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Abstract. In mechanical modelling of fracture propagation, complications arise from the stress concentrations at
the fracture tips and nonlinear responses caused by opening/closing of fractures, by nonlinear constitutive
relations of fracture surfaces sliding on each other, and by fracture propagation. The hybridized Displacement
Discontinuity and Indirect Boundary Element Method described in this paper avoids problems associated with
other numerical methods when analyzing fracture propagation. The method, which includes analytical influence
functions and thus makes numerical integration unnecessary, is described in the first part of this paper. In the
second part a number of examples are given in which a variety of fracture propagation problems in two dimensions
are modelled with the hybridized method. These examples include classical problems in which tension is applied
to cracked plates but also others where shearing is applied. Comparisons with solutions obtained by other authors
are shown to be satisfactory.

1. Introduction

In mechanical modelling of fracture propagation, complications arise from the stress con-
centrations at the fracture tips and nonlinear responses (even if the intact medium itself is
linear elastic) caused by the opening/closing of fractures, by nonlinear constitutive relations
of the fracture surfaces sliding on each other, and by fracture propagation. Commonly
available numerical methods to deal with such complications include the Finite Element
Method [1], the Displacement Discontinuity Method [2, 3], and the Direct and Indirect
Boundary Element Methods [2, 4], each of which has advantages and disadvantages.

In the finite element formulation, singular elements can be used to capture the stress
singularities at the fracture tips. When fracture propagation is modelled, the changing
fracture geometry requires the element mesh to be continuously modified [5]. Such remeshing
at every propagation step renders the finite element method inefficient.

In the direct boundary element formulation based on the point-force fundamental sol-
ution, considerable difficulties arise since the displacement discontinuities across the fracture
surfaces are not explicitly accounted for. One approach to tackle this problem is to partition
the medium (which must be finite) into sub-regions [6]. However, this approach becomes
inefficient when there are two or more cracks, or even for a single crack which propagates
out-of-plane in mixed mode loading.

In the indirect boundary element (or fictitious stress) formulation, difficulties similar to
that of the direct boundary element method arise because continuous displacements are
implicitly assumed.
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The displacement discontinuity method is particularly well suited to model fractures which
have relative displacements across their surface (hence a displacement discontinuity results).
In addition, it can also be used to model an ordinary boundary of a 2- or 3-dimensional
body. However, as will be shown later, strong stress singularities at the ends of the displace-
ment elements make it undesirable to model boundaries with finite and smoothly distributed
applied loads.

The formulation of the displacement discontinuity method is identical to that of the
fictitious stress method except that displacement discontinuities (or “fictitious cracks”) are
used instead of fictitious stresses. (Naturally, the fundamental solution will also be different.)
Hybridizing these two methods so that the advantages of both can be utilized seems to be
very promising. In addition, the boundary element methods have further advantages over
the finite element method when some special types of boundaries are present. For example,
for a semi-infinite medium discretization of the traction-free surface of the medium is not
necessary when the appropriate influence functions are incorporated. The same is true for
an infinite or semi-infinite medium with a circular cavity.

In this paper a hybridized scheme using the displacement discontinuity and the indirect
boundary element methods is presented. A two-dimensional, brittle, and linear elastic
medium with fractures is modelled. The influence functions of the elements have been
derived analytically, and numerical approximations are thus not required. Arbitrary geo-
metries and loading sequences are possible. Generally, linear elastic fracture mechanics
conditions are assumed. For closed fractures under shear, nonlinear stress-slip relations can
be incorporated and for closed fracture tips under shear, a special element type can be
optionally used. For geomechanical problems, geostatic stresses have been included for more
realistic modelling. The computer program FROCK (acronym for Fractured ROCK) which
incorporates all these features has been applied to various types of problems with or without
fracture propagation. Some basic applications are presented in this paper to show that the
chosen approach is satisfactory.

