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Abstract. We present an intelligent agent designed to compile a daily news program for
individual users. Based on feedback from the user, the system automatically adapts to the
user’s preferences and interests. In this paper we focus on the system's user modeling
component. First, we motivate the use of a multi-strategy machine learning approach that
allows for the induction of user models that consist of separate models for long-term and
short-term interests. Second, we investigate the utility of explicitly modeling information
that the system has already presented to the user. This allows us to address an important
issue that has thus far received virtually no attention in the Information Retrieval com-
munity: the fact that a user's information need changes as a direct result of interaction
with information. We evaluate the proposed algorithms on user data collected with a
prototype of our system, and assess the individual performance contributions of both
model components.

1 Introduction

Research on intelligent information agents has recently attracted much attention. As the amount of
information available on-line grows with astonishing speed, people feel overwhelmed navigating
through today’s information and media landscape. Information overload is no longer just a popular
buzzword, but a daily reality for most of us. This leads to a clear demand for automated methods,
commonly referred to as intelligent information agents, that locate and retrieve information with
respect to users’ individual preferences (Lang, 1995; Pazzani and Billsus, 1997; Balabanovic,
1998).

As intelligent information agents aim to automatically adapt to individual users, the develop-
ment of appropriate user modeling techniques is of central importance. Algorithms for intelligent
information agents typically draw on work from the Information Retrieval (IR) and machine
learning communities. Both communities have previously explored the potential of established
algorithms for user modeling purposes (Belkin et al. 1997; Webb 1998). However, work in this
field is still in its infancy and we see "User Modeling for Intelligent Information Access" as an
important area for future research.

We describe an intelligent information agent designed to compile a daily news program for in-
dividual users. Building such an agent is a challenging task, because traditional Information
Retrieval approaches are not directly applicable to this problem setting. Most IR systems assume

——————————
*  We thank Daimler-Benz and Sun Microsystems, Inc. for their generous support.



the user has a specific, well-defined information need. In our setting, however, this is not the case.
If at all, the user’s query could be phrased as: “What is new in the world that I do not yet know
about, but should know?”. Computing satisfactory results for such a query is non-trivial. The diffi-
culty stems from the range of topics that could interest the user, and the user’s changing interest in
these topics. We must also take into account that it is the novelty of a story that makes it interest-
ing. Even though a certain topic might match a user’s interests perfectly, the user will not be
interested in the story if it has been heard before. Therefore, we need to build a system that ac-
quires a model of a user’s multiple interests, is flexible enough to account for rapid interest
changes, and keeps track of information the user knows.

We focus on two issues related to the automated induction of user profiles for news story clas-
sification. First, we motivate the induction of a hybrid user model that consists of separate models
for a user's long-term and short-term interests. Second, we show how the user model keeps track of
information that has already been presented to the user. This allows us to address an important
issue that has thus far received virtually no attention in the Information Retrieval community: the
fact that a user's information need changes as a direct result of interaction with information (Bel-
kin, 1997). We evaluate the proposed algorithms on user data collected with a prototype of our
system, and assess the individual performance contributions of our proposed approaches sepa-
rately.

2 A Personal News Agent that Talks and Learns

In this section we present the design and architecture of an agent that is intended to become part of
an intelligent, IP-enabled radio, which uses synthesized speech to read news stories to a user.
While the system's speech capabilities are not the focus of this paper, we briefly discuss the sys-
tem's overall functionality and intended purpose in order to motivate various design decisions. Part
of our research is based on the observation that most of the work on personalized information
access has focused on agents accessible through the World Wide Web. Research in this field has
not yet led to the development of interfaces for software agents that do not require access to a
computer workstation. However, there is a clear demand for such information systems, as de-
manding schedules prohibit people from continuous computer access.

The following example motivates the need for personalized information delivery outside of the
World Wide Web. Users A and B spend a large portion of their day driving. They can listen to the
radio in their cars, but do not have access to any medium that focuses on information specific to
their interests. User A is primarily interested in business news in order to follow the current stock
market, but he must listen to much unrelated information. To locate information, he must switch
news channels and pay attention to the time at which broadcasts start. Similarly, user B must
switch news channels to locate information on his interest in local sports.

