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Abstract

Many concrete structures located in cold climates and in contact with free water are cast
with air-entrained concrete. The presence of air pores significantly affects the absorption
of water into the concrete, and it may take decades before these are fully saturated. This
generally improves the long-term performance of such structures and in particular their frost
resistance. To study the long-term moisture conditions in air-entrained concrete, a hygro-
thermo-mechanical multiphase model is presented, where the rate of filling of air pores with
water is described as a separate diffusion process. The driving potential is the concentration of
dissolved air, obtained using an averaging procedure with the air pore size distribution as the
weighting function. The model is derived using the thermodynamically constrained averaging
theory as a starting point. Two examples are presented to demonstrate the capabilities and
performance of the proposed model. These show that the model is capable of describing the
complete absorption process of water in air-entrained concrete and yields results that comply
with laboratory and in situ measurements.

Keywords Air-entrained concrete · Multiphase model · Long-term absorption · Diffusion ·
Pore size distribution

1 Introduction

Durability is a major concern in all concrete structures, but the most important deterioration
mechanisms vary depending on the surrounding environment and application. Many of the
most common durability issues are closely related to the moisture state inside the structure
or to the transport of liquids through it. Both of these are in turn dependent on the pore
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structure in the concrete material. Concrete structures located in cold climates and in long-
term contact with free water, for example hydropower dams, are often cast with air-entrained
concrete to reduce the risk of frost damage. This type of concrete contains an artificially
created network of large air pores. According to Powers’ hydraulic pressure theory (Powers
1945), frost damage is caused by the hydraulic pressure that arises due to the transport of
excess water that is expelled from the freezing sites because the water volume increases by
approximately 9% upon freezing. If the artificially created air pores are not fully saturated,
they will act as reservoirs into which the excess water can enter and freeze without exerting a
high pressure. The overall freezing-induced pressure is thus reduced and consequently also
the risk of frost damage. Fagerlund (1977) has, however, shown that a certain threshold value
exists, the critical degree of saturation, above which frost damage inevitably occurs. For
ordinary air-entrained concrete mixtures, this value ranges between approximately 0.75 and
0.90, which normally means that the entrained air pores at least are partially saturated with
water.

The smaller gel and capillary pores in concrete normally absorb water through capillary
suction, but the air pores absorb water due to other processes. The long-term absorption of
water into air pores is primarily caused by the dissolution of trapped air into the surrounding
pore water, which then slowly diffuses towards a free surface. As the air leaves the material, it
is replaced by water through suction from the external reservoir. The rate of this process is low,
and it may take decades before the air pores are fully saturated. Measurements of moisture
distributions in porous materials containing air pores that are in contact with free water show
that there is a sharp moisture gradient at the side in contact with water (Rosenqvist 2016;
Hall 2007), and these observations have been attributed to the long-term absorption of water
into air pores. Fagerlund (1993) presented a theoretical foundation for this long-term water-
filling mechanism and derived two models to estimate the degree of water saturation in air
pores based on a local diffusion approach between neighbouring air pores of different sizes.
This water-filling process has been modelled in several studies, but completely separated
from other mass transport processes (e.g. Fagerlund 1993, 2004; Liu and Hansen 2016;
Hall and Hoff 2012; Janz 2000; Bentz et al. 2002). A drawback of this approach is that these
models cannot describe the long-term moisture distribution in, for example, a water-retaining
structure since this is also governed by other transport processes. Furthermore, air pores also
absorb water due to freeze–thaw cycles, which can be explained by a mechanism that Coussy
(2005) called cryo-suction where water is sucked into air pores due to a depressurization of
pore water in the vicinity of ice formed inside air pores. However, in, for example, water-
retaining structures, this process is intermittent and often limited to surface regions that
are in contact with water and also directly exposed to the ambient climate. In contrast, the
aforementioned long-term absorption process is continuously active in all parts of a structure
that are in contact with free water.

The absorption of water into small pores caused by capillary suction has been extensively
studied in the literature. This unsaturated flow of water can be described by various types of
models. A basic approach is to use the Washburn equation where the capillary flow is idealized
as taking place in a bundle of parallel capillary tubes (Liu et al. 2014). A more advanced
approach is to use a phenomenological diffusion-type model in which the unsaturated flow
is described by a single transport coefficient that combines the transport of liquid water and
water vapour. Several studies in the literature have shown that this type of model yields results
that comply well with measurements (e.g. Bažant and Najjar 1972; Hall 1977; Lockington
et al. 1999; Janz 2000; Li and Li 2013). A third type of model that can be used is a coupled
multiphase model, in which each phase of the porous medium is treated separately. Concrete
is usually divided into three phases: solid, liquid and gas. Governing equations are formulated
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for each phase either by using a purely macroscopic approach or by starting on the microscale
and using averaging theorems to upscale the equations to the macroscale (Hassanizadeh and
Gray 1979; Gray and Miller 2005). The major benefit of using a multiphase model is that
different transport processes can be formulated separately and also be coupled, which means
that different phase changes can be handled efficiently and consistently in the model. This
type of model has been used extensively to describe unsaturated flow in concrete for various
applications (e.g. Gawin et al. 1995; Chaparro et al. 2015; Johannesson and Nyman 2010;
Schrefler and Pesavento 2004; Baroghel-Bouny et al. 2011; Li et al. 2016). Such multiphase
models have also been formulated to consider the dissolution of air in the pore water (see
e.g. Olivella et al. 1994, 1996; Collin et al. 2002; Khalili and Loret 2001). These concepts
were further developed in a model presented by Gawin and Sanavia (2010) to study the effect
of the dissolved air on cavitation at strain localization in soil. In their model, the transport of
dissolved air was neglected, but they later presented an extended version of the model taking
this into account (Gawin and Sanavia 2009). However, unsaturated flow models that also
incorporate the long-term water absorption into air pores due to the dissolution and diffusion
of trapped air inside these are scarce in the literature on mass transport in concrete.

The purpose of the present study is to develop a hygro-thermo-mechanical multiphase
model which includes the slow absorption of water into air pores caused by the dissolution
and diffusion of trapped air. Hence, it aims to describe the long-term absorption of water into
air-entrained concrete. It should consequently be possible to predict the moisture distributions
observed in situ and in laboratory measurements showing sharp moisture gradients towards
the surface in contact with free water (Rosenqvist 2016; Hall 2007). The study is limited to the
absorption of water and does not, therefore, consider the hysteresis effect in wetting–drying
cycles or other processes such as cryo-suction. The rate of water absorption into the air pores
is herein described by a diffusion model, where the driving potential is the concentration
gradient of dissolved air in the pore water. It is proposed that this concentration is obtained
through an averaging procedure, which uses the air pore size distribution as a weighting
function.

2 Absorption of Water in Air-Entrained Concrete

The absorption of water into concrete depends largely on the microstructure of the concrete,
and especially on its pore structure. The pore network includes a wide range of pore sizes,
but these are often divided into two categories, gel pores and capillary pores, following the
definition of Powers and Brownyard (1946). The limits of the two categories are somewhat
arbitrary in the literature but, according to Jennings et al. (2015), it is reasonable to categorize
pores with a radius between 2 and 8 nm as gel pores, while pores with a radius between 8 nm
and 10 µm are defined as capillary pores. A third type of pore can also be identified in many
concretes. These pores are larger than the capillary pores, and they will hereafter be referred
to as air pores and categorized as pores larger than 10 µm, as is commonly done in the
literature (e.g. Fagerlund 1993, 2004; Mayercsik et al. 2016). The gel pores and capillary
pores are basically a product of the chemical reactions between cement and water during the
hardening of concrete (Jennings et al. 2008), while the air pores are normally caused either by
unintended entrapped air in the concrete during mixing or by an air entrainment agent added
to the mix in order to create artificial air pores, for example to improve the frost resistance.
Since the focus herein is on the long-term absorption of water into air pores, the gel pores
and capillary pores are lumped together and called capillary pores, unless otherwise stated.
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Fig. 1 Schematic absorption isotherm for air-entrained concrete, reproduction from (Fagerlund 2004)