2. Basic formulation

A generalized problem of a two-dimensional, homogeneous and linear elastic medium with
fractures and cavities can be represented as shown in Fig. 1. Usually the medium is bounded
by a closed curve which is the external boundary. However, if the medium is large compared
to the region of interest it may be considered infinite. Fractures and cavities, if any, are also
regarded as part of the boundary.

As mentioned in the Introduction, the most expedient deformation analysis method for
modelling crack problems in elastic media appears to be the displacement discontinuity
method. Displacement discontinuity elements can be used to model fractures directly and
efficiently. They can also be used to model the external boundaries (including cavities) but
as will be shown in Section 4.1, there are considerable stress singularities near the displace-
ment discontinuities. Thus hybridizing with another method which can better model external
boundaries is desirable. The fictitious stress method, which is an indirect boundary element
method, was selected for this purpose. In fact the displacement discontinuity method may
also be viewed as an indirect boundary element method, except that the conventionally used
fundamental solution of a line-force is replaced by that of a dislocation.
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Fig. 1. A generalized plane problem.

In the hybridized indirect boundary element formulation, the stresses and strains in the
medium are considered to be induced by a set of fictitious quantities instead of the applied
loadings. The fictitious quantities act at the boundaries which are modelled by boundary
elements. The justification is that if the fictitious quantities are distributed so as to induce
the given conditions on the boundaries, then they can also induce the corresponding stresses
and strains in the medium. This assertion follows directly from the uniqueness of solution
for a linear problem with given boundary conditions [7]. Thus we have

o(x,y) = [, (Fi(x y;9p + Fx, y;9p) ds ..., (1)

where ¢ is a component of the induced stresses at a point (x, ¥); p, and p, are the fictitious
quantities in the shear (tangential to boundary) and normal (normal to boundary) senses
respectively. F, and F, are respectively the induced stresses at (x, y) due to a unit applied
shear and normal fictitious quantity at the position characterized by the coordinate s on the
boundary B. F, and F, are called the fundamental solutions.

p, and p, can be applied tractions or distributed semi-infinite dislocations. For example,
if p, represents an applied normal traction on the boundary (or a part of the boundary), F,
represents Kelvin’s solution [2] for a unit normal point force* at s. If p, represents an applied
shear traction, F, represents Kelvin’s solution for a unit shear point force at 5. If p, is a
distributed normal dislocation, then F, represents the induced stress due to a unit normal
semi-infinite dislocation. In this case ( p, ds) is equal to D, of Fig. 2 which shows a shear and

* In 2-D analysis, a point force corresponds to a line force in 3-D.
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At point (s,n), induced (plane strain) stresses and displacements
are given by (non-essential integration constants for the induced
displacements are neglected):
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Fig. 2. A semi-infinite dislocation and its influence functions.
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a normal semi-infinite dislocation and lists the fundamental solutions for the induced stresses
(Fig. 3 shows the sign conventions for stresses and displacements).
Similarly the induced displacements at (x, y) are given by

ux, ) = [ [G/(x y; 9p + Gaolx, yi)pa] ds .. 2)

where G, and G, are the fundamental solutions for the displacements.

In a problem where the external boundary is modelled by fictitious stress elements and the
fractures are modelled by displacement discontinuity elements, the indirect boundary
element method and the displacement discontinuity method are hybridized. Many cases
involving both displacement discontinuity and fictitious stress elements have been con-
sidered in [8].

Once p,(s) and p,(s) have been solved for by satisfying the appropriate boundary con-
ditions, the entire problem is solved because the induced stresses and displacements at any
point in the medium can then be calculated based on these fictitious quantities.

2.1. Boundary discretization

The (internal and external) boundaries are discretized into elements so that the given
boundary conditions can be modelled. An element consists of two parallel surfaces separated
by an arbitrarily small distance (Fig. 4). The beginning of the element is at the origin of the
local s—n coordinate system. In our approach, straight elements are used, and curved
boundaries can be approximated by a series of straight elements. For example, the problem
in Fig. 1 can be discretized into a boundary element mesh shown in Fig. 5.

