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Abstract. While global hydrological models (GHMs) are
very useful in exploring water resources and interactions be-
tween the Earth and human systems, their use often requires
numerous model inputs, complex model calibration, and high
computation costs. To overcome these challenges, we con-
struct an efficient open-source and ready-to-use hydrological
emulator (HE) that can mimic complex GHMs at a range of
spatial scales (e.g., basin, region, globe). More specifically,
we construct both a lumped and a distributed scheme of the
HE based on the monthly abcd model to explore the trade-
off between computational cost and model fidelity. Model
predictability and computational efficiency are evaluated in
simulating global runoff from 1971 to 2010 with both the
lumped and distributed schemes. The results are compared
against the runoff product from the widely used Variable
Infiltration Capacity (VIC) model. Our evaluation indicates
that the lumped and distributed schemes present compara-
ble results regarding annual total quantity, spatial pattern,
and temporal variation of the major water fluxes (e.g., to-
tal runoff, evapotranspiration) across the global 235 basins
(e.g., correlation coefficient r between the annual total runoff
from either of these two schemes and the VIC is > 0.96), ex-
cept for several cold (e.g., Arctic, interior Tibet), dry (e.g.,
North Africa) and mountainous (e.g., Argentina) regions.
Compared against the monthly total runoff product from the
VIC (aggregated from daily runoff), the global mean Kling–
Gupta efficiencies are 0.75 and 0.79 for the lumped and dis-
tributed schemes, respectively, with the distributed scheme
better capturing spatial heterogeneity. Notably, the computa-
tion efficiency of the lumped scheme is 2 orders of magnitude
higher than the distributed one and 7 orders more efficient
than the VIC model. A case study of uncertainty analysis

for the world’s 16 basins with top annual streamflow is con-
ducted using 100 000 model simulations, and it demonstrates
the lumped scheme’s extraordinary advantage in computa-
tional efficiency. Our results suggest that the revised lumped
abcd model can serve as an efficient and reasonable HE for
complex GHMs and is suitable for broad practical use, and
the distributed scheme is also an efficient alternative if spatial
heterogeneity is of more interest.

1 Introduction

A global hydrological model (GHM) is an effective tool to
understand how water moves between soil, plants, and the
atmosphere. In terms of spatial discretization, hydrological
models can be classified into (1) lumped models treating
one basin as a homogeneous whole and disregarding spatial
variations, such as the Sacramento Soil Moisture Account-
ing Model (Burnash et al., 1973), and (2) distributed models,
where the entire basin is divided into small spatial units (e.g.,
square cells or triangulated irregular network) to capture spa-
tial variability, such as the PCRaster Global Water Balance
(Van Beek and Bierkens, 2009) and the WASMOD-M (Wa-
ter And Snow balance MODeling system for macro-scale;
Widén-Nilsson et al., 2007). For simplicity, models with a
division of one basin into separate areas or subbasins are
also categorized as distributed ones here. The corresponding
predictability and computational efficiency of GHMs may
vary from model to model, due to differences in complex-
ity and structure. Recent years have seen rapid progress in
GHMs. They are widely used in assessing the impacts of
climate change and land surface changes on the water cy-
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cle (Alcamo and Henrichs, 2002; Arnell and Gosling, 2013;
Liu et al., 2013, 2014; Nijssen et al., 2001a), exploring the
spatial and temporal distribution of water resources (Abdulla
et al., 1996; Alkama et al., 2010; Bierkens and Van Beek,
2009; Gerten et al., 2005; Tang et al., 2010), examining how
human activities alter water demand and water resources (De
Graaf et al., 2014; Döll et al., 2009; Hanasaki et al., 2008;
Liu et al., 2015; Rost et al., 2008; Vörösmarty et al., 2000),
and investigating the interactions between human activities
and water availability by incorporating GHM with integrated
assessment models (Kim et al., 2016).

Applying GHMs usually requires miscellaneous inputs,
high computational costs, and a complex calibration process.
These challenges stand out in practical situations, especially
when the computational resources are limited. For instance,
sensitivity analysis and uncertainty quantification are often
needed for decision making, but the users usually cannot af-
ford to run a large number of simulations with many GHMs
like the Variable Infiltration Capacity (VIC) (also categorized
as a land surface model, LSM) due to their high computa-
tional expense (Oubeidillah et al., 2014). Another situation is
when the users seek reasonable estimates of water resources
with minimal efforts rather than acquiring highly accurate
estimates through expensive inputs of time and efforts. For
example, when users seek to explore the hydroclimatology
of a region and its long-term water balance (Sankarasubra-
manian and Vogel, 2002), then GHMs with fine spatial (e.g.,
1/8◦) and temporal resolution (e.g., hourly) are not necessar-
ily needed. In this case, simple models that possess reason-
able predictability and are computationally efficient tend to
be more suitable. In addition, some studies have shown that
GHMs or LSMs are sometimes outperformed by simple em-
pirical statistical models (Abramowitz, 2005; Abramowitz
et al., 2008; Best et al., 2015), suggesting that some GHMs
or LSMs may underutilize the information in their climate in-
puts and that model complexity may undermine accurate pre-
diction. This also indicates the potential advantages of a sim-
ple model over complex GHMs or LSMs. Thus, construct-
ing simple models that can emulate the dynamics of more
complex and computational expensive models (e.g., GHMs
or LSMs) is warranted.

The motivation of this work arises from the need to
construct a hydrological emulator (HE) that can efficiently
mimic the complex GHMs to address the abovementioned
issues for practical use, which provides the opportunity of
speeding up simulations at the cost of introducing some sim-
plification. We develop a HE that is easy to use and effi-
cient for any interested groups or individuals to assess wa-
ter cycle at basin/regional/global scales. This HE possesses
the following features: (1) minimum number of parameters,
(2) minimal climate input that is easy to acquire, (3) simple
model structure, (4) reasonable model fidelity that captures
both the spatial and temporal variability, (5) high computa-
tional efficiency, (6) applicable in a range of spatial scales,
and (7) open-source and well-documented.