2.1 Moisture Fixation

The fixation of moisture in concrete is related to both chemically and physically bound water.
The first type is due to chemical reactions between cement and water during hardening while
the latter is caused by the driving force to reach equilibrium with the ambient environment.
At low moisture contents, water is physically bound to the pore surfaces through adsorption,
but at high moisture contents, water in the moist air condenses on menisci that are formed in
the porous network. For porous materials at equilibrium with the ambient air, the moisture
storage capacity is normally described by a sorption isotherm. These also reflect the pore
size distribution of the porous medium, and it is possible to transform a sorption isotherm
into a pore size distribution and vice versa. A schematic absorption isotherm for air-entrained
concrete is shown in Fig. 1. Three regions are indicated in this isotherm, representing different
mechanisms of moisture fixation. In the hygroscopic region between relative humidities of
0% and 98%, water is bound by adsorption but also by capillary condensation of water vapour
from moist air. For moisture levels above a relative humidity of 98%, water absorption is
caused by capillary suction from a free water surface and this region is thus called the capillary
region. The distinction between the hygroscopic and capillary regions is, however, fictitious,
and in reality they overlap (Fagerlund 2004). At the state denoted capillary saturation in
Fig. 1, the relative humidity is 100% and all the capillary pores are saturated with water
but the air pores are still filled with gas. When water is absorbed into a porous medium due
to capillary suction from a free water surface, air in coarser pores becomes trapped. This
follows from the Young–Laplace equation, which states that the capillary suction potential
is inversely proportional to the pore size, so that when water in finer pores reaches coarser
pores, the suction potential becomes almost zero and the air becomes trapped. Even though
the suction potential is by definition zero at this state, the air pores will slowly fill with water
until full saturation has been reached, but this is due to dissolution and diffusion of the trapped
air; see Sect. 2.3. This process is schematically shown in the absorption isotherm in Fig. 1
as a vertical increase in the degree of saturation at a constant relative humidity of 100%, and
it is called the over-capillary region.
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Fig. 2 Typical curve from an absorption test on air-entrained concrete, together with a schematic illustration
of how a fictitious pore system is filled with water during absorption

2.2 Absorption from a FreeWater Surface

When a concrete surface comes into contact with free water, the concrete starts to absorb
water due to capillary suction. A typical curve of an absorption test on a thin air-entrained
concrete specimen is shown in Fig. 2. The curve shows the volume of water absorbed by the
specimen per unit surface area in contact with water as a function of time. The volume of
water absorbed has been shown to be proportional to the square root of time, and the results
of absorption tests are normally plotted as a function of this variable instead of linear time
(Hall 1977). Two distinct slopes can be identified in the curve, where the initial steep slope
corresponds to the fast absorption of water due to capillary suction. The figure also includes
a schematic illustration of how a fictitious pore system is filled with water during absorption,
where the initial uptake of water corresponds to state A. At the intersection between the two
slopes, denoted state B or the nick point, capillary saturation is reached, and the water content
thereafter continues to increase with time but at a much slower rate. This part of the curve
(state C) corresponds to the filling of the air pores by water, which is governed by dissolution
and diffusion of the trapped air. Following the notations in ASTM C1585-13 (2013), the two
slopes are denoted initial and secondary absorption and they are expressed in terms of the
sorptivity S. This material property was first introduced by Hall (1977) for porous building
materials and is defined as

S = I√
t

(1)

where I is the volume of absorbed water normalized with respect to the surface area in contact
with water and t is time. Results from several studies have shown that the initial sorptivity
depends largely on the initial moisture content and decreases as the initial moisture content
increases (e.g. Hall 1989; Li et al. 2011; Castro et al. 2011). The driving potential of the
initial absorption is the capillary suction potential, which depends on the smallest pores
not yet filled with water. At high initial moisture contents, the smallest pores not filled with
water are larger in size compared to an initial state with a lower moisture content. The driving
potential, therefore, decreases and the rate of water absorption is slower. This dependence
has not, however, been observed for the secondary sorptivity since it is not governed by the
capillary suction potential. Multiphase models of the type used in this study have been shown
by, for example, Baroghel-Bouny et al. (2011) to accurately describe the initial absorption
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process from a free water surface in concrete. Multiphase models that also include the long-
term secondary absorption of water are, however, scarce in the literature.

2.3 Long-TermWater Absorption

As mentioned previously, the slow secondary absorption of water in air-entrained concrete
is a consequence of the air pores being filled with water. This occurs due to a mechanism
whereby the trapped air is dissolved in the surrounding pore water and then transported
by diffusion to larger pores or to the boundary of the material (Fagerlund 1993; Hall and
Hoff 2012; Liu and Hansen 2016). The air bubbles inside the air pores are subjected to an
overpressure because of the meniscus that arises at the gas–water interface as a result of the
surface tension between the two phases. This overpressure is described by the Young–Laplace
equation:

�Pap = 2σ

r
(2)

where �Pap is the gas overpressure inside the air pores, σ is the surface tension between air
and water and r is the pore radius. This relationship implies that the overpressure is inversely
proportional to the pore radius, and the pressure inside smaller pores is thus higher. According
to Henry’s law, the concentration of dissolved air in water is proportional to the absolute gas
pressure, and consequently the concentration of air in the pore water surrounding smaller
pores is higher. This relationship can be written as

ca =
(

P0 + �Pap
)

kH = PapkH (3)

where ca is the concentration of air in the pore water, P0 is a reference pressure normally set
to 1 atm, Pap is the absolute gas pressure inside the air pores and kH is the solubility constant
of air in water. Hence, it follows that air diffuses from smaller to larger pores inside the
material and ultimately to the outside boundary. As the air diffuses to the outside boundary
of the material, it is replaced by water through suction from the outside reservoir. If a material
specimen is fully immersed in water, an equilibrium state can only be reached when all the
air pores are completely filled with water since the largest pore of the system is the reservoir
itself (Janz 2000).

Fagerlund (1993) derived two models that can be used to establish a time-dependent
relationship for the degree of water saturation in the air pores, based on the air pore size
distribution. Both models consider the local diffusion of air between air pores of different
sizes, but they differ in one fundamental assumption. In the first model, it is assumed that
all air pores start to absorb water at the same time and at the same rate. Thus, when a pore
of a certain size is fully saturated, all larger pores are only partially saturated with water.
In the second model, a pore does not start to fill with water until all smaller pores are fully
saturated. Furthermore, Fagerlund points out that the second model is more reasonable in
a thermodynamic perspective since it represents a lower state of free energy in the system.
This was confirmed by comparing values obtained using the two models with experimental
results. However, these two models require parameters that are difficult to determine and must
consequently be estimated. Hall and Hoff (2012) presented a sharp front model to describe
the filling of air pores with water, but also this model requires a number of parameters that
must be estimated. In an effort to eliminate these uncertainties, Liu and Hansen (2016) instead
developed a geometrical model based on Fagerlund’s work to approximate the time to reach
a certain critical degree of saturation within the material. However, this model requires that
an absorption test be performed in order to determine some of its parameters.
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3 Model for Filling of Air Pores withWater

In the current study, the long-term absorption of water into air pores is described by a global
diffusion model; the term “global” is in contrast to the models derived by Fagerlund (1993)
which consider local diffusion between neighbouring air pores of different sizes within the
concrete material. Fagerlund also described the basis for a global diffusion model, where
the concentration gradient is given by the average radius of the remaining air pores not
filled with water. No relationships were, however, given to determine this concentration
gradient within the material. It is here proposed that this concentration gradient can be
determined by averaging the gas overpressure in the air pores not yet filled with water. This
averaging procedure to calculate the gas pressure is, however, only applicable and used for
moisture states above capillary saturation, i.e. when air is trapped inside the air pores. For
moisture states below capillary saturation, the gas pressure is instead governed by the gas flow
through the material. Following Fagerlund’s second model, it is assumed that the air pores are
consecutively filled with water starting from the smallest air pores. Utilizing a cumulative air
pore size distribution as the weighting function and the Young–Laplace equation to calculate
the overpressure in a spherical pore of radius r , the average overpressure can be calculated
as

