
A Hyper-Heuristic Ensemble Method for Static
Job-shop Scheduling

Emma Hart e.hart@napier.ac.uk
Institute for Informatics and Digital Innovation, Edinburgh Napier University,
Edinburgh, EH10, UK

Kevin Sim k.sim@napier.ac.uk
Institute for Informatics and Digital Innovation, Edinburgh Napier University, Edin-
burgh, EH10, UK

Abstract

We describe a new hyper-heuristic method NELLI-GP for solving job-shop schedul-
ing problems (JSSP) that evolves an ensemble of heuristics. The ensemble adopts a
divide-and-conquer approach in which each heuristic solves a unique subset of the in-
stance set considered. NELLI-GP extends an existing ensemble method called NELLI
by introducing a novel heuristic generator that evolves heuristics composed of linear
sequences of dispatching rules: each rule is represented using a tree structure and
is itself evolved. Following a training period, the ensemble is shown to outperform
both existing dispatching rules and a standard genetic programming algorithm on a
large set of new test instances. In addition, it obtains superior results on a set of 210
benchmark problems from the literature when compared to two state-of-the-art hyper-
heuristic approaches. Further analysis of the relationship between heuristics in the
evolved ensemble and the instances each solves provides new insights into features
that might describe similar instances.

Keywords

Job-shop-scheduling, dispatching rule, heuristic ensemble, hyper-heuristic, genetic
programming

1 Introduction

The Job Shop Scheduling problem (JSSP) is one of the most researched combinatorial
problems studied by practitioners over recent decades, due to its relevance in many
industrial applications. The simplest form is known as the static JSSP: a number of
operations that need to be scheduled across multiple machines, with all operations
available at the start. Dispatching rules that derive a priority index for each operation
to be scheduled provide a quick and simple method for creating a schedule (Baker,
1984), and hence for practical reasons are commonly used in real-world applications.
Many dispatching rules are described in the literature, designed by hand by human-
experts, although according to Geiger et al. (2006), often through considerable effort.
In an effort to automate this, hyper-heuristic methods have been used to create novel,
reusable dispatching rules. A comprehensive recent survey is provided by Branke et al.

(2015) who summarize the state-of-the-art, noting that the most common approach has
been to use variable-length grammar-based methods (e.g. genetic programming) to
generate new dispatching rules. While this has achieved much success, they highlight
a number of open questions and challenges, the first of which is the need to deal with
complex scenarios by evolving ensembles of heuristics, rather than a single rule.

Currently, a few examples of small ensembles that evolve pairs of heuristics exist,
e.g. (Miyashita, 2000; Nguyen et al., 2014a; Park et al., 2013). Most recently, Park et al.
(2015) evolve a larger ensemble of rules in which each heuristic in the ensemble votes to
determine the priority of an operation at each iteration, using a similar methodology to
ensemble approaches to classification typically seen in machine learning (Valentini and
Masulli, 2002). From an optimisation perspective, Smith-Miles et al. (2014) point out
that any given algorithm will have individual weaknesses on a given set of instances.
Ensemble methods in which a mixture of algorithms is used to solve a set of instances
would therefore appear a fruitful line of research. We propose an ensemble approach
in which a set of heuristics is evolved using GP, each of which generates a complete
solution to a subset of instances in a distinct region of the instance space (i.e. the set of
problem instances of interest). This can be be loosely described as ‘mixture-of-experts’
model to borrow terminology from the machine learning literature. It is also similar to
the algorithm portfolio methods that are common in Operations Research, particularly
for solving SAT problems, e.g. (Leyton-Brown et al., 2003). However, in contrast to
many portfolio methods that focus mainly on selection from a portfolio, our approach
addresses portfolio composition, ensuring that the portfolio contains a behaviourally
diverse range of algorithms.

Our approach extends a previously described ensemble method called NELLI, that
has been extensively tested in the bin-packing domain (Sim et al., 2015) and on a small
set of 62 JSSP instances (Sim and Hart, 2014). NELLI-GP extends NELLI by evolving a
pool of novel dispatching rules, each represented as an expression tree. The novel rules
are combined into variable length sequences called heuristics, which are themselves
subject to evolution. Using a large set of static JSSP instances, we address two main
questions using NELLI-GP:

• Do evolved heuristics, composed of variable length sequences of evolved dispatch-
ing rules, outperform the individual evolved rules?

• Do ensembles of evolved heuristics outperform individual heuristics?

Our approach extends existing work on tree-based rule evolution of single
dispatching-rules by considering an extended node set and multiple methods for se-
lection of eligible jobs. It extends current approaches to ensemble methods in that the
role of each member of the ensemble is to solve a subset of instances, rather than vot-
ing to prioritise individual operations. Evaluation on over 700 problem instances shows
significant improvement with respect to existing dispatching rules, and to state-of-the
approaches (Park et al., 2015; Nguyen et al., 2013b), improving on published results
on benchmark sets by up to 16%. Finally, analysis of the ensemble in terms of map-
ping heuristics to instances provides new insights into the relationship between simple
instance parameters and algorithmic performance.

The paper proceeds with a brief introduction to JSSP and to previous approaches
for automating the production of dispatching rules. In section 4 we provide both a

2

conceptual and algorithmic description of the approach, clarifying the modifications
that were made to NELLI and describing the new problem generator. After providing
detailed experimental results, the paper concludes with an analysis section that pro-
vides some insight into the function of the individual elements of the ensembles, the
diversity of heuristics, and the difficulty of the problems in the instance space.

