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Abstract.  This paper introduces a hybrid algorithm for the dynamic dial-a-ride problem in 

which service requests arrive in real time. The hybrid algorithm combines an exact 

constraint programming algorithm and a tabu search heuristic. An important component of 

the tabu search heuristic consists of three scheduling procedures which are executed 
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able to accept or reject incoming requests, and that the hybrid method outperforms each 

of the two algorithms when they are executed alone. 

Keywords. Dial-a-ride problem, dynamic, constraint programming, tabu search, 

scheduling. 

Acknowledgements. This work was supported by the Natural Sciences and Engineering 

Research Council of Canada (NSERC) under grants 227837-04 and 39682-05. This 

support is gratefully acknowledged. 

Results and views expressed in this publication are the sole responsibility of the authors and do not 
necessarily reflect those of CIRRELT. 
Les résultats et opinions contenus dans cette publication ne reflètent pas nécessairement la position du 
CIRRELT et n'engagent pas sa responsabilité. 
 
_____________________________ 

* Corresponding author: Jean-Francois.Cordeau@cirrelt.ca  

Dépôt légal – Bibliothèque nationale du Québec, 
                      Bibliothèque nationale du Canada, 2010 

© Copyright  Berbeglia, Cordeau, Laporte and CIRRELT, 2010 



1 Introduction

In the Dial-a-Ride Problem (DARP), a fleet of vehicles must serve transportation

requests between given origins and destinations. The main application of the DARP

arises in door-to-door transportation services offered to elderly and handicapped people

in many cities. Case studies have been described for the cities of Toronto [Desrosiers

et al., 1986], Berlin (Borndörfer et al., 1997), Bologna [Toth and Vigo, 1996], Copenhagen

[Madsen, Ravn, and Rygaard, 1995], and Brussels [Rekiek et al., 2006]. The minimization

of user inconvenience often has to be balanced with operation costs since these objectives

usually conflict. User inconvenience is taken into consideration, for instance, by assigning

time windows to pickups or deliveries and by imposing a maximum ride time for each

user.

An important dimension of the DARP relates to the availability of information. In the

static DARP, all requests are assumed to be known a priori, before routes are constructed.

A solution therefore consists of a static output specifying the routing and scheduling

information. In the dynamic DARP, some or all requests for service are received in real

time, while routing operations take place. Instead of a static output, a solution to a

dynamic DARP consists of a solution strategy specifying which routing and scheduling

actions should be performed in the light of newly received service requests and of the

current state of the system.

Over the past 30 years, most studies on the DARP have focused on the static version

(see the recent survey of Cordeau and Laporte [2007]). In this article we develop a

hybrid algorithm for the dynamic DARP, which has been less studied, but has recently

attracted some interest. One of the first studies on the dynamic DARP was carried out

by Psaraftis [1980] who considered the single vehicle case. The author developed an

exact O(n23n) dynamic programming algorithm for the static DARP. Whenever a new

request arrives, the static instance is updated and reoptimized by fixing the partial route

already performed. Madsen et al. [1995] have presented an insertion based algorithm for

a real-life multi-vehicle dynamic DARP for the transportation of elderly and handicapped

people in Copenhagen. An algorithm for demand-responsive passenger services such as

taxis, including time window restrictions for the dynamic requests, capacity constraints

and booking cancellations has been developed by Horn [2002]. A parallel algorithm for

the Dynamic DARP, by Attanasio et al. [2004], works as follows. When a new request

arrives, each of the parallel threads inserts the request randomly in the current solution
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and runs a tabu search algorithm to obtain a feasible solution. Another algorithm for a

dynamic DARP was developed by Coslovich et al. [2006]. In the problem considered by

these authors, a driver may unexpectedly receive a trip demand by a person located at a

stop and must decide quickly whether to accept it or not. An efficient insertion algorithm

attempts to insert incoming requests in at least one of the solutions in the repository, and

a request is accepted only if the insertion algorithm succeeds. A two-phase algorithm for

solving a complex dynamic DARP arising in the transportation of patients in hospitals

was proposed by Beaudry et al. [2010]. In the first phase, a fast insertion scheme is

used, and the second phase involves a tabu search which attempts to improve the current

solution. Finally, Xiang et al. [2008] have studied a sophisticated dynamic DARP in which

travel and service times have a stochastic component. New requests are inserted into the

established routes by means of a local search procedure based on simple inter-trip moves.

See Berbeglia et al. [2010] for a recent survey of the dynamic DARP and of other dynamic

pickup and delivery problems.

The dynamic DARP studied in this article can be described as follows. Let G = (V,A)

be a complete and directed graph with vertex set V = {0}∪R, where vertex 0 is the depot,

and R represent the customer vertices. The set R is partitioned into R+ = {1, . . . , n}
(pickup vertices) and R− = {n+1, . . . , 2n} (delivery vertices). Let H = {1, . . . , n} be the

set of requests, and let T be the end of the planning horizon. Request i has an associated

pickup vertex i+ = i ∈ R+, a delivery vertex i− = n + i ∈ R−, and a time ti at which

it is received. With each vertex i ∈ V are associated a time window [ei, li], a service

duration Di, and a load qi (with D0 = 0, q0 = 0 and qn+j = −qj for j = 1, . . . , n). If

request i is outbound (i.e., from home to a destination) the time window associated to

the pickup vertex i is [0, T ], whereas if it is inbound the time window associated to the

delivery vertex n + i is [0, T ]. The delivery vertex of an outbound request and the pickup

vertex of an inbound request are called critical. The maximum allowed ride time of a

user, defined as the difference between the arrival time at destination and the departure

time at origin, is L. Each arc (i, j) has a non-negative routing cost cij and a routing time

Tij both satisfying the triangular inequality.