�P̄ap(rsat) =

∫ ∞

rsat

dVap

dr

2σ

r
dr

∫ ∞

rsat

dVap

dr
dr

(4)

where �P̄ap is the average gas overpressure in the air pores, rsat is the radius of the largest
air pore filled with water and Vap is the cumulative air pore size distribution. To establish a
relationship that describes the current degree of gas saturation as a function of �P̄ap, it is
first necessary to determine the degree of gas saturation in the air pores as a function of the
radius rsat. The latter relationship can be defined as

Ŝg
a (rsat) =

∫ ∞

rsat

dVap

dr
dr

∫ ∞

rmin

dVap

dr
dr

(5)

where Ŝ
g
a is the degree of gas saturation in the air pores ranging from zero to one and rmin is the

minimum air pore radius considered. By combining Eqs. (4) and (5), a relationship between

�P̄ap and Ŝ
g
a can be established. Its typical shape is shown in Fig. 3 for three different air pore

size distributions, which are also used in the numerical examples presented in Sect. 6. Note
that all three distributions sum to the same total air pore content, but that they contain different
volume fractions of fine air pores. Using Henry’s law defined in Eq. (3), the concentration
of dissolved air in the capillary pore water can be determined from the calculated value of
�P̄ap, while the boundary concentration is determined by the ambient conditions at the free
surface. The diffusion of dissolved air can be described by Fick’s second law of diffusion,
which in this case can be written as

∂
(

Ŝ
g
a εaρ

g
)

∂t
+ ∇ · (−τDaw∇ca) = 0 (6)
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where εa is the volume fraction of air pores, ρg is the air density, τ is a tortuosity factor
accounting for a longer diffusion path inside the porous network and Daw is the diffusivity
tensor of air in water. In Fagerlund’s models, the rate of diffusion of dissolved air is assumed
to be uniform in the region that has reached capillary saturation. However, Fagerlund (2004)
states that the distance to the free surface obviously has an influence on the long-term rate of
absorption since the dissolved air must be transported through a longer path as the thickness
increases. This effect is not taken into account in his two models, but is accounted for in
our proposed global diffusion model since the diffusion rate depends on the concentration
gradient of dissolved air. The proposed model also differs from the sharp front model derived
by Hall and Hoff (2012), which assumes a linear concentration gradient over a fully saturated
region propagating from the boundary surface.

The incorporation of the global diffusion model in the set of governing equations repre-
senting the complete multiphase system is described in Sect. 4, and the different parameters
in Eq. (6) are further described in Sect. 5.3.

4 MultiphaseModel of Concrete

The basis for the derivation of the hygro-thermo-mechanical multiphase model is the ther-
modynamically constrained averaging theory (TCAT) developed by Gray and Miller (2005,
2014), which is a framework that can be applied to a generic multiphase porous medium.
Within TCAT, balance equations are first derived at the microscale of the medium and then
upscaled through averaging theorems to the macroscale.

Concrete is here considered to be a porous medium consisting of three phases: liquid water
(w), gas (g) and solid (s). The gas phase is treated as an ideal mixture of water vapour (W) and
dry air (D). The process of dissolving trapped air in the liquid phase is indirectly considered
in the multiphase system. In principle, the filling of air pores with water is included as a mass
sink in the gas phase, where the removed gas causes a convective flow of liquid water to the air
pores, replacing the gas. The rate of this process is controlled by the global diffusion model,
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which takes into account the dissolution of trapped air. In the following subsections, the
governing balance equations for mass, energy and momentum are derived for the complete
multiphase porous medium including the effect of the filling of air pores with water. Before
deriving the balance equations, the following definitions must be introduced.

The volume fraction of each phase is denoted εα where α denotes one of the three phases,
liquid water, gas or solid (w, g, s). It follows that

∑

α

εα = 1 (7)

The total porosity of the medium including both air and capillary pores is denoted ε and is
defined as

ε = 1 − εs (8)

but the total porosity is divided into air and capillary porosity such that

ε =
∑

γ

εγ (9)

where γ denotes either air pores (a) or capillary pores (c). A pore volume fraction ηγ of each
pore type is also introduced:

ηγ = εγ

ε
(10)

The degree of saturation S f of the two fluid phases occupying the pore network in the
concrete is defined as

S f = ε f

ε
(11)

where the index f indicates one of the two fluid phases (w, g). Following the earlier definitions
in Eqs. (7) and (8), it can be concluded that

∑

f

S f = 1 (12)

To account for the long-term water absorption into air pores, the total degree of saturation is
split between air pores and capillary pores, by weighting the total degree of saturation with
respect to the pore volume fractions defined in Eq. (10). Formally, this gives

S f =
∑

γ

S f
γ =

∑

γ

Ŝ f
γ ηγ (13)

where S
f
γ and Ŝ

f
γ are the weighted and unweighted degrees of saturation of fluid phase f in

pore type γ , respectively.
The definitions introduced are then used to derive the governing equations of the hygro-

thermo-mechanical multiphase model. However, the derivation starts not from the microscale
but instead from the macroscopic balance equations for a generic porous medium derived
using the TCAT. A complete derivation of the general macroscopic balance equations used
herein can, for example, be found in (Gray and Miller 2014). It should, however, be noted
that small displacements are assumed, which means that no difference is made between the
material and the spatial reference frame.
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4.1 Mass Balance Equations

The general macroscopic mass balance for a species i dispersed in an arbitrary phase α can
be expressed as

∂
(

εαραωi ᾱ
)

∂t
+ ∇ ·

(

εαραωi ᾱvᾱ
)

+ ∇ ·
(

εαραωi ᾱuiα

)

− εαr iα −
∑ iκ→iα

M = 0 (14)

where ρα is the density of phase α, ωi ᾱ is the mass fraction of a species i dispersed in phase

α and is defined by ρi ᾱ = ραωi ᾱ , in which ρi ᾱ denotes the mass concentration of species i

in phase α. The term r iα is a reaction term that can be used to describe chemical reactions

between species in the phase while
iκ→iα

M is a source term that accounts for the mass exchange
of a species with another phase over an interface κ . Furthermore, vᾱ is the velocity of phase

α, whereas uiα is the diffusive velocity of species i in phase α. For a single-species phase,
the term r iα and the diffusive flux of species are omitted in the equation. It also follows from
the definition above that ωi ᾱ = 1.

Based on the phases and species considered in the multiphase system, a total of four
mass balance equations are derived using Eq. (14). It is, however, better to sum the balance
equations for water into a single equation that describes the total water content, since the
source term expressing the mass exchange between liquid water and water vapour is cancelled
out by this operation. This has been done by several researchers, and it means that no explicit
constitutive relationship is needed in the model to describe evaporation and condensation
(e.g. Gawin et al. 1996; Lewis and Schrefler 1998; Whitaker 1977). Furthermore, the split of
the total degree of fluid saturation according to Eq. (13) is introduced in the mass balances.
For brevity, only the final form of the mass balance equations is presented.