2 Background

Using the α|β|γ notation (Graham et al., 1979) the two JSSP problems investigated are
denoted as Jm||Cmax and Jm||

∑

ωiTi where the term Jm translates as a Job Shop envi-
ronment and the last term corresponds to the objective (Makespan (Cmax) and Summed
Weighted Tardiness (SWT) respectively). An n xm JSSP problem has a set of n jobs,
{Ji}1≤j≤n and m machines, {Mk}1≤k≤m. Each job Ji contains m operations, each of
which has processing time pjk and weight given by wi. Every job is processed on every
machine with no recursion allowed. Each job has a release time ri which imposes a hard
constraint on the earliest start time of a job and a due time of di which imposes a soft
constraint on the time that the job should be completed by. Machines process a single
operation at a time and all machines are available for the duration of the schedule.

2.1 Dispatching Rules

Many simple dispatching rules have been developed to quickly prioritise operations
in order to select an appropriate operation for scheduling in an iterative process (see
Panwalkar and Iskander (1977); Haupt (1989); Blackstone et al. (1982)). Typically, rules
are hand-designed by experts in a trial and error-process (Geiger et al., 2006), and each
one optimises one or a limited number of scheduling objectives based on some partic-
ular conditions. Composite DRs combines single dispatching rules into a new rule and
have been shown to outperform single DRs (Nguyen et al., 2013a). Both types of DR
typically fall into one of two categories: DRs that can be evaluated before a schedule is
commenced (e.g. Job Arrival Date and Operation Processing Time) or DRs that return
different priorities for operations as the schedule is built (e.g. Number of Remaining
Operations).

Many simple dispatching rules have been known for decades — a comprehensive
survey in Panwalkar and Iskander (1977) describes over one hundred. Some of the
earliest hyper-heuristic approaches to scheduling (though the term was not in use at
the time) recognised improved performance could be achieved by combining existing
dispatching rules into sequences that could be applied iteratively to build a solution.
For instance, Ulrich and Erwin (1995) and Hart and Ross (1998) both use evolutionary
algorithms to search for promising sequences of dispatching rules, showing promising
results compared to the single rules.

In addition to specifying priority, a dispatching rule needs to also specify the el-
igible job set, i.e., the subset of jobs that should be prioritised by the rule. Non-delay
selection only considers jobs that are currently waiting to be scheduled, and hence min-
imises idle-time. In the majority of hyper-heuristics that generate dispatching rules, el-
igibility is limited to waiting jobs, i.e. follows the non-delay method. Non-delay sched-
ules are not guaranteed to be optimal; the Giffler-Thompson algorithm (Giffler and
Thompson, 1960) includes in the list of eligible jobs those arriving in the near future,
before the shortest operation of waiting jobs can be completed. Hyper-heuristic meth-

3

ods that adopt this approach (or variants of it) include (Geiger et al., 2006; Miyashita,
2000; Pickardt et al., 2013). Rather than pre-defining eligibility, the hyper-heuristic it-
self can optimise the method by which eligible jobs are selected. Hart and Ross (1998)
evolved an extra parameter for each rule that defined the method that should be used
to generate the conflict set of operations; Nguyen et al. (2013a) propose a representation
for evolving scheduling rules that incorporates a hybrid scheduling strategy between
non-delay and active scheduling. InNguyen et al. (2013b), a separate function for the
non-delay factor is evolved which can then adapt to changing shop conditions.

2.2 Evolving Novel Dispatching Rules

Despite the large number of existing dispatching rules and proposed methods for com-
bining them, interactions between scheduling rules can be complex; in order to address
this, more recent research has attempted to automate the process of designing rules,
through the use of Genetic Programming to evolve arithmetic expressions of rules.
This is a hyper-heuristic approach in that the space of heuristics (dispatching rules) is
searched, rather than the space of potential solutions (schedules). A very comprehen-
sive survey of hyper-heuristic approaches to automated design of dispatching rules is
provided in (Branke et al., 2015).

Most hyper-heuristic methods evolve a single dispatching rule. For example, Tay
and Ho (2008) successfully evolved rules that determined the priority of operations
to be scheduled for static problems. This work was later shown to be less useful in
dynamic cases. Hildebrandt et al. (2010) advanced this work by using four varied
training scenarios and found effective but complex rules. Noting that most rule-based
approaches lack a global-perspective in that they only consider the current state of a
machine and its queue.

Nguyen et al. (2013b) evolve iterated dispatching rules that iteratively improve
the schedules by utilising the information from completed schedules; in (Nguyen et al.,
2013a), they extend the terminal set available to GP to include both recorded infor-
mation regarding a previous schedule,‘look-ahead’ information and composite DRs,
finding good results on static JSSP problems. Hunt et al. (2014) extend this approach of
using ‘less-myopic’ information, evolving new rules with an extended terminal set that
were tested on a set of randomly created test scenarios. Their results show evolution of
better DRs in terms of total weighted tardiness across the test simulation scenarios with
high utilisation. In relation to dynamic JSSP problems, Nguyen et al. (2014b) compare
surrogate-assisted selection methods in conjunction with GP, and automatic program-
ming via iterated local search in (Nguyen et al., 2015). Note that in addition to trees,
other representations of dispatching-rules are possible, for example using neural net-
works to represent a function or simple linear combinations of attributes. However a
recent paper by Branke et al. (2014) evaluated potential representations and concluded
that in terms of solution quality then the expression tree representation was preferable.