To achieve our goal of identifying a suitable HE, we
have explored many hydrological models to find one that
may meet our needs. We start with a simple baseline model
characterized by mean seasonal cycle, i.e., the interannual
mean value for every calendar day (Schaefli and Gupta,
2007). Among others, we also explore the abcd model be-
cause (1) it is widely used and proven to have reasonable
predictability (Fernandez et al., 2000; Martinez and Gupta,
2010; Sankarasubramanian and Vogel, 2002, 2003; Thomas,
1981; Vandewiele and Xu, 1992; Vogel and Sankarasubrama-
nian, 2003), (2) it uses a monthly time step and requires less
computational cost than daily or hourly models, (3) it has a
solid physical basis and hence has potential to be extended to
other temporal scales (Wang and Tang, 2014), (4) it requires
minimal and easily available inputs, (5) it only involves 4–7
parameters, and (6) it can simulate variables of interest such
as recharge, direct runoff, and baseflow that many other sim-
ple models cannot simulate (Vörösmarty et al., 1998). This
study marks the first time that the abcd-based model is ap-
plied globally and also the first time the predictability and
computational efficiency for both the lumped and distributed
schemes are evaluated. Below we describe the baseline and
the abcd models and data in Sect. 2; we present the evalua-
tion of the two models and discuss their appropriateness of
serving as a HE in Sect. 3; finally, in Sect. 4 we summarize
this work with concluding remarks.

2 Methods and data

2.1 Model description

We examine two simple models – the baseline and the abcd

model (both lumped and distributed scheme) in order to iden-
tify a suitable one for serving as a HE.

2.1.1 Baseline model

Following the work of Schaefli and Gupta (2007), we ex-
plore a baseline model characterized by the interannual mean
value for every calendar day, i.e., climatology. In this study,
the baseline model is based on monthly climatology runoff,
which comes from a model simulation product – i.e., the
runoff product from the Variable Infiltration Capacity (VIC)
model (Leng et al., 2015). Specifically, we first calculate the
grid-level interannual mean value for each of the 365 calen-
dar days from the daily runoff of the benchmark product dur-
ing 1971–2010 (see Sect. 2.3.2) and then aggregate daily cli-
matology runoff to monthly climatology runoff at grid level.
The baseline model here uses monthly climatology runoff for
prediction. For example, if the climatology runoff for July in
one grid cell is 100 mm mon−1, then the prediction of to-
tal runoff for July of every year in that specific grid cell is
100 mm mon−1.
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2.1.2 The abcd model

The monthly abcd model was first introduced by Thomas
(1981) to improve the national water assessment for the US,
with a simple analytical framework using only a few descrip-
tive parameters. It has been widely used across the world,
especially for the US (Martinez and Gupta, 2010; Sankara-
subramanian and Vogel, 2002, 2003). The model uses poten-
tial evapotranspiration (PET) and precipitation (P ) as input.
The model defines four parameters a, b, c, and d that re-
flect regime characteristics (Sankarasubramanian and Vogel,
2002; Thomas, 1981) to simulate water fluxes (e.g., evapo-
transpiration, runoff, groundwater recharge) and pools (e.g.,
soil moisture, groundwater). The parameters a and b pertain
to runoff characteristics, and c and d relate to groundwater.
Specifically, the parameter a reflects the propensity of runoff
to occur before the soil is fully saturated. The parameter b

is an upper limit on the sum of evapotranspiration (ET) and
soil moisture storage. The parameter c indicates the degree of
recharge to groundwater and is related to the fraction of mean
runoff that arises from groundwater discharge. The parame-
ter d is the release rate of groundwater to baseflow, and thus
the reciprocal of d is the groundwater residence time. Snow
is not part of the original abcd model, which may result in
poor performance of the model in cold regions where snow
significantly affects the hydrological cycle. The work of Mar-
tinez and Gupta (2010) has added snow processes into the
original abcd model, where the snowpack accumulation and
snowmelt are estimated based on air temperature. Their work
indicated that the incorporation of the snow processes in the
monthly abcd model has significantly improved model per-
formance in snow-covered area in the conterminous United
States (see Fig. 4 in Martinez and Gupta, 2010).

In this study, we adopt the abcd framework from Martinez
and Gupta (2010) (Fig. 1); meanwhile, we make three mod-
ifications to suit the needs of a HE for global applications.
First, in order to enhance the model efficiency with as least
necessary parameters as possible, instead of involving three
tunable snow-related parameters in the calibration process,
we set the values for two of the parameters (i.e., the temper-
ature threshold above or below which all precipitation falls
as rainfall or snow) from the literature (Wen et al., 2013) and
only keep one tunable parameter m – the snowmelt coeffi-
cient (0 < m < 1). Second, we introduce the baseflow index
(BFI) into the calibration process to improve the partition
of total runoff between the direct runoff and baseflow (see
Sect. 2.4). Third, unlike previous studies, which only used
the lumped scheme, we first explore the values of model ap-
plication in a distributed scheme with a grid resolution of
0.5◦. The detailed model descriptions and equations are pre-
sented in Appendix A, and the descriptions and ranges of
model parameters are listed in Table 1.

Figure 1. Schematic diagram of the abcd model, with enhance-
ments of snow and partition of total runoff between direct runoff
and baseflow.

Figure 2. Kling–Gupta efficiency of the simulated basin-level total
runoff across the global 235 basins (lump: lumped; dist: distributed;
cal: calibration; the x axis labels of “lump_cal” or “dist_cal” repre-
sent the lumped/distributed scheme during the calibration period).

2.2 Model structure

In terms of the abcd model, we evaluate both the lumped
and distributed model schemes, although most previous ap-
plications of the model are conducted in a lumped scheme
(Bai et al., 2015; Fernandez et al., 2000; Martinez and
Gupta, 2010; Sankarasubramanian and Vogel, 2002, 2003;
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Table 1. Parameter description and ranges for the abcd model (the parameters a, c, d and m are dimensionless, and the unit for parameter b

is mm).