The mass balance equation for the total water content in the porous medium can be written
as

∂
(

Ŝw
c ηcερ

w
)

∂t
+

∂
(

Ŝ
g
c ηcερ

W g
)

∂t
+

∂
(

Ŝw
a ηaερ

w
)

∂t
+

∂
(

Ŝ
g
a ηaερ

W g
)

∂t

+ ∇ ·
[(

Ŝw
c ηcε + Ŝw

a ηaε
)

ρwvws
]

+ ∇ ·
[(

Ŝg
c ηcε + Ŝg

a ηaε
)

ρW gvgs
]

+ ∇ ·
[

(

Ŝg
c ηcε + Ŝg

a ηaε
)

ρW guWg

]

+ ∇ ·
(

Ŝw
c ηcερ

wvs
)

+ ∇ ·
(

Ŝw
a ηaερ

wvs
)

+ ∇ ·
(

Ŝg
c ηcερ

W gvs
)

+ ∇ ·
(

Ŝg
a ηaερ

W gvs
)

= 0 (15)

where v f s is the relative velocity between fluid phase f and the solid skeleton (s) and is
defined as

v f s = v f − vs (16)

The mass balance of dry air (D) has the same form as the total water balance, but contains
only the dry air species

∂
(

Ŝ
g
c ηcερ

Dg
)

∂t
+

∂
(

Ŝ
g
a ηaερ

Dg
)

∂t
+ ∇ ·

[(

Ŝg
c ηcε + Ŝg

a ηaε
)

ρDgvgs
]
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+ ∇ ·
[

(

Ŝg
c ηcε + Ŝg

a ηaε
)

ρDguDg

]

+ ∇ ·
(

Ŝg
c ηcερ

Dgvs
)

+ ∇ ·
(

Ŝg
a ηaερ

Dgvs
)

= 0

(17)

The solid phase is assumed to consist of a single species. However, the balance equation
is written in a form slightly different from that of the other two and instead expresses the rate
of change of the volume fraction of the solid phase as

∂εs

∂t
= − 1

ρs

[

εs ∂ρs

∂t
+ ∇ ·

(

εsρsvs
)

]

(18)

From the definition introduced in Eq. (8), it follows that ∂εs/∂t = −∂ε/∂t, which is utilized
in the partial derivatives in Eqs. (15) and (17).

4.2 Energy andMomentum Balance Equations

The general energy balance given by Gray and Miller (2014) contains several terms that
can be omitted for porous materials with low permeability, since small velocities of the fluid
phases can be assumed in such materials. Furthermore, when dealing with phase changes, it is
usually more appropriate to work with enthalpy instead of internal energy (Bear and Bachmat
1990). Hence, the general energy balance is normally simplified for cementitious materials
and rewritten in an enthalpy form, as shown by, for example, Sciumé (2013). The enthalpy
balance of the complete multiphase system including all considered phases is obtained by
summing the contributions from each phase and can be written as

(ρC p)eff
∂T

∂t
− ∇ · q + �Hvap Mvap

+
[(

Ŝw
c ηcε + Ŝw

a ηaε
)

ρwCw
p vws

]

· ∇T +
[(

Ŝg
c ηcε + Ŝg

a ηaε
)

ρgC
g
pvgs

]

· ∇T = 0

(19)

where T is the temperature, �Hvap = 2257 kJ/kg is the latent heat of evaporation of water,
q is the conductive energy flux vector and Cα

p is the specific heat capacity of phase α. The
term Mvap denotes the mass exchange due to phase changes between liquid water and water
vapour and can be obtained through Eq. (14) by deriving the mass balance equation for the
liquid water phase. The first term in Eq. (19) is defined as

(ρC p)eff = εsρsCs
p +

(

Ŝw
c εc + Ŝw

a εa

)

ρwCw
p +

(

Ŝg
c εc + Ŝg

a εa

)

ρgC
g
p (20)

which expresses the effective heat content of the multiphase system.
The linear momentum balance of the multiphase system is also obtained by summation

of the contributions from each phase. For concrete, it is usually assumed that the velocities
are small and that the timescale of interest is large (days), which means that inertia effects
and momentum exchange terms are usually neglected (Pesavento et al. 2016). Taking this
into consideration, the momentum balance is given by

∇ · t + ρg = 0 (21)

where t is the total stress tensor of the porous medium, g is the gravitational acceleration
vector and ρ is the total density of the medium. With regard to the defined split of the degrees
of saturation in Eq. (13), the total density is defined as

ρ = εsρs +
(

Ŝw
c ηcε + Ŝw

a ηaε
)

ρw +
(

Ŝg
c ηcε + Ŝg

a ηaε
)

ρg (22)
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4.3 Summary and Choice of State Variables

The hygro-thermo-mechanical behaviour of air-entrained concrete including the filling of air
pores with water can be described by the set of partial differential equations derived above. In
total, there are seven governing equations describing the behaviour of the multiphase system:
the mass balances of total water content in Eq. (15), dry air in Eq. (17) and solids in Eq. (18),
as well as the enthalpy balance in Eq. (19) and the three components of the momentum
balance in Eq. (21).

In this study, the following variables are chosen as the state variables of the multiphase
model: the capillary pressure pc in Eq. (15), the gas pressure pg in Eq. (17), the temperature
T in Eq. (19) and the displacements d in Eq. (21). Assuming local equilibrium above the
hygroscopic moisture range, the capillary pressure can be defined as

pc = pg − pw (23)

In fact, this relationship can be derived using the second law of thermodynamics (e.g. Gray
and Hassanizadeh 1991a; Schrefler and Pesavento 2004). The benefits of using the capillary
pressure as state variable, instead of, for example, the water pressure pw or the relative
humidity ϕ, are thoroughly discussed in, for example, (Gawin et al. 1995, 1996; Baggio
et al. 1995; Lewis and Schrefler 1998; Gawin et al. 2006). The main point is that capillary
pressure can be used to describe the full range of moisture conditions in porous media,
i.e. from fully saturated conditions down to and including the hygroscopic region. More
precisely, it can be shown that the capillary pressure is related to a water potential that is
formally valid over the entire moisture range and, hence, the definition in Eq. (23) is also
valid over the entire moisture range (Lewis and Schrefler 1998). The complete system of
governing equations contains many unknowns which, in order to close the system, must be
expressed by constitutive equations formulated in terms of the chosen state variables or be
defined as constants.

5 Constitutive Relationships

In a formal TCAT analysis, the second law of thermodynamics is used to derive the principle
form of the constitutive relationships, and this ensures that the entropy inequality is satisfied
(Gray and Miller 2005, 2014). In this study, the constitutive relationships used are, however,
taken from the literature, but these have been proven to comply well with experimental results
and observations. Many of the relationships have, however, also been derived from the entropy
inequality through linearization procedures by others in the literature. Some of the unknowns
in the governing partial differential equations have been treated as constants, and they have
thus only been given an explicit value in connection with the numerical examples in Sect. 6.

5.1 Equations of State

The volumetric behaviour of each phase in the multiphase system is described by an Equation
of State (EOS). For the liquid water and solid phase, these are defined in the same linearized
form as was done by Lewis and Schrefler (1998). Assuming that the density of liquid water
is a function of both temperature and pressure in the phase, the relationship is given by

ρw = ρw
ref

[

1 − αw (T − Tref ) + 1

K w

(

pw − pw
ref

)

]

(24)
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where ρw
ref is a reference water density at the reference temperature Tref and reference pressure

pw
ref , αw is the volumetric thermal expansion coefficient of water and K w is the bulk modulus

of water.
The EOS of the solid phase is not only dependent on the temperature and pressure but is

also a function of the first invariant of the effective stress tensor I s
1 and can be written as

ρs = ρs
ref

[

1 − αs (T − Tref ) + 1

K s
ps + 1

3εs K s
I s
1

]

(25)

The first invariant of the effective stress tensor I s
1 takes into account external factors on the

solid skeleton and is defined as

I s
1 = 3 (1 − b) K s

[

∇ · d − tr (eth) + 1

K s
ps

]

(26)

where tr (eth) is the volumetric thermal strain; see Sect. 5.5. The parameter b denotes Biot’s
coefficient and is defined by b = 1− (KT /K s), where KT is the bulk modulus of the drained
solid skeleton.

The gas phase is assumed to be an ideal gas mixture of water vapour (W) and dry air (D),
and the EOS of the individual gas species is defined by the ideal gas law:

ρi g = Mi

RT
pig (27)

where pig is the partial pressure of species i in the gas phase, Mi is the molar mass of species
i and R is the universal gas constant. Since no reactions are assumed to occur between the
species, the total density and pressure of the gas phase can be described by Dalton’s law as

ρg = ρW g + ρDg (28a)

pg = pWg + pDg (28b)

5.2 Sorption Equilibrium

Since local thermodynamic equilibrium is assumed at each point in the multiphase system,
the state of equilibrium between the liquid water phase and the water vapour in the gas phase
can be described by Kelvin’s equation:

pWg = p
Wg
sat exp

(

− Mw

ρw RT
pc

)

(29)

where Mw is the molar mass of water and p
Wg
sat is the water vapour saturation pressure.

