in the

underlying space that best discriminate between classes

(rather than those that best describe the data as in PCA).

Mathematically speaking, for all the samples of all

classes we define two measures: (i) one called within-class

scatter matrix, as given by

Sw ¼
XM

J ¼ 1

XNi

i ¼ 1

ðx
j
i
"ljÞðx

j
i
"ljÞ

T ð11Þ

where x
j
i (dimension n%1) is the ith sample vector of

class j, ljis the mean of class j, M is the number of classes,

and Ni is the number of samples in class j. The second

measure (ii) is called the between-class scatter matrix

defined as

Sb ¼
XM

j ¼ 1

ðlj"lÞðlj"lÞ
T ð12Þ

where l is mean vector of all classes.

The goal is to find a linear transformation expressed

through the matrix W, that maximizes the between-class

measure while minimizing the within-class measure. One

way to do this is to maximize the ratio det(Sb)/det(Sw).

The advantage of using this ratio is that it has been proven

that if Sw is a non-singular matrix then this ratio is

maximized when the column vectors of the projection

matrix, W, are the eigenvectors of Sw
"1

.Sb. It should be

noted that: (i) there are at mostM"1 nonzero generalized

eigenvectors, and so an upper bound on reduced dimen-

sion is M"1, and (ii) we require at least n(size of original

feature vectors)þM samples to guarantee that Sw does not

become singular.

Note however that the dimension in the projection

space does not have to be M"1 as the number of

important eigenvalues (in the energy sense) may be much

smaller than M"1.

3. Experimental results

To evaluate the performance of the proposed method

for degradation classification and quality evaluation, sev-

eral experiments were carried covering over 400 natural

images (different from those used during the learning

stage). The experimental procedure is quite simple and

requires the original and distorted images. Fig. 6 shows

the Global Image Quality Assessment System for a JPEG

A. Chetouani et al. / Signal Processing: Image Communication 27 (2012) 948–960 953



compressed image. We list below the main steps of the

algorithm:

1. All features vectors (of dimension 12!1) are extracted

from the different images in the training set.

2. The features vectors from the training stage are used to

find the LDA transformation.

3. Using the transformation from (2), the feature vectors

in step 1 are projected into the new subspace. These

vectors will be called Reduced Feature Vectors from

Training (RFVTR vectors).

4. For a given pair of images (original and its degraded

version), the 12!1 feature vector is obtained. This

vector is then projected onto the new space to get the

Reduced Feature Vector from TeSting (RFVTS vector).

5. Using the Euclidean or Mahalanobis distance, find the

RFVTR vector that is close to the RFVTS vector.

6. The class to which belongs the selected RFVTR vector

is declared as the unknown degradation type corre-

sponding to the test image.

For the sake of simplicity, the Euclidian distance was

used in our implementation. The results using the Eucli-

dian and the Mahanalobis distances were very compar-

able. Note that some of the references comparing LDA,

PCA, and ICA did discuss the issue of most appropriate

metrics for classification and showed that L1, L2, and

Cosine distances all provide very comparable results [31].

We first evaluated the performance of our method in

terms of accuracy in identifying the type of degradation

contained in different test images. Fig. 7 displays the

classification accuracy for each type of degradation. Note

that for all types of distortions, a classification accuracy of

more than 90%, is achieved with an average classification

accuracy of 98.11%.

To better visualize our results, the confusion matrix for

different classes was computed and is shown in Fig. 8. Note

that the lowest performance was obtained for classes 9, 12

and 13 corresponding to 92% classification accuracy.

We noticed from the experimental results that misclassi-

fication occurred only for some types of degradations with

similar visual appearance or when the image contains a

mixture of distortions such as blur and ringing (this may

occur in JPEG2000 compression). An example of such confu-

sion is illustrated in Fig. 9, denoising (degradation number 9)

is identified as JPEG and JPEG2000 compression distortions.