Parameter Description Range References

a Propensity of runoff to occur before the soil is fully saturated 0–1 Alley (1984), Martinez and
b Upper limit on the sum of evapotranspiration and soil moisture storage 0–4000 Gupta (2010), Sankarasubramanian
c Degree of recharge to groundwater 0–1 and Vogel (2002), Vandewiele
d Release rate of groundwater to baseflow 0–1 and Xu (1992)

m Snowmelt coefficient 0–1 Wen et al. (2013), Martinez and
Gupta (2010)

Vandewiele and Xu, 1992; Vogel and Sankarasubramanian,
2003). In the lumped scheme, each of the 235 river basins
is lumped as a single unit, and each of the data input (see
Sect. 2.3.1) are the lumped average across the entire basin,
and thus all the model outputs are lumped as well. In terms
of the distributed scheme, however, each 0.5◦ grid cell has
its own data inputs, and likewise, the model outputs are sim-
ulated at the grid level. Although the two schemes differ in
the spatial resolution of their inputs and outputs, their within-
basin parameters are uniform. We use basin-uniform rather
than grid-specific parameters for the distributed scheme for
two reasons: (1) to enhance computational efficiency and (2)
to avoid drastically different parameters for neighboring grid
cells that may be unrealistic. Note that lateral flows between
grid cells and basins are not included at this stage for the abcd

model. For the baseline model, as documented in Sect. 2.1.1,
every 0.5◦ grid cell of each basin has its own monthly clima-
tology runoff estimates for each of the 12 calendar months.

2.3 Data

2.3.1 Climate data

The climate data needed for the abcd model only involve
monthly total precipitation and monthly mean, maximum,
and minimum air temperature. The data we use are obtained
from WATer and global CHange (WATCH; Weedon et al.,
2011), spanning the period of 1971–2010, and they are 0.5◦

gridded global monthly data. The climate data are used for
model simulation over the global 235 major river basins
(Kim et al., 2016). Additionally, we use the Hargreaves–
Samani method (Hargreaves and Samani, 1982) to estimate
potential evapotranspiration (PET), which is a required in-
put for the abcd model, and it needs climate data of mean,
maximum, and minimum temperatures for the calculation.

2.3.2 Benchmark runoff product

In this study, the abcd model is tested for its ability to em-
ulate the naturalized hydrological processes of a reference
model since the “true” naturalized hydrological processes
are unknown. The “perfect model” approach is well adopted
in climate modeling studies where one model is treated as

“observations” while the others are tested for their ability
to reproduce observations (Murphy et al., 2004; Tebaldi and
Knutti, 2007). Here, we use the process-based VIC model
as the perfect model, which was also driven by the WATCH
climate forcing.

The VIC runoff product here is a global simulation with
a daily time step and spatial resolution of 0.5◦ for the
period of 1971–2010, and the VIC daily runoff is aggre-
gated to monthly data to be consistent with the tempo-
ral scale of the abcd model. The VIC model settings used
in this study are based on the University of Washington
VIC Global applications (http://www.hydro.washington.edu/
Lettenmaier/Models/VIC/Datasets/Datasets.shtml, last ac-
cess: 8 October 2016). The sub-grid variability in soil, veg-
etation, and terrain characteristics is represented in sub-grid
area-specific parameter classifications. Soil texture and bulk
densities are derived by combining the World Inventory of
Soil Emission Potentials database (Batjes, 1995) and the
5 min digital soil map of the world from the Food and Agri-
cultural Organization (FAO, 1998). Based on the work of
Cosby et al. (1984), the remaining soil properties (e.g., poros-
ity, saturated hydraulic conductivity, and unsaturated hy-
draulic conductivity) are derived. Vegetation type data are
obtained from the global land classification of Hansen et
al. (2000). Parameters including the infiltration parameter,
soil layer depths, and those governing the baseflow function
were calibrated for major global river basins and transferred
to the global domain as documented in Nijssen et al. (2001b),
based on which Zhang et al. (2014) and Leng et al. (2015)
conducted additional calibrations in the domain of China. In
this study, the VIC model was forced by WATCH climate
forcing at the daily time step (Weedon et al., 2011), based
on the calibrated parameters from Nijssen et al. (2001b),
Zhang et al. (2014), and Leng et al. (2015). The simulated
runoff used in this study has recently been validated glob-
ally within the framework of the Inter-Sectoral Impact Model
Intercomparison Project and shows reasonable performance
compared to other hydrological models (Hattermann et al.,
2017; Krysanova and Hattermann, 2017).

The VIC runoff product (Hattermann et al., 2017; Leng
et al., 2015) is then used as a benchmark for calibrating and
validating the abcd model due to two reasons. First, VIC
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runoff has been evaluated across many regions of the globe
and is proven to work reasonably well (Abdulla et al., 1996;
Hattermann et al., 2017; Maurer et al., 2001; Nijssen et al.,
1997, 2001b). Second, the simulated monthly runoff by the
abcd model is more representative of “natural conditions”
because human activities (e.g., reservoir regulations and up-
stream water withdrawals) are currently not represented in
the model. Thus, it tends to be more reasonable to compare
the simulated runoff against the VIC natural runoff product
rather than comparing against observed streamflow data from
stream gauges (Dai et al., 2009; Wilkinson et al., 2014). De-
spite potential bias in the VIC runoff product, using it as
a benchmark here is to demonstrate the capability of the HE
developed in this work to mimic complex GHMs. Further-
more, the application of the HE is not tied to the VIC model
and should be able to emulate other GHMs.