There are various empirical relationships describing p
Wg
sat as a function of temperature in the

literature, and here the expression presented by Murray (1967) has been used.
The moisture storage capacity of a porous medium at equilibrium with the ambient envi-

ronment is usually described by an absorption isotherm, but as outlined earlier, the total
degree of saturation has in the present study been split into two separate contributions from
capillary pores and air pores. Here, the sorption isotherm describes the moisture storage
capacity only up to capillary saturation while the degree of water saturation in the air pores
is described by the global diffusion model introduced in Sect. 3. For a concrete specimen
fully immersed in water, this means that a global equilibrium is not reached until all the air
pores are fully saturated (Janz 2000). If the specimen is partially immersed in water, other
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equilibrium states are of course possible. Nevertheless, the moisture storage capacity of the
capillary pores is described by the analytical expression of van Genuchten (1980):

Ŝw
c =

[

1 +
(

pc

l

)
m

1−m

]− 1
m

(30)

where l and m are fitting parameters.

5.3 Long-TermWater Absorption into Air Pores

As outlined in Sect. 3, the long-term water absorption into air pores is described by Fick’s
second law of diffusion. The concentration gradient of dissolved air is obtained from the

relationship describing Ŝ
g
a as a function of �P̄ap introduced in Sect. 3. This relationship can

be established using Eqs. (4) and (5) if the air pore size distribution of the material is known.
Utilizing this relationship and Henry’s law defined in Eq. (3), Eq. (6) can be rewritten as

∂
[

Ŝ
g
a

(

P̄ap
)

εaρ
g
]

∂t
+ ∇ ·

[

−τDaw∇
(

kH P̄ap
)]

= 0 (31)

where Ŝ
g
a

(

P̄ap
)

is the aforementioned relationship expressed in terms of the average absolute
gas pressure in the air pores instead of the overpressure. This pressure is defined as P̄ap =
�P̄ap + P0, where P0 is a reference pressure. In addition, this mass balance equation requires
its own state variable, here called an internal variable to separate it from the four chosen state
variables of the multiphase system. The natural choice following from Eq. (31) is P̄ap.

To close the diffusion model, relationships must be established for the remaining param-
eters in the equation. The air pore porosity εa is given by the mass balance equation for the
solid phase in Eq. (18) together with the porosity and pore volume fraction defined in Eqs. (8)
and (10), respectively. The gas density ρg is determined by the ideal gas law at a relative
humidity of 100%, where it is assumed that �P̄ap has a negligible effect on the density since
its magnitude is small, so that the gas density depends only on the temperature. The tortuosity
factor τ is treated as a constant and normally varies between 0.4 and 0.6 for concrete (Gawin
et al. 1999). The diffusivity tensor Daw is assumed to be temperature dependent and to follow
the proportionality relationship defined by Fagerlund (1993). The diffusivity tensor is given
by

Daw = Daw0
T

T0
I (32)

where Daw0 is the bulk diffusivity of air in water at the reference temperature T0 and I is a unity
tensor. In this work, the bulk diffusivity is consistently defined as Daw0 = 2 × 10−9 m2/ s at
T0 = 298.15 K (Fagerlund 1993). The solubility constant kH is temperature dependent and is
here determined as was done by Hall and Hoff (2012) under the assumption that air consists
of 21% oxygen and 79% nitrogen:

kH = κH

∑

nθ Mθ exp

[

Aθ

(

1

T
− 1

T0

)]

k0
Hθ (33)

where θ denotes either oxygen O2 or nitrogen N2, nθ is the gas volume fraction in air, Mθ

is the molar mass, Aθ is a constant that is 1300 K for nitrogen and 1500 K for oxygen, T0

is a reference temperature and k0
Hθ is the solubility of oxygen or nitrogen at the reference
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temperature. The term κH governs when air trapped in the air pores starts to dissolve in the
surrounding pore water. Before reaching capillary saturation, the air is not trapped and the
concentration of dissolved air in the pore water is assumed to be governed by the ambient
conditions, but as capillary saturation is reached, the air becomes trapped and starts to dissolve
due to the overpressure in the air pores, and κH is thus defined as

κH =
{

0 if Ŝw
c < 1

1 if Ŝw
c = 1

(34)

5.4 Mass and Heat Fluxes

5.4.1 Advective Mass Flux

The advective flux is quantified by describing the relative velocity v f s of the two fluid phases
with the generalized Darcy’s law. This law is commonly used to describe the advective flux
within porous media and can be derived using a linearized form of the momentum balance
for each fluid phase together with the second law of thermodynamics (cf., Gray and Miller
2014; Sciumé 2013; Gray and Hassanizadeh 1991b; Hassanizadeh 1986). The generalized
form of Darcy’s law used in this study is given by

ε

(

Ŝ f
c ηc + Ŝ f

a ηa

)

v f s = −k
f
r k

μf

(

∇ p f − ρ f g
)

(35)

where k is the intrinsic permeability tensor, μf is the dynamic viscosity and k
f
r is the rela-

tive permeability, which is introduced in order to account for unsaturated flow in the porous
medium and varies between zero and one. The dynamic viscosities are considered to be
temperature-dependent. In this study, the gas phase viscosity is described by the Sutherland
equation and the liquid water phase by the Vogel equation; see Table 1. The relative perme-
ability is usually described with a function that depends on the degree of saturation of each
fluid phase. The analytical expressions proposed by van Genuchten (1980) are here used for
both the water and the gas phase:

kw
r =

(

Sw
)n

{

1 −
[

1 −
(

Sw
)m]

1
m

}2

(36a)

kg
r =

(

1 − Ŝw
c

)n
[

1 −
(

Ŝw
c

)
1
m

]2m

(36b)

where m and n are fitting parameters. For cementitious materials, a value of 0.5 is normally
used for n as reported by Zhang et al. (2015), whereas the value of m is obtained by fit-
ting Eq. (30) to the sorption isotherm. Furthermore, Ŝw

c is used instead of Sw in the above
expression for the relative gas permeability. The reason for this choice has its origin in the
mechanism of filling air pores with water described in Sect. 2.3. Because the trapped air is
not considered to be a continuous phase in the porous network at capillary saturation and
is transported towards the surface through dissolution and diffusion in the capillary water,
there is no advective flow of gas. By choosing Ŝw

c as the independent variable in Eq. (36b),
the advective gas flow is eliminated when capillary saturation is reached.
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5.4.2 Diffusive Flux

The diffusive flux in the gas phase is only considered below capillary saturation and describes
the mass flux of the water vapour (W) and dry air (D) species through the gas phase. The flux

is quantified though the diffusive velocity uig of the two species and is expressed by Fick’s
law. Similarly to Darcy’s law, Fick’s law can also be derived using a linearized momentum
balance together with the second law of thermodynamics (cf., Hassanizadeh 1986). The total
diffusive mass flux of the two species is expressed as

Jig = ερi g
(

Ŝg
c ηc + Ŝg

a ηa

)

uig = −ρgD
ig
d ∇ ρi g

ρg
(37)

where Jig is the total diffusive mass flux and D
ig
d is the diffusivity tensor. Starting from

Dalton’s law defined in Eq. (28), it can be shown that D
Wg
d = D

Dg
d . Following from this

equality, it can also be concluded that the diffusive mass fluxes must sum to zero, i.e. JWg =
−JDg . The diffusivity tensor of water vapour inside the partially saturated pore network is
defined in the same form as has been done by Gawin et al. (1999) and is given by

D
Wg
d = εAd

(

1 − Ŝw
c

)Bd
fs Dv0

(

T

T0

)Cd p0

pg
I (38)

where Ad, Bd and Cd are model parameters and Dv0 is the bulk diffusivity of water vapour in
air at the reference temperature T0 and pressure p0. The parameter fs is a structure coefficient
that accounts for the tortuosity and the Knudsen effect, i.e. the effect of molecules colliding
with the solid phase in finer pores. Moreover, to assure that diffusion of water vapour through
the gas phase is inactive when the capillary pores in the concrete are saturated, Ŝw

c is used

instead of Sw in Eq. (38). At this point, the diffusion of gas from air pores occurs instead
through the capillary water as described in Sect. 2.3.

