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We show that the escape of hydrogen from the early 
Earth’s atmosphere should occur at rates two orders of 
magnitude slower than previously thought. The balance 
between slow hydrogen escape and volcanic outgassing 
could have maintained a hydrogen mixing ratio more than 
30%. The production of prebiotic organic compounds in 
such an atmosphere would have been more efficient than 
either exogenous delivery or synthesis in hydrothermal 
systems. The organic soup in the oceans and ponds on the 
early Earth would have been a more favorable place for 
the origin of life than previously thought. 

It is generally believed that the existence of prebiotic organic 
compounds on the early Earth is a necessary step toward the 
origin of life. Biologically important molecules can be 
formed efficiently in a highly reducing atmosphere (CH4 
and/or NH3 rich) (1, 2). They can also be produced efficiently 
in a weakly reducing atmosphere (3–5), where one important 
factor influencing the efficiency of production is the 
hydrogen to carbon ratio (6–8). However, our current 
understanding of the composition of early Earth’s atmosphere 
suggests it was neither strongly reducing nor hydrogen rich. 
The concentrations of CH4 and NH3 are thought to have been 
low (9) and the hydrogen mixing ratio is believed to be of the 
order of 10–3 or less (10). Because it is difficult to produce 
organics in the atmosphere, two directions of research into the 
origin of life on Earth have become dominant: synthesis of 
organic compounds in hydrothermal systems and exogenous 
delivery of organic compounds to early Earth (11). Here we 
reexamine the theory of diffusion limited escape of hydrogen 
and show that hydrogen escape from early Earth’s 
atmosphere is not as rapid as previously assumed. 
Hydrodynamic escape should be the dominant mechanism of 
escape, implying a hydrogen-rich early Earth atmosphere, in 
which organic molecules can be produced efficiently. 

The assumption that the escape of hydrogen is limited by 
diffusion into the heterosphere from below is applicable only 
when the escape is efficient. For Jeans escape to be efficient, 
the exobase temperature must be high. This condition is 
satisfied in the current Earth’s atmosphere, where exobase 

temperatures exceed 1000K due to the efficient absorption of 
solar UV radiation by atomic oxygen. The prebiotic Earth’s 
atmosphere was anoxic and probably contained substantial 
amounts of CO2 (12), as on modern Venus or Mars. CO2 
absorbs UV, but unlike oxygen, it can effectively radiate 
energy back to space and keep the exobase temperatures low. 
The CO2-rich Venusian and Martian exobases have 
temperatures of 275K and 350K respectively (13). In the 
anoxic early Earth’s atmosphere with low exobase 
temperature (supporting online text), Jeans’ escape of 
hydrogen would have been inhibited. For present day Earth 
and Mars, which have low hydrogen concentrations, the 
relatively low hydrogen escape rates due to nonthermal 
processes are comparable to the Jeans escape rate (14, 15). It 
is important to consider how the non-thermal escape rate 
might increase in an atmosphere with large hydrogen 
abundance. For a H2O rich early Venusian atmosphere, the 
maximum limit of the nonthermal hydrogen escape rate (due 
to the saturation of ionization of hydrogen atoms, which 
occurs when the homopause hydrogen mixing ratio reaches 

) is ~1010 cm–2 s–1 (16). The maximum nonthermal 
escape rate on the early Earth should be similar to that on 
Venus (17). Given the low Jeans’ and non-thermal escape 
rates, the total hydrogen escape rate would not have been in 
balance with the volcanic H2 outgassing rate on early Earth 
(10) at the previously suggested hydrogen mixing ratio of   
10–3. Instead, hydrogen would have been one of the major 
constituents in the ancient atmosphere. 

3102 −×

H2 can absorb EUV (like O2 and CO2) but cannot 
effectively radiate energy back to space. However, H2 can 
escape due to its low molecular weight and thereby carry 
energy away to space in a hydrodynamic hydrogen escape 
flow. When hydrogen is the major gas in the heterosphere and 
the major absorber of EUV, the escape of hydrogen would 
not be diffusion-limited but would be controlled by the solar 
EUV flux available to drive the escape flow (energy-limited), 
which would produce an escape rate smaller than the 
diffusion-limited escape rate. 