To further analyze the performance of the proposed

system, we used some images from the IVC database (see

Fig. 10). With this database, we achieved an overall

classification accuracy of 81.05% for JPEG2000 and JPEG

distortions. Furthermore, we also tested our algorithm

using selected images from the LIVE image database. The

percentages in classification accuracy obtained for these

types of degradations were 82% and 76%, respectively.

Finally, we tested our system with distortions of

unknown nature. For this purpose, some LAR (Locally

Adaptive Resolution) [32] compressed images were used
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Fig. 6. Example of the global Image Quality Assessment System for JPEG compression degradation.
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15 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100  0 

16 0 0 0 0 0 0 0 0 0 0 0 4 0 0 0 96 0 

17 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 100

Fig. 8. Confusion matrix for degradation classification (values are expressed in %).
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Fig. 7. Degradation classification accuracy.

Fig. 9. Classification errors: confusion between degradations 9 and 11 (left), and degradations 9 and 10 (right).
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Fig. 10. A sample of reference images taken from the IVC image database.

Fig. 11. LAR compressed images.

Fig. 12. Classification results for LAR compressed images.

A. Chetouani et al. / Signal Processing: Image Communication 27 (2012) 948–960956



(see Fig. 11). The distortions generated using LAR are

generally very similar to common conventional blurring

effect and blocking artifacts.

With the 40 distorted images used in the test, most

were classified as JPEG2000 compressed images (class 11),

see Fig. 12.

Table 4

Criteria commonly used to compare IQMs.

Criterion Computation Description

Logistic

function
MOSp¼

A

ð1þexpðGnIndex Quality$DmÞÞ
þB Where A, G, Dm and B are adjusted during the

fitting process

RMSE
RMSE¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

N

X

N

i ¼ 1

Qerror½i'

v

u

u

t

With Qerror[i]¼MOS[i]$MOSp[i] and N is the

number of images

Outlier ratio OR¼
ðnumber of outliersÞ

N
With

number of outliers¼ Qerror½i'
"

"

"

"42nserrorMOS½i'

Fig. 13. MOS vs. predicted MOS for Gaussian blur: (a) SSIM index, (b) VIFP index (Best IQM for this degradation).

Fig. 14. MOS vs. predicted MOS for JPEG compression: (a) SSIM index, (b) PSNR-HVS index (Best IQM for this degradation).
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The proposed method has been successfully evaluated

on a large number of images taken from a range of

applications. As explained earlier, once the degradation

type is identified, the quality of a given image can be

better measured using the most appropriate IQM (Section 2).

Table 7 summarizes the results obtained for 17 types of

degradations. The best IQM for each of the considered

degradations (using only the selected IQMs) and its

corresponding PCC are given. Here, we limited the study

to a selected set of IQMs but other objective image quality

measures can be considered. Note that, the consistency of

these IQMs with subjective evaluation can also be ana-

lyzed using some objective functions.

Indeed, in [35], numerous criteria have been used

including curve fitting using the logistic function and the

RMSE between the MOS and the predicted MOS (MOSp), to

mention few. Some of these measures are listed in Table 4.

Figs. 13 and 14 show that the distribution of the SSIM

measure exhibits a more scattered behavior than the best

metrics (VIFP for Gaussian blur, and PSNR-HVS for JPEG

compression degradations). These results are further con-

firmed in Tables 5 and 6. Across all correlation coefficients,

the best selected IQM for the given degradation type

consistently outperforms the SSIM measure.

In this study, the best metric for each degradation type is

selected according to the PCC, computed using the logistic

function. This criterion is generally used to evaluate the

performance of IQMs. Table 7 provides a comprehensive

summary showing that the proposed degradation-based

IQM consistently outperforms one of the most commonly

used IQM, namely the SSIM. For example, for class 11

(JPEG2000 compression), while the SSIM achieves only

0.84 in correlation (with the MOS), using PSNRHSV, we

reach a PCC value of 0.96. The results show that using the

‘‘optimal’’ IQM for each type of degradation leads to an

‘‘optimal’’ quality assessment measure. The average correla-

tion gain is around 14% for the considered distortions. To

consider the variations in types of distortions, we also

carried a number of experiments by varying the number

of considered distortions between 8 and 17. The overall

improvement in correlation was consistently above 10%.