5.4.3 Conductive Heat Flux

The conductive heat flux is governed by Fourier’s law:

q = −λeff I∇T (39a)

λeff = εsλs + ε
(

Ŝw
c ηc + Ŝw

a ηa

)

λw + ε
(

Ŝg
c ηc + Ŝg

a ηa

)

λg (39b)

where λeff is the effective thermal conductivity of the porous medium and λα is the thermal
conductivity of phase α. All thermal conductivities are assumed to be constant and therefore
independent of temperature variations. The species in the gas phase are not treated separately
but are lumped together and described by a single thermal conductivity.

5.5 Stress Tensor

The total stress tensor in Eq. (21) is obtained by summing the contributions of each phase in
the multiphase system:

t = εs
τ

s − bpsI (40)
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where τ
s is the effective stress tensor (Lewis and Schrefler 1998). This tensor accounts for the

effects of external and internal loads on the solid skeleton of the concrete. It is here assumed
that all strains remain small so that the total strain tensor e can be defined as

e = 1

2

[

∇d + (∇d)⊺
]

(41)

Based on this definition and taking into consideration the presence of thermal strains, Hooke’s
law is used to define the effective stress tensor:

τ
s = De : (e − eth) (42)

where De is a fourth-order elasticity tensor and eth is the thermal strain tensor. The solid
phase is assumed in this study to behave as an isotropic linear elastic material where De is
defined by two material constants, for example Young’s modulus E and Poisson’s ratio ν.
The thermal strains of the solid phase are determined as

eth = αs

3
(T − Tref ) I (43)

where αs is the volumetric thermal expansion coefficient of the solid phase and Tref denotes
a reference temperature at which there is no thermal strain. The pressure ps accounts for
the pressure exerted on the solid phase by the two fluid phases in the porous network and is
defined (cf., Gawin et al. 1995, 1996; Lewis and Schrefler 1998) as

ps = Sw pw +
(

1 − Sw
)

pg (44)

6 Numerical Examples

To demonstrate the performance and capability of the proposed model to simulate water
absorption into air-entrained concrete, two examples are presented. The first is an absorption
test where the measured pore size distribution of the air pore system is used to simulate the
long-term absorption of water. Furthermore, this pore size distribution is modified to contain
a larger volume fraction of either fine or coarse pores, while maintaining the total air pore
content constant. The effect of these modifications on the long-term rate of water absorption
has been studied. In the second example, the model is applied to a case resembling a front
plate in a concrete buttress dam, and the long-term water absorption at different depths below
the water level has been studied. The influence of temperature as well as the air pore size
distribution on the long-term moisture conditions in the front plate has also been studied.

The system of governing equations is solved using the commercial FE-code Comsol
Multiphysics (COMSOL 2016). All governing equations are first converted to their weak
form, and integration by parts and the divergence theorem are applied to reduce the order of
differentiation. The weak formulations obtained are discretized using the Galerkin method.
Time integration is performed with the fully implicit backward differentiation formula (BDF),
and the nonlinear equations obtained at each increment are solved using a damped version
of the Newton–Raphson method.

6.1 Example 1: Absorption Test

The aim of the first example was to examine whether the model is capable of describing the
water absorption process in air-entrained concrete with an emphasis on long-term absorption
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Fig. 4 Three cumulative air pore size distributions from Liu and Hansen (2016) used in the numerical examples

into air pores. An absorption test performed by Liu and Hansen (2016) was chosen, for
which the size distribution of the air pores was also measured. Absorption measurements were
performed on concrete specimens with a water–cement ratio (w/c) of 0.45 and approximately
5% air pores. The specimens had a thickness of 12 mm and a cross-sectional area of 100 ×
100 mm2. Before starting the absorption test, the specimens were preconditioned by drying
them in an oven at 50 ◦C to a constant weight. After this, the lateral sides were sealed using
aluminium foil with butyl rubber to ensure unidimensional absorption. The bottom surface
of the specimens was then immersed in 5 mm of water and the mass gain recorded. The
geometry of the specimens was discretized using an axisymmetric formulation, where the
radius was set to give an equivalent surface area of 100 × 100 mm2.

Three different pore size distributions were used in the simulations, where the first corre-
sponded to the measured distribution. The other two are fictitious but they have the same total
air pore content with a larger volume fraction of either finer or coarser pores than the measured
distribution. These two distributions were also used by Liu and Hansen (2016) in their study
of the time to reach a certain critical spacing between air pores in air-entrained concrete. The
shape of the cumulative air pore size distribution is described by the relationship:

Vap = Vap,0 exp

[

−
( χ

D

)ξ
]

(45)

where Vap is the cumulative air pore content, Vap,0 is the total air pore content, χ and ξ are
two fitting parameters and D is the air pore diameter. The three air pore size distributions
are plotted in Fig. 4. By utilizing the averaging procedure described in Sect. 3, a relation-

ship between Ŝ
g
a and �P̄ap was established for each of the three distributions. The three

relationships obtained are shown in Fig. 3. The absorption isotherm for the tested concrete
was not measured, and consequently it has to be estimated. In this work, the shape of the
absorption isotherm in Eq. (30) was estimated based on the relationships presented by Xi
et al. (1994). The capillary porosity is not explicitly stated, but it can be approximated based
on the assumed absorption isotherm and the volume of absorbed water at the nick point in
the absorption test. The input parameters are summarized in Table 1.
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Table 1 Input parameters used in the numerical examples

Parameter Notation Unit Value

Young’s modulus E GPa 25

Poisson’s ratio ν – 0.2

Bulk modulus of s, w K α GPa 31.8, 2

Bulk modulus of drained
material

KT GPa E/ [3 (1 − 2ν)]

Air pore porosity εa % 5

Capillary porosity εc % 10.2a , 19b

Intrinsic permeability k m2 1.1 × 10−18

Dynamic viscosity w μw Pa s 103 × e
−3.7188+ 578.919

−137.546+T

Dynamic viscosity g μg Pa s 1.458 × 10−6 × T (3/2)

T +110.4

Density of s (20 ◦C), w (4 ◦C) ρα
ref kg/m2 2500, 1000

Heat capacity of s, w, g Cα
p J/kg K 1000, 4181, 1005

Thermal conductivity of s, w,
g

λα W/m K 1.2, 0.59, 0.025

Thermal expansion
coefficient of s, w

αβ 1/K 36 × 10−6, 207 × 10−6

Sorption isotherm parameters – – l = 16 [MPa], m = 2.4

Diffusivity of water vapour in
air at 0 ◦C

Dv0 cm2/s 0.258

Parameters of the diffusivity
model

– – Ad = Bd = 1, Cd = 5/3

Diffusivity structure
coefficient

fs – 0.01

Tortuosity factor for air in
water

τ – 0.25

Oxygen and nitrogen
solubility at 25 ◦C

k0
Hθ

kg/mol m3 atm 1.3 × 10−3, 0.65 × 10−3

Measured air pore size
distribution

– – Vap,0 = 5 [%],
χ = 86.6 [µm], ξ = 0.987

Fine air pore size
distributiona

– – Vap,0 = 5 [%],
χ = 60.1 [µm], ξ = 0.987

Coarse air pore size
distributiona

– – Vap,0 = 5 [%],
χ = 119 [µm], ξ = 0.9947

aParameter only used in Example 1
bParameter only used in Example 2

The initial moisture content in the specimens was estimated based on the experimental
results and on the absorption isotherm used and was found to correspond approximately to a
relative humidity of ϕ = 11%. The initial values of P̄ap at capillary saturation are given by

the relationships describing Ŝ
g
a as a function of �P̄ap, which are obtained from the air pore

size distributions using the averaging procedure proposed in Sect. 3. The initial values for the
measured, fine and coarse distributions were 104.8 kPa, 106.2 kPa and 103.9 kPa, respectively.
The initial temperature in the specimens was set to 20 ◦C. The boundary conditions were
applied either as Dirichlet- or Neumann-type conditions where the first type constrains a
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Fig. 5 Boundary conditions applied on the axisymmetric model of the absorption test. Note that boundary D

is the symmetry axis

state variable to a fixed value on the boundary, whereas the second type prescribes a flux (q)
on the boundary. The applied boundary conditions in the axisymmetric model are summarized
in Fig. 5.