We have implemented a Java Applet that uses Microsoft’s Agent library to display an
animated character, named News Dude, that reads news stories to the user. The Applet
requires Microsoft’s Internet Explorer 4.0 or newer and is publicly accessible at
http://www.ics.uci.edu/~dbillsus/NewsDude (see Figure 1). Although our ultimate goal is to work
towards a speech-driven agent that does not require graphical user interfaces, we use the web as a
medium that allows us to make the system available to a large user base for data collection and
testing purposes. Furthermore, we believe that there is a variety of useful applications for speech-



driven agent technology for the web. For example, a talking news agent that reacts to voice com-
mands could prove useful for the visually impaired.

Currently, the agent provides access to stories from six different news channels: Top Stories,
Politics, World, Business, Technology and Sports. When the user selects a news channel, the
Applet connects to a news site on the Internet (Yahoo!News) and starts to download stories. Since
the Applet is multi-threaded, download of stories continues in the background while the synthe-
sizer is reading, which typically allows filling a queue of stories to be read without any waiting
time. The user can interrupt the synthesizer at any point and provide feedback for the story being
read. One of the design goals for our system was to provide a variety of feedback options that go
beyond the commonly used interesting/uninteresting rating options. If we consider an intelligent
information agent to be a personal assistant that gradually learns about our interests and retrieves
interesting information, it would only be natural to have more informative ways to communicate
our preferences. For example, we might want to tell the agent that we already know about a certain
topic, or request information related to a certain story. In summary, the system supports the fol-
lowing feedback options: interesting, not interesting, I already know this, and tell me more about
this. After an initial training phase, the user can ask the agent to compile a personal news program.
The goal of this process is to compute a sequence of news stories ordered with respect to the
user’s interests.

Figure 1. News Dude user interface.



3 Learning a User Model

The specific design of our agent’s user model is motivated by a number of observations and re-
quirements. First, the model must be capable of representing a user’s multiple interests in different
topics. Second, the model must be flexible enough to adapt to a user’s changing interests reasona-
bly quickly, even after a long preceding training period. Third, the model should take into account
that a user’s information needs change as a direct result of interaction with information (Belkin,
1997). Surprisingly, this aspect has received virtually no attention in the IR community. For our
application, we take into account the stories the user has recently heard, to avoid presenting the
same information twice.

The above requirements led to the development of a multi-strategy learning approach that
learns two separate user-models: one represents the user’s short-term interests, the other represents
the user’s long-term interests. Distinguishing between short-term and long-term models has several
desirable qualities in domains with temporal characteristics (Chiu and Webb, 1998). Learning a
short-term model from only the most recent observations may lead to user models that can adjust
more rapidly to the user’s changing interests. Here, we restrict the short-term model to the n most
recently rated stories (we set n to 100 in the experiments reported in Section 4). The need for two
separate models can be further substantiated by the specific task at hand, i.e. classifying news
stories. Users typically want to track different “threads” of ongoing recent events - a task that
requires short-term information about recent events. For example, if a user has indicated interest in
a story about a current Space Shuttle mission, the system should be able to identify follow-up
stories and present them to the user during the following days. In addition, users have general
news preferences, and modeling these general preferences may prove useful for deciding if a new
story, which is not related to a recent rated event, would interest the user. With respect to the
Space Shuttle example, we can identify some of the characteristic terminology used in the story
and interpret it as evidence for the user's general interest in technology and science related stories.
In the following sections we describe these two parts of the user model individually, motivate why
they conform to the above requirements, and describe how they can work together to form a com-
prehensive user model appropriate for our purposes.

For the following description of the user model and its automated induction, we assume that a
user provides the system with a set of rated news stories, using the feedback options described in
Section 2. Each user rating is then internally converted to a score ranging from 0 to 1, according to
the following rules. Let pl be the proportion of a story that the user has heard.