The VIC runoff product compares well to other prod-
ucts (see Figs. S1 and S2 in the Supplement), including
the University of New Hampshire/Global Runoff Data Cen-
tre (UNH/GRDC) runoff product (Fekete and Vorosmarty,
2011; Fekete et al., 2002) and the global streamflow product
(Dai et al., 2009). The scatterplot pattern of the VIC long-
term annual runoff product vs. the GRDC product (GRDC,
2017) matches well with that of the UNH/GRDC runoff vs.
the GRDC product (streamflow is transferred to the same unit
as runoff by dividing by the basin area), which means the
behavior of the VIC runoff product is similar to that of the
UNH/GRDC product. Further, the correlation coefficient of
the VIC and the UNH/GRDC long-term annual runoff is as
high as 0.83 across the global 235 basins (Fig. S2). This sug-
gests the reasonableness of the VIC runoff product because
the UNH/GRDC runoff is calibrated with the GRDC obser-
vations. At the same time, the discrepancies between the VIC
runoff products and the streamflow products (Fig. S2) may be
attributed to human activities, such as reservoir regulations
and upstream water withdrawals, which are not embedded in
the runoff but reflected in the streamflow. This is because the
VIC model simulates runoff in natural conditions, and then
a stand-alone routing model can be used to route these flows
downstream (Nijssen et al., 2001b). The routing model may
account for human activities such as water extractions and
reservoir operations (Haddeland et al., 2014). However, here
we use the VIC runoff under natural conditions as the bench-
mark product, which explains the discrepancies between the
VIC runoff and observed streamflow products.

Uncertainties arising from the runoff process in the VIC
model should be acknowledged. The implementation of dif-
ferent runoff generation schemes (e.g., TOPMODEL – TO-
Pography based hydrological MODEL) within the same
modeling framework is an alternative that can be adopted
in the future to explore the uncertainty range. A recent
inter-model comparison study shows that the VIC model
falls within the range of large model ensembles (Hatter-
mann et al., 2017). Notably, groundwater and its interaction
with river and land surface are not represented in the model.

Thus, the model may not be able to fully capture the hydro-
logic responses in areas where lateral flow and the three-way
streamflow–aquifer–land interactions are important. Further,
vegetation dynamics and water management that may affect
runoff are not considered in the model simulations. Nonethe-
less, the use of the HE documented here is not tied to the
VIC, and it could be used to emulate other GHMs of interest.

2.4 Model calibration

Typically, most applications of the abcd model utilize single-
objective optimization for total runoff (or streamflow) dur-
ing the calibration process to minimize the difference be-
tween measured and simulated streamflow (Bai et al., 2015;
Martinez and Gupta, 2010; Sankarasubramanian and Vogel,
2002). While this may lead to a good fit for simulated total
runoff, however, it may result in inappropriate partition of
total runoff between direct runoff and baseflow. To improve
the accuracy of the simulated total runoff and the partition
between direct runoff and baseflow, we introduce the base-
flow index (BFI) into the objective function.

Unlike the baseline model, the abcd model requires a cal-
ibration step for reasonable parameterization so as to enable
good prediction. As mentioned above, we incorporate BFI
into the objective function during the calibration process. On
one side, we maximize the Kling–Gupta efficiency (KGE)
(Gupta et al., 2009), which is used as a metric to measure
the accuracy of the simulated total runoff relative to the VIC
benchmark runoff. The KGE is defined as the difference of
unity and the Euclidian distance (ED) from the ideal point;
thus, we maximize KGE through minimizing the ED. The
KGE and ED are calculated as follows (Gupta et al., 2009):

KGE = 1 − ED, (1)

ED =

√

(r − 1)2 + (α − 1)2 + (β − 1)2, (2)

r =
Covso

σs · σs
, (3)

α = σs/σo, (4)

β = µs/µo, (5)

where r , α, β, and Covso are relative variability, bias, cor-
relation coefficient, and covariance between the simulated
and observed values (here we treat the VIC runoff as the ob-
served), respectively; µ and σ represent the mean and SD
(subscripts “s” and “o” stand for simulated and observed val-
ues). On the other side, we also nudge the simulated BFI to-
wards the benchmark BFI (here we treat the benchmark BFI
as the observed) – the mean BFI of the four products from
(Beck et al., 2013). Then, the objective function is as follows:

min(ED + abs(BFIobs − BFIsim)) , (6)

where min stands for minimizing the value in the parenthe-
sis, abs represents absolute value, ED is the Euclidian dis-
tance between the simulated and observed total runoff (Gupta
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et al., 2009), and BFIobs and BFIsim are the observed and sim-
ulated BFI, respectively. Here we treat the benchmark runoff
from the VIC and BFI from Beck et al. (2013) as observed
values. We then minimize the objective function for param-
eter optimization by utilizing a genetic algorithm (GA) rou-
tine (Deb et al., 2002). Note that for the distributed model
scheme, we aggregate the grid-level total runoff estimates to
basin level and then nudge it toward the basin-level bench-
mark total runoff during the calibration process.

2.5 Model simulations

To evaluate the predictability and efficiency of the baseline
and the abcd model so as to identify a suitable one to serve
as a HE, we have conducted a series of simulations. Specifi-
cally, for the baseline model, no simulations are needed as it
uses the interannual mean value for each month – 12 monthly
values – as prediction, so we just replicate the 12 monthly
runoff values for 1971–2010 and for each of the global 235
basins and then compare them against the benchmark runoff
product. For the abcd model, two sets of model simulations
across the global 235 basins are conducted, with one set
for calibration and the other one for validation, for both the
lumped and distributed model schemes. For the first set, we
run the model for each basin for the period of 1971–1990
to get basin-specific parameters by using the GA approach
(see Sect. 2.4). For the second set, using the parameters iden-
tified in the first set of simulation, we run the model for
the period of 1991–2010 to validate the model predictabil-
ity and also evaluate the computational efficiency. Model in-
puts and outputs in the distributed scheme are at a spatial
resolution of 0.5◦, whereas those in the lumped scheme are
all in lumped single units for each basin. All model simula-
tions are conducted at a monthly time step. Note that users
can run the identified HE for the global 235 basins, or for as
many basins as they want for either scheme, as all the related
basin-specific input data and calibrated parameters for both
schemes are open-source.

