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CHAPTER I

INTRODUCTION

In recent years the analysis of electromagnetic problems has 
been advanced tremendously by the d ig ita l computer and use of two 
powerful theories, the method of moments and the geometrical theory 
of d iffraction. The moment method, MM, is a numerical technique which 
converts an integral equation, containing f ie ld  terms and appropriate 
source terms that describe the electromagnetic problem, into a system 
of linear algebraic equations. The equations have unknown coefficients 
related to an expansion of a current distribution on the structure of 
interest. The moment method is characterized as a low frequency 
method since its  practical use is limited to structures that are not 
e le c tr ic a lly  large. The geometrical theory of d iffrac tion , GTD, is a 
ray optical method whose solution is based on the asymptotic approxi
mation to the integral defining the electromagnetic problem. GTD is 
characterized as a high frequency method as i t  is applicable to 
bodies that are a rb it ra r i ly  large e le c tr ic a lly . Both of these methods 
are powerful computational tools which permit application to a wide 
range of problems. In this paper these tv/o techniques are combined 
into a single technique called the "hybrid technique." The hybrid 
technique permits one to solve many problems that are not solvable by 
either technique alone.

The hybrid technique presented in this paper is a method for 
solving electromagnetic problems in which an antenna or other 
discontinuity is located on or near a conducting body, such as antennas 
on ships or a irc ra ft ,  feed antennas near the reflecting surfaces of 
reflector antennas, and slots or other discontinuities on conducting 
surfaces. The technique solves these kinds of problems by properly 
analyzing the interaction between the antenna or scatterer and the 
conducting body. The hybrid technique accomplishes this by casting 
the antenna structure in a moment method format then modifying that 
format to account for the effects of the conducting body via the 
geometrical theory of d iffraction . The technique extends the 
moment method to handle many problems that cannot be solved by GTD 
or the moment method alone.

The basic hybrid technique used in this paper was f i r s t  described 
in the l ite ra tu re  by Thiele and Newhouse [1 ]. In that paper the 
technique was applied to antennas on and near f in i te  planar surfaces. 
The moment method solution was modified to account for the f in i te  
planar surfaces using wedge diffraction  theory. In the present paper
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a hybrid technique for combining the moment method treatment of wire 
antennas with the GTD for curved surfaces w ill be presented. Specifi
ca lly , wire antennas will be analyzed near perfectly conducting circular  
cylinders.

The wire antenna w ill be cast in a moment method format given by 
Richmond [2 ,3 ]  in his computer program for thin-wire structures. The 
use of piecewise sinusoidal basis functions in this method w ill  be 
exploited. The effects of the cylinder w ill be found using GTD. The 
f ie ld  expressions are obtained using the uniform geometrical theory of 
diffraction for an edge given by Kouyoumjian and Pathak [4 ] .  The 
application of the GTD to the cylinder is based on techniques presented 
by Marhefka [5],

The hybrid technique as presented here is applicable to a much 
broader class of problems than those that are demonstrated. In general, 
arbitrary radiators located on or near canonical shapes or combinations 
thereof can be solved using the hybrid technique. The arb itrary  
radiator would be modeled with a thin-wire grid and set up in the 
moment method format. The conducting body is restricted to canonical 
shapes for which a GTD solution exists. Electromagnetic parameters 
for which the hybrid technique can solve include the near and far  
f ie ld s , current distributions, impedances, and scattering data. Of 
course, many geometries present special problems for which the 
technique w ill fa i l  and therefore need to be modified. For example, 
part of the radiator might l ie  in the caustic of a needed GTD f ie ld .

I t  is impossible to cover all the possible applications of the. 
hybrid technique in one paper. The purpose of this paper is to 
present the technique and demonstrate some of its  f a c i l i t y  and its  
accuracy. To accomplish th is , various antenna radiators are considered 
in the presence of circular cylinders. Chapter I I  provides the 
theoretical background of the methods used in the hybrid technique.
The method of moments with the specializations used is f i r s t  described. 
Then the GTD expressions used in this paper are presented. In 
Chapter I I I  the hybrid technique is described in de ta il .  The very 
effective way in which GTD is incorporated into the thin-wire theory 
is presented and demonstrated.

Chapter IV is the results section in which the hybrid technique 
is applied to find the input impedance of antennas as a function of 
their distance from the circular cylinder. For each case, the hybrid 
solution is checked with one of three independent solutions, an 
MM-eigenfunction solution, image theory, or experimental measurement. 
Chapter V concludes the paper with a summary and discussion.
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CHAPTER I I

THEORETICAL BACKGROUND

In this chapter brief descriptions of the methods which are 
combined to form the hybrid technique used in this paper are presented. 
Since the development of these methods is not the subject of this paper, 
the descriptions w ill be short and not necessarily complete. Only 
the parts of the theories used in this paper will be presented. More 
complete explanations and developments can be found in the references 
cited.

The moment method part of the hybrid technique is the speciali
zation used by Richmond in his thin-wire computer program [3 ],  The 
GTD part of the hybrid technique is programmed as presented by 
Marhefka [5 ] .  These two references provided the major material for 
the ir  respective theories in the development of the hybrid technique 
of this paper.

A. Moment Method

A clear description of moment method is given by Stutzman and 
Thiele [6 ] ,  The moment method is a procedure for reducing an integral 
equation of the f i r s t  kind of the form

j I ( z ' )  K (z ,z ' ) dz1 = - E1(z) (1)

over structure

to a system of simultaneous linear algebraic equations in terms of 
the unknown current distribution I ( z ' ) .  Once the current is known, 
determination of radiation patterns and impedance is fa ir ly  straight
forward. Electromagnetic radiation problems can almost always be 
expressed as integral equations in the form of Equation (1 ). The 
inhomogeneous source terms are on the right and the unknown currents 
are within the integral sign on the le f t .

1. Weighted residuals and the moment method

A general moment method procedure can be accomplished by using 
the method of weighted residuals [6 ] .  The unknown c u rre n t. I (z ' )  is 
expanded on the structure of interest using an appropriate expansion
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function, Jn( z ' ) .  Equation (1) becomes a sum of the expansion terms 
as follows:

n=l "
over structure

I I n L (z ' )K (z ,z ' )d z '  = -  E ^ z ) . (2 )

A residual R is defined to be the sum of the tangential components 
of scattered and incident fields

At points on the surface of the perfectly conducting structure of 
interest the residual must be zero. So

where z is on the structure's surface. In the method of weighted 
residuals the I ’s are found so that the residual is forced to zero 
in an average sense. The weighted integrals of the residual are set 
equal to zero as

where Wm is the weighting or test function. The choice of expansion 
and weighting functions is very important and has been the subject 
of many papers. As a rule of thumb, i t  is desirable to choose 
expansion functions that closely resemble the anticipated form of the 
current on the structure of interest. I t  is often advantageous to use 
the same functions for the weighting functions as used for the 
expansion functions. This makes the procedure a Galerkin's method.

I f  the structure of interest is an antenna structure modeled 
by thin-wire segments, more specific expressions can be described. 
Substituting Equation (3) into Equation (5) gives

over structure

(4)

Wm Rdz = 0, m=l, 2 , • • • N. m (5)

over structure

4



CT • E5 d* + Wm • T 1 da = o,m m
■'over
wire

over
wire

m = 1,2 ,** *N. (6)

Denoting the^cattered f ie ld  from the n-th expansion function of the

Wm is the m-th testing function located interior to the wire and on 
its  axis. Rigorously, the test function should be located on the 
surface of the wires making Equations (7) and (8) double integrals over 
the wire surfaces. Placing the test function on the axis is an 
extension of the e lectric  f ie ld  boundary condition for the sake of 
mathematical simplification. This approximation makes i t  necessary to 
res tric t  the method to wires for which the radius is less than about 
.007A.

The method of weighted residuals is equivalent to the steps in 
the usual development of the moment method where a linear operator 
and an appropriate inner product are defined. In terms of these con
cepts, Equations (7) and (8) are

where <,> denotes the inner product and L is the linear operator acting

U T W . ' W  w  . . . 3  WM 'Xc ^  « • V I .  I WM . .  .  W .  . '  .<W M  •  W .  I w  ,  w , .

current by E^, the mn-th term of the moment method impedance matrix 
is

over
wire

(7)

and the m-th voltage matrix element is

over
wire

(8 )

(9)

on Jn to give E^.
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2. Reaction integral equation

A general approach to the formulation of boundary value problems 
was presented by Rumsey [7] when he introduced a physical observable 
called reaction. His formulation resulted in the reaction integral 
equation in electromagnetic theory. Reaction is a measure of coupling 
between two sources. I f  the weighting function is taken to be a test 
source, then the impedance matrix elements given by Equation (7) may be 
taken as a calculation of the coupling between the m-th test source 
and the f ie ld  from the n-th expansion function or actual source. 
Similarly, the m-th voltage matrix element in Equation (8) is in ter
preted as the coupling between the m-th test source and the incident 
E-fie ld . In both cases the m-th test source current is reacted with 
the E -fie ld  from another source.

For the very general geometry of Figure 1, a more general

' T E S T
SOURCE

i

Figure 1. Test source (Jm,FTm) inside conducting 
body surface S.

reaction integral equation is formed from which Equations (7) and (8) 
are found. Let (TmiMm) be the surface current densities of a test 
source and le t  (Fm>Hm) be the fields from that source. Equivalent 
surface-current densities are introduced

T  = n x F
s (10)

F T = E x n
w

m-m M  - -i»

on the body S. (JS,MS) radiate the fie lds (E ,H ) in free space and 
replace the conducting body. The reaction integral and generalization 
of Equation (6) becomes

6



/ / -  Vs)* + JJ<V* - V>ds -
s s

m = 1 ,2 , ‘ " N  . (11)

where the integrals are over the test source's surface. The physical 
interpretation is that there is zero reaction or coupling between the 
test source and the sum of the incident and scattered fie lds . This 
is clearly equivalent to the weighted residual interpretation of 
Equation (5 ) .  I f  the fie lds from the n-th expansion function of the 
actual source current are given by (Fn,H«), the sum of the N fie lds  
being (E5 , ^ ) ,  then for the general mn-tn element in the impedance 
matrix

mn ■ u
( 7 - F *  -  FT-H*)ds ' m n m n' ( 12)

Similarly, the m-th voltage element is

V = -  f f  (J ‘ E1 -  M ‘ H1 )ds. m J J  m m (13)

For the antenna situations of interest in this paper, (E1, H1) originate 
from impressed currents located on s.