A route is a circuit over some vertices, starting and finishing at the depot. A request

is said to be served when it is part of a route. The set of routes must satisfy the following

constraints:

(i) the pickup and delivery vertices of any request are either both in the same route or

3

A Hybrid Tabu Search and Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem

CIRRELT-2010-14



none of them are;

(ii) all requests known at the beginning of the time horizon must be served;

(iii) the pickup vertex of a request must precede its delivery vertex;

(iv) the load of any vehicle may never exceed the vehicle maximum load capacity, denoted

by Q;

(v) the ride time of each served request cannot exceed L;

(vi) the pickup and delivery of each served request are performed in their respective time

windows.

Our solution strategy for the dynamic DARP is as follows. An initial solution to serve

the known requests is obtained by first assigning every request to a randomly selected

vehicle and inserting the pickup and delivery vertices of the request at end of the partially

constructed routes. Then, using this solution as a seed, the tabu search procedure finds

a feasible solution. As time evolves, service requests are received and a quick decision on

whether to accept or reject each of them has to be made. This decision is final, meaning

that no rejected request can later be accepted and all accepted requests must be served.

The algorithm must

(i) decide whether or not to accept an incoming request;

(ii) serve the accepted requests in such a way that at the end of the time horizon all

routes respect the properties just described.

The hybrid algorithm we have developed consists of a tabu search (TS) heuristic pro-

cedure combined with an exact constraint programming (CP) algorithm which is able to

determine whether a given instance of the DARP is feasible or not. The role of the TS

heuristic is to continually optimize the current solution and to try and insert incoming

requests into the current solution. When an incoming request is received the constraint

programming algorithm is also executed, in parallel to the tabu procedure, in the hope

of finding a feasible solution or to prove that no feasible solution compatible with the

past actions exists. The incoming request is accepted only when either the TS or the CP

algorithm identifies a feasible solution. The request is rejected when the CP algorithm

proves the infeasibility or after a preset time limit, generally of one or two minutes.

As a rule, the TS algorithm can easily insert a new request in the current solution

when it is not too tightly constrained. In contrast, CP is rather effective in proving

that no insertion is feasible in very tight scenarios. Our goal is to develop an algorithm

that combines the advantages of these two solution methodologies. There are two main
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benefits in applying CP in conjunction with TS. First, CP is sometimes able to find a

feasible solution when the TS cannot or takes longer to do so. Second, in many instances

when the TS has not found a solution, it can actually prove that no feasible insertion

exists. From a quality of service point of view, proving that a given request cannot be

inserted is a more convincing statement than simply stating that no solution has been

found.

The remainder of this article is organized as follows. In Section 2 we present the

main components of the TS heuristic. In Section 3, we give a brief description of the

constraint programming paradigm and we present a model of the DARP as a constraint

satisfaction problem. The three scheduling algorithms used by the TS heuristic are then

described in Section 4. The main scheme of the proposed hybrid algorithm is presented

in Section 5, and computational results are given in Section 6. We close this article with

some conclusions in Section 7.

2 Tabu search

Tabu search is a metaheuristic that combines local search with a memory scheme

in order to avoid visiting the same solutions repetitively [Glover and Laguna, 1997]. It

has been proved to be very successful in vehicle routing (see, e.g., Cordeau et al. 2001

and Gendreau et al. 1994). In this section we present the basic TS concepts applied to

our algorithm for the dynamic DARP. The algorithm we have developed is based on the

TS procedure for the static DARP developed by Cordeau and Laporte [2003]. We will

provide a summary of the main features and dynamic aspects of the procedure. We refer

the reader to the original article for a more extensive description.

One of the important characteristics of the TS algorithm is the allowance of infeasible

solutions during the search. A solution is represented by a set of m routes such that

(i) each routes starts and ends at the depot;

(ii) each accepted request is assigned to exactly one route;

(iii) for each accepted request, the pickup vertex precedes the delivery vertex.

Therefore, an intermediate solution may violate the ride time constraints and the

time window constraints associated to the requests, as well as the capacity constraints

associated to the vehicles.
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2.1 Relaxation mechanism and objective function

Let r = (i0, . . . , ik) be a route of a given solution s, and let c(r), q(r), w(r) and t(r)

denote the routing cost, load violation, time window violation, and ride time violation of

route r, respectively. Formally, c(r) =
∑k−1

u=0 ciu,iu+1 and q(r) =
∑k

u=1(qiu − Q)+, where

x+ = max{0, x}. The time window violation is defined as w(r) =
∑k

u=0(BTiu − liu)+,

where BTi specifies the start of service at vertex i. Finally, the ride time violation is given

by t(r) =
∑k

u=1(Liu − L)+, where Li = 0 if i is a pickup vertex and is equal to the ride

time of the request associated to vertex i in case i is a delivery vertex. The total routing

cost of a given solution s with routes {r1, . . . , rm} is c(s) =
∑m

u=1 c(ru). Similarly, the

total load violation, total time window violation and total ride time violation of solution

s are equal to the sum of their respective violations for each route.

The total cost of a solution s is equal to f(s) = c(s)+αq(s)+ γw(s)+ τt(s). Initially,

The parameters α, γ, τ are set equal to 1. They are dynamically adjusted after each

iteration as follows. If the current solution respects the load constraint, the value α is

divided by 1+δ; otherwise it is multiplied by 1+δ where δ, is a uniformly distributed ran-

dom number between 0 and 0.5, and is updated every 10 iterations. The same procedure

applies to γ and τ , regarding the time window and ride time violations, respectively.

2.2 Neighbourhood definition and evaluation

A request i is said to be fixed in a solution s and at current time t if the request cannot

be moved to another route. This happens when either the pickup vertex has already been

served at time t or the vehicle has already left the vertex preceding the pickup vertex of

i, since diversion of vehicles is not allowed.

A solution s is characterized by the set U(s) = {(i, k) : request i is assigned to vehicle

k}. The neighbourhood N(s, t) of a solution s at time t consists of all solutions that can

be reached by removing an attribute (i, k) from U(s) whose request is not fixed at time

t, and replacing it with a new attribute (i, k′) with k′ 6= k. When a request is removed

from a route, the order of the remaining vertices in the route is unchanged. When the

insertion of a request into a route r takes place, the order of the other vertices in r remains

unchanged and the pickup and delivery are located in order to minimize the total cost

function described in Section 2.4.