The solution procedure is further simplified by assuming a certain distribution of fictitious
quantities in each of the elements. The types of fictitious quantities (applied tractions or
dislocations) together with specific spatial distributions give rise to different types of elements
(Sections 2.1.1. and 2.1.2).

In this formulation the distributional form of the fictitious quantities is prescribed
separately for each of the elements. Neighbouring elements may not have the same dis-
tributional forms of fictitious quantities and generally there is no continuity in the dis-
tributions of fictitious quantities across them. This means singularities in the form of
infinite stresses exist at the element ends. Thus calculated stresses at or near the element
ends may not be reliable, especially when finite stresses are known to exist. However,
as shown in the examples in Section 4, the singularities only affect calculated results
near the element axes, and the calculated stress intensity factors can still be satisfactorily
accurate.

positive surface

Fig. 4. An element with fundamental variables D,, D, D, . ..
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Fig. 5. Boundary discretization of the problem in Fig. 1.

This compatibility problem for neighbouring fracture elements in a straight fracture has
been examined by Curran and Vandamme [3]. They tried both compatible and noncom-
patible elements in modelling the fracture. The noncompatible elements were found to give
more accurate results, even though more degrees of freedom and computer time were
required.

In cases with noncollinear neighbouring fracture elements this compatibility problem may
be more serious. For example, [8] straight cracks with small kinks at the ends have been
modelled. It was found that more elements were required to attain the same accuracy than
in the case of entirely straight cracks.

In cases with intersecting cracks and surface cracks, such as the one seen in Fig. 5, usually
better accuracy is obtained when the crack elements cross or intersect the other elements at
their end points. In [8] the stress intensity factors of some star cracks were calculated using
the numerical procedure. Better results were obtained when the intersection of the branches
coincided with the end points of the crack elements. Also for more complicated crack
geometry, such as a star crack with many branches, generally more elements must be used
to maintain sufficient accuracy. In modelling surface cracks, such as the rock joint in a direct
shear test and the surface crack in a compact tension test, satisfactory results were obtained
when the crack elements intersect the surface elements at their end points. Generally
speaking, even though intersecting elements are allowed in the numerical procedure, this
problem has not been considered in full detail.

2.1.1. Stress discontinuity elements
A stress discontinuity element is one on which applied tractions act, resulting in a stress jump
or discontinuity across the element axis [2]. In our approach the applied shear and normal
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tractions p, and p, can either be uniformly or linearly distributed on the element axis.
Thus

p = p,=[1 = s/QaID, + [5/Qa)D, . . ., )
p» = p,=[1 — s/Qa)D. + [s/Qa)D, . . ., “

where D,, D, = shear tractions at beginning and end of element respectively; D,, D, = normal
tractions at beginning and end of element respectively.

For a constant stress discontinuity element (CSDE) D, = D, and D, = D,, while for a
linear stress discontinuity element (LSDE) D, to D, are separate variables.

Thus by putting (3) and (4) into (1) and (2), D, to D, become the unknowns to be solved.
These unknowns are called fundamental variables. The induced stresses/displacements of a
fundamental variable are called its influence functions, which have been derived in closed
form by Chan [8].

2.1.2. Displacement discontinuity elements

A displacement discontinuity refers to a displacement jump across the two surfaces of the
element. A displacement jump occurs whenever there is a separation or slip between the two
surfaces of the element, i.e., the displacement at point s on the positive surface is not equal
to that of the corresponding point on the negative surface. The normal and shear displace-
ment discontinuities, d, and d,, at the point s on the element axis are respectively defined as

d(s) = u,(s,07) — u,(s,07),
d(s) = ufs,07) — uls, 07),

where 0~ and 0 are respectively the n-coordinates of the negative and positive surfaces. In
this case the fictitious quantities p, and p, are given by

p, = ddjlds; p, = dd,ds.
If the distribution of the displacement discontinuity is constant, then

d,(s) D,,

dn (S) Dda

and we have a constant displacement discontinuity element. D, and D, are the fundamental
variables. The induced stresses and displacements due to a constant displacement discontinuity
element (CDDE) can be found by superposing two semi-infinite dislocations (Fig. 6). The
dislocation at the end of the element is called a closure dislocation because it undoes the
opening or closing of the dislocation at the beginning of the element (see Fig. 6). The closure
dislocation is needed to model embedded fractures. For surface fractures the closure dislo-
cation is not needed for the daylighting element and in this case a constant displacement
discontinuity surface element (CDDSE) results.
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Fig. 6. Superposing 2 dislocations to form a CDDE.