3. Piecewise sinusoidal Galerkin method

The piecewise sinusoidal function as shown in Figure 2 is one of

Figure 2. Typical two segment dipole with 
piecewise sinusoidal d istribution.
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the most useful basis functions for wires in free space. I t  may be 
expressed mathematically for each z-directed segment by

I (z )  =
I-j sinhy(z2-z) + IgSinfiy( z - z ) 

si nhyd (14)

where I]  and I 2 are the endpoint currents, y is the complex propagation 
constant of the medium, and d=Z2 -z-j is the source length. A piece- 
wise sinusoidal approximation to a current distribution is given in 
Figure 3. Note that each piecewise sinusoidal function spans two

ZP. P. P.P. P P.

Figure 3. Current distribution modeled by overlapping 
piecewise sinusoidal modes.

connected segments and that each in terior segment contains two piece- 
wise sinusoidal functions.

Experience has shown that the use of piecewise sinusoidal testing 
functions with piecewise sinusoidal expansion functions leads to a 
procedure that is numerically e ff ic ie n t  and highly accurate.

Consider the situation wherein an arb itrary number of segments are 
coincident with the z-axis. For example, a dipole antenna with N seg
ments using Equations (12) and (14) and the thin-wire assumption, the 
mn-th impedance matrix element is

8



En is needed to carry out Equation (15). This f ie ld  may be found in 
a straightforward manner and the derivation is included in many 
electromagnetic texts including [6 ]. The geometry is shown in 
Figure 4. For the piecewise sinusoidal excitation current of 
Equation (14), is

I

d

I

Figure 4. z-directed monopole segment source with 
the observation point (p ,z ) .



+ (IpCoshyd-I, )e (16)

-yR2

Ez.~ 4Trsinhyd Î l “ I 2cosh d>

+ ( I 2 - I . | C o s h y d )  ^ (17)

where n is the impedance of the medium. The evaluation of Equation 
(15) may be carried out without d if f ic u lty  by numerical integration 
or by Si and Ci integrals for some special geometries.

The piecewise sinusoidal Galerkin method treated here is the 
procedure used for the thin-wire antennas of this paper. The importance 
of this particular specialization of the moment method for the hybrid 
technique w ill be discussed in Chapter I I I .

B. Geometrical Theory of Diffraction

The geometrical theory of d iffraction (GTD) is characterized as a 
high frequency technique that allows a complicated structure to be 
approximated by basic shapes. These basic shapes represent canonical 
problems in GTD. Mathematically, GTD is an asymptotic approximation 
to an integral which defines the electromagnetic problem. The GTD 
is a ray optical technique which allows physical insight into the 
various scattering and diffraction mechanisms involved. Consequently, 
the dominant or significant scattering or diffraction mechanism for a 
given geometry can be identified leading to an accurate engineering 
solution.

Again, only the solutions needed for the problems solved in 
this paper are presented. More cases and derivations including 
more complete explanations are found in the lite ra tu re  cited.



In the format of GTD, the total e lectric  f ie ld  may be represented
as

F  = eV + t r u r  + t 1 . (18)

The F1 f ie ld  is the incident f ie ld  in free space. Fr  is the f ie ld  
reflected from the surface of the structure of interest. F* is the 
diffracted f ie ld  from discontinuities of the structure, such as edges, 
corners, or curved surfaces, u-* and ur are unit step functions to cut 
off their corresponding f ie ld  at the incident and reflection shadow 
boundaries. The extent of these fie lds  is determined by geometrical 
optics (GO). The surfaces in this paper are a ll perfectly conducting 
and the medium is free space. Also the e-i^t time dependence is assumed 
and not exp lic it ly  shown.

1. Geometrical optics f ie ld

The incident electric  f ie ld  F 1 is considered to be a spherical 
wave for the equations given in this paper. Other cases have been 
treated in the lite ra tu re  but the importance of using the spherical 
wave expressions in the hybrid technique w ill be discussed in the next 
chapter.

The reflected electric  f ie ld  from a curved surface S, as shown in 
Figure 5, is given in geometrical optics terms by

F '(s )  = E1 (Qr ) *R
r r

P1 p2 S-Jks

\ . (p 1 "*"S) (p2+s)
(19)

E1(Qr) is the incident f ie ld  at the reflection point (Qr) on the 
surface and R is the dyadic reflection coefficient such that

S A 1 A p A A

R = eH eN -  ei  ei (2 0 )

Unit vectors^) and ejf are parallel to the plane of incidence and the 
unit vector ei is perpendicular to the plane of incidence. The point 
of reflection Q r  is found from the laws of reflection which state 
that the angle of incidence is equal to the angle of reflection. That 
is

-  I • n = S • n (21)

and that the incident, reflected, and surface normal vectors a ll l ie  
in the same plane

11



OBSERVATION
POINT

SOURCE
POINT

SURFACE S

POINT OF 
REFLECTION Q

Figure 5. Reflection by a smooth 
convex surface.

I x n = S x n . (22)

Finding Qr w ill  be considered in more detail in the last section of
this chapter.

The quantities and p£ are the principal radii of curvature of 
the reflected wavefront at the reflection point Q r .  Kouyoumjian and 
Pathak [4] show how to find these values for an arb itrary wavefront by 
diagonalizing the curvature matrix for the reflected wavefront given 
by Deschanps [8 ].  The v/avefront is incident on the curved surface S
shown in Figure 5 at the reflection point Q r .  Unit vectors e] and £ 2
are in the principal direction of S at Q r  with surface radii of 
curvature R] and R2 . For the case where the incident f ie ld  is 
spherical, the principal radii of curvature of the reflected wavefront 
are given by Kouyoumjian and Pathak as



S' is the radius of curvature of the incident wavefrQnt at Qr, 0-| is 
the angle between the direction of the incident ray I and unit vector 
e-j, and 02  is the angle between the direction of the incident ray I 
and the unit vector e2 .

2. Diffraction by a curved wedge

The curved wedge problem is i l lus tra ted  in Figures 6 and 7. This 
report w il l  consider f in i te  cylinders where the ends of the cylinders 
are formed by a f l a t  surface with a resulting curved wedge. The
diffracted f ie ld  due to the curved wedge is analyzed using GTD
techniques developed by Kouyoumjian and Pathak [4 ] ,

The diffracted f ie ld  from the curved wedge is written in the
form

The p is the distance between the caustic at the edge and the second 
caustic of the diffracted ray. I t  is given by

where pe , ne , ae w ill  be defined shortly. The diffraction coefficients 
for the curved wedge are extended from those for wedge diffraction to 
allow the diffracted f ie ld  to be continuous at the incident and 
reflected shadow boundaries. To accomplish this the appropriate 
distance parameters L in each of the transition functions make the 
fields continuous. The diffraction coefficient for the curved wedge 
is given by

(24)

e~Jtt/ 4 2 sin(J)F[kL1a(e")]

2n/?iTksin30 cos (^-)-cos ( ~ )

(26)

where a(e) = 2 cos2 6/2 and a+(6) = 2 cos2 - 2-- -̂~ —
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Figure 7. The curved wedge in the plane 
perpendicular to e at Q£.
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The Dc coefficient applies for the E-fie ld  vector parallel to the 
edge ( i . e . ,  acoustically soft Fledge = while Oh applies to the 
f ie ld  component perpendicular to tne edge ( i . e . ,  acoustically hard
jF  ^

= 0 ) .  The angular relationships are expressed by p=e = ^' .
dn Edge
The transition function F(x) is

F(x) = 2j | /x |  ejx  J e J dz . (27)

| / x |

The distance parameter associated with the incident f ie ld  is given by 

i  s(p^+s)piplsinV
L = T T i  -------- ° • C28)

pe l +s) (p2+s^

The distance parameter associated with the reflected f ie ld  from the 
surface with superscript o (reflection boundary at tt- cJ)')  and the 
reflected f ie ld  from the surface with superscript n (reflection  
boundary (2n-l ) tt-<{>' ) is given by

s(p£+s)prp£sin̂ B
L = — 17 --------- 2  • (29)

P e ( p - ] + s ) ( p 2+ s )

The parameter p| is the radius of curvature of the incident wavefront 
at the diffraction point Qe taken^in the plane containing the 
incident ray and the unit vector e which is tangent to the edge at Q .̂
For the case of spherical v/aves pg=s '.  p̂ j and p2 are the principal
radii of curvature of the incident wavefront at Qjr. Sim ilarly, p  ̂ and
p£ are the principal radii of crrvature of the reflected wavefront at
Qe , which are found using Equation (23) for spherical wavefront in c i
dence also, the parameter p£ is the radius of curvature of the 
reflected wavefront a t Qe taken in the plane containing the reflected  
ray and e. I t  is found using

A A A A .

2(n-ne) ( I -n )

aQ sin^3rt e o
(30)
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where n is the unit vector normal to the surface at Qe , ne is the 
associated unit normal to the edge directed away from the center of 
curvature, and ae>0 is the radius of curvature of the fedge at Qe .

3. Specular point calculation

The previous sections presented the GO and GTD E-fie ld  expressions 
assuming that the specular point Qr and Qe were already known on the 
surface. For special geometries they are often known in tu it iv e ly .  
Marhefka [5] has presented several methods for finding these points 
for more general geometries. Greer and Burnside [9] have also investi
gated various methods of finding edge diffraction points. The 
reflection point Qr on the surface of a circular cylinder is desired 
when a nearby source and f ie ld  point are known. A method presented by 
Marhefka was modified to accomplish this. Figure 8 shows the geometry 
for the determination of the reflection point on an e l l ip t ic  cylinder.

( xc. y c » )
OBSERVATION POINT

SOURCE
LOCATION

Figure 8. Geometry for determination of reflection  
point on e l l ip t ic  cylinder.
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To find the reflection point in the l i t  zone, the laws of 
reflection as given by Equations (21) and (22) are the starting point. 
These equations are written such that

- rL i I  = J1L  = n x j  ( 31)
n • cT |l | n x ?

or

(n x T) (rT • cT) + (rf • T) (r7 x cT) = 0. (32)

Note that the normalization factors may be removed. The incident and 
observation vectors are written as follows

and

ff(v,z) = dx(v)x + dy(v)y + Fz (z)z

= (xc-a cos v)x + (yc-b sin v)y + (zc-z)z

The normal to the curved surface is given in general by

(34)

n = t  x z = b cos v x + a sin v y e

or

n = nx (v)x + ny (v)y . (35)

Performing the necessary dot and cross products, Equation (32) 
becomes two equations



(37)

Then the values of Equations (33), (34), and (35) are substituted into 
Equation (36) with the fact a=eJv . The equation is multiplied out 
and like  terms in a are collected so that a sixth order polynomial is 
obtained given by

C2 = C4* (complex conjugate of C )̂

The six roots of the polynomial correspond to v in that

The value which is the true reflection point_is found by determining 
the v that minimizes the distance given by | l |  + |cT| , which is 
necessary to satisfy Fermat's principle. Using this v parameter 
representing the reflection point in the x-y plane, the z-coordinate 
can be found from Equation (37) to be

(38)

where

(40)
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The above method for finding the reflection point can be 
considered exact. I t  is ,  however, slow for some applications and 
other methods are presented in the references mentioned above.

