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Abstract 
Petroleum well test analysis is a tool for estimating the 
average properties of the reservoir rock. It is a classic 
example of an inverse problem. Visual examination of the 
pressure response of the reservoir to an inducedflow rate 
change at a well allows the experienced analyst to 
determine the most appropriate modelfiom a libraly of 
generalized analytical solutions. Rock properties are 
determined by finding the model parameters that best f i t  
the observed data. This paper describes a pamework for 
a hybrid network to assist the analyst in selecting the 
appropriate model and determining the solution. The 
hybrid network design offers significant advantages by 
reducing training time and allowing incorporation of 
both symbolic and numeric data. The network structure 
is described and the advantages and disadvantages 
compared to previous approaches are discussed. 

1. Introduction 

The well test is one of the primary diagnostic tools 
used in the evaluation of the productive capacity of oil 
and gas wells. It is a very important tool because it one of 
the few ways that engineers can actually "see" into a 
reservoir located many hundreds or thousands feet below 
the earth's surface. The results of the test can directly 
affect the profitability of the well and aid in decision 
making about the future of the well and the need for 
additional wells in a given reservoir. 
Our understanding of the reservoir is limited to 

analytical models that have been derived to explain the 
response of wells over time. These models are based on 
equations of fluid flow and heat transfer, and include not 
only the reservoir, but also inner and outer boundary 
conditions. While the reservoir model itself can tell us the 
maximum potential of the well, the boundary conditions 
are perhaps even more important. From these boundary 
conditions the engineer can determine the sue of the 
reservoir and the extent to which the formation was 
damage caused by the drilling process. 
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The well test is a classic example of an inverse 
problem. An input signal is applied to the reservoir, in the 
form of a change in the flow rate, and the pressure 
response is measured for a pre-determined period of time. 
From this response the model must be inferred [l]. If the 
model selected is incorrect, predictions of future response 
are also likely to be incorrect. Selection of the model is 
further complicated by a high degree of similarity of the 
test responses between dissimilar models and the presence 
of noise in the test response. 

The earliest work involving intelligent logic used a 
rule-based blackboard architecture to examine the data 
[2]. While very robust, it required a large number of rules 
for a relatively limited number of models. In a fully 
developed form it would require an unacceptably large 
number of rules and the run time would be excessive. 

Neural networks of various types, including feed- 
forward networks using backpropagation [3], a hybrid 
approach combining symbolic and backpropagation 
methods [4], a network incorporating the sequential 
predictive probability method [ 5 ] ,  and a hgher-order 
neural network architecture [6] have been implemented to 
attempt to identie the proper well test interpretation 
model. Although these implementations have been 
generally successful, there remains a need to further 
improve the time it takes to perform the analysis and train 
the network. The ability to discriminate between highly 
similar model responses was limited in the neural network 
and probability approaches, but was generally good in the 
applications incorporating symbolic and rule-based logic. 
Also, since the test only provides a small window of the 
overall reservoir response, the network must be able to 
handle responses where early or late time data are missing 
and where the key features occur at different times, and 
with different magnitudes, during the test. 

May and Dagli [7] recently examined an application of 
the Hausdorff-Voronoi Network (HaVNet) developed by 
Rosandich [8]. This network offers significant training 
time reductions compared to feed-forward designs and 
allows for multiple, dissimilar, representations of a given 
model to be attached to a single class. This feature greatly 



improves the run time of the network. In this application 
the HaVNet proved successful in determining the model 
in noise-free cases, but was increasingly unsuccessful as 
the noise level increased. 

This paper describes a framework in which a modified 
version of the HaVNet architecture is employed to 
classify the sequence of features that occur in the test. The 
data is filtered to remove the noise and a feature 
extraction algorithm is employed. Several rule-based 
systems are employed to guide the user through the data 
entry and to resolve any uncertainty in the HaVNet 
analysis. Rule-based and non-linear regression techniques 
are used to find the parameters that best fit the selected 
model. A modular approach is used to enhance the ease of 
operation of the network. This application illustrates the 
advantages of applying appropriate elements of 
computational intelligence to small parts of a problem as 
opposed to a single-architecture approach. 

2. Overview of the HaVNet network 

The HaVNet network architecture was designed by 
Rosandich [8] for robotic vision applications. The 
network gets its name from the use of the Hausdorff 
distance as a measure of similarity between patterns, and 
because it employs a learned version of the Voronoi 
surface to perform the comparison. 