 / www.sciencexpress.org  / 7 April 2005 / Page 1 / 10.1126/science.1106983 



 
In this paper we apply a hydrodynamic escape model, 

recently developed to study transonic hydrogen 
hydrodynamic escape (18), to a hydrogen-rich early Earth’s 
atmosphere. Because the solar EUV radiation level could 
have been much stronger during the Archean era than today 
(19), EUV radiation levels ×1, ×2.5, and ×5 that of today are 
used in the simulations for sensitivity studies. 

The velocity distributions in the high energy input cases 
(×2.5, ×5) (Fig. 1A) level off and converge near the upper 
boundary of the model where the sound speed is exceeded 
(supersonic flow). Transonic points in the higher energy input 
cases (×2.5, ×5) are near 10 Earth radii (supporting online 
text). Near the upper boundary of the model the flow velocity 
is comparable to the escape velocity from the planet. Escape 
velocity is exceeded by the combination of the flow velocity 
and the thermal velocity at an altitude below the transonic 
points. In the ×1 EUV level case, the energy absorbed is not 
adequate to drive supersonic flow, but escape would still 
occur. Fig. 1B shows the temperature profiles in the 
corresponding cases. Note that although the peak 
temperatures are 700 to ~800K in the high energy input cases, 
the temperatures at the exobases (marked by the crosses) are 
in the range of 500 to ~600K due to the adiabatic cooling 
associated with the hydrodynamic escape. 

Figure 2 illustrates our calculated escape rates for varying 
hydrogen homopause mixing ratios. The Jeans’ escape rates 
computed for the exobases are more than one order of 
magnitude smaller than the corresponding hydrodynamic 
escape rates due to the low exobase temperatures. If the solar 
EUV radiation level was 2.5 times that of today and the 
volcanic hydrogen outgassing rate was 5 times that of today 
( hydrogen molecules cm–2 s-1), a hydrogen 
mixing ratio of more than 30% could have been maintained 
everywhere below the homopause by balancing the volcanic 
hydrogen outgassing with the hydrodynamic escape of 
hydrogen (Fig. 2). By increasing the solar EUV radiation 
level to 5 times that of today, the hydrogen mixing ratio could 
still have been maintained at ~10%. These mixing ratios are 
two orders of magnitude greater than the 10–3 hydrogen 
concentration considering the diffusion-limited hydrogen 
escape rate. So a hydrogen-rich early Earth’s atmosphere 
could be maintained even for the modest hydrogen outgassing 
rates appropriate if the oxidation state of the Earth’s mantle 
3.9 billion years ago were the same as it is today. 

101025.9~ ×

The hydrodynamic escape rate increases nearly linearly as 
the solar EUV radiation level increases (Fig. 3), which 
reflects the energy limited nature of the hydrodynamic 
escape. The slope depends on the hydrogen density at the 
homopause (20). 

An early Earth’s atmosphere with high hydrogen 
concentration has important consequences for the origin and 
evolution of life. Generally speaking, endogenous sources of 

prebiotic organics, such as production by lightning or 
photochemistry, are dominant in a reducing early Earth’s 
atmosphere while exogenous sources, such as delivery from 
space or production in hydrothermal systems, become major 
contributors in an atmosphere of an intermediate oxidation 
state (1). To provide more specific examples of the influence 
of high hydrogen concentration, we consider two organic 
molecule formation mechanisms in the following, realizing 
that these are not the only prebiotic organic molecule 
formation mechanisms that are affected by the high hydrogen 
concentration. 

Both H2 and CO2 are uniformly mixed below the 
homopause (21, 22), where we have just shown that the 
hydrogen mixing ratio could have been greater than 30%. 
Most photochemistry of interest will occur well below the 
homopause. Since the CO2 concentration is likely to be less 
than 30%, H2/C in early Earth’s atmosphere could have been 
greater than 1 throughout the chemically interesting part of 
the atmosphere. Formation of certain prebiotic organic 
compounds in an atmosphere of CO2 or CO with electric 
discharge is almost as productive as that in an atmosphere of 
CH4 when  (7, 8). The conservative estimate of 
amino acid production rate by electric discharge is 107 kg/yr 
when  (23). Although the early Earth’s 
atmosphere might have been dominated by CO2 immediately 
after the heavy bombardment period, as continents formed on 
early Earth, the atmospheric CO2 concentration would decline 
due to weathering and the H2/C ratio would become suitable 
for efficient formation of prebiotic organic compounds 
through electric discharge. Formation of prebiotic organic 
compounds by electric discharge at this conservative rate in a 
hydrogen-rich early Earth’s atmosphere would have created 
an ocean with steady state amino acid concentration ~10–6 
moles/L (24), orders of magnitude greater than the amino acid 
concentration estimated for a hydrogen-poor early Earth’s 
atmosphere (25). This amino acid concentration is highly 
uncertain since neither the production rate nor the destruction 
rate is well known. In addition, organic films may have 
formed at the ocean surface, concentrating organic 
compounds further than in the bulk sea water (26). 