In conclusion, the moment method and the GTD material presented 
in this chapter are by no means complete. The material does, however, 
provide the background and the equations necessary for the hybrid 
technique developed in the next chapter. The expressions given here 
are the ones used in the computer programs to obtain the results of 
Chapter IV.
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CHAPTER I I I

THE HYBRID TECHNIQUE

In this chapter the hybrid technique is described in deta il.
The various problems arising when GTD is combined with the moment 
method are presented and solved. Results are included which demon
strate the effectiveness of these solutions.

A. Description

The hybrid technique is used here to solve electromagnetic 
problems in which antennas or other discontinuities are located on 
or near a large conducting structure. The basic technique was f i r s t  
presented in the lite ra tu re  by Thiele and Newhouse [1 ] .  This method 
consists of casting the antenna structure in a moment method format 
and then modifying the generalized impedance matrix to account for  
the effects of the conducting body via GTD.

Following the notation used by Thiele and Newhouse, the moment 
method is applied to the antenna structure alone by expanding the 
surface current J in a series of basis functions J-j, J2 , J3 • • • ,  such 
that

A linear operator L is defined to relate the expansion currents to 
the ir  e lectric  f ie lds . A set of weighting functions Hq, W2 , W3 *** 
is selected and an inner product is defined so that,

where E1 is the f ie ld  incident on the antenna. This is the m-th row 
of the system of N equations described in Section A of Chapter I I  
under the moment method. Equation (42) is represented as

(41)

(42)

[Z] ( I )  = (V). (43)

20



The elements of this impedance matrix are those of the free space 
impedance matrix since only the antenna structure has been considered 
so fa r .  These elements are given by

Z = <W. L(J )>. mn m n (44)

The inner product forms a unitary space in which

<J, aE-j + bE2 > = a<J, Ê > + b<J, E2 > » (45)

where a and b are complex scalars. I f  aE] in Equation (45) represents 
L(Jn) in Equation (44) (that is ,  the f ie ld  due to Jn) and i f  bE2 in 
Equation (45) represents an additional f ie ld  contribution to Zmn (that 
is also due to Jn but not due to the f ie ld  arriving d ire c t ly ) ,  then

The superscript g indicates that Z$n is added to each impedance matrix 
term to account for contributions a t the m-th observation point due to 
the Jn fields scattered from the conducting body. Thus Equation (43) 
becomes

account for the presence of the scattering body as well as for the 
antenna i ts e l f .  Z$n elements are found with the aid of GTD. The 
solution of Equation (48) is

where ( I 1) is the current on the antenna structure located on or near 
the conducting body. Thus the hybrid technique used in this paper is 
a modification or extension of the moment method. This d iffers  from 
other approaches that consider extension of GTD via the method of 
moments [ 1 0 ] .

<Wm’ L(Jn) + bL(Jn}> ’ a=1 ’ b=b(ni’ n) (46)

or

(47)

[Z ' ]  [ I ' ]  = (V) (48)

where [Z *] is the generalized impedance matrix properly modified to

( I ' )  = [ Z ' ] "  (V) (49)
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The starting point for the hybrid technique used in this paper 
is Richmond's thin-wire program [2 ,3 ] .  Some reasons for this choice 
are obvious. I t  is a very general and powerful technique for 
modeling and solving a great variety of antenna and scattering problems 
with re la tive ly  simple inputs to the computer code, i t  is widely known 
and used, and its  accuracy has been repeatedly demonstrated. The 
practical lim itation on its  capabilities is the size of the impedance 
matrix required by the geometry of the particular problem. The 
computer must invert and solve this matrix. Long and expensive com
puter runs become a problem i f  the structure is e le c tr ic a l ly  large.

Another less obvious reason for choosing Richmond's thin-wire  
approach is that i t  uses piecewise sinusoidal expansion and weighting 
basis functions. The advantages of these functions other than rapid 
convergence and the corresponding mode economy, are made clear in the 
section of this chapter on integrating GTD with the moment method.

To fa c i l i ta te  a more detailed explanation of the hybrid 
technique, its  application to a specific geometry is presented. The 
case chosen is a half-wave dipole, ax ia lly  oriented, near a perfectly  
conducting circular cylinder. The geometry is depicted in Figure 9.
The current distribution on the dipole near the cylinder is determined 
and from this the input impedance is calculated. The choice of this 
particular geometry and determination of the input impedance does not 
imply restrictions on the hybrid technique described. This method can 
be applied to an a rb itra r i ly  shaped radiator near any scattering 
structure for which a GTD solution exists. I t  may be used to find near 
and far  fields and scattering data as well as current distributions 
and input impedance.

The dipole in Figure 9 is divided into segments not longer than 
a quarter wavelength in extent. These segments are grouped two at a 
time to form modes. A moment method formulation of the dipole in 
free space is f i r s t  carried out by assuming a piecewise sinusoidal 
current distribution on a particular two-segment mode. This test 
mode current generates an E -fie ld  which is reacted with a ll  of the 
two-segment modes on the dipole. Each of these reactions gives an 
impedance matrix term

zjk  -  -  .

Rec Mode k
e] W  • I kW  d» (50)

Fj(a) is the E -fie ld  from test mode j  at the receiving mode k. I k( t )  
is the expansion current distribution also assumed to be piecewise 
sinusoidal making this a Galerkin method. A row of the impedance 
matrix is created by carrying out this integration for each expansion 
mode on the dipole. The other rows are found by moving the test
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Figure 9. Half-wave dipole ax ia lly  oriented a distance D from a 
perfectly conducting circular cylinder of 

radius A.
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current source to each mode in turn. The resulting free space 
impedance matrix is a function of the dipole geometry alone. Knowing 
the dipole source voltage and this impedance matrix allows for the 
calculation of the dipole current distribution by solving the set of 
simultaneous linear equations. Once the current is known, other 
electromagnetic quantities follow directly. This is the technique 
used in Richmond's thin-wire program [3] which is described in 
Chapter I I .

To calculate the effect of the circular cylinder, the hybrid 
technique is applied to find a delta impedance matrix. When this  
delta impedance matrix ([AZ]) is added to the dipole free space 
impedance matrix ( [Z ])  the resulting modified impedance matrix ( [Z 1])  
correctly considers the presence of the cylinder. Thus

[Z]+[AZ] = [Z 1] (51)

where [Z ']  is a function of the dipole and cylinder geometry alone and
is not source dependent. Since the input impedance of the dipole is
the quantity to be found, the dipole is assumed to be a radiating 
antenna with a known voltage excitation V at the center port. This 
source is modeled with a delta gap voltage. When the current d is t r i 
bution is determined, the input impedance then follows directly  from

Z1n ■ V /Ig  ( 62>

where Ig is the current at the generator port.

The [AZ] matrix is calculated by the same method as [Z] except 
that the E-fie ld which is reacted with the expansion modes is the f ie ld  
that is scattered from the cylinder instead of the direct f ie ld  from 
the test dipole mode. This scattered f ie ld  is the one resulting from 
the cylinder being illuminated by the f ie ld  from the test dipole
source. To find this scattered f ie ld  the methods of GTD are applied.

To find a particular [AZ] term, the scattered f ie ld  must be
reacted with the expansion current on the receiving mode dipole. This
again is an integration given by

where I|^(£) is thepiecewise sinusoidal distribution on the receiving 
mode dipole k and Ej is the f ie ld  scattered from the cylinder when 
illuminated by the test source I j ( M  which also has an assumed piece-

I k ( ! )  it (53)
Rec Mode k
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wise sinusoidal distribution. This integration is carried out 
numerically using the Newton-Cotes equation after  H^Jt) has been 
determined. In the computer program, these mode-to-mode AZjk's are 
found by combining the appropriate segment-to-segment mutual impedance 
terms. Again, this procedure is modeled after  Richmond's thin-wire 
program. Each mode impedance term results from the superposition of 
four segment impedances making i t  possible to have two segment "Vee" 
dipole modes or dipole modes which are not linear. Vee dipole modes 
would be necessary in a more complex antenna structure than the dipole 
now under consideration. Thus, what must be found with the aid of GTD 
is the f ie ld  scattered from the cylinder at points along the receiving 
segment resulting from the test current on the source segment.

To find E5 ^ )  using a GTD format would require breaking 
into three basic components as sketched in Figure 10. contains
a reflected component originating from the source segment and re f le c t
ing directly to the receiving or observation segment. "^(A) also 
contains edge-diffracted components originating from the source 
segment and diffracting off the cylinder ends. Finally  
contains a creeping wave contribution coming from the source segment, 
attaching to the cylinder, then propagating around the cylinder as a 
surface wave and f in a l ly  shedding to the observation segment. Other 
components (such as from the source to an edge d iffrac tion , to surface 
wave to another edge d iffrac tion , to the observation segment) are 
possible but these contributions would be minute and are ju s t if ia b ly  
neglected.

For the particular geometry under consideration, two assumptions 
are made. The cylinder is assumed to be e le c tr ic a lly  long so that 
diffraction from the ends is negligible, and the circular cylinder is 
assumed to have a large electrical diameter so that the creeping wave 
contribution is minute and may be ignored. These assumptions are made 
to simplify the problem used to describe and explain the hybrid 
technique and are not restrictions on solvable geometries. For the 
case in study, the dominant contribution to the scattered f ie ld  Fs (^) 
is the reflected f ie ld  The problem has been reduced to one of
finding the reflected f ie ld  F ^ )  at observation points on the 
receiving segment given an incident f ie ld  from the source segment. To 
find this reflected f ie ld ,  GTD, (or in this case GO), is applied.

Referring to Section B of Chapter I I ,  the GO fie ld  at an obser
vation point (as shown in Figure 5) is

^ ( s )  = E1 (Qr ) • R P 1 P 2 -jkse"J (54)
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where F  (Qr) is the f ie ld  incident at the reflection Qd generated by 
the test current on the source segment where R is the ayadic reflection  
coefficient

R = e el  el  =
1 0 
0 -1

(55)

p-| 2 a r e  defined in Equation ( 2 3 ) .  The f ie ld  E ( Q r )  is known exactly 
for a monopole segment with a piecewise sinusoidal current distribution. 
This f ie ld  w ill be considered in detail in the next section. The 
reflection point Q r  is found by applying the technique described in 
Section B of Chapter I I .  In applying Equation (54) two important 
points warrant special attention. F irs t, to find Q r  on the cylinder, 
a source and observation point must be specified. The observation 
point presents no problem. In finding the segment-to-segment impedance 
terms a numerical integration is performed over the observation 
segment. The observation segment is divided into a specified number 
of integration sampling points which also serve as observation points. 
SpecificatiQn of the source point, however, poses a problem. The 
source of F ' ( Q r )  is actually distributed over the source segment, so 
an assumption must be made that the source appears to radiate from one 
specific point located on the source segment. This assumption allows 
the location of Qr to be determined. The next section discusses the 
actual choice of the source point location and the ramifications of 
this choice.