After the removal or insertion of a request, the cost of the route must be updated.
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Computing the new routing cost as well as the capacity violations can be achieved easily

in linear time. More complex computations are needed to update the time window and

ride time violations. To compute these two violations, a route scheduling algorithm is

required. We have developed three scheduling algorithms which are described in Section

4.

2.3 Route optimization

Intra-route optimization is performed every κ iterations by sequentially removing one

vertex at a time and reinserting it in a position that minimizes f(s). As an additional

search intensification, this procedure is also performed whenever a new incumbent is

identified. In our implementation κ was set to 10.

2.4 Tabu control, aspiration, and diversification

To avoid repeating solutions, a request i removed from a route r cannot be inserted

back into this route for the next θ iterations. The value of θ is a random number uniformly

distributed between 0 and 7.5 log10n, and updated every 10 iterations. As an aspiration

mechanism, the tabu prohibition is disabled when the reinsertion would produce a solution

with smaller cost than the best known solution having request i in route r.

The tabu search algorithm evaluates a solution s using the objective function f(s) +

p(s), where p(s) is used to diversify the search and penalizes a neighbour solution s′ of s,

only when f(s′) > f(s). This penalty is proportional to the frequency of addition of its

distinguishing attributes and of a scaling factor. More precisely, suppose that (i, k) is the

attribute that must be added to the current solution s in order to obtain the new solution

s̄, and let ρik denote the number of times attribute (i, k) has been added to the solution

during the search. The penalty term used to evaluate solution s̄ is then

p(s̄) = µc(s̄)
√

nmρik,

where µ is a random number uniformly distributed between 0 and 0.015, and it is also

updated every 10 iterations.
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3 Constraint programming

We now provide a brief introduction to constraint programming and we present a

model of the DARP as a constraint satisfaction problem. Constraint programming is a

programming paradigm based on reasoning and search techniques, which is applied to the

solution of combinatorial problems. It originally emerged from the artificial intelligence

community in the 1970s when the concept of a constraint satisfaction problem was for-

mulated. In the 1980s, logic programming researchers have developed several constraint

solving algorithms which have led to the development of constraint logic programming.

This paradigm extends the logic programming concept through the use of constraints.

Constraint programming then appeared in the 1990s through a transformation of con-

straint logic programming, in which a constraint orientated view and more sophisticated

propagation techniques were developed. For an introduction to these concepts, see Van

Hentenryck [1989].

In CP, a problem is modeled as a Constraint Satisfaction Problem (CSP). Informally,

a CSP consists of a set of variables and a set of restrictions, called constraints, over the

variables. A constraint on a sequence of variables is a relation on the variable domains. It

states which combinations of values from the variable domains are permitted and which

of them are not. Once we have modeled a problem as a CSP, we proceed to solve it.

Constraint programming solves a model using inference algorithms to reduce the search

space, as well as search methods. The inference algorithms, called constraint propaga-

tion algorithms or filtering algorithms, try to simplify the problem by removing values

from variable domains while preserving the same set of solutions. Search methods gener-

ally consist of backtracking or branch-and-bound combined with constraint propagation.

Constraint programming has been successfully applied to scheduling, planning, molecular

biology, finance, and numerical analysis. These and other applications of CP are surveyed

in van Hoeve and Katriel [2006].

We now give a formulation of the static DARP as a constraint satisfaction problem

based on successor variables presented by Berbeglia et al. [2009]. In Section 5 we show

how to use this model for the dynamic version of the problem. We first extend the

graph G as follows. Vertex 0, corresponding to the depot, is replaced by the depot set

V = V + ∪ V − with |V +| = |V −| = m. The new graph G has |V | + |R| = 2m + 2n

vertices. Vehicle k ∈ K = {1, . . . , m} is represented by vertices start(k) ∈ V + (starting

depot) and end(k) ∈ V − (ending depot). Under this transformation, the route of vehicle
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k is represented by the circuit (start(k)) : Si : (end(k)), where Sk is a sequence, possibly

empty, of client vertices.

We list the variables for the constraint programming formulation. For each vertex

i ∈ V ∪R,

(i) s[i] ∈ V ∪R identifies the direct successor of vertex i;

(ii) `[i] ∈ [0, Q] states the vehicle load just after performing the pickup or delivery at

vertex i;

(iii) v[i] ∈ K indicates the vehicle serving vertex i;

(iv) t[i] ∈ [ei, li] represents the time at which vertex i is served.

The constraints for the DARP are the following.

Basic constraints:

(i) For each vehicle j ∈ K, s[end(j)] = start(j);

(ii) for each vehicle j ∈ K, v[end(j)] = v[start(j)] = j;

(iii) allDifferent(s);

(iv) for each request i ∈ H, v[i+] = v[i−];

(v) for each vertex i, v[i] = v[s[i]];

Precedence and time windows constraints:

(vi) for each request i ∈ H, t[i+] ≤ t[i−]− Ti+,i− −Di+ ;

(vii) for each vertex j ∈ V + ∪R, t[j] ≤ t[s[j]]− Tj,s[j] −Dj;

Capacity constraints:

(viii) for each vehicle i, `[start(i)]= 0;

(ix) for each client vertex j ∈ R, ` = [s[j]] = `[j] + qs[j] and `[j] ≤ Q;

Ride time constraints:

(x) for each request i ∈ H, t[i−]−(t[i+] + Di+) ≤ L.

This CSP is solved with the constraint programming algorithm proposed by Berbeglia

et al. [2009], which contains filtering methods, symmetry breaking strategies, and variable

fixing techniques for improving the efficiency.
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4 Scheduling

An important aspect of an algorithm for the dynamic DARP consists in deciding at

which time the vehicles arrive, start service, and depart from each vertex. As will be

shown in Section 6, the scheduling strategy alone has a considerable impact on algorithm

performance.