When the displacement discontinuity is linearly distributed, i.e.,

d(s) = [l — s/2a)lD, + s/(2a)D,
and

dn(s) = [1 - S/(za)]D( + S/(za)Ddy
we have a linear displacement discontinuity element (LDDE). If the closure dislocation is
absent, a linear displacement discontinuity surface element (LDDSE) results.

Under linear elastic fracture mechanics (LEFM) assumptions, the relative slip and separ-
ation near a crack tip is proportional to the square root of the distance r from the tip. Thus
another type of element, called the root-r displacement discontinuity element (RRE), is
constructed and we have (note that s = r along the element axis)

d(s) = Dy[s/Q2a)]"

and

d,(s) = D,[s/Qa)]".
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The stress intensity factors can then be conveniently calculated as

K, = KD,
and
K, = KD,

where K = n'?E/[[8a'*(1 — v*)] for plane-strain, and £ and v are respectively the Young’s
modulus and Poisson’s ratio.

Another type of element, called the parabolic displacement discontinuity element (PDDE),
has also been created with the following distributions of displacement discontinuity:

d(s) = Dy[s/Qa)F
and
d(s) = D,Js/Qa).

The stresses at the tip of the PDDE are finite and hence it can be used to model tension-
softening or slip-weakening processes at crack tips (in contrast to the RRE element where
the stresses at the tip are infinite).

The influence functions of all the above types of displacement discontinuity elements have
been derived in closed form by Chan [§].

2.2. Linear superposition and collocation

After the boundaries are discretized into a suitable element configuration, the fundamental
variables associated with each of the elements, which can represent fictitious stresses or
dislocations, are to be found. The first step is to calculate the induced stresses/displacements
on the boundaries due to each of the fundamental variables using the corresponding
influence functions. The resultant induced stresses/displacements at a boundary location due
to all the fundamental variables can then be found by linear superposition, i.e., transforming
the induced stresses/displacements using the local system of the particular location and
adding them together.

The resultant induced stresses/displacements at a certain point (collocation point) on an
element can then be equated to the imposed stresses or displacements and equations involving
the unknown fundamental variables are established. The number of collocation equations
must equal the number of unknown fundamental variables to result in a unique solution.

3. Deformation and fracture propagation modelling

3.1. A generalized representation of linear elastic boundary conditions

For an analysis step, the applied loading is regarded as a set of given boundary conditions.
As mentioned in Section 2.2, the boundary conditions are enforced at the collocation points
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Table 1. Constants expressing different boundary conditions

Boundary condition Equation Non-zero constants
Applied shear stress %) B(M, 1) = 1.0,
o,(M) = 1* B(m, 7) = 1*
Applied normal stress (6) B(M,9) = 1.0,
0,(M) = o* B(M, 14) = o*
Applied shear displacement 5 B(M, 3) = 1.0,
u (M) = h* B(M,7) = h*
Applied normal displacement (6) B(M, 1) = 1.0,
u (M) = v* B(M, 14) = o*
Shear spring (Fig. 7a) (5) B(M, 1) = 1.0,
,(M) — ku(M) = 0.0 B(M,3) = —k,
Normal spring (Fig. 7b) (6) B(M,9) = 1.0,
0, (M) — k,u,(M) = 0.0 B(M, 1) = —k,

of the elements. Let 6,,(M), 0,,(M), u,(M) and u,(M) be the stresses (in addition to initial
stresses, if any) and displacements at a collocation point M of a certain element at the end
of the step, then a generalized representation of the given boundary conditions is

B(M, 1)xo,(M) + B(M, 2)*0,, (M) + B(M, 3)%u,(M)