The second important point for consideration involves the ray 
optical nature of GTD or GO. The f ie ld  E1 ( O r )  is known at the 
reflection point Q r ,  but in finding EP^a) only the components of (Qr) 
which are perpendicular ( i )  to the incident ray path I 
are used as seen in Equation (54). GTD does not provide a method of 
including components of the f ie ld  along the ray path. The assumption 
that must be made, then, is that the ray path component of F ’ (Qp) is 
negligible. That this assumption is fa ir ly  accurate until the aipole 
gets very close to the cylinder is demonstrated by the results 
presented in the next section.

Once is known, i t  is dotted with I(£)<JT on the observation
or receiving segment. The segment-to-segment impedance terms are 
found by carrying out the integration indicated in Equation (53) 
numerically. These terms are combined to get the AZ mode-to-mode 
impedance terms, thus forming the [AZ] matrix. This matrix, repre
senting the cylinder effects, is added to [Z] to form [Z 1] the modified 
impedance matrix which is solved in the normal moment method manner.
The matrix is inverted and multiplied by the voltage source column 
giving the desired current distribution. The input impedance of the 
dipole is found using the method described by Equation (52).
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B. Combining GTD With Thin-Wire Theory

The hybrid technique as described in the previous section is 
applied to the problem shown in Figure 9 and the solution of the 
problem is discussed here. The input impedance of the half-wave dipole, 
ax ia lly  oriented at a distance D from a perfectly conducting circular  
cylinder of radius A, is calculated. The real and imaginary parts of 
the impedance are determined as a function of dipole distance D from 
the cylinder and are stored for plotting. The accuracy of this 
method is checked by comparing the plot obtained by this procedure 
with that obtained by an independent method.

The independent method is a solution by Ersoy and Wang [11].
The method consists of finding the solution of an axial dipole near an 
in f in i te ly  long, perfectly conducting circular cylinder. This is 
accomplished by a technique very similar to the hybrid technique 
described in this paper. A delta impedance matrix representing the 
cylinder effects is found via a moment method procedure. The method 
incorporates the cylindrical Green's function in the kernel of the 
integral equation. These eigenfunctions account for the cylinder.
To avoid the confusion of distinguishing between two hybrid type tech
niques, this method w il l  be called the "MM-eigenfunction" technique.

The MM-eigenfunction solution is obtained in the form of a 
summation, and accurate results are obtained when suffic ient terms are 
included. The MM-eigenfunction solution is taken to be the correct 
(exact) one. Figures 11a and b show the plots for the case A=A/2 and 
D is varied from near zero to one wavelength. The agreement between 
the hybrid solution and the MM-eigenfunction solution is good until the 
dipole is less than 0 . 2 A from the cylinder. The input impedance of 
the half-wave dipole of diameter 0.0002A in free space with one piece- 
wise sinusoidal mode is 73.22 + j  43.4K2. The vertical scales of the 
plots are in ohms. The input impedance of the dipole is seen to be a 
damped sinusoid oscillating about the free space value as the dipole 
moves away from the cylinder. This is in tu it iv e ly  logical since the 
energy reflected from the cylinder to the dipole should alternately  
enhance and subtract from that of the free space dipole, thus modifying 
the dipole current distribution and giving the resulting input 
impedance plots.

Several other details of this problem should be discussed. The 
MM-eigenfunction solution used assumed an in f in i te ly  thin dipole whose 
current distribution was exactly cos kz in free space. Comparing 
this solution with the hybrid solution required that the hybrid dipole 
also have exactly the cos kz distribution. To accomplish this only 
one mode was used to model the A/2 dipole. The piecewise sinusoidal 
current on this mode gave the desired cos kz distribution. This 
restriction of one mode to model the dipole was recognized as a 
detraction from the accuracy of the hybrid solution and provided 
the motivation for finding another independent check as described
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shortly. Also, for these results, both the MM-eigenfunction and 
hybrid solutions assumed an in f in i te ly  long cylinder. The hybrid 
technique accomplished this by simply not including any edge d i f 
fraction.

Another important de ta il ,  as pointed out in the previous section, 
was the selection of a single source point on the source segment.
Its  location was needed to find the f ie ld  scattered from the cylinder 
in the segment-to-segment impedance term calculations. A logical 
choice, and the one used here to find the curves of Figures 11a and b, 
was the center of the source segment.

Three reasons were postulated for the breakdown of the hybrid 
solution when the dipole was closer than 0 . 2 A to the cylinder. The 
f i r s t ,  already mentioned, was that more modes might be required for  
better accuracy. That is , segments shorter than 0 . 2 5 A  could be used to 
model the dipole. The second reason was that the approximation that 
the source emanates from the center of the segment became less accurate 
as the dipole approached the cylinder. The third reason was that the 
ray path component of E^Qr) which GO ignores increased as the dipole 
approached the cylinder. All three of these situations would be 
improved i f  the dipole was divided into shorter segments. By doing th is , 
the a b i l i ty  to compare the results of the hybrid solution with those of 
the MM-eigenfunction solution is lost since the MM-eigenfunction 
solution requires only one mode.

Another independent method of calculation was formulated using 
ground plane image theory. Richmond's thin-wires over an in f in ite  
ground plane computer code [ 1 2 ]  was the method used. Consider a 
horizontal half wave dipole at a distance D above a perfectly 
conducting in f in ite  ground plane. This geometry is similar to that 
of the dipole near the in f in ite ly  long cylinder of radius A as A gets 
very large. So the hybrid technique may be compared with ground plane 
image theory i f  a large enough radius is chosen. In fact, since the 
differences to be compared are small, i t  is advantageous to eliminate 
the approximation of large enough A as follows: The radius of the
cylinder appears in the calculation of the reflection point Q r  and in 
the reflected f ie ld  IP^Qr) of the GO expression, Equation (54). The 
reflection point calculation does not need modification for this 
particular geometry since i t  w ill be independent of the radius A. In 
the spread factor part of Equation (54), p] and P2 are the principal 
radii of curvature of the reflected wavefront at the reflection point 
Q r .  They are given by Equation ( 2 3 )  for a spherical wavefront incident 
and repeated here as
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For a cylinder, R2 = eB and Equation (56) reduces to

1 _ 1 
r s 

1 »2
cose

sin e sin e

cose
(57)

The cylinder radius is Ri=A. As the cylinder radius approaches 
in f in i ty ,  R]'*■«", i t  becomes an in f in ite  ground plane and Equation (57) 
becomes

1 , 2

1
s' (58)

Using this in the hybrid program is equivalent to A=0<>. Figure 12 
shows the geometry of this problem.

The ground plane image theory solution places no restric tion on 
the number of modes; modes were increased to three and input impedance 
plots were again determined. As il lus tra ted  in Figure 12 the segment 
length is d and the source point location on the segment is indicated 
by x0 . For the particular case that was run xo=0.5d. Since the focus 
was on input impedance when the dipole was close to the cylinder, D 
varied from near zero to only A/2. The real and imaginary components 
of the input impedance were calculated by the two methods and the 
resulting curves plotted as Figures 13a and b. The ground plane image 
theory was considered correct and is indicated by the solid curve 
while the hybrid solution is indicated by the dotted curve.

These curves demonstrated that the postulated improvement in 
hybrid theory accuracy for an increased number of modes did not 
materialize. This was explained partly by the fact that although the 
segments were smaller and therefore the errors introduced due to the 
previously discussed approximations were smaller, they added up to 
about the same error when combined to include the entire dipole. To
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investigate the effects of the GTD approximations, the reflected f ie ld  
along the dipole was studied. Specifically the component tangent to 
the dipole, the one employed v/hen integrating to determine the mutual 
impedance terms, was calculated over the length of the dipole L. I t  
was hoped that a study of this aspect of the problem would lead to a 
clear understanding of how GTD combines with the thin wire theory.

Figure 12 also applies to the problem of finding the E -fie ld .  
Figures 14a and b show the magnitude and phase of the E-fie ld  tangent 
to the dipole as a function of f ie ld  point location along the dipole.
The dipole was located at D = 0 . 5 A  from the cylinder. The center of the 
source segments was the location of the specified source point xo=0.5d. 
The source of the f ie ld  was the lowest dipole mode on the halfwave 
dipole with segment length d = 0 . 1 2 5 A .  Again, the hybrid solution was 
plotted with dashed lines while the correct image theory solution was 
represented by the solid curve. As was expected from the plots on 
Figures 13a and b, for D = . 5 A  the two solutions agree fa ir ly  w e ll .
Figures 15a and b show the E-fie ld  for exactly the same case except 
that the dipole was only D = 0 . 1 2 5 A  from the cylinder; agreement between 
the two solutions was expected to be worse for this case. From these 
two sets of figures i t  was seen that the most severe problem was in 
the E-fie ld  phase. Actually, i t  was surprising that the input 
impedances found by the hybrid technique were as good as shown con
sidering the E -fie ld  errors.

To check the effect of the varying segment sizes used to model 
the halfwave dipole, variations of the preceding problem were solved 
for smaller d values. Figures 16a and b show the magnitude and phase 
of the tangential E -fie ld  when d was A/40, or 5 times smaller than the 
previous situation. Again, D=0.125A, xo=0.5d, A=m and the image 
solution was compared with the hybrid solution. The accuracy was not 
greatly affected.

In order to apply GTD to these problems, i t  v/as assumed that the 
f ie ld  at the observation point due to a source monopole segment came 
from a single point taken to be the midpoint of the segment. The f ie ld  
was actually generated from current distributed over the source segment. 
Since the current on the monopole segment was not symmetric about the 
selected center point, i t  seemed reasonable that a more accurate 
source point could be chosen. Several alternative source points were 
tr ied , a logical choice was the point of equal moments. Figure 17 
shov/s a piecewise sinusoidal distribution sin ex on a monopole segment 
of length d. Equating f i r s t  moments gave the following equation

x
f\ ( * m- x ) s in  ex dx

o
J (x-xm)sin ex dx. (59)

m
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y = s in  (B  x

Figure 17. Function for calculation of equal 
moment point xm.