The GP systems described above evolve a single rule that should generalise across
a range of benchmarks. Another strand of research utilises GP to evolve multiple rules
that are used collaboratively to solve problems. Miyashita (2000) develop a system
called GP-3 that evolves two dispatching rules and a choice function that selects be-
tween the two rules depending on whether a machine creates a bottleneck; this shows
improvement over the use of a single evolved rule. Nguyen et al. (2014a) consider two
approaches to evolving rules for dynamic JSSPs. In the first approach, a single individ-

4

ual is evolved that contains two separate subtrees that together specify a scheduling
policy. In their second approach, a cooperative co-evolution method inspired by Potter
and De Jong (2000) is used to evolve trees in two separate sub-populations: trees from
each sub-population are combined to specify a complete policy, and three objectives are
used to select individuals based on dominance criteria.

2.3 Collectives of Rules

GP has previously been used to evolve ensembles of rules in the classification domain,
e.g. (Downey et al., 2012; Bhowan et al., 2013, 2014). The evolved ensembles pro-
mote behavioural diversity amongst the evolved classifiers, and have proved promis-
ing when applied to classifying unbalanced data-sets. Each evolved classifier votes
on the class of a given data-record, with the majority vote recorded. In the hyper-
heuristic JSSP domain, at the time of writing we are aware of only one ensemble ap-
proach. Park et al. (2015) extend the cooperative co-evolution method first proposed
by Nguyen et al. (2014a) to evolve s sub-populations of trees; a set consisting of one
tree from each sub-population is formed and each member of the subset votes as to
which operation should be selected for scheduling. The operation with the most votes
is then scheduled. The approach shows promising results but was limited to testing on
80 problems.

In contrast to the above ensemble method in which members of the ensemble each
votes as to which operation should be scheduled, we have previously described a sys-
tem called NELLI that evolves an ensemble in which each member of the ensemble
‘wins’ a unique subset of the instances under consideration (Sim et al., 2015, 2013; Sim
and Hart, 2014). NELLI uses a method inspired by Artificial Immune Systems (AIS)
to evolve a set of heuristics, which are behaviourally diverse in the sense that each
solves different subsets of a large instance set. This approach bears considerable re-
semblance to bagging (bootstrap aggregating) approaches from the machine learning
literature (Breiman (1996)) which have been shown to improve the stability and accu-
racy of machine learning algorithms, by reducing variance and avoiding overfitting.
The approach can also be considered as mixture of experts methods (Valentini and Ma-
sulli (2002)): in these methods a supervising learner divides the input space and assigns
an appropriate element of the ensemble to each division. While NELLI-GP retains the
core AIS element of NELLI which ensures diverse heuristics are retained, it replaces
the component that evolves the heuristics, using GP to evolve new dispatching rules
which are sequenced into new heuristics.

3 Method

In NELLI-GP, an ensemble E is defined by a tuple 〈H,R,D〉. H specifies the maximum
number of heuristics in the ensemble, each of which is composed of a sequence of rules.
The maximum length of the rule sequence is denoted by R. Each rule is defined by
a tree that can have maximum depth D. Thus, an ensemble signified by the expres-
sion H5−R3−D10 for example describes an ensemble composed of a maximum of 5
heuristics, each of which is composed of a sequence of rules of maximum length 3, and
where each rule has maximum depth 10. The creation of trees, rules, and heuristics that
forms a key contribution of this paper are described in turn below.

5

3.1 Tree-based Dispatching Rules

In contrast to previous work in which NELLI used dispatching rules taken directly
from the literature (Sim and Hart, 2014), in NELLI-GP we formulate novel dispatching
rules as trees of depth d, where 0 ≤ d ≤ dmax. The tree returns a real value for each
operation that can be considered for scheduling — these values are subsequently used
to prioritise each operation. Trees are formulated using a set of terminal and function
nodes described below.

3.1.1 Terminals & Function Nodes

We use a large set of function nodes as defined in table 2. The terminal node set contains
28 dispatching rules, compared to 14 in Hunt et al. (2014) and 7 in Tay and Ho (2008).
The majority of these have been obtained from the literature and includes examples
of both simple and composite dispatching rules and examples from each of the three
classes defined in section 2.1 — static, dynamic, less-myopic. Additional terminals have
been added to increase diversity.

Note that many of the acronyms used here differ from those commonly used in
the literature due to the fact that the set of priorities returned by a rule can be or-
dered either ascending or descending. For example the Shortest Processing Time rule
(SPT) named OpPT here can sort operations from smallest to largest or from largest to
smallest, depending on whether the terminal is set as positive or negative. Terminals
prefixed with Op, J, or M denote that they operate on the operation, its associated job or
its allocated machine. For example for each operation to be prioritised, MTPT returns
the total processing time of the operations to be scheduled on the associated machine
and JTPT returns the total processing time of the job.

The list includes simple DRs such as Weighted Shortest Processing Time (WSPT),
Earliest Due Date (EDD) and Minimum Slack (MS) (named JWPT, JDD and JS respec-
tively). These DRs have been shown to provide optimal solutions for the 1||

∑

ωjTj

single machine problem when release dates and due dates are zero (WSPT), or when
they are sufficiently spread out (EDD or MS). The terminal set also includes composite
DRs from the literature such as Apparent Tardiness Cost (JATC) which encapsulates
features of both WSPT and MS. JATC has been shown to outperform its component
parts in Vepsalainen and Morton (1987) for the SWT objective. Some less myopic rules
such as Next Operation Processing Time (OpNPT) are also implemented.