+ B(M, 4)xu,(M) + B(M, 5)xDV,, + B(M, 6)xDV,, = BM, 7). .., ()
B(M, 8)%6,,(M) + B(M, 9)c,,(M) + B(M, 10)* u,(M)

+ B(M, 11)xu,(M) + B(M, 12)xDV,, + B(M, 13)xDV,, = B(M, 14)... (6)

DV, is the change in the first fundamental variable at collocation point M during the step.
Similarly DV,,, is the change in the second fundamental variable. For example, for a constant
element such as a constant stress discontinuity element or constant displacement discontinuity
element (CSDE or CDDE), DV, is the change in D, and DV, is the change in D, during
the step.

B(M, 1) to B(M, 14) are a set of constants which dictate the boundary conditions at
collocation point M. Table 1 lists different combinations of B(M, 1) to B(M, 14) which
represents the applied stress, applied displacement, and spring boundary conditions. The
deformation behaviour of fractures can also be represented by shear and normal springs
inside the fracture (Fig. 7). For each of the boundary conditions in Table 1, the constants
which are not listed are to take the value zero. See 8, 9, 10] for details.

3.2. Formulation of system equations

A given problem geometry is first discretized into N boundary elements (see Figs. 1 and 5).
Each of the N elements may have one or two collocation points, depending on the element
type. There are two fundamental variables associated with each collocation point. Some-
times certain fundamental variables are expected not to change during a particular step of
the analysis. A common example is that if a fracture remains closed during the step, then
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the normal fundamental variables (the normal displacement discontinuities) will remain
zero. The fundamental variables which do not change during a step are inactive.

The system equations for a step are set up by considering the boundary conditions on the
final stresses/displacements at the end of the step, (5) and (6), and the initial stresses/
displacements at the collocation points associated with the active fundamental variables. Let
o% (M), a0, (M), ud(M) and 12 (M) be the stresses/displacements at collocation point M at
the beginning of the step. The changes from the initial to the final stresses are equal to the
stresses induced by the active incremental fundamental variables [¢¢,(M ) and ¢¢ (M )] and

SH

the stresses (if any) applied at infinity during the step [Ac% (M) and Ac (M )]:

sh hr

Xy = X4+ X4..., @)

Xy = [0,(M) 0, (M)u(M)u,M)",

x4, = vector of induced stresses and displacements
= [00.(M) a3, (M) ul(M) uy(M)]",
Xy = [0u,(M) + Aci(M) 6, (M) + Ao (M) u)(M) uy(M)]".

After expressing x4, in terms of the active fundamental variables through the correspond-
ing influence functions (7) can be substituted into the boundary conditions (5) and (6). The
resulting set of linear equations with the active fundamental variables as unknowns can then
be solved.

In the above formulation the responses of the system are linear. However, nonlinear
responses often occur due to the opening/closing, nonlinear stress-slip relations of the
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fracture surfaces, and fracture propagation. To model nonlinear responses the given loading
is applied in linear steps. This treatment of nonlinearities is discussed in the following sections.

3.3. Opening and closing of fractures

A fracture is modelled by a certain number of displacement discontinuity elements each of
which may open or close due to the applied loading. Before any loadings are applied, all the
fracture elements are assumed to be closed. If the applied loadings are compressive, the
fracture will remain closed and the fundamental variables corresponding to the normal
displacement discontinuities are de-activated. However, closed elements can still shear
because the fundamental variables corresponding to the shear displacement discontinuities
are still active. For example, in modelling the direct shear test on a rock joint, the normal
fundamental variables of the joint (or fracture) elements are inactive while the shear fun-
damental variables are still active.

If the applied loadings cause opening displacements of a certain fracture element, as
indicated by the solution of the system equations for the fundamental variables, the normal
fundamental variables of that element will stay active. Thus the fracture opening can be
modelled. However, if subsequent loadings cause the fracture element to close more than it
has opened, its normal fundamental variables will be de-activated at the load level at which
the element just closes. Any remaining or subsequent loadings will be applied with the
normal fundamental variable of that element being inactive, unless tensile stresses occur
across the fracture surfaces, indicating a re-opening of the fracture element.