2.1. Network architecture 

The HaVNet neural network behaves as a binary 
pattern classifier. The network takes as inputs two- 
dimensional binary patterns, employs feed-forward 
processing, and produces an analog output value. A single 

analog output value is generated by each node, with the 
value indicating the level of match between the input 
pattern and the class represented by that node. The 
HaVNet neural network consists of three layers, the 
plastic layer, the Voronoi layer, and the Hausdorff layer. 
An overview of the architecture is shown in Figure l(a). 
The plastic layer contains neurons with weights that are 
trained during the learning process. The Voronoi layer 
serves to measure the distance between individual points 
in the input and learned patterns, and the Hausdorff layer 
uses information from the Voronoi layer to compute the 
overall level of similarity between the input pattern and 
the leamed pattern. Figure l(b) shows a detailed diagram 
of the architecture for a single node. The node is shown 
in a configuration for one-dimensional inputs for reasons 
of clarity. In the actual network, the input pattern, plastic 
layer, and Voronoi layer are all two-dimensional. 

2.2. Network learning 

Learning in the HaVNet architecture is conducted off- 
line and in a supervised manner by presenting examples 
of each class to the network during a training phase. The 
network is informed a priori of the class to which each 
training pattern belongs. The weight matrix for each 
node is initialized to zero. 

When node n is trained on input pattern m, the change 
in each of the weights is computed as follows: 

A4x+S), (y+S) = a:,a(- w;x+s),(y+s) I (1) 

The normalizing subsystem weights are adjusted in a 
similar manner: 

input 

1 I 

(4 (b) 
Figure 1.  HaVNet architecture (from Rosandich [8]) 
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where a is the input matrix, a is the learning rate, and w is 
the current value of the weight matrix. 

The quantity 6 is defined as the span of the Voronoi 
layer. The use of the Voronoi span causes the weight of 
the match to decrease as the compared point moves away 
from the learned point. The weight matrix of the 
normalizing subsystem serves as an indicator of the extent 
to which each node has received training. 

Once the weight change is computed, the weights are 
updated as follows: 

(3) 

(4) 

where t is the number of training iterations. 
During the learning phase, each training pattern is 

presented to the network in sequence, and the appropriate 
node is trained using the equations above. The learning 
rate determines the magnitude of the effect that each 
training pattem has on the trained weights. 

2.3. Recognition 

When a pattern is presented to the network for 
recognition, the response of a node n to an input pattern 
a"' is determined by first computing the output of the 
plastic layer: 

- S 5 i, j 5 S Ji*+ j 2  
y . .  =1- 

1 9 1  6+1 (7) 

and are the same for all nodes. 
Once the outputs from the Voronoi layer are 

computed, the response of the Hausdorff (output) layer is 
computed 

where 11 
quantity is calculated by: 

is the normalizing quantity for node n. This 

(9) 

where: 

Y X  

Y X  

and the function 4 is the following binary threshold 
function: 

1 if x > o  

0 otherwise 

2.4. Network Extensions 

where: x = 1...X inputxdimension 
y = 1...Y inputydimension 
i,j = -6... 6 Voronoi layer span 
n = 1...N nodenumber 
w" = plastic layer weight for node n 
b" = plastic layer output for node n 

Next, the outputs from the Voronoi layer are computed 
as follows: 

where: v = Voronoi weight matrix 
c" = Voronoi layer output for node n 

The Voronoi weights are calculated by: 

One of the strengths of the HaVNet architecture is the 
ability to train different aspects. In the original context, 
an aspect is defined as a characteristic two-dimensional 
view of a three-dimensional object. The plastic layer of 
the HaVNet neural network is expanded to include 
several aspect representations for each learned object 
rather than the single two dimensional representation used 
previously, and the learning process is modified to allow 
for the self-organization of the aspects. The recognition 
process of the expanded network is also modified to 
incorporate the multiple-aspect object representation. 
The concept of aspects is shown in Figure 2. 

In a two-dimensional HaVNet the winner is the class 
with the highest activation above a given threshold. The 
final state remains unknown if no class exceeds the 
threshold. With aspects, this also includes intra-class 
competition, whereby the first aspect of a class to exceed 
the threshold is selected to represent the class in the inter- 
class competition. 
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Figure 2. HaVNet aspects (from Rosandich [8]) 

3. Hybrid system design 

The hybrid well test analysis package consists of five 
modules, each designed to isolate certain operations and 
provide an easy workflow. The five modules of the 
system are, in operational order, the 1) data entry module, 
2) pre-processing module, 3) model identification 
module, 4) parameter estimation module, 5) graphical 
display and output module. A database is used to pass 
parameters &om one module to the next, and maintains a 
set of state parameters that allow the user to go back to a 
previous module and make changes without corrupting 
downstream modules. If the system detects a sigmfkant 
change in a module, the user will be asked to reconfirm 
all previously defined downstream modules. 