When a terminal node is added to a tree, it is randomly assigned as a positive or
negative node, i.e. a rule can order its list of operations from largest to smallest or vice-
versa. Thus in effect, the size of the terminal set is doubled.

3.1.2 Rule Wrappers: Eligible Operations

Each newly generated tree is encapsulated in a wrapper named a rule. A rule is ran-
domly assigned a label A,B,C specifying the algorithm that should be used to generate
the set S∗ of operations that are eligible for scheduling, thus expanding the search-
space of possible rules. Algorithm A is a modified version of the Giffler and Thompson
algorithm (Giffler and Thompson, 1960) described in Algorithm 1; Algorithm B is the
Non-Delay algorithm (Baker, 1984) described in Algorithm 2; Algorithm C is the set of
all available waiting operations.

6

Table 1: Terminals: Dispatching Rules

Terminal Nodes

Acronym Description

JAPT Average Job Processing Time

JATC Job Apparent Tardiness Cost var = 0.35

JDD Job Due Date

JEγD From Arkin 1991 γ = 1

JPTSF Job Processing Time So Far

JRPTI Job Remaining Processing Time

(including this op)

JRPT Job Remaining Processing Time

(NOT including this op)

JS Job Slack Time

JTPT Job Total Processing Time

JWPT Job Weighted Processing Time

JW Job Weight

JAD Job Arrival Date

MIT machine idle time (so far)

MLFT Machine Last Op Finish Time

MPTRI Machine Processing Time Remaining

(inclusive of the operation)

Terminal Nodes

Mnemonic Description

MPTR Machine Processing Time Remaining

(not including the operation)

MPTSF Machine Processing Time So Far

(not including idle)

MTPT Machine Total Processing Time

(sum of all operations to be scheduled)

OpEST Operation Earliest Schedule Time

OpFCFS Operation First Come First served

OpNPT Next operation in the job’s processing time

(or 0 if last op in job)

OpNRO Number of Remaining Operations

OpPPT Previous operation from the job’s processing

time (or 0 if first op in job)

OpPT Operation Processing Time

OpWPT Weighted Processing Time

OpRT Random Operation

INT Random Integer Value

REAL Random double between 0 and 1

Table 2: Function Nodes

Function Set

Mnemonic #Ops Returns

ABS 1 Absolute Value of Op

+ 2 Sum of Op 1 and Op 2

- 2 Difference between Op 1 and Op 2

X 2 Product of Op 1 and Op 2

/ 2 Protected Division of Op 1 by Op 2 ∗

NEG 1 Negation of Op 1

IGTZ 3 If Op 1 ≥= 0; Op 2 else Op 3

Exp 1 The Exponential of Op 1

MAX 2 The maximum value of Op 1 and Op 2

Comp 2 If Op 1 < Op 2 returns -1

If Equal returns 0: Else returns 1

∗ If Op 2 = 0 ,∞ is returned

Algorithm 1 Giffler & Thomson

1: Calculate the set C of all operations that can be scheduled next
2: Calculate the completion time of all operations in C, and let m* equal the machine(s) on which the minimum completion

time t is achieved.
3: Let S∗ denote the conflict set of operations on machine(s) m* - this is the set of operations in C which take place on m*,

and whose start time is less than t.

7

Algorithm 2 Non Delay

1: Calculate the set C of all operations that can be scheduled next
2: Calculate the starting time of each operation in C and let S∗ equal the subset of operations that can start earliest

MPTRI

Conflict

Set

Dispatching
Rule (D=0)

(a)

Max

X -

JAD -JRPTI MTPT MIT

B

Conflict

Set
Dispatching

Rule (D=2)

(b)

Figure 1: Example rules comprising a conflict set and a tree dispatching rule of depth
0 (left) and 2 (right). Terminal nodes prefixed with - return a negated value

The first two algorithms are known to generate schedules from a reduced solu-
tion space that includes the optimal solution. The Giffler and Thompson algorithm
is modified as shown in algorithm 1 such that if more than one machine shares the
same minimum completion time, then all machines with that time are included in S∗.
The third method is included given that hyper-heuristics are often used in situations in
which optimality is not required, merely an acceptable solution found quickly — note
however, that the evolutionary process might subsequently discard this rule. An oper-
ation is chosen for scheduling from S∗ according to the value returned by the priority
rule.

Note that there are 28 ∗ 2 ∗ 3 = 168 possible dispatching rules described by trees
of depth = 0 only: a rule can contain one of 28 terminals, each of which can be set as
positive or negative and use one of the 3 possible conflict sets. The number of potential
complex rules composed of trees of depth > 0 is obviously considerably larger.

3.2 Heuristics

A heuristic, hi, is defined as a variable length sequence of rules, of minimum length 1
and maximum length R. To produce a solution for a problem instance, each rule in the
heuristic is applied in turn and schedules a single operation. After the last rule in the
sequence is used the procedure repeats starting from the first rule until all operations
have been scheduled. When a rule is selected, the subset S∗ of operations to be con-
sidered for scheduling is generated according to the scheduling rule A,B,C defined by
the rule. The tree defined by the rule is then applied to sort the available operations.
The first operation from the sorted list is then selected. If more than one operation may
be placed at the head of the sorted list (i.e. set of equal values is returned) then one
is selected randomly. The selected operation is scheduled at the earliest available time
on its predetermined machine as determined by the maximum of the completion time

8

of the last operation to be processed on the machine, the completion time of the last
operation from the selected operations associated job and the job’s arrival time.