In this section we present three scheduling algorithms which we call basic scheduling,

lazy scheduling and eager scheduling. Given a fixed route r and a current time t, these

algorithms output the arrival time, start of service time and departure time for each vertex

in r, without modifying the actions taken before time t.

Consider a vehicle route r = (0, . . . , q) with 0 and q being the depot vertex. We define

the following scheduling variables for each vertex j = 0, . . . , q:

ATj : the arrival time at vertex j;

BTj : the start of service at vertex j;

DTj : the departure time at vertex j;

WTj : the waiting time at vertex j before service (WTj = BTj − ATj).

For clarity of exposition, we assume that the service duration Dj for each vertex is equal

to zero. The algorithms presented in this section can easily be adapted to the case where

the service duration has a positive value. At vertex 0, which represents the depot at the

start of the route, BT0 = DT0, AT0 = 0, and e0 = eq = 0. For the vertex q which is the

depot at the end of the route, Aq = Bq = DTq represents the arrival time.

A schedule for route r consists of an assignment of values to the variables ATj+1, BTj

and DTj for 0 ≤ j ≤ q − 1. It is assumed that ej ≤ BTj for 0 ≤ j ≤ q. Observe that a

schedule must also satisfy

ATj+1 = DTj + Tj,j+1, for all 0 ≤ j ≤ q − 1 (1)

and

DTj ≥ BTj, for all 0 ≤ j ≤ q. (2)

Thus, to define a schedule it is sufficient to fix either BT0, . . . , BTq−1 and AT1, . . . , ATq,

or BT0, . . . , BTq−1 and DT0, . . . , DTq−1.

A schedule is feasible if

(i) ej ≤ BTj ≤ lj for 0 ≤ j ≤ q and,

(ii) given any request i such that the pickup vertex and the delivery vertex are in r, i.e.,

i+ ∈ r and i− ∈ r, then BTi− −BTi+ ≤ L.
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Assume we are given a time value t < Bq−1, a route r, and a schedule for the route.

We are interested in modifying the schedule for route r without altering the arrival, the

start of service and the departure time of any vertex that was served before time t. Three

cases can be distinguished:

(i) If the vehicle has not yet started the route (i.e., t < BT0), then the departure time at

the depot can be modified but cannot occur before t.

(ii) If the vehicle is moving towards a vertex (i.e., DTj ≤ t < ATj+1 for some 0 ≤ j ≤
q − 1), then the arrival time at vertex j + 1 cannot be modified.

(iii) If the vehicle is waiting to serve a customer (i.e., ATj ≤ t < BTj for some 1 ≤ j ≤
q − 1), then the start of service at the vertex can be modified with the restriction that

the new time x for the start of service must satisfy t ≤ x.

Let k + 1 (with 0 ≤ k + 1 ≤ q− 1) be the first vertex at which it is possible to modify

the start of service (or the departure time when k + 1 represents the depot), i.e. BTk+1.

Formally, k = max { min {j ∈ {1, . . . , q} : BTj+1 > t}∪{−1}. Therefore, BTj, DTj, and

ATj+1 cannot be modified for all 0 ≤ j ≤ k.

4.1 Basic scheduling

The basic scheduling procedure is described by Algorithm 1.

Algorithm 1 Basic scheduling algorithm
Input: A route r = (0, . . . , q), a time t, a number k ∈ {−1, . . . , q−2} and a schedule for route

r.

BTk+1 = max {ek+1, ATk+1, t}
DTk+1 = BTk+1

for j = k + 2 to q − 1 do

ATj = BTj−1 + Tj−1,j

BTj = max {ej , ATj}
DTj = BTj

end for

ATq = BTq−1 + Tq−1,q

The resulting schedule, which may not always be feasible, has the following properties:
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(i) It minimizes the time window violation for any vertex j = k + 1, . . . , q defined as

(BTj − lj)
+, and thus, it also minimizes the total violation

∑q
j=k+1(BTj − lj)

+.

(ii) It minimizes the start of service time Bj of any vertex j with k + 1 ≤ j ≤ q.

The algorithm serves each vertex as early as possible but always ensures that service

at vertex j cannot begin before ej. As stated in Cordeau and Laporte [2003], the sched-

ule produced by the basic scheduling algorithm may not be feasible, even though there

actually exists a feasible schedule. This is because it may sometimes be worthwhile to

delay the service of a vertex in order to reduce the ride time of the associated request.

The algorithm presented in the following section, called lazy scheduling, overcomes this

problem.

4.2 Lazy scheduling algorithm

We present here a procedure called the lazy scheduling algorithm, which is the dynamic

version of an algorithm for the static DARP proposed by Cordeau and Laporte [2003].

The algorithm transforms a schedule into another schedule called lazy, which minimizes

the ride time violation of every request without increasing the time window violation of

any vertex. The idea behind the lazy scheduling algorithm is to delay as much as possible

the time BTj at which service starts at vertex j, starting with vertex k + 1 and finishing

with vertex q − 1. This is the reason why the algorithm is called lazy. The maximum

possible delay at any vertex j ∈ {k + 1, . . . , q − 1} will be constrained so that there is

no increase in the time window violation or in the ride time violation of any vertex of

the route. Since the delay of the pickup vertex of every request precedes the delay of the

delivery vertex, the procedure will sequentially minimize the ride time violation of each

request.

When the input schedule is generated by the basic scheduling algorithm, the schedule

produced by the lazy algorithm will be infeasible if and only if no feasible schedule ac-

tually exists. Thus, by applying the lazy scheduling algorithm after the basic scheduling

algorithm we can determine whether or not a given route possesses a feasible schedule.