3 Results and discussions

3.1 Comparison of performances between the baseline

and the abcd model

Generally, we find that the baseline model performs worse
than the abcd model (Fig. 2). The baseline model exhibits
a lower global mean KGE value (0.61) than the lumped and
distributed schemes of the abcd model (0.75 and 0.79, re-
spectively). In addition, our analysis indicates that the incor-
poration of BFI into the objective function leads to a signif-
icant improvement in the partition of total runoff between
direct runoff and baseflow (Figs. 3 and S4), without compro-
mising predictability for total runoff, i.e., the global mean
KGE values for modeled total runoff with or without the
incorporation of BFI are almost the same (0.75 vs. 0.76).

Specifically, for the case of involving both the total runoff
and BFI in the objective function, the correlation efficiencies
(r) between the long-term annual benchmark and modeled
direct runoff and between benchmark and modeled baseflow
from the lumped scheme across global basins are both 0.98
(Fig. 3) and are much higher than those of 0.86 and 0.72 in
the case of only involving the total runoff in the objective
function (Fig. S4). Given the superiority of the abcd model
over the baseline model, we focus in the following sections
on evaluating the predictability and computational efficiency
of the abcd model and its potential to serve as a HE.

3.2 Evaluation of model predictability

In terms of total runoff, we find that the lumped and dis-
tributed schemes are comparably capable of simulating long-
term mean annual quantity, temporal variations, and spa-
tial patterns for the vast majority of river basins globally
(Figs. 3–5). Estimates of long-term mean annual total runoff
from both the lumped and distributed schemes match very
well with that of VIC total runoff across the 235 basins, with
a correlation coefficient (r) higher than 0.96, for both the cal-
ibration and validation period (Fig. 3). Similarly, the basin-
level estimates of long-term mean annual direct runoff and
baseflow also match well with those of the VIC across the
globe, for both schemes and both periods (Fig. 3). This sug-
gests that both schemes possess the capability of partitioning
total runoff.

Furthermore, both schemes display good capability of cap-
turing the seasonal variations in the total runoff for both the
calibration and validation period (Figs. 4 and S5). Mean-
while, although the spatial patterns of annual total runoff
from the lumped scheme present a general match with that
of the VIC, this does not reflect the spatial variations in-
side a basin, which are, however, captured by the distributed
scheme (Fig. 5). Likewise, overall much lower percentage
differences between the modeled runoff from the distributed
scheme and the VIC runoff product than those between the
VIC and the lumped scheme further corroborate the signifi-
cantly better performance of the distributed scheme (Fig. S6).
Both schemes still show large percentage differences in
some dry (e.g., North Africa) or cold regions (e.g., Tibetan
Plateau). This is because the runoff there is at a low magni-
tude, and thus small changes in runoff will lead to large per-
centage differences. Therefore, the distributed scheme pro-
vides overall slightly higher KGE (Fig. 6), with a global
mean KGE value of 0.79 as compared to 0.75 for the lumped
scheme (Fig. 2).

To ensure good model predictability for the major water
fluxes, we also evaluate the modeled ET estimates. The mod-
eled ET compares reasonably well with the VIC ET product
as well as with the mean synthesis of the LandFlux-EVAL
ET product (Mueller et al., 2013), displaying similar spatial
variations (Fig. S7). Likewise, the distributed abcd scheme
tends to have better capability in presenting spatial hetero-
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Figure 3. Comparison of basin-specific long-term annual total runoff, direct runoff, and baseflow estimates from both the lumped and
distributed abcd model schemes against VIC products, across the global 235 basins and for the calibration period of 1971–1990 and validation
period of 1991–2010. The labels are denoted as a combination of model scheme and period, where lump and dist stand for lumped and
distributed model scheme and cal and val represent the calibration and validation period, respectively. These denotations remain the same
for all figures in this work. Note that the basin-level VIC baseflow is derived by multiplying the gridded VIC long-term annual total runoff
and the mean of the four gridded baseflow index products from Beck et al. (2013) and then aggregating from grid level to basin level. The
basin-level VIC direct runoff is then calculated by subtracting baseflow from the total runoff.

geneity than the lumped one. In addition, the percentage dif-
ferences between our modeled ET and the VIC ET product
further confirm that the distributed scheme significantly out-
performs the lumped one (Fig. S8), with much lower dif-
ferences from the VIC ET product, although discrepancies
still exist in some extremely cold (e.g., Greenland) or dry re-
gions (e.g., North Africa), which is because small differences
in ET will lead to a large percentage difference in those re-
gions with low ET. Further, given that the changes in basin-
scale monthly soil moisture are relatively small, precipitation
should approximate to the sum of ET and runoff according to
the water mass balance; the good predictability of seasonality
in runoff as illustrated in Fig. 4 also reflects similar perfor-
mance for ET.

The distributed scheme appears to outperform the lumped
scheme in terms of goodness of fit, especially in some cold
(e.g., Arctic, northern European, interior Tibet) and in some
dry (e.g., North Africa) regions (Fig. 6). This is possibly be-
cause distributed inputs can reflect basin-level heterogene-
ity, and thus better capture the characteristic of the hydro-
logical conditions in those regions. However, neither scheme
performs well at the southern end of the Andes Mountains
(Fig. 6). This may be attributed to the complex land surface
characteristics in that mountainous area, which cannot be re-
solved due to the coarse spatial resolution. Moreover, the dis-
tributed scheme seems not to perform very well in some cold
regions (Fig. 6), which is possibly due to a lack of represen-
tation of permafrost in the model.
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Figure 4. Time series of basin-specific total runoff (Qtotal) from the VIC product and the lumped and distributed abcd schemes for the
world’s 16 river basins with top annual flow (Dai et al., 2009) during 1981–1990 (part of the calibration period 1971–1990). KGEl and
KGEd stand for the KGE value for the lumped and distributed scheme, respectively.