3.3 Evolving Ensembles of Heuristics

Evolution of the ensemble is managed using the NELLI method previously mentioned
in section 2, modified in order to cope with the use of tree-based rules. In brief, the
algorithm provides a cooperative method of evolving a set of heuristics that interact
to cover a problem space, favouring heuristics that are able to find a niche in solving at
least one problem better than any other heuristic in the system. Heuristics are sustained
in the system by ‘winning’ instances, e.g. achieving a result on an instance that is better
than anything else in the ensemble.

The heuristics in the ensemble continuously adapt due to evolutionary processes
that continually trial new heuristics, and the size of the ensemble is an emergent prop-
erty of the system. On the one hand, this enables the network to both continually
improve its response and adapt to changing problem instances. On the other, it pro-
vides an immediate solution to new problem instances that appear as each heuristics
generalises over some part of the problem space. A full description of the algorithm
can be found in Sim et al. (2013, 2015); Sim and Hart (2014); Hart and Sim (2014) which
describes applications in which heuristics were formed from pre-defined rules only.

4 Implementation

A conceptual view of the system is given in figure 2 and is described by Algorithm 3.
The system contains three key components: a continual stream of problem instances
(the problem-space), a continual stream of novel heuristics and a network of heuristics
inspired by the idiotypic model of the immune system. The dynamics of the network
determine the final constitution of the system in retaining only problems that are repre-
sentative of characteristic regions of the problem space, and heuristics that solve prob-
lems that cannot be solved by other heuristics. The system was originally proposed as a
lifelong learning approach that could autonomously adapt to changing problem charac-
teristics (Sim et al., 2015) — here we use a modified form to evolve a fixed ensemble of
heuristics that collectively map the problem space based on a training set of problems.
As in any machine learning method, the quality of the system relies on the training
set being representative of the problem space, hence a large, diverse set of problem
instances is desirable.

The key improvements to previous work using NELLI Sim and Hart (2014) are
provided by the new heuristic generator. Heuristics are now represented as sequences
of novel tree-based dispatching rules. This also differs from previous work in Sim et al.
(2015) that uses Single-Node genetic programming to represent bin-packing heuristics.
The new approach provides increased diversity and results in a trained ensemble that
better generalises across the problem space. A brief descripton of the core network is
provided before describing the novel modifications in detail.

4.1 Immune Network

The immune network lying at the heart of the system is unchanged from the system
used previously, e.g. (Hart and Sim, 2014), and is covered here briefly for clarity. The

9

Figure 2: NELLI-GP comprises three components: a heuristic generator to supply a
continual stream of novel heuristics, a set of problem instances and a network inspired
by the idiotypic network theory of the immune system. The heuristic generator is ex-
panded (the shaded area) here by the addition of a Rule Generator

hstim =
∑

p∈P

δp

{

δp = min (f(H′
p))− f(hp) : if min (f(H′

p))− f(hp) > 0

δp = 0 : otherwise
(1)

pstim =
∑

h∈H

δh

{

δh = min (f(H′
p))− f(hp) : if min (f(H′

p))− f(hp) > 0

δh = 0 : otherwise
(2)

Where f(hp) is the result (MS or SWT) achieved by heuristic h on problem p and
min (f(H′

p)) is the best result obtained on problem p by the rest of the ensemble
H′ = H− h

immune network models heuristics as antibodies and problems as pathogen. The ob-
jective is to find a minimal repertoire of heuristics that effectively solve the problems
being supplied to the system. A heuristic ‘wins’ a problem instance if it obtains a so-
lution to the instance that is better than any other heuristic in the system. The immune
network promotes behavioural diversity within the ensemble in that for a heuristic to
persist it must win at least one problem. Similarly, a problem only survives in the
system if it is won by only one heuristic, i.e. it is representative of a hard part of the
instance space. Both heuristics and problems have their behaviours governed by two
variables — concentration and stimulation. The key steps of the immune network sim-
ulation are described from line 10 onwards in Algorithm 3. Each iteration, after new
problems and heuristics have been injected into the system, the stimulation levels of
both heuristics and problems are calculated using equations 1 and 2. Based on the
stimulation received, concentration levels are adjusted up or down by a fixed amount
(∆c) depending on whether the stimulation value of a cell lies within upper and lower
thresholds. Heuristics and problems are injected into the system with an initial level

10

Algorithm 3 NELLI-GP Pseudo Code

Require: H = ∅ :The set of heuristics
Require: P = ∅ :The set of problems currently in the system
Require: E :The set of all available problems
1: repeat
2: p = U(0, 1)
3: if (p ≤ probhm) ∧ (H 6= ∅) then
4: Generate a new heuristic h via heuristic mutation1

5: else
6: Initialise a new heuristic h via heuristic initialisation2

7: end if
8: Add h to H with concentration cinit

9: Add max(np, |E − P|) randomly selected problem
instances from E − P to P with concentration cinit

10: Calculate hstim∀h ∈ H using Equation 1
11: Calculate pstim∀p ∈ P using Equation 2
12: Increment all concentrations (both H and P) that have

concentration < cmax and stimulation > 0 by ∆c

13: Decrement all concentrations (both H and P) with stimulation ≤ 0 by ∆c

14: Remove heuristics (from H) and problems (from P) with concentration ≤ 0
15: while |H| > Hmax do
16: Remove the heuristic that contributes the least3 to the ensemble
17: end while
18: until stopping criteria met