3.1. Data entry module 

The data entry module is a graphical user interface 
used to guide the analyst through the entry of the test data 
and external data. In a well test, the user must provide 
not only the test data, which generally consists of pressure 
and flowrate gauge measurements taken form a wellbore, 
but also extemal data pertaining to the physical wellbore, 
the completion of the well to the producing formation, 
geologic data obtained fiom other specialized tests, and 
the physical properties of the produced fluids. 

The control for the data entry module is a rule-based 
system using a forward-chaining inference engine. In 
general there some minimum amount of required data 
before the analysis can proceed. The type of test and the 
nature of the external data dictates the minimum amount 
required. The rules behind the interface constantly 
monitor the data being entered to insure that at least the 

minimum information based on the entries thus far has 
been entered. The user can stop and save the current data 
in order to address missing items, but workflow cannot 
proceed to the next module until there is enough data 
present to provide a valid analysis. Detailed error 
messages are presented so that missing items can be 
easily identified. 

There is no attempt to validate the correctness of the 
extemal data, only to insure that it is present. Data 
validity is a major concern in well testing, however, since 
the test data can only partially validate the extemal data. 
These data must be validated by means appropriate to 
their particular methods of collection. Therefore validity 
of the extemal data, aside fiom a few routine checks, is 
beyond the scope of the well test analysis system. 
Validity of the gauge data is addressed in later modules. 

3.2. Pre-processing module 

The pre-processing module performs a number of 
mathematical transformations on the gauge data in order 
to prepare a relatively invariant pattem to the network for 
recognition. Well test data is highly susceptible to noise, 
which is divided into two types, systematic and random. 
Systematic noise is a result of the external data and can be 
used to help validate the overall analysis. Random noise, 
however, must be effectively removed. Therefore, the 
first step in the pre-processing is to apply a hgh-low 
bandpass filter over the data to minimize the amount of 
random noise. 

The second step in the pre-processing phase is to 
carefully fiter the systematic data, based on the external 
data provided. This takes the form of transformations 
with respect to the time and pressure response to account 
for fluctuations in the flow rate prior to and during the 
test. If the flow rate data is very good the entire effect of 
these variations can be removed and a constant flow rate 
response is generated. This is desirable since the constant 
rate response provides a well understood set of solutions 
and minimizes computational time. In reality, the true 
constant rate response is rarely achieved, but the 
uncertainty of the validity of the analysis can generally be 
greatly improved by performing this transformation. 

Next, the transformed pressure versus time data is 
converted to “derivative” format. This format is used as 
it enhances the features in the data and makes pattern 
identification possible. Without transformation all 
pressure responses look alike. 

A great body of work exists on the best way to 
calculate the derivative, and several method are included 
whch the user can choose. The default transformaQon 1s 
that cited by Home [l], which uses a numerical 
differentiation with respect to the logarithm of 
(transformed) time. A variable differentiation interval is 
allowed, with the default being the most commonly cited 
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value of 0.2. Using the defaults, the numerical 
differentiation becomes: 

subject to: ln(t+J - ln(tJ 2 0.2 
In($) -ln(ti-J 2 0.2 

In well testing the derivative is always positive. Any 
negative derivatives trigger the default interval to enlarge 
by one data point in each direction until a positive 
number is obtained. 

The fourth step in the pre-processing module is feature 
extraction. This is accomplished by fitting a small series 
of splines through the derivative data and then applying 
the split and merge method to identify the features. This 
combines the spline approach used by Stewart and Du [9] 
and the split and merge method incorporated by Al-Kaabi 
et a1 [2]. 

The features extracted from the data consist of a series 
of slopes of the derivative data. These can be positive or 
negative in sign. The slopes are then transformed into a 9 
x 9 matrix with the order of occurrence of the feature 
being the x axis and the group to which the slope value 
belongs being the y axis. This representation is the input 
matrix presented to the HaVNet neural network. 