If story was rated as uninteresting, score = 0.3 *  pl
If story was rated as interesting, score = 0.7 + 0.3 *  pl
If user asked for more information, score = 1.0

This conversion scheme allows for differentiation between different levels of ratings without
requiring any extra work by the user. Note that the constants 0.3 and 0.7 were chosen arbitrarily
with the only constraint being that the resulting scores for stories rated as uninteresting always
receive lower scores than stories rated as interesting. In future work we will determine improved
values for these constants experimentally, using a tuning set of user data.



3.1 Modeling Short-Term Interests with the Nearest Neighbor Algorithm

The purpose of the short-term model is two-fold. First, it should contain information about re-
cently rated events, so that stories which belong to the same threads of events can be identified.
Second, it should allow for identification of stories that the user already knows. A natural choice to
achieve the desired functionality is the nearest neighbor algorithm (NN). The NN algorithm sim-
ply stores all its training examples, in our case rated news stories, in memory. In order to classify a
new, unlabeled instance, the algorithm compares it to all stored instances given some defined
similarity measure, and determines the "nearest neighbor" or the k nearest neighbors. The class
label assigned to the new instance can then be derived from the class labels of the nearest neigh-
bors. The utility of the NN algorithm has previously been explored in other text classification
applications (Cohen and Hirsh, 1998; Yang, 1998; Allan et al. 1998).

To apply the algorithm to natural language text, we must define a similarity measure that
quantifies the similarity between two text documents. This is a well-studied problem in Informa-
tion Retrieval, and we rely on a commonly used document representation and an associated
similarity measure. We convert news stories to TF-IDF vectors (term-frequency / inverse-
document-frequency), and use the cosine similarity measure to quantify the similarity of two vec-
tors (Salton, 1989).

Each rated story is converted to its TF-IDF representation and then stored in the user model. A
score prediction for a new story is then computed as follows. All stories that are closer than a
threshold t_min to the story to be classified become voting stories. The predicted score is then
computed as the weighted average over all the voting stories’ scores, where the weight is the
similarity between a voting story and the new story. If one of the voters is closer than threshold
t_max to the new story, the story is labeled as known, and its computed score is multiplied by a
factor k << 1.0, because the system assumes that the user has already heard about the event re-
ported in the story. If a story does not have any voters, the story cannot be classified by the short-
term model at all, and is passed on to the long-term model (see Section 3.2).

The nearest neighbor-based short-term model satisfies our requirements that a user model be
able to represent a user’s multiple interests, and it can quickly adapt to a user’s novel interests. The
main advantage of the nearest-neighbor approach is that only a single story of a new topic is
needed to allow the algorithm to identify future follow-up stories from the same story thread. The
“tracking” abilities of the nearest neighbor algorithm have also recently been explored by other
researchers in a similar project (Allan et al., 1998). In contrast, most other learning algorithms
would require a large number of training examples to identify a strong pattern.

3.2 Modeling Long-Term Interests with a Naïve Bayesian Classifier

The purpose of the long-term user model is to model a user’s general preferences for news stories
and compute predictions for stories that could not be classified by the short-term model. To
achieve this we selected a probabilistic learning algorithm, the naïve Bayesian classifier (Duda and
Hart, 73). Naïve Bayes has been shown to perform competitively with more complex algorithms
and has become an increasingly popular algorithm in text classification applications (McCallum
and Nigam, 1998; Pazzani and Billsus, 1997).

We represent news stories as Boolean feature vectors, where each feature indicates the pres-
ence or absence of a word. Not all the words that appear in news stories are used as features. Since



it is our explicit goal to model a user’s general preferences, we provide the algorithm with back-
ground knowledge by hand-selecting a set of domain specific features, i. e. words that are likely to
be indicators for commonly recurring themes in daily news stories. Approximately 200 words
were selected, ranging from countries to crime, disaster, politics, technology, business and sport
related terms. Making the “naïve” assumption that features, here words, are independent given the
class label (interesting vs. not interesting), the probability of a story belonging to class j given its
feature values,  p(classj| f1, f2, … fn) is proportional to:

∏
n

i
jij classfpclassp )|()(

where p(classj) and p(fi | classj) can be easily estimated from training data. Specifically, we use the
multi-variate Bernoulli event model formulation of naïve Bayes (McCallum and Nigam, 1998),
and compute Bayes-optimal estimates of p(classj) and p(fi | classj) by straightforward counting of
word and class occurrences in the training data. We use Laplace smoothing to prevent zero prob-
abilities for infrequently occurring words. A news story to be classified can thus be labeled with its
probability of belonging to the interesting class.