Previous studies investigating the credibility of lumped
and distributed hydrological models indicate that, in many
cases, lumped models perform comparably to or just as well
as distributed models (Asadi, 2013; Brirhet and Benaabidate,
2016; Ghavidelfar et al., 2011; Michaud and Sorooshian,
1994; Obled et al., 1994; Reed et al., 2004; Refsgaard
and Knudsen, 1996; Yao et al., 1998). However, distributed
models may have advantages for predicting runoff in un-
gauged watersheds (Reed et al., 2004; Refsgaard and Knud-
sen, 1996) and for capturing the spatial distribution of runoff
due to heterogeneity in rainfall patterns or in land surface
(Downer et al., 2002; Paudel et al., 2011; Yao et al., 1998).
Our results on the predictability of the lumped and dis-
tributed abcd model are in line with previous findings in the
literature.

The good agreement between our modeled water fluxes,
including total runoff, direct runoff, baseflow, and ET, and
the benchmark products provides confidence in the capabil-
ity of both the lumped and distributed schemes in estimating
temporal and spatial variations in major water fluxes across
the globe. In addition, to identify a suitable HE, the required
computation cost is another key factor as detailed below.

3.3 Evaluation of computational efficiency

While the performance of model predictability is compara-
ble for the lumped and distributed schemes as elucidated
above, great disparities still exist for the runtime of the two
schemes and the VIC model (Table S1 in the Supplement).

Take the Amazon Basin that covers a total number of 2002
0.5◦ grid cells as an example: it takes 11.05 min for model
calibration via the GA method for the distributed scheme but
only 0.16 min for the lumped one. A similar disparity is also
found for model simulation with calibrated parameters, with
a runtime of 0.03 and 3.20 s for a 1000-year simulation of
the Amazon Basin for the lumped and distributed schemes,
respectively. However, according to the authors’ experience,
it will take ∼ 1 week for the VIC model to accomplish the
same job, which is far more computationally expensive. In
general, the computational efficiency of the lumped scheme
is 2 orders of magnitude higher than the distributed one, al-
though that of the distributed one is still much higher than the
VIC (∼ 5 orders of magnitude) and many other GHMs and
LSMs. Note that all of the simulations here are conducted on
the Pacific Northwest National Laboratory (PNNL)’s Insti-
tutional Computing (PIC) Constance cluster using one core
(Intel Xeon 2.3 GHz CPU) with the same configuration.

3.4 Potential application of the abcd model as

a hydrological emulator

The good predictability and computational efficiency of both
the distributed or lumped schemes as elucidated in Sects. 3.2
and 3.3 suggest its suitability for serving as HEs that can
efficiently emulate complex GHMs (e.g., the VIC or others).
The source codes, input data, and basin-specific parameters
across the globe for both the lumped and distributed schemes
are open-source and well-documented, which will make the
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Figure 5. Spatial patterns of long-term annual total runoff (mmyr−1) during 1971–1990 across the global 235 basins: (a) VIC runoff product,
(b) total runoff estimates from the lumped abcd scheme (Lump: lumped), and (c) total runoff estimates from the distributed abcd scheme
(Dist: distributed).

HE ready to use and facilitate the schemes’ wide and easy
use with minimal efforts.

The choice of either the distributed or lumped scheme as
HE depends on the user’s specific needs. There is a trade-
off between the model predictability and computational ef-
ficiency. While the distributed scheme tends to better cap-
ture the spatial heterogeneity of water fluxes and can produce
grid-level outputs that the lumped scheme cannot, it incurs a
higher computational cost than the lumped scheme. For ap-
plications that aim to strike a balance between predictabil-
ity and computation cost, such as a practical assessment of
water resources or an estimation of water supply for inte-
grated assessment models (IAMs) or a quantification of un-
certainty and sensitivity analyses, it would be reasonable to
employ the lumped scheme as a HE. The lumped scheme is
especially advantageous due to its minimal calibration and
computational cost, parsimonious efforts for model imple-

mentation, and reasonable fidelity in estimating major water
fluxes (e.g., runoff, ET). For users from the IAM community,
the lumped scheme might be sufficiently suitable for their
needs since (1) the lumped scheme can operate at the same
spatial resolution at which IAMs typically balance water de-
mands and supplies (Edmonds et al., 1997; Kim et al., 2006,
2016) and (2) the inherent uncertainty of the lumped scheme
is likely comparable to or even overshadowed by the intrinsic
uncertainty of IAMs (Kraucunas et al., 2015; O’Neill et al.,
2014). Similarly, for users who aim to conduct uncertainty
and sensitivity analyses, the high computational efficiency of
the lumped scheme allows the users to emulate the hydro-
logical model of interest (e.g., GHMs, LSMs) and then run
a large number of simulations to conduct the model’s uncer-
tainty and sensitivity analysis (Scott et al., 2016). Therefore,
the high computational efficiency makes the lumped scheme
more appealing as a HE in these cases. However, if the re-
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Figure 6. The spatial pattern of the Kling–Gupta efficiency (KGE) for the total runoff estimates of the global 235 basins for the calibration
period of 1971–1990: (a) the lumped abcd scheme; and (b) the distributed abcd scheme.

search questions hinge on the gridded estimates or empha-
size the spatial heterogeneity of the water fluxes or pools, it
would be more desirable to deploy the distributed scheme as
a HE instead. For example, a follow-up work is coupling the
distributed scheme of the HE with a widely used IAM, the
Global Change Assessment Model (GCAM; Edmonds et al.,
1997) and then using the coupled model to investigate the im-
pacts of a variety of land use policies on global water scarcity,
where the HE is used to estimate grid-level runoff globally
under different land use policies.