3.4. Nonlinear stress-slip relations

For closed fracture surfaces the sliding behaviour can be modelled by nonlinear shear springs
in the fracture (Fig. 7c) such that

T = of(0)+c..., (8)

where f(8) represents the coefficient of friction, which is considered to be a multilinear
function of d. ¢ is the cohesion constant.

f(8) can be arbitrary and a typical form for fractures under high normal stresses is depicted
in Fig. 8. Because of the dependence on o, iterations are usually required to ensure that (8)
is obeyed.
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Fig. 8. Coefficient of friction as a function of slip.
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3.5. Fracture propagation

As far as mixed-mode fracture propagation criteria are concerned, under the LEFM assump-
tions, three commonly known criteria are: (1) the maximum tensile stress factor [11], (2) the
maximum energy release rate [12], and (3) the minimum strain-energy-density factor [13].
Based on a survey of experimental results [5, 8], for crack trajectory prediction, all the three
methods have been found to be satisfactory while for critical load prediction there is no
preferred choice. However, the maximum tensile stress factor has been found to be compu-
tationally most efficient and has thus been incorporated into the hybridized scheme.

Usually fracture tips are modelled by RRE’s. For each RRE the stress intensity factors
are calculated at the end of each attempted step and the maximum tensile stress factor
criterion is used to check if propagation occurs. If propagation takes place, a new RRE is
added in the direction of the maximum hoop stress. The old RRE is turned into an LDDE
after propagation.

For a closed fracture, a slip-weakening constitutive law is employed and the stresses at the
fracture tips can be evaluated. In this case the maximum tensile stress criterion, as described
below, is used for determining fracture initiation and direction of the propagating crack. In
the example shown in Fig. 9 the fracture is closed under compression and shear; the tips of
the fracture are modelled by PDDE’s (which have finite stresses at their tips, see Section 2.1.2)
while the body of the fracture is usually modelled by LDDE’s. Since the fracture is closed,
shear spring boundary conditions can be imposed on the LDDE’s and the 2 PDDE’s. As the

a) Modeling a closed fracture

new tip (RRE)

b) Modsling fracture propagation

Fig. 9. Fracture propagation from a closed fracture.
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analysis progresses with increasing applied load, the stresses at the tip of each PDDE are
evaluated at the end of each step. When the magnitude of the maximum tensile stress at the
tip, which is simply the minimum principal stress (compression is positive), reaches the
tensile strength, the fracture propagates and a new RRE is added (Fig. 9b). The direction
of the new RRE is perpendicular to the maximum tensile stress direction. LEFM assump-
tions are then used for the propagation of the newly created RRE.

4, Example applications

The concepts and formulations developed in the previous sections have been incorporated
into the computer code FROCK. Various case studies have been performed to verify and test
the capability of the program (see [8]). A few examples from these case studies are presented
in the following sections. Consistent units are used in all the cases.

4.1. Rectangular plate under compression

This is the simple case of a rectangular plate under uniaxial compression. The geometry,
material properties and loading conditions are shown in Fig. 10. Different types of elements
are used to simulate the four sides of the plate so that their suitability in modelling finite
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Fig. 10. Rectangular plate under compression.
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boundaries can be compared. In each case, three elements are used to simulate a horizontal
side and four for a vertical side.

CDDE’s, LDDE’s, CSDE’s, and LSDE’s are used in four separate cases and the cal-
culated stresses and displacements using FROCK along the mid-sections (4 and C) are
derived. Generally, the calculated results compare satisfactorily with the simplified analytical
solutions assuming a constant state of strain. Exceptions occur at points near the edges of
the plate where the singularities at the ends of the elements have a considerable effect on the
results. Accuracy generally increases from CDDE, to LDDE, to CSDE, and to LSDE. For
example, the average u, along Section C calculated using LSDE’s differs by 2 percent from
the simplified analytical solution. The corresponding relative errors using CSDE’s, LDDE’s
and CDDE’s are respectively 2%, 7% and 9%.