A comparison of the simulation results with the measurements performed by Liu and
Hansen (2016) is shown in Fig. 6a, where the volume of water absorbed per surface area
in contact with water is plotted as a function of the square root of time. It is evident that
the proposed model is capable of describing both the initial capillary suction of water and
the long-term water absorption into the air pores. However, it should be recalled that the
capillary suction part is described by an estimated absorption isotherm which also affects
the relative permeabilities due to the chosen constitutive relationships. Consequently, the
intrinsic permeability must be fitted to obtain complying results in the capillary suction part
and a value of 1.1×10−18 m2 was found to be satisfactory. It is, however, important to notice
that this value is reasonable and complies well with measured intrinsic permeabilities found in
the literature for air-entrained concrete (e.g. Wong et al. 2011). However, the main purpose of
these simulations is to validate the diffusion model describing the long-term water absorption.
The results show that the model predicts the rate of long-term water absorption accurately
for the measured pore size distribution using standard values for the air–water diffusivity and
tortuosity factor. The simulations also show the effect of refining or coarsening the measured
air pore size distribution. In Fig. 6a, the effect does not seem to be significant, but this is due
to the quantity of absorbed water and the timescale in the plot. Figure 6b instead shows Ŝw

a
as a function of linear time, and the effect of the different pore size distributions becomes
more pronounced. There is a 15% difference in the degree of water saturation for the fine
and coarse distributions after 700 h. As discussed in Sect. 2.3, the air pore size distribution
has a significant effect on the long-term absorption rate and the simulations indicate that the
model is capable of accounting for this effect.

6.2 Example 2:Water-Retaining Structure

The second example aimed to study moisture conditions in water-retaining structures con-
structed with air-entrained concrete. Most concrete dams located in cold climates are cast
with air-entrained concrete to reduce the risk of frost damage. Hence, it is necessary to
consider the mechanism by which air pores are filled with water in an analysis aiming to
capture the moisture conditions inside such structures. Unfortunately, few measurements of
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Fig. 6 a Absorbed water according to the simulations using the three distributions and measured absorption
data from Liu and Hansen (2016) corresponding to the measured pore size distribution and b degree of water

saturation in the air pores Ŝw
a for the three pore size distributions

moisture distributions inside water-retaining structures have been presented in the literature.
However, in a recent study by Rosenqvist (2016), moisture profiles inside the front plate of a
60-year-old concrete buttress dam were measured at different depths below the water level.
The general shape and design of this type of dam is shown in Fig. 7. Even though no material
properties were determined for the concrete except the degree of water saturation equal to
capillary saturation (Scap), the simulations can be qualitatively compared to these measure-
ments. The first part of this example, therefore, aims to show that the proposed multiphase
model is capable of describing the shape of the observed moisture profiles, which would not
be possible if the long-term water absorption process were not included in the model. The
second part, on the other hand, aimed to study the influence of temperature and the air pore
size distribution on the long-term moisture conditions, as they both have a considerable effect
on the mass transport.

6.2.1 Comparison with Measurements

Since the results were to be qualitatively compared with the aforementioned measurements,
the dimensions and boundary conditions were chosen to resemble the front plate on which
the measurements were performed. The value of Scap was measured to be 0.79 by Rosenqvist
(2016), who also reported that air-entrained concrete with a w/c of about 0.50 was used to
construct the dam. The air pore content was assumed to be 5% and to have the same pore size
distribution as the measured distribution in the previous example. Based on the measured
value of Scap and the assumed air pore content, the capillary porosity was calculated to
be 19%. All other input parameters were assumed to be the same as in Example 1 and are
summarized in Table 1. The simulations were performed using a two-dimensional geometry
representing a thin strip of the front plate in the buttress dam. Two different depths were
considered in the simulations: 0 m, which corresponds to the water surface, and 10.5 m. The
front plate thickness increases from 1.2 to 1.3 m between these two depths but a uniform
thickness of 1.2 m was used in both simulations. The buttress dam has an insulation wall
on the downstream side to reduce the temperature variations over the year, and a mean
temperature of 10 ◦C was therefore assumed on this side of the dam. On the upstream side,
the water was assumed to have a constant temperature of 4 ◦C. The insulation wall also
affects the relative humidity in the ambient air in contact with the downstream surface, and
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Fig. 7 General design of a buttress dam and applied boundary conditions on the thin strips of the front plate.
The two values of pw and t̃y correspond to the two considered depths of 0 m and 10.5 m

this usually has a higher relative humidity than the outside air due to standing water at the
bottom. Therefore, an average relative humidity of 90% was assumed on this side. The initial
temperature in the structure was set to 10 ◦C, and the initial moisture content corresponded
to a relative humidity of 85%. At capillary saturation, all the air pores are filled with air and
P̄ap = 104.8 kPa for the assumed air pore size distribution. The only external mechanical
load considered in the example was the dead weight of the front plate located above the two
studied depths. It was applied as a surface traction t̃y on the upper boundary of the models.
All the boundary conditions applied in the model of the front plate at the two considered
depths are summarized in Fig. 7.

Results showing the moisture profiles obtained over the entire front plate thickness after
5 and 60 years are shown in Fig. 8a for the two depths of 0 and 10.5 m. The same plots
are shown in Fig. 8b but over a shorter distance from the upstream surface. To enable the
profile shapes to be qualitatively compared with the measurements performed by Rosenqvist
(2016), his results for 0 and 10.5 m are also plotted in the two figures. It should be noted that
measurements are missing for the inner middle part of the front plate, between approximately
0.3 and 0.7 m from the upstream side. This area is illustrated by the dashed lines in the figure.
The measurements clearly show that the total degree of water saturation was higher than
Scap close to the upstream surface. Regions located further downstream remain close to
capillary saturation but the degree of water saturation continued to decrease towards the
downstream surface as water is evaporating to the ambient air at the boundary. It should be
noted that similar moisture profiles have been reported by, for example, Hall (2007), who
performed absorption measurements in a calcium silicate plug. Generally, the proposed model
is capable of describing the overall profile shape over the front plate thickness with a sharp
moisture gradient close to the upstream surface because of the long-term water absorption. It
is therefore evident that it is necessary to include the water-filling process of air pores when
modelling mass transport in water-retaining structures built with air-entrained concrete.
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Fig. 8 Moisture profiles obtained from the simulations showing the total degree of water saturation Sw

compared with measured profiles by Rosenqvist (2016): a over the entire front plate thickness and b over a
thickness of 0.4 m from the upstream surface. Note that measurements are missing in the middle part of the
front plate, which is indicated by the dashed lines in the figure

The results show that the depth of penetration of the wetting front from the upstream
surface increases as the external water pressure increases, which also means that the total
water uptake in the structure is higher at greater depths. The results also show that the
degree of water saturation, in the case with a higher water pressure, increases at a slightly
slower rate in the inner parts that have reached capillary saturation. This behaviour can be
explained by longer diffusion paths to a free surface, as was discussed in Sect. 3. However,
this observation is contradicted by another series of measurements performed by Rosenqvist
(2016), which indicated that the rate of long-term absorption increases with increased depth
for fully immersed concrete specimens. Further testing is therefore required to establish the
true effect on the long-term water absorption of increasing the water head. In addition, the
advective flow of water might also remove some of the dissolved air from the regions where
capillary saturation has been reached (Hall and Hoff 2012), but this effect is currently not
included in the model.