Carrying out the integration gave the following result

xm = .65966 d (60)

when d=0.125A. From this new source point location the tangential 
E-fie ld was calculated as previously described. Figures 18a and b 
show the resulting curves. All other parameters were the same as 
those for the solutions presented in Figures 15a and b. Comparing 
these curves shows that the choice of source point location has a 
significant effect on the E-field and has a correspondingly sig
nificant effect on the input impedance. Figures 19a and b demonstrate 
the extent of the effect of the source point location. The dramatic 
change in the curves from such a slight s h ift  in source point location 
demonstrates the sensitiv ity  of the hybrid solution to this parameter. 
From this data i t  was concluded that an improved method for integrating 
GTD with the moment method was essential i f  the desired accuracy was 
to be obtained when the dipole was located close to the cylinder.

As mentioned previously, two important assumptions were made 
in finding 1 ^ (0  using the GO expression. To find Q r  a specific 
source point v/as chosen even though the actual source was distributed  
over the entire segment. E"1 (Qr) v/as the exact f ie ld  at Qr, but in 
determining F1̂ )  only the components of FMQr) which were perpen
dicular and parallel to the incident.ray path were used; the assumption 
was that the ray path component of E 1 ( Q r )  was negligible. A careful 
look at the exact near f ie ld  expressions from a monopole segment with 
a piecewise sinusoidal current distribution showed how making both of 
these assumptions could be avoided.
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The fields radiated from the monopole segments are given by 
Richmond [2 ] .  Figure 20 shows the z oriented monopole segment. The 
piecewise sinusoidal current distribution is

I ( z )  =
I-jSinhyCzg-z) + IgSinhyCz-z-j)

(60)
s'in iiyd

where I]  or I 2 is zero., y is the complex propagation constant, d is 
the segment length, and z-j 2 are the endpoints. The resulting fie lds  
at any point (p , z) are *

where n is the impedance of the propagation medium. These expressions 
are for a z oriented segment. They v/ork, however, for a general 
segment with any skewed orientation through a simple coordinate trans
formation. To be correct, these E-fields are only complete when added 
to the E-fields of a connecting monopole segment. These connected 
monopole segments make a dipole mode that is used in the thin-wire  
theory. The crucial fact to note about these E-fields is that they 
may be separated into fie lds emanating from the tv/o endpoints. More
over, these separated f ie ld  contributions have an e“YK/R term multiplied  
by a pattern factor form, and are recognized as spherical waves 
emanating from the endpoints. These observations may be exploited 
with remarkable results to improve the integration of GTD with th in-  
wire theory. At the observation point on the dipole, the reflected  
f ie ld  Er (&) w ill now be the superposition of the contribution from one 
endpoint of the source segment plus the contribution from the other

E
p ~ 4TTps'inhyd

n

+ ( I ,  coshyd -  I«) e

-y Ro
+ ( 1 2 coshyd -  I-|) e cose2 (61)

and

E*  = K Ts i n M  ( I 1 -  h cosh^ d> ~ T £

+ ( I 2 -  I-j coshyd) — j (62)
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endpoint. Each endpoint w ill have its own reflection point on the 
cylinder. By separating the fields in this way the distributed nature 
of the source has been properly accounted for. Less obvious is the fact 
that the ray path components of the separated fie lds are zero so that 
the assumption that they are negligible is exact. This w ill  be demon
strated la ter . Thus the incident f ie ld  from the source segment at 
the reflection points is separated to make i t  perfectly compatible 
with the ray optical nature of GTD. In fact, for the special 
geometry of the in f in ite  cylinder radius, the hybrid solution is shown 
to be in exact agreement with image theory.

This separation technique was applied to the same case previously 
presented in this section. The tangent E-fie ld along the dipole from 
the lowest dipole mode for the three mode case was calculated and 
plotted using the hybrid technique. The results for D=0.125A are in 
Figures 21a and b. Although i t  is d i f f ic u l t  to see, both a solid image 
theory curve and a dashed hybrid solution are plotted on those figures. 
For this case, the hybrid solution gives exactly the correct image 
theory solution.

To analytically  ju s t ify  these surprising results a careful look 
at the E-fie ld  expressions is required. Working with the combined 
monopole segment fields of Equations (61) and (62) is complicated.
Figure 22 shows the geometry of a center-fed linear dipole where the 
monopole segments are considered together. For a piecewise sinusoidal 
current distribution

TU) =
z I Q s in [k (d -|z -z2 | ) ]

sin kd 
where k =
Richmond [13] gives the following rigorous fields

V °
E = ^  ' °

p 4irpsinkd

(63)

(64)

-jkRi
cose

1

-  2  cos(kd) e
-jkR;

cose2 + e
-OkR,

cose. (65)

E_ = -
jn I,
4rrsinkd

- j  kR, - jk R .

- 2 cos(kd)

-j kR-
(66)
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Z-directed center fed dipole source 
with observation point (p,<j>,z).

Figure 22.

When fie lds from two connecting monopole segments are combined these 
expressions are derived d irectly  from Equations (61) and (62). Again, 
the fie lds may be separated into contributing fields from z-j, Z2 
and Z3 . Justification of the separation technique as well as 
demonstration of zero ray path contribution can be shown by proving 
the following hypothesis:

F(p,Z) = Ep p + Ez z -  E^t-j+E2 t 2 +E3 t 3  . (67)

That is , the total f ie ld  at the observation point is postulated to 
be the superposition of contributions from the two endpoints and the 
feed point. In addition the total f ie ld  is said to be contained in 
components which are only transverse to the ray paths. In Equation 
(67) Ep and Ez are the known total fie lds given by Equations (65)
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and ( 6 6 ) .  Let E-j be the contribution from point i transverse to ray 
path i ( i= l ,2 ,3 ). From the geometry in Figure 22 a fte r  some 
trigonometry

E. = Ez(R.) sino. - Ep(R .,e .)  cosei . (6 8 )

Specifically,

-  W : o e" ^ * 1 .
Ei = J fTs iW  - i q —  Sln0l

jn  I 0  -jkR-. 2 
_ -----? e 1 cos e, 69)47rpsmkd 1 ' 7

jn I f  -jkR2 ,
E2 = " 2K5OT ( - 2c°s(kd> V   s-in»2

jn  I f  -jkR? ? \
2 cos(kd) e c o s e . , ]  (70)

r f  >o ( V jkR3 . . 
3 ‘  4irsinkd \  R3  S 1

jn I f  -jkR

)
4irpsinkdTiFTkd ( e J c o s ^ e 3  ^  • (7D

To verify Equation (67), E-j, Eg, and E3 should give the total f ie ld  
Ez and Ep. Using geometry again

Ez = Ei sinei + E2 s in02  + E3  sin0 3 . (72)

Also using p = R 
trigonometric re 
shown to be equa

sine] = R2 Sin02 = R3 Sin©3 in E ], Eg, and E3  and the 
ationship sin^e + cos^e = 1 , Equation (72) can be 

to Equation (6 6 ). Similarly

Ep = -  E ] c o s 0 i  -  E2COS02 -  E3COS03 ( 7 3 )

is equal to Equation (65). Thus Equation (67) is verified and the 
hypothesis is proved demonstrating analytically  the exact agreement 
between the hybrid technique and image theory.
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To relate this tangential E -fie ld  result back to the input 
impedance calculation, the case of a half-wave dipole near the in f in ite  
ground plane was run with the endpoint separation technique incorporated 
into the hybrid technique. The real and imaginary parts of the input 
impedance were plotted versus dipole distance from the cylinder in 
Figures 23a and b. The agreement between the image and hybrid solution 
was nearly exact, which is a very significant improvement.

The hybrid technique has been described in deta il. A method 
for combining GTD with thin-wire theory has been demonstrated v/hich 
integrates the two so that the necessary GTD assumptions do not 
hinder the results. In the next chapter the case where wire antennas 
are near a curved surface w il l  be examined.
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CHAPTER IV 
WIRE ANTENNAS NEAR CIRCULAR CYLINDERS

In this chapter the hybrid technique v/ill be used to solve 
electromagnetic problems such as wire antennas near circular cylinders. 
The objective in this chapter is to demonstrate the capabilities and 
accuracy of the hybrid technique. To accomplish this a ll of the results 
to be presented w ill compare the hybrid technique solution with results 
obtained for the same or similar cases using an independent method.
The desire to compare with an independent method is the main reason 
the particular geometries (e .g . ,  c ircular cylinder) have been chosen.
The hybrid technique as described in the previous chapter can be 
applied to much more complicated geometries than w ill  be shown here, 
but independent checks are not readily available.

Three orthogonal directions or orientations can be identified in 
relationship to the cylinder. These orientations are axial (parallel 
to the axis of the cylinder), radial (perpendicular to the surface of 
the cylinder), and circumferential (tangent to the surface and 
perpendicular to the axis). Antennas or radiators are chosen with 
orientations to match one of these three directions with respect to 
the cylinder. The reason for choosing orthogonal orientations to 
demonstrate the hybrid technique is obvious. I f  the method can 
correctly solve these three independent.orientations then i t  can 
solve any arbitrary combination of them in the presence of the 
cylinder. Subsequently, a general radiator can be solved with 
confidence.

The electromagnetic problems solved in this chapter w ill a ll 
involve the calculation of input impedance of the radiator as a 
function of distance from the cylinder. The hybrid method is capable 
of solving for many other electromagnetic parameters such as near 
or far  f ie ld ,  current distributions, scattering data, patterns, as 
well as input impedance. There are three reasons for choosing to 
find input impedance. To determine input impedance, the current 
distribution is f i r s t  found. I f  the current distribution is known, all 
the other electromagnetic parameters follow easily. So finding input 
impedance shows that the other parameters could also have been accurately 
determined. The second reason is that input impedance is a measurable 
quantity and one which can be compared with other l i te ra tu re . The third  
reason is that the current distribution and correspondingly the input 
impedance of the radiators is very sensitive to the location of the 
nearby circular cylinder. Thus, solving for input impedance is a 
good test of the capabilities of the hybrid technique.
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Finally , circular cylinders are picked as the curved surface 
whose presence is to be included for the following reason: GTD and
therefore the hybrid technique is capable of solving many canonical 
(and combinations thereof) problems, but, the circular cylinder 
is one for which other solutions are available. The computer program 
developed using the hybrid technique of Chapter I I I  and the theory of 
Chapter I I  is capable of solving an arbitrary radiator near an e l l ip t ic  
cylinder.