On sections near the edges (and hence nearer to the elements) the singularities at the
ends of the elements cause the calculated results to fluctuate. The most noticeable fluc-
tuations occur when using CDDE’s. For example, in Section B, ¢, varies in a wavy manner
between 100 and 123 with a mean at about 106. The fluctuations are smaller with LDDE’s
and are still less with CSDE’s. With LSDE’s o, stays fairly constant at about 100, the correct
value, except near the bottom. Thus the stress discontinuity elements can better model
the plate boundaries than the displacement discontinuity elements due to their smaller
singularities.

4.2. Stress intensity factors

4.2.1. Single crack

Stress intensity factors (SIF’s) are calculated in two different ways: (1) based on the standard
analytical expressions for LEFM crack tip opening and sliding displacements, and (2) using
the computed displacement discontinuities (Section 2.1.2). The SIF’s of a straight crack with
internally applied pressure and shear tractions applied at infinity (see Fig. 11) are compared.
Figure 11 also lists the analytically derived K| and K|;. The crack tips are modelled by RRE’s
and the crack body by LDDE’s. The effect of element configuration (number of elements and
their relative size) on the accuracy of the SIF’s calculated by FROCK are examined. Between
2 and 50 elements were used to model the crack. If all the elements have the same size, then
the calculated SIF’s are accurate to within 5 percent of the theoretical values, except for
extreme cases, such as those where only two or three elements were used, where errors of
21% and 10% respectively occurred.

In the above test cases, the collocation points of the RRE’s and LDDE’s are located as
shown in Fig. 12. Case studies (see [8]) indicate that varying the locations of the collocation
points of the LDDE’s (with k varying between 0.1 and 2/3) did not appreciably change the
calculated SIF’s. The locations of the collocation points of the RRE’s however are much
more important and, generally, the results are satisfactory for 1.0 < k < 1.8.

4.2.2. Two aligned cracks under tension and shear ( Fig. 13)

In Table 2 the SIF’s at tips 4 and B as obtained analytically [14] are compared with the
results from FROCK. The amplification of the SIF’s due to crack interaction is shown by
also listing the (analytical) SIF’s of the single crack case. Two crack configurations with
different x, and x, (see Fig. 13) have been used.
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shear stress = 100
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Internal pressure = 100
Element
\] 12 A~ N
I T L} I
|z JI/
10
Elements 1 and N are RRE's; the rest (if any) are LDDE's
K] = 100~/67 = 396.3
KH= 100-V5r = 396.3
Fig. 11. Single crack with internal pressure and shear at infinity.
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a) AnRRE withk=1.5 b) An LDDE with k = 2/3
Fig. 12. Location of collocation points.
Table 2. SIF’s of two aligned cracks
Crack geometry 1: Crack geometry 2:
x; =10 . x, = 0.87156 .
X, = 20 (see Fig. 13) X, = 10 (see Fig. 13)
SIF at SIF at SIF at SIF at
Tip A: Tip B: Tip A: Tip B:
K\ (onecrackonty) 396 396 379 379
K Frock) 403 401 470 418
K, [14] 403 401 490 414
K .
I(FROCK
;—11([ [14] 1.00 1.00 0.96 1.01
Kireraery 198 198 189 189
KiFrock) 202 201 235 209
K, [14] 202 201 245 207
Kyrocy 1.00 1.00 0.96 1.01

Ky [14]
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Fig. 13. Two aligned cracks under tension and shear. Fig. 14. Two equal parallel cracks.
Table 3. SIF’s of two equal parallel cracks (at tip A)
Number of elements: Number of elements:
(N =8) (N = 20)
SIF at A: SIF at A:
Kyrock) 254.2 272.7
K [15] 268.3 268.3
Kierock) /Ky [15] 0.95 1.02
Kiirrock) —38.03 —41.78
K, [15] —43.18 —43.18
Kiyrrociy/ Ky [13] 0.91 0.97
Kl(onecrackonly) 354.5 354.5
KII(onecrackonly) 0.0 0.0