For all experiments conducted here probhm = 0.9, np = 10, pm = 0.9
∆c = 50, cmax = 1000, cinit = 200
Hmax is varied between 1 and infinity.
The stopping criteria is set to 10000 iterations

1 2 are described by Algorithm 5 and Algorithm 4 respectively.
3 is determined as the heuristic that contributes the least to the global fitness
achieved by greedily applying all h ∈ H to all p ∈ P

of concentration (cinit) that allows them to persist in the network for a number of iter-
ations, even without receiving any stimulation. If any concentration level falls to zero
or below it is removed from the system. Heuristics have an implicit affect on each oth-
ers behaviour leading to complex network behaviour; for example a newly introduced
heuristic that outperforms an existing heuristic may limit the stimulation received by
the existing heuristic to such an extent that its concentration is reduced and it is even-
tually removed from the network.

Note that there is no global fitness function: a new heuristic is only included in the
ensemble if it wins at least one instance from another heuristic, hence every addition of
a new heuristic necessarily improves global fitness. The stimulation level of a heuristic
provides a measure of its individual fitness: this drives selection for mutation, providing
evolutionary pressure for individuals to improve. Specialisation of heuristics to spe-
cific niches with the instance space occurs due to the explicit need to win instances to
survive.

4.2 Heuristic Generator

As previously described, a heuristic is composed of a sequence of rules. Each rule com-
prises two parts; a method of generating a conflict set of waiting operations and a tree
dispatching rule that is used to prioritise the operations from the conflict set. New
heuristics are created through cloning, initialisation and mutation processes, the latter
two of which are described by Algorithms 4 and 5 and remain identical to our previous
work described in Sim and Hart (2015a).

11

Algorithm 4 Heuristic Initialisation

n = U(1 . . . rmax initial) : random integer value between 1 and rmax initial

R = ∅
while |R| < n do

R = R + getRule {using Algorithm 6}
end while
Return a new heuristic created using the set of rules R

Algorithm 5 Heuristic Mutation

Require: H : The set of heuristics currently in the system
if H = ∅ then

generate new heuristic through initialisation. Algorithm 4
else

h = roulette(H) : Roulette selection based on heuristic stimulation
R = {r1 . . . rn} : The set of n rules that make up heuristic h
With equal probability generate a new heuristic by:

1 Cloning h
2 Adding a rule to R at a random position.

the rule is selected using GetRule1

3 Removing a random rule from R
(if |R| > 1 else do nothing)

4 Swap the position of 2 randomly selected rules from R
(if |R| > 1 else do nothing)

5 Replace a random rule from R with a new rule selected using GetRule1

6 Select a second heuristic h′ = roulette(H)
generate a new heuristic by concatenating the rules in R′ to R

end if
Return the new heuristic

Both the heuristic mutation and heuristic initialisation procedures may result in
the requirement for new rules to be generated. In previous work (Sim and Hart, 2015a)
when a rule was required it was selected randomly from a set of 13 rules taken directly
from the scheduling literature. In the work presented here, a rule generator is imple-
mented that creates novel rules formulated as tree structures as described in section 3.1.
The process described in Algorithm 6 outlines the method for generating a new rule.
New rules can be formed either through initialisation, using the ramped half and half
method of Koza (1992), as described in Algorithm 7, or by mutating an existing rule
using sub-tree swap mutation.

Algorithm 6 Get Rule

Require: H : The set of heuristics currently in the system
1: if H = ∅ then
2: generate a new rule r using a random conflict set and a priority rule formulated as a tree generated through tree

initialisation. Algorithm 7
3: else
4: h = roulette(H) : Roulette selection based on heuristic stimulation
5: R = {r1 . . . rn} : The set of n rules that make up heuristic h
6: r = U(R) : Select a random rule from R
7: end if
8: r′ = mutate(r)1

9: if depth(r′) < depthmax then
10: r = r′

11: end if
12: return r

1mutate(r) replaces a random node from rule r with a new sub-tree
generated using Algorithm 7

The current set of heuristics sustained by the network in NELLI-GP represents a

12

Algorithm 7 Initialise Tree

Require: depthinitial : The maximum initial depth for a tree
1: d = U(0 . . . depthinitial) : Random integer between 0 and depthinitial

2: p = U(0, 1) : Random double between 0 and 1
3: if p < 0.5 then
4: generate a tree of maximum depth d using the grow tree method1

5: else
6: generate a tree of depth d using the full tree method1

7: end if
8: return tree

1 If the procedure detailed above is used recursively to generate a population of trees then it is identical to the classic
ramped half and half method of initialising a GP populations taken from Koza (1992) in which can also be found details of the
grow tree and full tree methods used at lines 4 and 6.

population of available rules that is used as the starting point to generate new rules.
This is motivated by the fact that any heuristic maintained in the system has already
proved it provides a contribution to the ensemble, and thus can be considered as ‘high
fitness’. Unlike conventional GP, which uses crossover to converge to a optimal solu-
tion, only cloning and mutation procedures are used here to generate new heuristics
and rules. The rationale for this implementation decision is that the purpose of the en-
semble is to find diverse heuristics, therefore utilising crossover was deemed unhelpful
as crossover inevitably leads to convergence. Initial empirical investigation including
crossover validated this assertion, leading to convergence of heuristics and no improve-
ment in the collective performance of the ensemble: this is directly antagonistic to the
goal of NELLI-GP to sustain a diverse population of heuristics.