The ride time of a request i is defined as Pi = BTi− − BTi+ . We now derive the

algorithm for producing the lazy schedule. We assume in this derivation that the variables

ATj, BTj, WTj and DTj contain the scheduling values of the input schedule and we

denote by BT ′
j the new departure time at vertex j. We wish to determine the latest

time at which service at vertex k + 1 can start without increasing the time window
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violation of any vertex and without increasing the ride time violation of any request. Let

J−k = {i− ∈ {k +1, . . . , q} be such that i+ ∈ {1, . . . , k}}. In order not to increase the ride

time violation of a request i with i− ∈ J−k , the start of service at vertex k + 1 cannot be

performed later than

ATk+1 +
i−∑

j=k+1

WTj + (L− Pi)
+.

Thus,

BT ′
k+1 ≤ ATk+1 + min

i:i−∈J−k

{
i−∑

j=k+1

WTj + (L− Pi)
+

}
.

For any vertex j ∈ {k + 1, . . . , q} the start of the service at vertex k + 1 cannot be

later than

ATk+1 +

j∑

u=k+1

WTu + (lj −BTj)
+.

Thus,

BT ′
k+1 ≤ ATk+1 + min

j∈{k+1,...,q}

{
j∑

u=k+1

WTu + (lj −BTj)
+

}
.

Therefore, the latest time at which it is possible to serve vertex k+1 without increasing

the time window violation of any vertex and without increasing the ride time violation of

any request i with i− ∈ J−k is

BT ′
k+1 = ATk+1 + min

{
min

j∈{k+1,...,q}

{
j∑

u=k+1

WTu + (lj −BTj)
+

}
,

min
i:i−∈J−k

{
i−∑

u=k+1

WTu + (L− Pi)
+

}}
.

The lazy scheduling algorithm is presented in Algorithm 2.

Once Bk+1 is computed, we set DTk+1 = Bk+1 and the arrival time at vertex k + 2

(Ak+2) is obtained by Algorithm 1. This delay on the service at vertex k + 1 propagates

along all the following vertices as shown in lines 7 to 11. Once the effects of delaying

vertex k + 1 have been computed, the algorithm proceeds with delaying vertices k + 2 up

to q − 1.

A potential problem of the lazy schedule is that it may become hard to insert a new

request into the route. This is because the vehicle serves the vertices as late as possible,
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Algorithm 2 Lazy scheduling algorithm
1: Input: A route r = (0, . . . , q), a number k ∈ {−1, . . . , q − 2} and a schedule for route r.

2: for h = k + 1 to q − 1 do

3: BTh = ATh + min{minj∈{h,...,q}{
∑j

u=h WTu + (lj − BTj)+},mini:i−∈J−h−1
{∑i−

u=h WTu +

(L− Pi)+}}
4: DTh = BTh

5: ATh+1 = DTh + Th,h+1

6: WTh = BTh −ATh

7: for f = h + 1 to q − 1 do

8: BTf = max {ef , ATf}
9: ATf+1 = Bf + Tf,f+1

10: WTf = BTf −ATf

11: end for

12: for each request i such that {i+, i−} ⊆ {0, . . . , q} do

13: Pi = BTi− −BTi+

14: end for

15: end for

which means that when a new request arrives, there may be not sufficient available slack

time to insert it. In contrast, it may be easier to perform the insertion if the vertices

were served earlier. In the next section we present the eager scheduling algorithm which

produces a schedule in which each vertex is served as early as possible without increasing

the time window and ride time violations.

4.3 Eager scheduling algorithm

The eager scheduling algorithm transforms a given schedule into another one that

minimizes the start of service time Bi of every vertex i without increasing the time win-

dow violation of any vertex and without increasing the ride time violation of any request.

Unlike the lazy scheduling algorithm, this procedure does not minimize ride time viola-

tions, but only ensures that they will not be increased. Thus, to obtain a schedule that

first minimizes the time window violations, second the ride time violations, and third the

service starting time of each vertex, we can apply first the basic scheduling algorithm,

then the lazy scheduling algorithm to its output, and finally use this schedule as an input

to the eager scheduling algorithm.
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Yuen et al. [2009] have developed a scheduling algorithm called Drive First (DF) for

the dynamic DARP in which the vehicles serve vertices as soon as possible. However, they

have modeled the problem in such a way that the maximum ride time restrictions can be

expressed through the time window constraints. This is not possible in our definition of

the DARP. As a result, their algorithm for minimizing the start of service time at each

vertex is much simpler that the one we present here and is equivalent to the methods

employed for the solution of pickup and delivery problems in which there are no ride time

constraints [see, e.g., Mitrović-Minić and Laporte, 2004].

The idea of the algorithm is the following. Starting from the last vertex of the route,

we compute the minimum time required to arrive at that vertex. Once this value is

determined, we move to the previous vertex, until we finish with vertex k + 1. Let ÃT j+1

and B̃T j be the arrival time at vertex j and the start time of the service at vertex j in

the basic schedule for k + 1 ≤ j ≤ q − 1, respectively. The sequences (ÃT k+2, . . . , ÃT q)

and (B̃T k+1, . . . , B̃T q−1) can be computed using Algorithm 1. Consider again the route

r = (0, . . . , q) and a schedule for r. The amount of time by which it is possible to antepone

the arrival at h with the only restriction of serving each vertex j with 0 ≤ j ≤ h− 1 not

before ej, is equal to ATh−Ãh. Assume that {BTh, . . . , BTq−1} and {ATh+1, . . . , ATq} are

fixed, i.e., the service time of vertices h up to q−1 cannot be changed (with 0 ≤ h ≤ q−1).

Assume also that the starting time of the vertices in {0, . . . , h− 1} cannot be increased.

This is coherent with our objective of minimizing the starting time BTj of every vertex j.

Therefore, at time t, in order not to increase the ride time of a request i with i− ∈ J−h−1,

the arrival time at vertex h cannot be earlier than

ATh −
(

(L− Pi)
+ +

h−1∑

j=λ

(BTj −max{ej, ATj, t})
)

, (3)

where λ =max{i+ + 1, k + 1}. The validity of this inequality can be explained as follows.