While many studies indicate that basin runoff generation
is sensitive to factors such as physical characteristics, spa-
tiotemporal variability in storage distribution, and forcing in-
put, evidence also shows that basin response can be captured
using a handful of parameters (Hsu et al., 1995; Young and
Parkinson, 2002). In this study, the lumped scheme of the HE
ignores the spatiotemporal variability in basin characteristics
by averaging the input forcing data; consequently, the asso-
ciated responses in within-basin runoff or ET variations can-
not be captured. In contrast, the distributed scheme presents
a better performance in capturing spatiotemporal variability
in runoff and ET with the use of the same input data, and
without increasing the number of parameters. Thus, the use
of the distributed scheme is preferred when the tradeoff in
the computational efficiency is not a constraining factor.

Moreover, a combination of a top–down approach (Siva-
palan et al., 2003) and a multi-objective approach to model
evaluation (Gupta et al., 1998) could be used to explore in-

ternal basin behavior, wherein the top–down approach would
start from a simple structure and then progressively expand
based on its caveats in reproducing overall basin behavior
(e.g., Jothityangkoon et al., 2001). In this study we adopt
a similar framework, by starting from a baseline model and
then expanding to the abcd model with snow representation,
also by incorporating the baseflow index into the objective
function to exert a multi-objective approach. Our assessment
indicates that a baseline model characterized by mean sea-
sonal cycle still holds promise in predicting runoff at basins
with small variability in basin characteristics, such as the
basins of the Ob’, Lena, Yenisey, Siberia and Mackenzie in
the Arctic area, where the baseline model yields KGE values
of greater than 0.90 from our evaluation. Further, while Mar-
tinez and Gupta (2010) indicated that the incorporation of
the snow component and an additional snow parameter into
the original abcd model has greatly improved model perfor-
mance in snow-dominated regions, areas without prevailing
snow (e.g., the tropical zone) could still utilize the original
version of the abcd model to keep the model as parsimo-
nious as possible without compromising model predictabil-
ity. In addition, although our results reveal that the incorpo-
ration of the baseflow index into the objective function gen-
erally improves the model performance in the partitioning
of runoff between direct runoff and baseflow, simply em-
ploying a single-objective approach (i.e., only involving total
runoff) also works well for some basins such as northern inte-
rior Africa and interior Australia. Thus, the single-objective
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Figure 7. Parameter-induced uncertainty in total runoff estimate of the lumped abcd scheme for the world’s 16 river basins with top annual
flow. The lines of VIC, Lump and Dist stand for the VIC benchmark runoff product and total runoff estimates from the lumped and distributed
abcd scheme with the calibrated parameters, respectively, and the gray area represents the spread derived from variations in parameters of
the lumped scheme.

approach is also acceptable for those basins with the ad-
vantage of simplicity without compromise in performance.
In short, according to specific basin characteristics and the
research needs, suitable model complexity and the number
of parameters could be identified by following the above-
mentioned scenarios, such that either the baseline model or
a reduced format of the HE (e.g., without snow representa-
tion or single-objective) could be potentially utilized with the
merits of simplicity, reasonable predictability, and computa-
tional efficiency rather than adopting the full format of the
HE. This HE could be used to emulate a wide range of mod-
els with different spatial and temporal complexities, and its
performance may vary from model to model. Thus, examin-
ing and comparing the extent to which the HE could mimic
the behaviors of different GHMs and LSMs is of future re-
search interest to us. In addition, future research can extend
this work by systematically investigating the role of differ-
ent levels of inputs and parameters on model performance in
different basins across the globe.

Based upon our open-source HE and the validated basin-
specific parameters across the globe, researchers can easily
investigate the variations in water budgets at the basin, re-
gional, or global scale of interest, with minimum require-

ments regarding input data, efficient computation perfor-
mance, and reasonable model fidelity. Likewise, researchers
can utilize the framework of the HE with any alternative
input data or recalibrate the HE to emulate other complex
GHMs or LSMs of interest to meet their own needs.

3.5 Case study for uncertainty analysis

To demonstrate the capability of the examined abcd model
serving as a HE, we use the lumped scheme to conduct
parameter-induced uncertainty analysis for the runoff sim-
ulation at the world’s 16 river basins with top annual flow
(Dai et al., 2009). Specifically, for each of the 16 basins, we
first apply ±10 % change to each of the five calibrated pa-
rameters (a, b, c, d , m) to compose varying ranges; note that
we just truncate the range to those ranges listed in Table 1
if the ±10 % change exceeds the valid range. Then we ran-
domly sample the five parameters from corresponding ranges
for 100 000 times (i.e., 100 000 combinations of parameters).
After that, we run the lumped scheme 100 000 times for each
basin with the 100 000 combinations of parameters to ex-
amine the parameter-induced uncertainty in total runoff. The
uncertainty analysis indicates that most basins are robust to
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changes in parameters, except for the Tocantins, Congo and
La Plata (Fig. 7). In other words, for the basins Congo and La
Plata, slight changes in parameters may lead to large changes
in runoff estimates. Then the uncertainty in the calibrated pa-
rameters for the two basins may lead to large bias in the sim-
ulated runoff, which may more or less explain why modeled
runoff for the two basins tends to have higher biases than
that for other basins (Fig. 4). Notably, the 100 000 simula-
tions only take ∼ 80 s on a Dell Workstation T5810 with one
Intel Xeon 3.5 GHz CPU, which demonstrates the extraordi-
nary computational efficiency of the lumped scheme and its
advantage for serving as a HE.

4 Conclusions

Toward addressing the issue that many global hydrologi-
cal models (GHMs) are computationally expensive and thus
users cannot afford to conduct a large number of simulations
for various tasks, we firstly construct a hydrological emu-
lator (HE) that possesses both reasonable predictability and
computation efficiency for global applications in this work.
Built upon the widely used abcd model, we have adopted
two snow-related parameters from literature rather than tun-
ing them for parameter parsimony and also have improved
the partition of total runoff between the direct runoff and
baseflow by introducing the baseflow index into the objec-
tive function of the parameter optimization. We then evalu-
ate the appropriateness of the model serving as an emulator
for a complex GHM – the VIC – for both the lumped and
distributed model schemes by examining their predictability
and computational efficiency.