In developing the computer programming to solve electromagnetic 
problems using the hybrid technique, an e ffo r t  was made to keep the 
expressions and possible geometries as general as possible. The 
objective was to develop a program capable of handling as broad a 
problem type as possible. To achieve th is , the thin-wire program of 
Richmond [2 ,3 ] was chosen as the starting point for the moment method 
formulation of the problem. Some reasons for that choice are based 
on the use of piecewise sinusoidal basis functions as was discussed 
in Chapter I I .  Another reason is because of the wide fa m il ia r ity ,  
acceptance, and use this thin-wire program has. The hybrid computer 
program is outlined as follows: A wire model of the antenna structure
geometry is inputted. The necessary specifications characterizing 
the curved surface are also read in. The antenna structure is sorted 
and the thin-wire modes are set up. The free space impedance matrix 
is then found. Next various appropriate subroutines are called to 
find the modifications to [Z] due to the curved surface starting with 
the GO routine. The subroutines to find the modifications use GTD 
programs modified from ones developed by Burnside, Marhefka, Greer, 
and others at the Ohio State University. The programs use expressions 
from a paper by Kouyoumjian and Pathak [5 ] .  The [ Z ' ]  matrix is 
calculated and the current distribution is found. The hybrid program 
was used on a modified Datacraft computer.

Four specific geometries w ill be studied in this chapter. Three 
independent methods of solution w il l  be used to test the hybrid 
solution. These methods w ill be discussed as they are used. The 
agreement between these methods and the hybrid technique, as w il l  be 
shown by the results in this chapter, strongly support the statement 
that an accurate method for combining the moment method treatment 
of wire antennas with the GTD for curved surfaces has been found.

A. Axial Dipoles

In this section the results of applying the hybrid technique to 
ax ia lly  oriented dipoles a distance D from a perfectly conducting 
circular cylinder of radius A are presented. The general geometry of 
the problem is i l lus tra ted  in Figure 24. The dipole antenna is ha lf
wave length in extent and the diameter is .0002X. Note that the 
circular cylinder is labeled in f in ite ly  long. This is rigorously true 
but in practice as long as the cylinder extends approximately one 
wavelength or more past the dipole i t  appears to be in f in i te ly  long as 
far as the dipole's current distribution is concerned. This statement
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w ill be supported by the results in the f in i te  cylinder section of 
this chapter.

As discussed in Chapter I I I  an MM-eigenfunction solution by 
Ersoy and Wang [11] is available for axia lly  oriented dipoles near an 
in f in i te ly  long, perfectly conducting, circu lar cylinder. The solution 
is found by summing suffic ient terms to evaluate an integral expression. 
The integrand contains a Green's function for the circular cylinder.
The dipole has a cos(kz) current distribution. This MM-eigenfunction 
solution can be considered exact and is a perfect independent method
to check the hybrid solution against. The restric tion is that in order 
to achieve the cos(kz) current necessary for correct comparison the 
hybrid technique must use only one mode or tv/o segments to model the 
half-wave dipole.

The f i r s t  results comparing the hybrid technique with the MM- 
eigenfunction solution are shown in Figures 25a and b. The real and 
imaginary parts of the input impedance of the dipole were plotted vs. 
dipole distance from the cylinder D. For this case D was varied from 
near 0  to onehalf wavelength and the cylinder radius was one wavelength. 
The vertical axis are in ohms, the solid line is the MM-eigenfunction 
solution, and the dotted curve is the hybrid solution. The two methods 
give basically the same result. The largeness parameter for the GTD, 
or in this case the GO, part of the hybrid solution is kA. k is the 
wave number equal to 2-ir/A. A is the cylinder radius given in wave
lengths. GTD uses an asymptotic approximation which is good when the 
largeness parameter is greater than one. For the case A=1.0A shown in 
Figures 25a and b the largeness parameter is about 6 .3 , much larger 
than one and the excellent agreement follows.

To demonstrate the effect of this largeness parameter on the 
hybrid solution three more cases are presented. Figures 26a and b show 
the input impedance when A=0.5A. Figures 27a and b show the effect  
when A=0.25A where kA is s t i l l  greater than one. Finally Figures 
28a and b show the input impedance curves calculated by the two methods 
when kA=.785. This last case has violated the largeness parameter con
stra int yet the agreement between the MM-eigenfunction and hybrid solu
tions is s t i l l  f a ir ly  good. Comparing the amount of error in the hybrid 
solution for these cases as kA gets smaller i t  is seen that the GO 
breaks down gracefully. One can push the hybrid technique as far  as is 
consistent with the desired accuracy of the particular application and 
not v/orry about sudden breakdown.

When the cylinder radius is very large the MM-eigenfunction solu
tion needs more terms to converge. For this reason and the need to 
verify the accuracy of the hybrid solution when the dipole is modeled 
with more than one mode, the method w ill be compared with a ground 
plane image theory solution. In Chapter I I I  the image theory method 
was discussed. As A goes to in f in ity  the cylinder opens to an in f in ite  
planar conducting surface or ground plane. Richmond has adopted his
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thin-wire program to handle this geometry [12]. Solving the case 
i l lus tra ted  in Figure 24 when the cylinder radius was A=10.0 gave the 
curves shown in Figures 29a and b. The solid curve was calculated 
using ground plane image theory. Again, the dotted curve is the hybrid 
solution. In each of these methods the dipole was modeled with four 
segments resulting in three modes. The agreement is seen to be nearly 
exact.

No matter how satisfying analytical comparisons are, experimental 
verification remains an undisputed and effective method of testing a 
solution. I t  is , as for the case of the square loop of a la ter section, 
often the only independent method available for checking. Partly as 
further verification  of the results already shown in this section and 
partly as a test of the measurement setup, experimental measurements 
were made to determine the input impedance of the axial half wave dipole 
located near a circular cylinder. A great deal of e ffo rt  and planning 
was given to the design of an experimental setup with the hope that 
suffic ien tly  accurate measurements could be achieved in a short time.

Accurate measurement of the input impedance of a balanced 
feed antenna, such as a dipole, is very d i f f ic u l t  because the effect  
of the feeding cable and balancing device cannot be found exactly and 
thereby be eliminated. To avoid this problem a monopole over a ground 
plane was used and equated to the dipole case by doubling the measured 
monopole input impedance. The in f in ite ly  long cylinder was, of course, 
approximated by a long cylinder mounted over the ground plane. Since 
impedance as a function of dipole distance was desired either the 
monopole or the cylinder had to move. The cylinder-ground plane 
junction was c r i t ic a l ly  important and the monopole was much smaller, 
so the cylinder was fixed and the monopole was moved. Knowing that the 
same setup was also to be used for the square loop, the monopole 
locations v/ere carefully chosen. Eight locations were determined to 
be the maximum number allowable so that the adjacent mounting holes 
would not interfere with a measurement. The holes were located on a 
spiral which tappered in towards the cylinder in such a way as to 
result in equal clearance angles between the square loop locations.

The size of the various components of the setup as well as the 
selected frequency of operation were dictated by the available material, 
practical mechanical and electrical sizes, and the available test 
equipment. The four foot by four foot ground plane sets a lower l im it  
on the frequency since the plane had to be about two wavelengths or 
more to appear in f in ite .  A five inch diameter cylinder was the 
largest diameter available and since a su ffic ien tly  large kA was 
desired, the five  inches was picked to be one-half wavelength.

A high frequency l im it  of the experimental setup was the diameter 
of the monopole. The N-type connector used to attach the monopole to 
the ground plane had a center wire diameter of one-eigth inch. To 
avoid a discontinuity right at the feed point the monopole diameter 
was chosen also to be one-eighth inch. Thin-wire theory as used in 
the hybrid technique restric ts  wire radii to be less than about .007X.
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The frequency of operation to make the five inch cylinder one-half wave
length is 1.1811 GHz. At this frequency the monopole diameter is 
.00635*. Thus the dimensions and frequency are fixed. In order to 
be equivalent to the half-wavelength dipole, the monopole was cut to 
one-quarter wavelength or 2.5 inches. All of the above components were 
carefully machined to the specified sizes and assembled to make good, 
smooth electrical contact which was necessary because of the high 
operating frequency. The cylinder and ground plane were aluminum and 
the monopole was brass. The conductivity of these materials was 
high enough to be assumed perfect.

Measurement of input impedance was accomplished indirectly  by 
equipment used to accurately measure the reflection coefficient at the 
monopole port. Figure 30 shows a schematic of the equipment used in 
the measurement setup. Figure 31 shows a picture of the actual 
equipment as set up during a measurement. Note that the equipment is 
located under the ground plane so that i t  cannot interfere e le c tr ica lly  
with the measurement. Figure 32 shows the various radiators, which 
were used located about the cylinder.

Again input impedance v/as found by measuring the complex 
reflection coefficient referenced to a short on the surface of the 
ground plane. The signal source v/as a sv/eep frequency generator with 
c ircu itry  to lock the signal level over a frequency band. The generator 
fed an s-parameter device which contained a line strecher to match 
the test line with a reference line over a frequency band. The 
s-parameter device had an attached coupler which compared the test and 
reference signals and sent a complex voltage proportional to their  
difference to a signal analyzer with display units. The display unit 
then allowed the signal to be pictured on a CRT magnitude and phase 
plot or to be read accurately in dB on a magnitude and phase meter.

The measurement procedure went as follows: the antenna and
cylinder were secured in the position for the measurement. A sweep 
frequency signal from 1.0 to 1.4 GHz v/as fed to the antenna through 
the s-parameter device. Using the CRT display, the line stretcher 
was adjusted so that a short at the antenna port appeared as a single 
point at 1.0/180°. The short v/as then removed and the reflection  
coefficient v/as observed on the CRT over the frequency band to insure 
that no problems ( i . e . ,  glitches or discontinuities) existed in a 
frequency range about the frequency of interest, 1.1811 GHz. The 
generator v/as then adjusted with a frequency counter for the CW signal. 
The display meter replaced the CRT and the reference levels were 
adjusted while measuring the short. With the short removed the 
reflection coefficient was measured accurately on the most sensitive 
scale settings. Environmental effects such as unwanted reflections 
were checked using a reflecting disk. The measurements made using 
this procedure and equipment proved to be very stable and repeatable.
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Figure 31. Experimental setup showing ground plane mounted over test equipment.



Figure 32. Various antenna measured mounted over ground plane around the cylinder.



the
To convert the reflection coefficient R to the input impedance, 

following formula was used:

Zin ‘  Zo <74>

where Z0  is the characteristic impedance of the connectors and cables 
attaching the signal source to the monopole (Zo=50P).