The ride time of request i is measured by Pi = BTi− − BTi+ . It is assumed that BTi−

cannot be modified and that BTi+ cannot be increased. Thus, without increasing the

ride time Pi, the only feasible time margin for arrival at vertex h is equal to the sum

of the waiting times which we can potentially reduce. These are the waiting times over

the vertices {λ, . . . , h− 1}, whose sum is equal to
∑h−1

j=λ BTj−max{ej, ATj, t}. This is an

upper bound on the total time that it is possible to gain by serving vertices {λ, . . . , h−1}
earlier. Since it is sometimes possible to increase the ride time, we add the term (L−Pi)

+

which states by how much the ride time can be increased without producing a violation.
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Therefore, the following inequality must hold

AT ′
h ≥ ATh − min

i:i−∈J−h−1

{
(L− Pi)

+ +
h−1∑

j=λ

(BTj −max{ej, ATj, t})
}

.

The eager scheduling procedure is described in Algorithm 3. Proceeding backwards

from vertex h = q to vertex k + 2, the algorithm computes the earliest arrival time at

vertex h using (3) and then sets the departure time and service time at the previous vertex

in lines 5 and 6. This advance in the departure at vertex h − 1 propagates backwards

into an update of the arrival and start of service of the vertices between h− 1 and k + 1.

Basically, the new arrival time at a vertex j is equal to the minimum between the previous

arrival time and the new start of service time. At the end of each step in the main cycle

which iterates on h, defined between lines 2 to 16, the algorithm has computed the final

value of the arrival time at vertex h and the start of service at vertex h− 1.

Algorithm 3 Eager scheduling algorithm
1: Input: A route r = (0, . . . , q), a number k ∈ {−1, . . . , q − 2} and a schedule for route r.

2: for h = q to k + 2 do

3: ∆h = min {ATh − ÃTh, mini:i−∈J−h−1
{(L − Pi)+ +

∑h−1
j=max{i++1,k+1}(Bj −

max{ej , ATj , t})}}
4: ATh = ATh −∆h

5: BTh−1 = ATh − Th−1,h

6: DTh−1 = BTh−1

7: j = h− 1

8: while j ≥ k + 2 do

9: ATj = min {BTj , ATj}
10: BTj−1 = ATj − Tj−1,j

11: j = j − 1

12: end while

13: for each request i such that {i+, i−} ⊆ {0, . . . , q} do

14: Pi = BTi− −BTi+

15: end for

16: end for
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4.3.1 Delaying the departure

In the three scheduling algorithms just described, the vehicle departs from a vertex

immediately after service takes place, i.e. DTj = BTj for all j = k + 1, . . . , q − 1. It

is possible, however, to modify this by applying equations (4) and (5) to the schedule

produced by any of the three scheduling algorithms:

DTj = BTj+1 − Tj,j+1, for all k + 1 ≤ j ≤ q − 1 (4)

ATj = BTj, for all k + 1 ≤ j ≤ q − 1. (5)

This modification does not change the properties of the output schedules of any of

the three algorithms. The advantage in delaying the departure time is that this creates a

waiting period which allows the TS and CP algorithms to change the next vertex to visit

and thus increase the space in which to find a feasible solution.

5 A hydrid algorithm

We now present the most important aspects of the hybrid algorithm combining the TS

heuristic described in Sections 2 and 4 and an exact CP algorithm proposed by Berbeglia

et al. [2009]. We recall that given an instance I of the static DARP, the constraint

programming algorithm returns either a feasible solution for I or proves that none exists.

Our purpose, however, is slightly different. We wish to determine whether it is possible

or not, in a dynamic context, to accept and satisfy an incoming request by updating the

current solution. We explain below how the CP algorithm was adapted for this purpose.

When a new request is received at time t, a new instance I of the DARP is created,

containing all the static and accepted requests up to time t, as well as the new request.

Naturally, if the CP algorithm is executed with instance I as input and no additional

constraints, it may find a feasible solution whose routing and scheduling actions up to

time t do not correspond to the ones that were actually implemented. This difficulty is

resolved through the introduction of additional constraints in the constraint programming

model, which state that the solution must respect the partial routes followed up to time

t.

Observe that in the CP model there are no variables to represent the arrival and

departure times at each of the vertices. However, one must take the departure times of
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the current solution into account in order to properly fix the CP variables and thus avoid

inconsistencies. The pseudo-code of this procedure is given in Algorithm 4. It considers

one route at a time and can be divided into two parts. In the while cycle (i.e., lines 6

to 17), it either sets a lower bound or fixes the service time for the relevant vertices. In

the for cycle (i.e., lines 18 to 20), it fixes the successor variables up to time t in the given

solution.

Algorithm 4 Procedure for fixing a partial solution to the CP algorithm
1: Input: DARP Instance with new request I, current solution s (without the new request)

and actual time t.

2: Load the CP model for instance I

3: for each of route r = (i0, . . . , ik) of solution s do

4: isF ixed = 1

5: j = 0

6: while j ≤ k AND isF ixed = 1 do

7: if BTij ≤ t then

8: t[ij ] = BTij

9: if DTij < t then

10: t[s[ij ]] ≥ DTij + Tij ,s[ij ]

11: else

12: t[s[ij ]] ≥ t + Tij ,s[ij ]

13: isF ixed = 0

14: end if

15: else

t[ij ] ≥ t

16: end if

17: end while

18: for Each u from 0 to j − 1 do

19: s[iu] = iu+1

20: end for

21: end for

The main template of the hybrid algorithm is provided in Algorithm 5. First, a feasible

solution is obtained by the TS algorithm, considering only the static requests. While no

new incoming requests arrive, the solution is optimized using the tabu search algorithm.
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This requires special attention since any new optimized solution should not be different

with respect to the previous solution up to the time at which the new solution is obtained.