4.3 Problem Generator

In addition to a stream of heuristics, NELLI-GP requires a continuous stream of
problem instances that ideally are widely distributed over the potential problem
space. Many JSSP datasets are available in the literature (Applegate and Cook, 1991;
Lawrence, 1984; Taillard, 1993). Often, these problems have known lower bounds
which provide useful benchmarks, but tend to consist of small sets of problems gen-
erated from a specified parameter set. A common approach from researchers studying
JSSP has been to generate new problems using a specified problem generator, e.g. Hunt
et al. (2014). This method has the advantage of being able to create very large numbers
of problems; furthermore, by varying the parameters of the generator, a wide area of
the potential problem space can be covered. For both of these reasons, we use the latter
approach.The generator is made available on-line at at Sim and Hart (2015b).

We consider problems specified by n jobs and m machines, where n ∈
[10, 25, 50, 100] and m ∈ [5, 10, 15, 20, 25]. Instances are generated from each possible
combination (n,m). The processing time for an operation is selected randomly from a
uniform distribution following pir = U [2, ..., 10]where pik refers to the processing time
of the operation of job j on machine k. Release dates are drawn randomly from one of
two distributions as in Tay and Ho (2008) using Equation 3 depending on the number
of jobs in the problem instance.

ri =

{

U [0, 20] if n < 50

U [0, 40] if n ≥ 50
(3)

13

Due dates are defined as in Baker (1984) using Equation 4. The term c is fixed at
1.3, the average of the values used in Singer and Pinedo (1998) which investigated the
difficulty of relatively “tight” problems generated with c = 1.4 and c = 1.2.

di = ri + c×
n
∑

j=1

pij (4)

Job weights (wi . . . wn) are selected using the 4:2:1 rule taken from Zhou et al. (2009)
which is informed by research suggesting that 20% of a company’s customers are the
most important, 60 % are of of average importance and 20% are less important. Con-
sequently the first 20% of jobs in an instance are assigned a weight of 4, the next 60%
receive a weight of 2 and the remaining 20% of an instances jobs are given a weight of 1.
The order in which a job’s operations are assigned to machines may differ for each job
and is allocated randomly during the problem generation process. All jobs visit each
machine exactly once. In total, 20 different instance classes are defined by the combi-
nations of (n,m, p, r, d). Within a class, each instance is unique due to the stochastic
nature of p (processing time) and r (release date).

4.4 Training and Test Sets

35 instances are generated from each of the 20 classes. Within each class, 25 instances
are selected at random and added to a training set, with the remaining 10 allocated to
a test set. Thus, 700 problem instances are generated in total with 500 instances in the
training set, and 200 in the test set.

Each of the data sets is considered using two different objective fitness functions.
The makespan is a measure of the time to completion of the last job and is given by
Cmax = max{Ci} : 1 ≤ i ≤ n, where Ci is the completion time of job i. The Summed
Weighted Tardiness relates to the lateness of a job and is given by

∑n

i=1 ωiTi, where the
tardiness of a job is denoted by Ti and Ti = max{Ci − di, 0}. In the following section
we describe a number of experiments that are conducted separately using each of these
objectives. All problem instances are available at Sim and Hart (2015b).

5 Experimental Method

The experiments described below have the following objectives:

• to investigate whether there is a performance benefit from evolving tree-based
rules in comparison to a large set of pre-defined scheduling rules

• to investigate if a performance benefit is obtained by combining rules into heuris-
tics composed of linear sequences of rules, compared to using single rules

• to investigate the benefit of using an ensemble of heuristics compared to single
heuristics

• to compare the results obtained to the state-of-the-art from the literature

To address the first three objectives, ensembles described by 〈Hx, Dy, Rz〉 are
evolved using the training and test sets described in section 4.4. Note that experiments

14

in which x > 1 describe ensembles consisting of more than one heuristic. Experiments
in which y = 0 have rules of depth 0, i.e only use the scheduling rules defined in the
literature. Experiments in which z = 1 use a single scheduling rule (either evolved or
from the literature), rather than heuristic composed of a sequence of rules.

Parameters used in all experiments are given in table 3. These are unchanged from
those used in previous works with additional parameters added relating to the initial
and maximum depth for trees which are both set to either 0 or to 6 (dinit) and 17 (dmax)
respectively. The probability pais and pm are set to high values to encourage exploita-
tion, i.e. mutation of existing rules and/or heuristics. This follows work reported in
Sim and Hart (2014) that noted that the best results were obtained when new heuristics
were formulated predominantly by mutating existing heuristics. Only two values of
Rmax and Dmax were investigated: Rmax was either set to 1 or U = unlimited, i.e. the
length of the sequence of rules defining a heuristics was either exactly one or set to
unlimited, so that the sequences could grow to any length depending on the evolution-
ary operators applied. The maximum depth of the trees was either set to 0 (use only a
single terminal node) or 17 as in Koza (1992). The size of the ensemble was varied such
that H ∈ 1, 2, 4, 8, 16, 32, 64, 128, 256, U where U indicates unlimited, i.e. no enforced
restriction on the size of the ensemble.

As the rules are all stochastic (more than one operation may receive the highest
priority score which results in a random selection from the set of highest priority oper-
ations) all experiments were conducted 30 times, each for 10,000 iterations. This results
in 30 sets of results for each training scenario: the heuristic(s) that gave the best results
for each scenario during training were evaluated 30 times on set of 200 test problems
using the corresponding objective function.