To compare with experimental measurements several adjustments 
to the dipole data inputted to the hybrid technique are necessary.
There are no modes in the physical setup but the number of modes used 
in the hybrid technique has a significant effect on the input 
impedance. To determine the number of modes necessary to get a 
converged number, the input impedance of the dipole was calculated with 
D fixed at approximately 0.625A and the number of modes was varied from 
one to twenty five. The resulting plots for real and imaginary part of 
Zin are shown in Figures 33a and b. Note that the vertical scales have 
been greatly magnified to exaggerate the effect. Choosing 9 modes to 
model the dipole w ill result in the real part being only 0.7% below 
the 25 mode value while the imaginary part w ill be within 3.0%. The
choice of 9 modes is thus ju s t if ie d .

Another adjustment which must be made is the diameter of the 
dipole to 0.0125X. This results in a length to radius ratio of 40 for 
the dipole. This is small enough to be considered moderately thick.
Two effects may be significant for a thick dipole. E-fie ld  fringing
is one which thin-wire theory correctly handles i f  suffic ient modes are 
used. End capacitance is the second effect due to charges on the ends. 
However, one of the thin-wire assumptions is that the current goes to 
zero at the ends of the dipoles. Forcing the current to zero at the 
end incorrectly eliminates the end charge effect. A reasonable approxi
mation to improve the model to more closely f i t  the physical conditions 
which lets the current be non-zero at the ends is made. The current is 
allowed to spill over the edge of the end and go to zero at the center. 
To approximate this with the thin-wire part of the hybrid program, the 
antenna length is extended by the amount of one radius at each end.

The experimental measurements are now compared with the hybrid 
technique solution. Figures 34a and b are the resulting plots. The 
agreement between the measurement and the theory are quite remarkable.

' Without discussing why at this point, measurements were made on 
a monopole with a radius four times smaller. This monopole would be 
considered thin but the above presented length adjustment was made 
regardless. Its effect was much smaller as expected. The plots 
comparing the hybrid technique with measurements for this thin dipole 
are shown in Figures 35a and b. Again, the agreement is very good with 
the absolute values almost matching as well as the variations matching 
quite well.
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In this section then, the hybrid technique has been shown to 
give excellent results for an ax ia lly  oriented antenna near a circular  
cylinder. The results were checked with three independent solutions.
The method was found to be quite accurate with cylinders of radii from 
extremely large values down to only 0 .125A.

B. Radial Dipoles

The second radiator orientation which w ill be considered is 
the one radial to the cylinder. The antenna w ill be a radial dipole 
whose center feed point is located a distance D from the in f in i te ly  
long perfectly conducting circular cylinder. The geometry of the 
problem is i l lus tra ted  in Figure 36. The objective is ,  again, to 
find the input impedance of the halfwave dipole using the hybrid 
technique as D is varied from nearly one-quarter wavelength to three- 
quarters wavelength. In this case only one independent method for  
checking the hybrid solution is available. This is the ground plane 
image theory solution as described in Chapter I I  and also in the 
previous section. I t  provides a check when the cylinder radius A is 
large.

This geometry is a very special case, one for which the usual 
GTD or GO does not work. A study of the geometry as shown in 
Figure 36 shows why. Consider any point on the dipole as a 
source point and any other point, also on the dipole, as an observation 
point. The reflection point on the cylinder is obvious and is the 
same independent of where the source and observation points are on the 
dipole. The reflection point is where a straight line extending the ' 
dipole to the cylinder surface would touch. The incident and reflected  
ray paths both l ie  on this line and point in opposite directions. As 
discussed in some detail in Chapter I I ,  GTD or GO does not consider 
f ie ld  components along the ray path but only ones transverse to i t .  In 
fact, fields along the ray path are ignored at the reflection point by 
dotting the incident f ie ld  at the reflection point with vectors 
perpendicular to the incident ray path. In finding the segment-to- 
segment delta impedance matrix terms, only the reflected f ie ld  com
ponent along the observation segment is used. For this geometry the 
observation segment is coincident with the reflected ray path. GTD 
or GO gives only the components of the reflected f ie ld  transverse to 
the observation segment thus giving a ll zero delta impedance matrix 
terms. The overall effect is that the hybrid technique using the GO 
as described thus far  will predict no change in input impedance due 
to the presence of the circular cylinder. This is ,  of course, wrong.

To demonstrate the problem discussed above, the input impedance 
of the radial dipole v/as calculated and plotted as D varied. The 
results are shown in Figures 37a and b where the solid line is the image 
theory solution and the dotted line is the hybrid technique solution.
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As predicted, the hybrid solution incorrectly gives no effect from 
the cylinder and the components of the input impedance remain constant 
at the ir  free space values as the dipole moves.

This geometry with a radial radiator is a special case that can
be handled by a modification or extention of GO. The method of ex- 
tention w il l  be discussed shortly. The solution to the problem then 
is to recognize this special case and solve i t  separately. The as
sumption in this proposed solution is that the normal hybrid technique 
GO contribution gives an accurate solution right up to a delta variation  
of an exactly rad ia lly  oriented radiator. To check this assumption the 
case il lus tra ted  in Figure 38 was solved. The radial dipole is t i l te d  
5.0° away from the exactly radial orientation. D was again varied and 
the real and imaginary components of the input impedance were found 
using the hybrid technique and ground plane image theory. Figures 39a 
and b confirm the expected results that the hybrid technique holds up 
to a small delta variation from the exactly radial orientation.

So that this special case can be handled, the extension of GO 
w ill now be described. Suppose in some manner i t  has been determined 
that an exactly rad ia lly  oriented segment is found. For this segment 
a ray path component of the E-fie ld  is allowed. How this f ie ld  
component reflects at the surface of the cylinder must be specified. 
Image theory shows how the component reflects from a planar surface. 
Except for a spread factor due to the curvature of the surface, and
a slight change in the phase path length, image theory is correct. A
reasonable assumption then, is that the component along the ray path 
reflects as image theory at the surface and then scatters as from a 
plane surface. Since the ray path vector lies in the plane of in 
cidence or reflection i t  reflects like  the parallel component which 
also lies in that plane. That is the reflection coeffic ient is +1.0. 
Since the interaction between a rad ia lly  directed segment and the 
cylinder is small the image theory extension of GO should be quite 
good for large diameter cylinders, and become less accurate for small 
diameter cylinders.

To confirm the accuracy of this extended GO method the f i r s t  
problem considered in this section was again solved. Since a ll of 
the segments have exactly a radial orientation so that the segments 
are col inear with the ray path, the special geometry is recognized.
Ray path components of the E-fields are then included in the hybrid 
program like  parallel components as described above. The new 
solutions are shov/n in Figures 40a and b. The good agreement demon
strates the va lid ity  of the method of extending GO at least for large 
A.

A second method for extending GO or handling this special 
case where GO does not give answers is also possible. Again, as
suming the special case has been recognized, the problem segment 
could be perturbed in orientation to be s lightly  o f f  the ray path
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direction. The geometry can now be handled by the normal hybrid 
technique GO. The result w il l  be s lightly  in error due to the 
intentional perturbation of the segment orientation introduced.
This method has the advantage that the curvature of the cylinder 
is treated.

To incorporate this special handling technique in the general 
hybrid program, the geometries for which i t  is necessary must be 
identified. The two cases for which i t  must be used are when the 
observation segment is colinear with a reflected ray path or when the 
source segment is colinear with an incident ray path. The endpoints of 
the segments and the reflection points are known. In three dimensional 
geometry the line passing through the two endpoints can be written in 
parametric form. The reflection point can then be checked with a 
simple logic test to determine i f  i t  is colinear. I f  not, the normal 
GO is used but i f  i t  is colinear the special extended GO is applied.

Even though radia lly  oriented antennas present special problems, 
the results in this section demonstrate that the hybrid technique can 
approximately solve them. This is accomplished by a modification or 
extension of GO.

G. Square Loop Antennas

The last of the three orthogonal orientations which must be 
tested and verified is the circumferential or phi oriented radiator.
The choice of antenna with a strong phi component was given a great 
deal of thought. I t  was desired to test the hybrid solution for a 
small cylinder radius as well as a large one.

Ground plane image theory provides the method of comparison for 
large rad ii. No antenna with an analytical solution was found when 
the radius was small. One which allowed experimental verification was 
then desirable. The square loop oriented as shown in Figure 41 near 
the circular cylinder f i ts  the b i l l .  The x-y plane cutting the 
geometry gives the necessary image symmetry to eliminate the balanced 
feed problem. A square half-loop and cylinder can be mounted on a 
ground plane. The square loop has one half of its  extent almost phi 
oriented giving the required strong circumferential components. The 
square loop antenna was examined quite extensively by Richards [14]. 
Some of his results were used as a check on the programs of this 
section before the cylinder effects were included.

A look at the admittance of the square loop as a function of
frequency in wavelengths is useful. Figures 42a and b show the con
ductance and susceptance of the square loop for a varying frequency.
The wire diameter of the loop is one-eighth inch in anticipation of 
the experimental loop. The loop perimeter was 10 inches making i t  one 
wavelength at 1.1811 GHz. The vertical scales are in mi 11-mhos.
These curves agree quite well with results by Richards. Maximum
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admittance w il l  give minimum impedance which is desirable so that 
the antenna w ill radiate. The frequency of 1.1811 GHz is chosen
where the perimeter is one wavelength. The loop's dimensions have
now been specified.

The hybrid technique w ill f i r s t  be applied to the geometry of 
Figure 41 when A is large, A=5.0A. The results are compared with 
the ground plane image theory solution in Figures 43a and b. The 
real and imaginary components have been plotted as a function of 
square loop distance D from the circular cylinder. Note that the 
imaginary impedance is negative for the loop. The agreement is almost
exact verifying the hybrid solution for large A.

Next, the results for A=0.25A w ill be presented by comparing 
the hybrid solution with experimental measurement. The techniques and 
procedures described in section A for the experimental setup were used. 
The impedance of the square loop was found by measuring the reflection  
coefficient of a square half-loop mounted over the ground plane.
Figure 32 shows a picture of the loop. The wire diameter was 
one-eighth inch so the feed point v/as continuous. The other end of 
the loop was screwed to the ground plane to make a good connection.
For the analytical solution, the mode s ta b il i ty  was again studied with 
the results in Table 1. Although i t  appears that 16 modes are not 
enough for the real part to be accurate, this number was used in the 
interest of computer running time economy.

Table 1

Number of Modes Loop Impedance
Modeling the Loop Re(Z^n) Im(Z^n)

16 88.93 -130.35
32 82.62 -128.66
48___________________ 77.41 -128.09

The results comparing the hybrid technique with the experimental 
measurements are shown in Figures 44a and b. The curves track the 
measurements quite well but the levels are shifted making the number 
values disagree. This level sh ift  was disturbing when the remarkable 
results of Section A were recalled. No equivalent reasoning such as 
adjusting the dipole length for end effects could be found for the 
loop.