To this end, the tabu search is performed for a fixed duration of ϕ minutes, and the input

solution is frozen up to ϕ minutes in advance of the current time, where ϕ is a parameter

fixed to 2 in our implementation. When this period of time has elapsed, the current

solution is updated. This procedure is repeated until a new request arrives, in which

case the optimization is interrupted. After a new request is received, a new instance I ′

is created which contains all the data of the static and previously accepted requests, as

well as the new request. The tabu search and the CP algorithm are then executed in

parallel with the input instance I ′, freezing the partial routes up to the current time, plus

ϕ minutes. Both procedures are terminated when one of them has found a solution, when

the CP algorithm has proved that the instance I ′ is infeasible subject to the fixed partial

routes, or when the time limit of ϕ minutes of computing time has elapsed. Naturally,

the incoming request is accepted only when a feasible solution has been found by any of

the two algorithms, and rejected otherwise.

6 Computational results

We have conducted a series of tests on two sets of instances for assessing the perfor-

mance of the hybrid algorithm.

6.1 Instance generation

The first set of dynamic instances were based on the set of static instances a and b used

in Ropke et al. [2007]. In the instance subset a, vertices are located in a 20× 20 square,

taking floating point values, and with a uniform random distribution. The distances are

Euclidean and are measured in minutes, the time horizon is 12 hours, the time windows

of critical vertices have a 15 minute length, and Q = 3. The instance subset b is similar,

except that Q = 6. We have only used the instances with at least 40 requests. The

instance labels are of the form ‘am-n’ or ‘bm-n’. The letter a and b state whether the

instance is from the subset a or b, the number m corresponds to the number of vehicles,

and the number n is the number of requests. More details of these instances can be found

in Cordeau [2006].
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Algorithm 5 Main scheme of the hybrid algorithm
1: Obtain a solution s considering the instance I that only has the static requests using the

tabu algorithm.

2: while Time horizon has not been reached do

3: while No new requests do

4: Reoptimize actual solution s of I using the tabu search algorithm

5: end while

6: Create a new DARP instance I’ by adding the new request

7: Execute in parallel the tabu search procedure and the constraint programming algorithm

with I and time limit ϕ and freeze all partial routes up to time t + ϕ

8: if Either the tabu or the constraint programming procedures have found a solution s′

then

9: ACCEPT request

10: I = I ′, s = s′

11: else

12: if Infeasibility was proved by CP or time limit ϕ has passed then

13: REJECT request

14: end if

15: end if

16: end while
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These static instances were converted into dynamic ones by using a pair of parameters

(α, β). The value α ∈ [0, 1] gives the ratio of the requests which are known at the beginning

of the time horizon. Thus, if α = 1 the instance is completely static, while setting α = 0

yields an instance with no requests known a priori. Given a request i, the value U(i) is

an upper bound on the time at which the request must be known in order to be able to

serve it. It is defined as U(i) = min{li+ , li− − Ti+i− −Di+}. The parameter β states how

much time before U(i) request i is known. If U(i) < β, then request i is known at time

zero.

The static instances of the subsets ‘a’ and ‘b’ were transformed into dynamic instances

with the parameters (α = 0.25, β = 60), i.e., 25 % of the requests are static, and each

dynamic request i becomes known 60 minutes before U(i). The hybrid algorithm was

tested using the lazy scheduling algorithm and the eager scheduling algorithm presented

in Section 4. Table 1 gives the number of accepted requests by the tabu search and by the

CP algorithm, the number of rejected requests because of a time out of two minutes, and

the number of infeasible requests identified by the CP algorithm. These results show that

the number of dynamic requests that were accepted using the eager scheduling algorithm

compared to those accepted with the lazy algorithm was increased by 270%. Our results

also show that around 77% of all the rejected requests were proved to be infeasible by the

CP algorithm.

The second set of instances are based on the 20 static instances of Cordeau and

Laporte [2003] which contain between 24 and 144 requests and between three and 13

vehicles. In these instances each request has a load of one unit and a maximum ride time

of 90 minutes, and the vehicles have a capacity of six. The critical vertices have a time

windows of length varying between 15 and 90 minutes. This set of static instances was

transformed into a set of dynamic instances with the parameters α = 0.25, and β being

a random number uniformly distributed between 60 and 240. This means that 25% of

the requests are static and each dynamic request i becomes known between one and four

hours before its deadline U(i).

6.2 Results

In Table 2 we compare the performance of the dynamic DARP on these instances using

the lazy and the eager scheduling algorithms. We can see that the eager algorithm still

performs better than the lazy algorithm, but the difference between the two, although
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Instance Lazy scheduling Eager scheduling

Accepted requests Rejected requests Accepted requests Rejected requests

By tabu By CP Time out Proved By tabu By CP Time out Proved

a4-40 23 0 0 5 5 17 1 5

a4-48 12 0 1 20 29 4 0 0

a5-40 15 0 0 12 25 2 0 0

a5-50 18 0 0 18 34 1 0 1

a5-60 29 0 0 14 36 1 1 5

a6-48 13 0 0 21 34 0 0 0

a6-60 10 0 8 22 37 2 0 1

a6-72 31 1 2 19 51 2 0 0

a7-56 19 0 3 14 34 2 0 0

a7-70 18 0 9 21 30 18 0 0

a7-84 24 1 16 19 50 3 0 7

a8-64 25 0 1 17 39 4 0 0

a8-80 4 0 11 38 48 0 0 5

a8-96 33 0 15 21 58 2 2 7

b4-40 14 0 0 14 28 0 0 0

b4-48 20 1 0 13 32 2 0 0

b5-40 9 0 1 16 24 2 0 0

b5-50 22 0 0 12 32 0 0 2

b5-60 29 0 9 6 36 1 0 7

b6-48 23 0 1 8 32 0 0 0

b6-60 28 0 8 8 41 2 0 1

b6-72 31 0 6 11 46 1 0 1

b7-56 12 0 10 16 31 0 1 6

b7-70 12 0 9 29 2 27 5 16

b7-84 6 0 8 42 53 3 0 0

b8-64 19 0 6 21 42 1 3 0

b8-80 19 1 6 29 52 0 0 3

b8-96 9 2 9 50 56 6 7 1

Total 527 6 139 536 1017 103 20 68

Table 1: Comparison of the number of accepted requests using the eager and the lazy

scheduling algorithms

significant, is smaller than on the first set of instances. On average, the number of accepted

requests using the eager algorithm has increased by 34% compared to the number of

accepted requests with the lazy algorithm. On these instances the CP algorithm had

more difficulty proving the infeasibility of the rejected requests. On average, around 10%

of the rejected requests were proven to be infeasible by the CP algorithm in the available

running time of two minutes.