Most applications of the multi-variate Bernoulli formulation of naïve Bayes consider both the
presence and absence of words in text documents as evidence in the probability computation. We
restrict the evidence used to the presence of words, similar to a naïve Bayes model proposed by
Maron (1961). This results in a more conservative classifier that requires examples classified as
class c to be similar to other examples in class c.

Finally, we would like to prevent the long-term model from classifying stories that do not
contain a sufficient number of features that are indicators for class membership. More formally,
we require the story to contain at least n features for which p(f | interesting) > p(f | ¬ interesting)
in order to allow a classification as interesting, and likewise, at least n features for which
p(f | interesting) < p(f | not interesting) in order to allow a classification as not interesting. In our
current implementation we set n to 3, which means a story must contain at least 3 terms that are all
indicators for the same class.

3.3 User-Modeling with a Multi-Strategy Learning Approach

Using a hybrid user model consisting of both a short-term and long-term model of the user's inter-
ests, a previously unseen news story, u, is classified as follows:

If ∃ d: d ∈ {short-term-stories} ∧ cosine-similarity(d, u) > t_min
{

score = nearest-neighbor-prediction(u, {short-term-stories})
If  ∃ n: n ∈ {short-term-stories} ∧ cosine-similarity(d, n) > t_max

  score = score * k, where k << 1.0
}
Else

If  ∃ {f1, f2,…, fn}: ∀ f ∈ {f1, f2,…, fn} p(f | c) > p (f | ¬ c)
  score = naïve-Bayes-prediction(u, {all stories})

Else
  score = default



In summary, the approach tries to use the short-term model first, because it is based on the
most recent observations only, allows the user to track news threads that have previously been
rated, and can label stories as already known. If a story cannot be classified with the short-term
model, the long-term model is used. If the long-term model decides that the story does not contain
sufficient evidence to be classified, a default score is assigned. In the current implementation we
set the default score to 0.3, so that stories that cannot be reliably classified do not appear too high
in the recommendation queue, but still receive a higher score than stories that are classified as not
interesting.

4 Evaluation

In order to evaluate the recommendation performance of our agent and to assess the performance
contribution of its hybrid user model, we used the web-based agent prototype to collect user data.
Ten users trained the system on a daily basis over a period ranging from 4 to 8 days, resulting in
about 3,000 total rated news stories, i.e. on average 300 stories per user. While this amount of data
might not lead to overall performance estimates that generalize to other users or different collec-
tion dates, it allows us to analyze the relative performance contributions of the short-term and
long-term user models, as well as the benefit of explicitly modeling known stories.

Evaluating the agent’s performance is difficult for several reasons. First, standard evaluation
methodologies commonly used in the machine learning literature, for example n-fold cross-
validation, are not applicable to this scenario. This is mainly due to the chronological order of the
training examples, which cannot be presented to the learning algorithm in random order, without
skewing results. Second, if we measure the agent’s performance on a daily basis, we not only
measure the effects of the agent’s updated user model, but also of the changing distribution of
news stories. Finally, we are trying to approximate a model of user interests that can be assumed to
be neither static nor consistent. A user going through the same list of stories at a later time might
assign different labels.

We chose to evaluate the agent’s performance as follows. We divided each user’s data into
separate training sessions, corresponding to the user’s use of the system, i.e. typically one training
session per day. We started to train the algorithm with all rated examples from the first training
session, and compared its predictions for class labels of stories from the second training session to
the user’s ratings. We then incremented the training set session by session and measured the
agent’s performance on the following session. Finally, we averaged the results over all users. This
methodology models the way the system is used realistically, because all training data available up
to a certain day was used to classify stories.