The measurements show that the front plate at a depth of 0 m was not fully saturated
at the upstream surface, probably because the water level fluctuates in the reservoir, and
consequently this part of the structure is subjected to wetting–drying cycles. The amplitude
of the fluctuation is in most cases small and typically varies between 20 and 30 cm. The shape
of the predicted moisture profile at this level after 60 years of constant contact with water
differs from the measured profile. If instead the calculated profile after 5 years is compared
to the measurements, the general shape complies significantly better. However, to describe
these varying moisture conditions adequately, it is necessary to include the hysteresis effect.
In addition, since this region is exposed to the ambient environment, it will also frequently
be subjected to freeze–thaw cycles, which means that it is also important to consider the
cryo-suction of water to get an even more accurate prediction of the moisture conditions
in this part of the structure. For regions on the upstream side located at greater depths,
neither the hysteresis nor the cryo-suction is important to consider, since these regions are
rarely if ever exposed to wetting–drying or freeze–thaw cycles. However, in thin structures
without insulation on the downstream side, freezing temperatures may penetrate from that
side causing ice to form, with an increased rate of water absorption due to cryo-suction as
one possible consequence.
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Fig. 9 Obtained moisture profiles showing the total degree of water saturation Sw over the thickness of the
front plate for the three studied temperatures on the downstream boundary after 5 and 60 years

The contribution of the terms related to deformations of the solid phase in the mass
balances for total water content and dry air was investigated by running the simulation for
10.5 m with these terms omitted in Eqs. (15) and (17). The calculation of the total volume
of water absorbed in the front plate showed that the difference was < 0.2% after 1 year and
decreased even more as time went on. These terms can, therefore, be neglected in the mass
balances for the fluid phases, which also means that the traction applied on boundary D has a
negligible effect on the moisture distribution in this example. Consequently, the momentum
balance can in principle be omitted from the model formulation if the aim is only to study
moisture and temperature conditions.

6.2.2 Influence of Temperature

Many of the constitutive equations and material parameters depend on the temperature,
and, hence, the balance equations are also temperature dependent. To study the influence of
temperature on the long-term moisture conditions in the dam, a series of simulations was
performed where the temperature on the downstream side was varied. The studied tempera-
tures were 0 ◦C, 10 ◦C and 20 ◦C. All other conditions in the simulations were the same as
the conditions used in Sect. 6.2.1 for a water depth of 10.5 m. The results of these analyses
are shown in Fig. 9 as the degree of water saturation over the front plate thickness after 5 and
60 years.

As seen in the figure, the temperature effect towards the upstream side is rather small after
both 5 and 60 years, even though both the solubility constant kH and the diffusivity tensor
Daw are temperature dependent. The influence of temperature is, however, more pronounced
on the interior parts of the dam, especially after 60 years. At around 0.4 m from the upstream
side and further downstream, there is a clear difference between the simulations, where a
colder temperature yields a higher degree of saturation. Many of the constitutive relationships
and material properties are directly dependent on the temperature, and this influences the
results when the downstream temperature is varied in the simulations. Given that the relative
humidity is prescribed on the downstream boundary, the state variable pc is affected by the
temperature following Kelvin’s equation. Consequently, Sw is affected when the temperature
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Fig. 10 Calculated moisture profiles showing the total degree of water saturation Sw over the thickness of the
front plate for the three studied air pore size distributions after 5 and 60 years

on the boundary is changed, as can be noted in the figure. This of course also affects the
advective and diffusive mass fluxes through the front plate since pc, pw and pg are related
through the definition in Eq. (23). In conclusion, the results show that the temperature has a
considerable influence on the long-term moisture conditions in this case.

6.2.3 Influence of Air Pore Size Distribution

As concluded in Example 1, one of the key parameters affecting the long-term absorption rate
is the air pore size distribution. The way in which the air pore size distributions in Example
1 affect the long-term moisture conditions in the front plate was therefore investigated. All

input parameters, except for the two additional relationships Ŝ
g
a

(

�P̄ap
)

for the fine and coarse
distributions, and the boundary conditions were the same as in the analysis for a water depth
of 10.5 m in Sect. 6.2.1. The simulation results are presented in Fig. 10, which shows the
total degree of water saturation over the thickness of the front plate after 5 and 60 years.

As expected, the air pore size distribution has a significant influence on the resulting
moisture conditions, where the fine distribution yields an overall higher degree of saturation
over the thickness. In contrast to the temperature dependence, a clear difference between the
three cases can be seen already after 5 years, and as time passes the difference continues to
increase. Comparing the calculated total volume of absorbed water in the air pore system after
60 years for each distribution indicates that the fine distribution has absorbed approximately
19% and 35% more water than the measured and coarse distribution, respectively.

7 Conclusions

This paper presents a hygro-thermo-mechanical multiphase model for air-entrained con-
crete, which includes the effect of long-term water absorption into air pores. This process is
described by a diffusion model, where the driving potential is the concentration of dissolved
air in the pore water. An averaging procedure is proposed to obtain a relationship between
the degree of gas saturation in the air pores and the dissolved air concentration in the pore
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water. The procedure utilizes the pore size distribution of the air pore system as a weighting
function. The TCAT is used as a basis for the derivation of the multiphase model, where the
total degree of saturation is split between capillary pores and air pores.

Two numerical examples have been presented to show the capabilities of the proposed
multiphase model. The first focused on verifying that the model could describe the complete
absorption process by simulating an absorption test of air-entrained concrete. The effect of
refining or coarsening the air pore size distribution was also studied. The results showed good
agreement with the measurements, and it was also concluded that the air pore size distributions
had an effect on the rate of long-term absorption. A 15% difference in the degree of water
saturation of the air pores was observed between the finest and the coarsest air pore size
distribution after 700 h. The second example aimed at simulating the moisture conditions
at two different depths below the water level, 0 m and 10.5 m, in a water-retaining structure
constructed with air-entrained concrete. The simulations were qualitatively compared to
measured moisture distributions in the front plate of a buttress dam. The results showed a
sharp moisture gradient close to the upstream surface which could be attributed to the long-
term water absorption process. This general shape was also verified through the qualitative
comparison with the measured moisture distributions. It can, therefore, be concluded that the
proposed multiphase model is capable of describing moisture conditions in water-retaining
structures cast with air-entrained concrete, which would not be possible without including the
long-term water absorption process in the model. Results from the simulations in Example 2
also indicated that the terms related to deformations of the solid phase in the mass balances
for the fluid phases can be neglected. Furthermore, the momentum balance in the model
can be omitted if the only aim is to study moisture and temperature conditions. The general
formulation of the presented model means, however, that it can be used in applications where
it is also necessary to describe moisture- and temperature-induced deformations. Moreover,
it means that the model can in the future be straightforwardly extended to consider, for
example, the effect of damage in the solid skeleton. The second example also showed that
the temperature and the air pore size distribution have a considerable influence on the long-
term moisture conditions in the front plate.

Apart from the temperature conditions, the risk of frost damage is closely related to the
degree of water saturation in the concrete. To reduce this risk, structures located in cold
climates are often cast with air-entrained concrete, since such concretes generally have a
critical degree of saturation above the state of capillary saturation. It is therefore important
to consider the long-term water absorption into air pores when assessing these risks in, for
example, hydropower dams, road pavements, piers and bridges. The proposed model provides
a means to do this in a general hygro-thermo-mechanical framework and can, therefore, serve
as an important aid when making such assessments. However, Example 2 indicates that for
certain conditions, the hysteresis effect in wetting–drying cycles and the cryo-suction of water
due to freeze–thaw cycles should be considered to improve the performance of the model.
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