6.3 Modification of the objective function

We have also performed some experiments with a modified version of the tabu search

algorithm in which the objective function is changed. We have added a term we call

slack(s) to the objective function f(s). This new term rewards solutions whose route

schedules can easily be modified and penalizes solutions whose routes have a rigid schedule.

The idea is that an incoming request is unlikely to be inserted in a route whose schedule is

very rigid, and therefore it is preferable to have solutions whose routes are more ‘schedule

22

A Hybrid Tabu Search and Constraint Programming Algorithm for the Dynamic Dial-a-Ride Problem

CIRRELT-2010-14



Instance Lazy scheduling Eager scheduling

Accepted requests Rejected requests Accepted requests Rejected requests

By tabu By CP Time out Proved By tabu By CP Time out Proved

pr01 14 4 0 0 18 0 0 0

pr02 28 4 0 0 32 0 0 0

pr03 31 14 7 0 52 0 0 0

pr04 33 11 15 0 58 1 0 0

pr05 52 10 24 0 83 1 0 2

pr06 38 12 41 2 93 0 0 0

pr07 17 5 1 0 23 0 0 0

pr08 23 11 13 0 47 0 0 0

pr09 34 8 28 0 68 2 0 0

pr10 42 13 42 0 88 2 0 7

pr11 17 1 0 0 18 0 0 0

pr12 31 3 0 0 34 0 0 0

pr13 42 4 7 0 53 0 0 0

pr14 39 10 18 0 67 0 0 0

pr15 39 0 13 33 83 0 2 0

pr16 56 9 36 0 101 0 0 0

pr17 20 3 3 0 26 0 0 0

pr18 38 9 3 0 50 0 0 0

pr19 47 9 20 0 76 0 0 0

pr20 47 12 43 0 101 0 0 1

Total 688 152 314 35 1171 6 2 10

Table 2: Comparison of the number of accepted requests using the eager and the lazy

scheduling algorithms.

flexible’. Let r = (i1, . . . , ik) be a route and let BT e
j and BT l

j denote the start of service

at vertex ij using the eager and lazy schedules, respectively. We define the slack time of

a route r as slack(r) =max {BT l
j − BT e

j : j = 1, . . . , k}. The slack of a solution is equal

to the sum of the slacks of each route. Although not perfect, this measure is global in the

sense that it takes all requests of the route into account. For instance, if the slack of a

route is 30 minutes this means that, at least for a given period of time, there are at least

30 extra minutes available to serve a new request without increasing the time window and

ride time violation on any of the requests on the route.

Table 3 shows the results for the second set of instances when the objective function

was modified to include the slack of the routes. When the lazy schedule is used, there is

a slight increase, of around 4% on average, in the number of accepted requests compared

to the algorithm without the slack measure in the objective function. However, this

improvement is not observed when the eager algorithm is applied. In this case, the number

of accepted requests is almost the same for both versions of the objective function.
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Instance Lazy scheduling Eager scheduling

Accepted requests Rejected requests Accepted requests Rejected requests

By tabu By CP Time out Proved By tabu By CP Time out Proved

pr01 16 2 0 0 18 0 0 0

pr02 28 4 0 0 32 0 0 0

pr03 33 16 3 0 52 0 0 0

pr04 29 16 0 14 59 0 0 0

pr05 47 13 26 0 80 1 5 0

pr06 34 20 39 0 93 0 0 0

pr07 18 4 1 0 23 0 0 0

pr08 27 9 11 0 47 0 0 0

pr09 33 8 15 14 66 3 1 0

pr10 42 18 45 0 91 1 5 0

pr11 17 1 0 0 18 0 0 0

pr12 25 8 1 0 34 0 0 0

pr13 33 10 10 0 52 1 0 0

pr14 40 8 19 0 67 0 0 0

pr15 43 19 23 0 82 1 0 2

pr16 50 21 30 0 101 0 0 0

pr17 22 2 2 0 26 0 0 0

pr18 35 9 6 0 49 1 0 0

pr19 37 14 25 0 75 1 0 0

pr20 57 2 43 0 102 0 0 0

Total 666 204 299 28 1167 9 11 2

Table 3: Comparison of the number of accepted requests using the eager and the lazy

scheduling algorithms with the slack time objective

7 Conclusions

We have developed a new hybrid algorithm for the dynamic DARP, combining a

tabu search procedure and an exact constraint programming algorithm. Experiments

performed on dynamic instances created from static instances have shown that the CP

algorithm is sometimes able to accept or reject incoming requests. On the other hand,

the tabu search tends to accept requests faster. This shows that the hybrid method

outperforms any of the two algorithms when they are executed alone.

The capability of the CP procedure to prove infeasibility varies considerably, depending

on the type of instance. Results have shown that on the first set of instances, around 77%

of all the rejected requests were proved to be infeasible. However, this rate falls to 10%

on the second set. An explanation for this difference is that in the first set of instances,

the critical time windows are much smaller and therefore the solution space is reduced

considerably.

Given a fixed route, we have developed scheduling algorithms to determine the times at

which the arrival and the start of service at each vertex should take place. The basic and

lazy scheduling algorithms are the natural dynamic extensions of the procedures presented

by Cordeau and Laporte [2003] for the static problem. We have then developed a new

scheduling algorithm called eager, which serves each vertex as early as possible without
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increasing the time window or the ride time violation of any request. Results have shown

that the eager algorithm leads to the acceptance of considerably more requests than is

possible with the lazy algorithm.
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