In general, both distributed and lumped schemes have a
comparably good capability of simulating spatial and tem-
poral variations in the water balance components (i.e., to-
tal runoff, direct runoff, baseflow, evapotranspiration). Mean-
while, the distributed scheme has slightly better performance
than the lumped one (e.g., capturing spatial heterogeneity),
with a mean Kling–Gupta efficiency of 0.79 vs. 0.75 across
the global 235 basins, and it also provides grid-level esti-
mates that the lumped scheme is incapable of. Additionally,
the distributed scheme performs better in extreme climate
regimes (e.g., Arctic, North Africa) and Europe. However,
the distributed scheme incurs 2 more orders of magnitude of
computational cost than the lumped one. A case study of an
uncertainty analysis with 100 000 simulations for each of the
world’s 16 basins with top annual streamflow further demon-
strates the lumped scheme’s extraordinary advantage in terms
of computational efficiency. Therefore, the lumped scheme
could be an appropriate HE: it has reasonable predictability
and high computational efficiency. At the same time, the dis-
tributed scheme could be a suitable alternative for research
questions that hinge on grid-level spatial heterogeneity. Fi-
nally, upon open-sourcing and documenting it well, the HE
is ready to use and it provides researchers with an easy way to

investigate the variations in water budgets at a variety of spa-
tial scales of interest (e.g., basin, region, or globe), with min-
imum requirements of efforts, reasonable model predictabil-
ity, and extraordinary computational efficiency.

Code and data availability. The hydrological emulator (HE) is
freely available on the open-source software site GitHub (https:
//github.com/JGCRI/hydro-emulator/). We have released the ver-
sion of the specific HE v1.0.0 referenced in this paper at https:
//github.com/JGCRI/hydro-emulator/releases/tag/v1.0.0, where the
source code (written in Matlab), all related inputs, calibrated pa-
rameters and outputs for each of the global 235 basins as well as
the user manual are available. In addition, the HE documented here
has been translated into Python and is being incorporated into Xan-
thos (Li et al., 2017), which is an open-source global hydrologic
model that allows users to run different combinations of evapotran-
spiration, runoff, and routing models. The HE will be the default
runoff model used in Xanthos 2.0 and will be available on GitHub
(https://github.com/JGCRI/xanthos).
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Appendix: Descriptions and equations of the abcd model

The abcd model was first introduced by Thomas (1981), and
Martinez and Gupta (2010) added snow processes into the
model. In this work, we adopted the snow scheme in Mar-
tinez and Gupta (2010):

Snowi =















0 T rain < T min
i

Pi ·
T rain−T min

i

T rain−T snow T snow < T min
i < T rain

Pi T min
i < T snow,

(1)

SPi = SPi−1 − SNMi + Snowi, (2)

SNMi =























0 T min
i < T snow

(SPi−1 + Snowi) · m

·
T rain−T min

i

T rain−T snow T snow < T min
i < T rain

(SPi−1 + Snowi) · m T rain < T min
i ,

(3)

where Pi , SPi , SNMi , and Snowi are total precipitation,
snowpack storage, snowmelt, and the precipitation as snow-
fall at time step i, respectively; T rain (or T snow) stands for the
temperature threshold above (or below) which all precipita-
tion falls as rainfall (or snow), and T min

i is the minimum tem-
perature at time step i, and the parameter m is the snowmelt
coefficient. Rather than keeping the three parameters T rain,
T snow, and m, we adopt the T rain value of 2.5 ◦C and T snow

value of 0.6 ◦C (Wen et al., 2013) and thus only keep one
snowmelt-related parameter m in the model, in order to alle-
viate the computation load during the parameter optimization
process.

The model defines two state variables “available water”
and “evapotranspiration opportunity”, denoted as Wi and Yi ,
respectively. The Wi is defined as

Wi = SMi−1 + Raini + SNMi ·, (4)

where SMi−1 is soil moisture at the beginning of time step i;
Raini and SNMi are rainfall and snowmelt during period i.

Yi stands for the maximum water that can leave the soil
as evapotranspiration (ET) at period i, and it is defined as
below:

Yi = ETi + SMi, (5)

where ETi is the actual ET at time period i and SMi is soil
moisture at the end of time step i. Further, Yi has a nonlinear
relationship with Wi as

Yi =
Wi − b

2a
−

√

(

Wi − b

2a

)2

− Wi · b/a, (6)

where a and b are parameters detailed in Sect. 2.1.2.

The allocation of Wi between ETi and SMi is estimated
by assuming that the loss of soil moisture by ET will be pro-
portional to potential evapotranspiration (PET) as

dSM

dt
= −PET ·

SM

b
, (7)

where PET is calculated by using the Hargreaves–Samani
method (Hargreaves and Samani, 1982).

After integrating the above differential equation and as-
suming SMi−1 = Yi , SMi can be derived as

SMi = Yi · exp(−PETi/b) . (8)

Then, ETi can be calculated through Eq. (5).
In the model framework, Wi −Yi is the sum of the ground-

water recharge (RE) and direct runoff (Qd), and the alloca-
tion is determined by the parameter c:

REi = c · (Wi − Yi) , (9)

Qd = (1 − c) · (Wi − Yi) . (10)

The baseflow from the groundwater (GW) pool is modeled
as

Qb = d · GWi, (11)

where d is a parameter reflecting the release rate of ground-
water to baseflow. Then the total runoff (Qt) is the sum of the
direct runoff and baseflow:

Qt = Qd + Qb. (12)

The GWi is the sum of groundwater storage at the end of
the last time step and the groundwater recharge minus the
baseflow, and GWi is derived as

GWi =
GWi−1 + REi

1 + d
. (13)

Then, all the water fluxes and pools are solved.
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