In addition to the system’s classification accuracy, i.e. the proportion of correctly classified
news stories, we used common Information Retrieval performance measures, precision, recall and
F1 to evaluate the system. In our domain, precision is the percentage of stories classified as inter-
esting that are interesting, and recall is the percentage of interesting stories that were classified as
interesting. It is important to evaluate precision and recall in conjunction, because it is easy to
optimize either one separately. For a classifier to be useful for our purposes we demand that it be
precise as well as have high recall. In order to quantify this with a single measure, Lewis and Gale
(1994) proposed the F-measure, a weighted combination of precision and recall that produces



scores ranging from 0 to 1. Here we assign equal importance to precision and recall, resulting in
the following definition for F1:

recallprecision

recallprecision
F

+
⋅⋅= 2

1

Figure 2 summarizes the system’s performance averaged over all users, showing a rapid in-
crease of classification performance during the first three training sessions. Results for more
training sessions are only available for a subset of the users and therefore cannot be presented in
one plot. However, results for users that collected data of up to 8 training sessions revealed that
performance increases rapidly during the first few training sessions and then starts to fluctuate as a
result of changing distributions of daily news stories. Figure 2 also shows the relative performance
of the two user model components. As expected, the hybrid approach combining a short-term and
long-term user model performs better than each individual approach with respect to both classifi-
cation accuracy and the F1 measure. Further inspection of the achieved performance revealed that
the short-term model tends to have high precision, but low recall. In contrast, the long-term model
has higher recall than the short-term model, but lower precision. Combining both models allows
taking advantage of both models’ strengths, resulting in substantially higher F1 values as well as
overall classification accuracy.
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Figure 2. Overall system performance.

In an additional experiment we quantified the utility of explicitly representing stories previ-
ously presented to the user. Figure 3 compares the performance of two approaches, here labeled as
knowledge-dependent and knowledge-independent classification. The knowledge-dependent ap-
proach is the full multi-strategy user modeling algorithm as described in Section 3.3. This
approach can classify stories as uninteresting if they are assumed to be known by the user. In con-
trast, the knowledge-independent approach does not take into account that the user might already



know about certain events. Algorithmically, this simply amounts to setting t_max to a value > 1
(see Section 3.1), so that predicted scores are never reduced due to the presence of similar stories
in the short-term model. Figure 3 shows that knowledge-dependent classification leads to an over-
all increase of classification accuracy. Knowledge-dependent classification reduces the relevance
scores for stories that are assumed to be known, and therefore leads to a substantial increase in
precision, but to a decrease in recall (since fewer stories are classified as interesting). Since the
overall increase in precision is larger than the decrease in recall, we observed both higher classifi-
cation accuracy as well as increased retrieval performance as measured by the F1 statistic.
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Figure 3. Effect of knowledge-dependent classification

5 Related Work

Chiu and Webb (1998) have previously studied the utility of the induction of a dual user model
in the context of student modeling. While the studied domain, data representation and learning
algorithms differ significantly from the text classification approach presented here, the underlying
motivation for the use of a dual model is similar. In general, user modeling is a task with inherent
temporal characteristics. We can assume recently collected user data to reflect the current knowl-
edge, preferences or abilities of a user more accurately than data from previous time periods.
However, restricting models to recent data can lead to overly specific models, i.e. models that
classify instances that are similar to recently collected data with high precision, but perform poorly
on instances that deviate from data used to induce the model. To overcome this problem, Chiu and
Webb use a dual model that classifies instances by first consulting a model trained on recent data,
and delegating classification to a model trained over a longer time period if the recent model is
unable to make an accurate prediction.



6 Summary and Conclusions

We have presented the functionality, design and underlying algorithms of a news agent that learns
about a user’s interests in daily news stories. The agent uses a multi-strategy machine learning
approach to induce user models that model a user’s short-term and long-term interests separately.
The two models were experimentally shown to complement each other. Furthermore, we have
investigated the utility of explicitly representing stories a user has heard before. This allows us to
take into account that a user’s information need changes as a direct result of interaction with in-
formation. Similar news stories can be prevented from being presented multiple times, which was
experimentally shown to lead to increased predictive performance.
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