3.3. Model identification module 

The model identification module contains a modified 
HaVNet neural network and a rule-based system. When 
an input pattern is selected for recognition the HaVNet 
neural network evaluates the pattern with respect to its 
trained classes and aspects. As a single class is tested, the 
HaVNet performs as originally designed, testing each 
aspect until a threshold value is met. This threshold value 
can be set by the user and defaults to 0.9. If an aspect 
meets this threshold, processing proceeds to the next 
class. Once all classes have been evaluated, the winner is 
chosen. If none of the classes meet the threshold 
activation then there is no winner. This provides the “I 
don’t know” feature necessary for well testing but lacking 

in many neural network applications. In addition, instead 
of returning only a single class, all classes which meet the 
threshold are returned as a vector. This is to allow the 
external data to be used to differentiate between highly 
similar models. The classes represent general model 
types. The aspects represent different sets of inner and 
outer boundary conditions. A new modification to the 
HaVNet architecture provides for only a window of the 
trained matrix to be analyzed. This allows for the time 
variance and prevents a null winner simply because the 
test did not run long enough. The input matrix can be up 
to 9 x 9, but due to the number of features actually 
present in the data the x dimension may be less than the 
maximum. Also, another layer of aspects is added to 
allow for cases where different sets of parameter values 
yield highly dissimilar patterns for any single 
modevboundary combination. 

Another modification to the HaVNet architecture 
allows for multiple winners in the competition between 
classes. In this implementation, all classes and aspects 
exceeding the threshold are retained. These are then 
examined by a rule-based system which examines the 
external data to establish the validity of the clasdaspect 
combination. When rules are fired the activation of the 
corresponding class or aspect is adjusted depending on 
the conclusion of the rule. Limiting the possible 
candidates minimizes the run time compared to previous 
expert system approaches. 

Finally, the winner is chosen as that clasdaspect from 
those passed from the HaVNet that has the highest 
activation. The user also has the facility to force the 
system to accept a non-winner if that is desired, such as 
for what-if type studies. 

3.3.1. Network training. The training mode is 
accomplished by adding a new model to the model file 
and any new rules to the rule file. The system will then 
automatically recompile the appropriate executables to 
include the new entries. When a new model is entered the 
user will be prompted to minimum and maximum 
expected values for the parameters in the model. The 
system then generates a large number (default is 10,000) 
of simulated tests using a uniform distribution of the 
parameter data. These simulations are passed through the 
HaVNet in training mode and added to the trained 
patterns as needed to insure that each simulated testing 
pattern generates an activation above the threshold for the 
appropriate first-level aspect. 

One of the features of the HaVNet architecture that is 
fully exploited in this system is the ability to leam in one 
iteration. By using a learning rate of 1 .O the HaVNet then 
the trained weights also become a binary matrix. 
Although this can result in a very large number of trained 
solutions being held in storage, the very small size and 
binary nature of the matrices provides for excellent 
execution speed in both training and runtime modes. The 
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structure of the model identification module is illustrated 
in Figure 3. 

ode1 identification nodule design 

3.4. Parameter e 

The parameter estimation module performs non-linear 
regression using the modified least absolute method. The 
first step in this module is to sample the data and reduce 
the number of point for the regression. The next step uses 
the HaVNet input matrix and the external data to iden@ 
the various flow regimes associated with the test. A rule- 
based system performs this task. The regimes are used to 
further validate the model selection. 

The third step involves determining suitable initial 
guess values for the non-linear regression. A rule-based 
system is employed that examines the gauge data and 
flow regimes to determine the best initial guess for each 
parameter. Traditional straight-line methods are used to 
actually calculate the estimates using specialized plots. 

The initial guess values and the gauge data are passed 
to the regression routine and fmal values are calculated. 
Confidence limits are calculated for each of the 
parameters. 

The parmeters and model are then cross-validated by 
generating a simulated test. This simulation is then 
passed through the system to that it produces the same 
result as the real data. 

3.5. Graphical output module 

The graphical output module provides a comfortable 
environment for the user to examine the results. The 
results are presented in various traditional well test forms, 
depending on which model is selected. A full range of 
conventional diagnostic plots is available. These plots 
show the original data, the simulation based on the final 
regressed data, and conventional straight-line methods 
using the final parameters. Specialized plots traditionally 
used for identification of specific features are also 
provided when appropriate. 

4.0. Conclusions 

The network described in this paper offers improved 
training and run time compared to single-architecture 
approaches. The network integrates both test and external 
to overcome the weaknesses inherent in purely numerical 
methods. The non-uniqueness problem is effectively 
handled by exploiting the strengths of both neural 
network and expert system architectures. While more 
complex than a single architecture, the modular design 
allows for efficient maintenance. Also, the network 
modifications allow for inconclusive results in the neural 
network. 
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