I t  was postulated that the thickness of the wire might be causing 
the corners of the loop to be inadequately modeled. To check this, 
a loop with wire thickness four times smaller was investigated. All 
dimensions were the same except the thin loops wire diameter was 
1/32". The admittance curves for the thin loop case are shown in 
Figures 45a and b. Note that 1.1811 GHz is s t i l l  a good frequency
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choice and resonance is much sharper than for the thick loop. Figure 
46 shows a picture of the thin loop. The end opposite the feed point 
is soldered to a brass screw set in the ground plane. Mode s ta b il i ty  
was again studied with the results in Table 2. The sixteen modes for 
the thin loop is more accurate than for the thick loop.

Table 2

Number of Modes Input Impedance
Modeling the Loop Re(Z. v in ' ImCz in )

16 101.255 -139.802
32 99.379 -139.315
48 98.454 -139.199

The results for the thin loop case, comparing the hybrid 
technique with experimental measurements are shown in Figures 47a and 
b. The postulated improvement did not materialize. The curves, again, 
track the points well but a level sh ift is s t i l l  apparent.

During the measurement process i t  was observed that a slight  
change in frequency resulted in a s ignificant change in the input 
impedance. This follows logically  from the admittance curves where 
i t  can be seen that the operating frequency is at a rapidly varying 
point. The in a b il i ty  to get exact level agreement is at least partly  
explained by the sensitiv ity  at the frequency of operation. An 
attempt was made to avoid this problem by carrying out the measurements 
at a frequency low enough to be away from the sensitiv ities  of 
resonance. A frequency of 885.8 MHz was chosen which can be seen from 
Figures45a and b to be well o ff resonance. The results are shown in 
Figures 48a and b. Agreement is quite e rra tic . The problem is that 
Zjn for this o ff resonance case is very large compared with the Zo=50« 
of the connecting cable. The mismatch causes much of the energy to 
re f lec t back down the line and very l i t t l e  radiates. Small radiation 
means weak interaction with the cylinder. The measurement environment 
is too noisy and the equipment is too inaccurate to measure this weak 
interaction properly.

In an attempt to further investigate the problems around 
resonance by measuring free space loop's input impedance over a f re 
quency band the real problem was discovered. The section of line  
connecting the antenna to the s-parameter device is assumed to be ideal. 
Only its  length is compensated for by setting the reference to a 
short at the antenna port. I t  v/as found, hov/ever, that this section 
of line which was constructed of a group of connectors was not ideal. 
Different connectors of the same type gave d ifferent amounts of phase 
s h if t .  The amount of change in phase v/as also dependent on how much 
the antenna was radiating. Correspondingly, i t  was frequency de
pendent. Physically, the difference probably resulted from the dis
continuities where the connectors touched being uniq'ue to each connector. 
The solution of the problem would involve using a more ideal connector
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Figure .46. Thin square half-loop on ground plane near cylinder.
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in this c r it ic a l part of the setup. Remeasurement was not necessary 
here because the results already show that the hybrid technique works 
very well and has been experimentally verified.

Thus, phi oriented radiators have been checked for both large and 
small cylinder rad ii. The hybrid technique has now been demonstrated 
to be accurate for all three orthogonal orientations. Its use on 
arb itrary radiators near the circular cylinder can now proceed with 
confidence.

D. Finite Length Circular Cylinders

In this section f in i te  length cylinders w ill be handled using 
the hybrid technique. To account for the f in i te  cylinder length, the 
GTD for curved edges is used as described in Chapter I I  to find 
delta impedance matrices as described in Chapter I I I  which properly 
modify the free space matrix to include the cylinder end effects. The 
formulation of the part of the hybrid technique which finds the cylinder 
end effects is modeled after the part which finds the reflection effect. 
The formulation was described in detail in Chapter I I I .

To test the. f in i te  cylinder capability of the hybrid technique, 
i t  was applied to find the input impedance of an ax ia lly  oriented- 
dipole. One reason for picking this radiator orientation was that 
the diffraction points on the cylinder's edges were known directly .
The problem's geometry is il lus tra ted  in Figure 49. The diffraction  
points are on the cylinder's end edges in the x-z plane with x positive. 
The cylinder half height is CH, its  radius is A, and the half-wave 
dipole is a distance D from the cylinder. For the cases in this 
section, A w ill be fixed at one-quarter wavelength.

The only analytical method available for solving a f in i te  
cylinder, other than the hybrid technique, is the moment method.
Computer lim its on storage and running time prohibit i ts  use on a 
cylinder as e le c tr ica lly  large as the case to be solved. So no inde
pendent method is available to check the hybrid solution for this  
geometry. Experimental measurement v/ill prove impossible because 
the effects of the f in i te  ends will be too small to measure accurately. 
The method chosen to verify the results was to compare the hybrid 
method solution of the f in i te  length cylinder case with the hybrid 
solution of the in f in ite  length cylinder. In tu it ive  observations w ill  
then be made.

The f i r s t  results to be presented are for a cylinder height 
CH=0.375A where D is varied from near zero to one wavelength. The 
input impedance plots are given in Figures 50a and b. The solid curves 
are for an in f in ite  length cylinder. Chopping the cylinder off  
creates a small perturbation in the input impedance of the dipole.
This result seems reasonable.
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Another approach was tried to help verify the results. The 
dipole distance from the cylinder was held fixed and the cylinder 
height CH was varied from just above the dipole to one wavelength 
higher. Figures 51a and b show the results for D=0.3A. The solid 
line is the f in i te  cylinder case here. Figures 52a and b show the 
case D=0.6A results. These two sets of figures are particularly  
convincing in that the effects of the cylinder ends fade to zero as 
the cylinder gets longer as i t  must.

Finally, from those curves another cylinder height CH=.45A was 
picked and the input impedance was again found as D was varied. The 
results are plotted in Figures 53a and b. Although the hybrid f in i te  
cylinder solution has not been verified by an independent method, 
the reasonable results of this section lend confidence to the solution.
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CHAPTER V 
DISCUSSION

A hybrid technique has been presented which solves electromag
netic problems in which an antenna or scatterer is located on or near 
a conducting body. The general technique has been applied to find 
the input impedance of various radiators located near a perfectly  
conducting circular cylinder. The application of the hybrid technique 
to these specific problems in no way implies restrictions on its  use.
The method can be equally v/ell used to find near and far f ie ld s ,  
current distributions, and scattering data for problems involving 
conducting bodies of rather arbitrary shape.

The hybrid technique in this paper used the format of a powerful 
thin-wire computer program to model the antenna structure. The free 
space impedance matrix was found using the normal moment method 
technique. Then the effects of the conducting body were incorporated 
into delta impedance matricies. A delta impedance matrix was found 
for each type of contributing scatter from the conducting body, such 
as reflection, edge d iffraction , etc. The delta impedance matricies 
were added to the free space matrix to account for the conducting 
body. The modified impedance matrix was then used in the normal moment 
method way to find the current distribution and input impedance of the 
antenna.

The delta impedance matrix terms were found by reacting an 
expansion current with the E-fie ld  scattered from the conducting body 
due to a test current source. Piecewise sinusoidal expansion and testing 
functions were used. The GTD E-fie ld  at an observation or integration 
point on the receiving mode was composed of the superposition of end 
and feed point contributions from the source mode. Separating the 
contributions in this way accounted for the distributed nature of the 
source and resulted in spherical v/aves emanating from the points which 
were completely compatible with the ray optical nature of GTD. This 
way of combining thin-wire theory with GTD gave results that were far  
more accurate than other formats. Analytical ju s t if ic a t io n  as well 
as verification by example were presented in Chapter I I I .

The accuracy and fa c i l i t y  of the hybrid technique were shown in 
Chapter IV by solving for the input impedance of various radiators as 
a function of the ir  distance from a circular cylinder. Three 
orthogonal orientations were identified and antennas to match them were 
used. With the hybrid technique verified for these orthogonal orien
tations, clearly a more general radiator with an arb itrary combination 
of orientations could be solved with confidence.
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An ax ia lly  oriented half-wave dipole near the c ircular cylinder 
was solved by the hybrid technique. When the cylinder radius was 
large the hybrid technique was compared with an image theory solution.
For small cylinder radii the hybrid solution was compared to an exact 
MM-eigenfunction solution. In both cases the agreement was excellent.
For this orientation the solution was also compared with careful ex
perimental measurements. The measurements were accomplished by 
doubling the input impedance of a quarter-wave monopole mounted with 
the cylinder over a ground and measuring the reflection coeffic ient. 
Results for both a thick and a thin dipole agreed very well with the 
measurements.

A rad ia lly  oriented dipole presented a special problem in that 
ordinary GO predicted no effect on input impedance when the dipole was 
close to the cylinder. This incorrect solution was due to the non-zero 
ray path E-fie ld  which GO ignores. GO was extended to include a ray 
path f ie ld  for this special orientation. The component reflects like
image theory at the surface and then scatters as from a plane surface.
T ilt in g  the problem segment slightly  from its  exactly radial orientation
offered another solution. Comparing the hybrid solution extended in 
these ways with image theory verified the techniques.

The circumferential orientation was verified with a square loop 
lying tangential to the circular cylinder. For large cylinder radii 
the hybrid solution agreed almost exactly with image theory. For 
smaller cylinder radii the solution was compared with experimental 
measurements made on a half-loop mounted with the cylinder over the 
ground plane. Both the thick and thin loop solutions tracked the 
impedance variations measured. The absolute levels were shifted 
s lightly  for two reasons. The frequency of operation was near resonance 
where rapidly varying impedance makes level matching d i f f ic u l t .  Also, 
a section of line which was assumed to be ideal had a frequency dependent 
phase sh ift.

Thus, three orthogonal orientations were verified and the hybrid 
technique was clearly shown to be very accurate. A f in i te  length 
cylinder was also investigated with the hybrid technique when an axial 
dipole was nearby. The results were compared with the in f in i te ly  long 
cylinder case. As expected, the f in i te  length effects died out as 
the cylinder became longer.

Several minor limitations and restrictions on the hybrid technique 
can be pointed out. The antenna structure near the conducting body 
is limited in electrical size since the antenna must be modeled by 
wire segments no more than one-quarter wavelength in extent. The 
number of segments determines the number of modes and correspondingly 
the size of the impedance matrix the computer must work with. The 
conducting body must be a canonical shape or combination thereof for  
which GTD solutions exist for the canonical parts. Besides the f ie ld  
expressions, a method of finding the specular points on the surface 
must also be available.
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In spite of the restrictions discussed, a very powerful hybrid 
technique has been presented for combining the moment method treatment 
of wire antennas with the GTD for curved surfaces. The method has 
been demonstrated to be accurate and versatile.
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