To further analyze the performance of the proposed

approach, we also tested it on a set of selected images

from the LIVE image database. Table 8 summarizes our

results. An improvement in correlation was achieved

across 5 typical degradation types. The best result was

obtained for Gaussian blur.

All of the results across different databases and differ-

ent sets of distortions showed a consistent improvement

in terms of PCC when the proposed algorithm is used.

We display in Fig. 15 our overall hybrid system for

Table 5

Correlation coefficients obtained for Gaussian blur degration.

Metric Pearson

correlation

Spearman

correlation

Kendall

correlation

SSIM 0.90 0.94 0.78

VIFP 0.94 0.94 0.79

Table 6

Correlation coefficients obtained for JPEG compression degration.

Metric Pearson

correlation

Spearman

correlation

Kendall

correlation

SSIM 0.90 0.90 0.71

PSNR-HVS 0.97 0.96 0.82

Table 7

TID 2008 image database: best IQM for each considered degradation using Pearson Correlation Coefficient (PCC).

Degradation type PCC for SSIM PCC for Best IQM Gain (%)

1: Additive Gaussian noise 0.78 PSNRHVS (0.94) 21

2: Additive noise in color components 0.80 PSNR (0.92) 15

3: Spatially correlated noise 0.80 PSNR (0.95) 19

4: Masked noise 0.81 VIF (0.89) 10

5: High frequency noise 0.86 PSNRHVS (0.97) 13

6: Impulse noise 0.73 PSNR (0.90) 24

7: Quantization noise 0.78 PSNR (0.89) 15

8: Gaussian blur 0.90 VIFP (0.94) 5

9: Image denoising 0.89 PSNRHVS-M (0.96) 8

10: JPEG compression 0.90 PSNRHVS (0.97) 8

11: JPEG2000 compression 0.84 PSNRHVS (0.96) 15

12: JPEG transmission errors 0.81 VIF (0.87) 8

13: JPEG2000 transmission errors 0.81 PSNRHVS (0.92) 14

14: Non eccentricity pattern noise 0.65 IFC (0.84) 30

15: Local blockwise distortions of different intensity 0.89 SSIM (0.89) 0

16: Mean shift (intensity shift) 0.72 WSNR (0.73) 2

17: Contrast change 0.67 VIF (0.88) 32

Table 8

LIVE image database: best IQM for each considered degradation using

Pearson Correlation Coefficient (PCC).

Degradation type PCC for SSIM Gain (%)

1: JPEG2000 compression 0.91 2

2: JPEG compression 0.84 10

3: White noise 0.95 3

4: Gaussian blur 0.84 14

5: Fast fading 0.90 0
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degradation classification and image quality evaluation.

For a given degraded image, we get at the output: the

degradation type, the best corresponding IQM, and its

value. To the best knowledge of the authors, the proposed

system presented here is the only one able to provide

such a comprehensive description of image distortion

identification and estimation.

4. Conclusions

We propose in this paper a new framework for estimating

and predicting image quality. In particular, we present an

LDA-based technique for classifying degradations before

estimating image quality. The classification stage uses the

different IQMs estimated from the given image (original and

its degraded version) as features. Our experimental results

show that the type of degradation can be estimated with

more than 90% accuracy. Such knowledge is crucial in

determining the types of IQMs that need to be used for

evaluating quality. The proposed system not only evaluates

quality but also identifies the type of distortion the test

image was subjected to.

In future works, we will complete the system by taking

into account additionally IQMs and by introducing a feature

selection method for choosing the more appropriate fea-

tures (IQMs) for the classification step. Other degradation

types will be also considered, and particularly color degra-

dations, such as color bleeding and false color artifacts.
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