4.2.3. Two parallel cracks of equal width under tension (Fig. 14)

In Table 3 the SIF’s at tip A calculated using FROCK are compared with the results
obtained by Yokobori et al. [15], who used a numerical procedure to derive his results. Two
cases with different numbers of elements (8 and 20) were investigated. Since the cracks have
the same length in both cases, the size of the elements is smaller in the second case. It can
be seen that, in the latter case, the FROCK results are closer to Yokobori’s results. Thus for
strong interactions of cracks more elements are needed. Strong interactions are considered
to occur, if the SIF’s of the two interacting cracks deviate considerably from the SIF of the case
with only one crack (for this reason the SIF’s of a single crack are also given in Table 4).

4.2.4. Two equal stepping cracks under tension (Fig. 15)

The SIF’s at tips A and B calculated with FROCK are compared with the results by
Yokobori et al. [15], who again used a numerical procedure to arrive at their results. Two
configurations having the same crack sizes but different numbers of elements (8 and 20) are
examined; in addition, 4 different values of T (see Fig. 15), ranging from 0.5 to —0.25, are
used. The FROCK results are within 2 percent of Yokobori’s values for K| at 4 and usually
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¢ =100
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Fig. 15. Two equal stepping cracks. Fig. 16. Two inclined cracks under tension.

Table 4. SIF’s of two inclined cracks

Crack geometry

Distance b (see Fig. 16)

6.0 3.0

. SIF: SIF:

Kia 144 123
Kiar 144 121
Kiae! Kiar 1.00 0.98
Kiinr -85 —80
K 149 140
Kgr 147 137
Kiyr /K 0.99 0.98
Kpr —83 —-73

within 5 percent for K, at A and K| at B. In general, if more and thus smaller elements are
used, the results are closer to those by Yokobori et al. [15]. For K;; at B, deviations between
1 and 50 percent occur with the difference increasing as the distance T between the two crack
tips increases. At present, we have no idea what causes these discrepancies.

4.2.5. Two inclined cracks of equal width under tension (Fig. 16)

In Table 4 the SIF’s at tips A and B calculated with FROCK (K ,;, K;;) are compared with
the results obtained by Isida [16] using a numerical approach (K,; and Ky, only, K, were
not calculated by Isida). Two cases with different values of b are examined. Although only
8 elements are used for each crack, the results compare very well in each case because, as
stated by Isida, “the enclosing circles of all the cracks are not so close to each other”,
i.e., the cracks are not so close as to interact strongly.

5. Conclusions

A general-purpose numerical procedure (FROCK) based on the displacement discontinuity
and indirect boundary element methods has been developed. The procedure has been applied
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to various two-dimensional problems with or without existing fractures and the results
usually compare satisfactorily with existing solutions. Future papers will address more
complex case studies and engineering applications. The strong points of the procedure as
compared to most other existing methods are:

(i) Analytic influence functions of the boundary elements have been derived, and thus
numerical integration is not required. This means that the only source of inaccuracy (apart
from computer roundoff errors) is from the approximation of the boundary conditions by
collocation. Also only single precision variables are required in the computation of the
influence functions.

(ii) External boundaries and fractures of arbitrary geometries can be conveniently
modelled. Fracture propagation is automatically modelled by FROCK, and there is no need
to substructure (or partition) the medium. No re-meshing is required. Both finite and infinite
media are possible.

(iii) Closed fracture (or parts of fractures) are realistically modelled by non-linear shear
stress-slip relations, which depend also on the normal stress. For closed fracture tips, a
slip-weakening law is implemented and the stresses at the tips can be calculated.

(iv) Arbitrary loading sequences are possible. The modelled fractures (or parts of them)
can open or close in response to the applied loadings. The problem status after each stage
of loading can be stored and recalled later for further analysis.

(v) Geostatic stresses can be included in the analysis so that in-situ conditions are
modelled more realistically.
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