1/2 ≥CH

1/2 ≥CH

Because the magnitude of energy deposition from electric 
discharge in the ancient atmosphere is poorly understood, it is 
difficult to predict the exact production rate of organic 
materials from these sources. Alternatively, organics can be 
formed through photolysis of methane by Ly-α photons with 
subsequent polymerization. The rate of photochemical haze 
production is critically dependent on the CH4/CO2 ratio (27). 
A similar dependence on the CH4/CO2 ratio has been found 
for HCN formation in an atmosphere with N2, CO2, and CH4 
(5). We used a one-dimensional photochemical model to 
study the organic production rate in a hydrogen-rich early 
Earth’s atmosphere (supporting online text). Fig. 4 shows that 
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the production rate of hydrocarbons is enhanced by 
approximately 103 times (from < kg/yr to kg/yr) 
when the hydrogen concentration in the early Earth’s 
atmosphere changes from 0.1% to 30%, which makes the 
atmospheric production rate of organics through UV 
photolysis orders of magnitude greater than either the 
synthesis of organic compounds in hydrothermal systems or 
the exogenous delivery of organic compounds to early Earth 
(28). 

710 1010

Based on our new model of hydrodynamic hydrogen 
escape, we conclude that diffusion-limited escape theory does 
not apply to a hydrogen-rich early Earth atmosphere. Rather, 
the escape of hydrogen was energy limited. Hydrogen mixing 
ratios greater than 30% could have been maintained in the 
atmosphere of prebiotic Earth without either invoking huge 
volcanic hydrogen outgassing rates or assuming a reduced 
mantle. The efficient production of organics in a hydrogen-
rich early Earth’s atmosphere would have led to an organic 
soup in the oceans and ponds on the early Earth. The world 
ocean could have been the birthplace of life (supporting 
online text). 
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Fig. 1. (A) Flow velocity profiles in hydrodynamic escape of 
hydrogen under solar EUV levels ×1, ×2.5 and ×5 that of 
today. r0 is the distance between the lower boundary and the 
center of the Earth. The homopause hydrogen density 
is , corresponding to a mixing ratio of 50%. 
The dashed curve represents the escape velocity from the 
Earth. The transonic point is marked approximately by a 
circle. The dash-dotted curves show the difference between 
the escape velocity and the thermal velocity. The exobases 
are marked by the crosses. (B) Temperature profiles in the 
corresponding cases. Although the peak temperatures is in the 
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range of 700 to ~800K, the temperature at the exobases 
(marked by the crosses) is low (500 to ~600K). 

Fig. 2. Calculated hydrogen escape rate from early Earth’s 
atmosphere as a function of homopause hydrogen mixing 
ratio. The homopause air composition is assumed to be the 
same as that of today except for the higher hydrogen 
concentration and lack of oxygen. The diffusion limited 
escape rates, previously assumed to apply, are one or two 
orders of magnitude greater than the hydrodynamic escape 
rates because of over-estimated exobase temperature. The 
dotted curve shows the Jeans’ escape rate as a function of 
homopause hydrogen mixing ratio under the ×2.5 energy 
input level for the exobase temperatures that are likely to 
have been present for early Earth. The lower horizontal line 
represents the volcanic outgassing rate of hydrogen from the 
interior of the Earth today ( hydrogen molecules 
cm–2 s–1) (29). The upper horizontal line is the estimated 
outgassing rate of hydrogen from the interior of early Earth 
(~5 times greater than the outgassing rate today) (30). 

10108.1~ ×

Fig. 3. The hydrogen escape rate increases nearly linearly as 
the solar EUV level increases. The slope is regulated by the 
homopause hydrogen density n0. 

Fig. 4. Hydrocarbon production rate increases rapidly as the 
hydrogen concentration increases, and exceeds the delivery of 
organics by interplanetary dust particles (IDP) for H2 mixing 
ratios above 10%. 
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