Table 3: Parameters

New heuristics per iteration nh 1

Number of iterations itermax 10000

Problem instances per iteration np 10

Maximum Iterations itermax 10000

Minimum stimulation level stimmin 0

Maximum stimulation level stimmax ∞

Initial concentration level cinit 200

Maximum concentration level cmax 1000

Concentration change δc 50

Maximum number of heuristics Hmax ∈ {1, 2, 4, 8, 16, 32, 64, 128, 256, U}

Maximum rule length Rmax ∈ {1, U}

Maximum Initial depth Dinit ∈ {0, 6}

Maximum bloat depth Dmax ∈ {0, 17}

Probability of heuristic mutation pm 0.9

Probability of selecting existing rule pais 0.9

15

68000

70000

72000

H
1
 D

0
 R

1

H
1
 D

0
 R

U

H
1
 D

1
7
 R

1

H
1
 D

1
7
 R

U

H
U

 D
0
 R

1

H
U

 D
0
 R

U

H
U

 D
1
7
 R

1

H
U

 D
1
7
 R

U

T
o
ta

l
S
u
m

m
ed

 M
a
k
es

p
a
n

(a)

3.05

3.1

3.15

3.2

3.25

3.3

3.35

H
1

D
0

R
1

H
1

D
0

R
U

H
1

D
17

 R
1

H
1

D
17

 R
U

H
U

 D
0

R
1

H
U

 D
0

R
U

H
U

 D
17

 R
1

H
U

 D
17

 R
U

T
ot

al
 S

u
m

m
ed

 W
ei

gh
te

d
 T

ar
d
in

es
s (X 106)

(b)

Figure 3: Results on the test problems for Makespan (left) and SWT (right)

5.1 Results

This section gives results from experiments in which ensembles were evolved using
the training set of 500 instances and test set of 200 instances described in 4.4. Figure
3 shows boxplots that directly contrast performance when switching between trees,
heuristics and ensembles on the test sets for both objectives. In each case, the four left-
hand results (H=1) indicate ‘one-size-fits-all’ experiments in which a single heuristic is
evolved. The right-hand four results represent ensembles, in which the components can
consist of single rules (R=1) or sequences of rules (R=U). Configurations with Dmax = 0
represent rules composed only of terminal nodes. Those with Dmax = 17 contain tree-
based rules. For the Cmax objective, H1 D0 R1 corresponds exactly to the rule −JRPT
(annotated with conflict set B) shown in table 1 which is the best performing single
terminal node and to −JACT (again with conflict set B) for the SWT objective. The
box plots present the summed fitness over the 200 test instances obtained from each
configuration over 30 runs. The following general observations are made:

• Using an evolved rule (Dmax = 17) is always preferable to creating heuristics from
the terminal nodes only, regardless of whether ensembles or rule sequences are
used

• For the non-ensemble methods (H=1), then a heuristic that contains a single rule
rather than a sequence of rules is preferable: this is not observed in the ensemble
methods in which the sequences (R=U) provide better results. This may result
from overfitting on the training set when a single sequence is evolved, particularly
for D = 0.

• Ensembles provide better results than a single ‘one-size-fits-all’ approach (H = 1),
regardless of R and D.

• The ensemble method used in conjunction with DU−RU is the clear winner, show-
ing the benefit of an ensemble, of evolving trees, and sequencing them into heuris-
tics

Two-tailed t-tests between all pairs of results show that all observations are sta-
tistically significant at the 5% confidence level, with the exception of the comparison

16

Table 4: Cmax For each configuration <H*D*R*> , the table shows the median ratio to
theoretical optimal and summed fitness over all instances, and average rank compared
to the other configurations. Results taken from the single best run in all cases.

Train Test
Median
Ratio (num
optimal)

Summed
fitness

Average
Rank (num
rank 1)

Median
Ratio (num
optimal)

Summed
Fitness

Average
Rank (num
rank 1)

One heuristic H1 D0 R1 1.12 (4) 178329 7.452(4) 1.30 (1) 71236 6.355(2)
(rules=1) H1 D17 R1 1.09 (62) 173299 4.486 (81) 1.10 (20) 69729 3.935(36)
One heuristic H1 D0 RU 1.10 (78) 174113 4.232 (113) 1.15(0) 71914 6.945 (0)
(rules > 1) H1 D17 RU 1.09 (67) 172892 4.036 (90) 1.15 (0) 71286 6.415 (1)
Ensemble HU D0 R1 1.10 (49) 175151 5.474 (58) 1.10(19) 69970 4.225 (28)
(rules=1) HU D17 R1 1.05 (121) 169696 1.302 (363) 1.07 (40) 68146 1.405 (129)
Ensemble HU D0 RU 1.07 (94) 171841 2.694 (191) 1.09 (25) 68976 2.555 (60)
(rules > 1) HU D17 RU 1.05 (121 169777 1.400 (337) 1.07 (45) 68125 1.430 (133)

H1D0R1 to H1D17R1 using the SWT objective, where we were unable to find a sta-
tistically better single rule that generalised better than the JATC rule, known for its
performance on the SWT objective. However our results using ensembles (H > 1)
improved on the single best rule on all occasions.

Tables 4 and 5 provide results from each configuration from the single best run
obtained for both objectives. As the summed fitness metric used in figure 3 can be
distorted by the larger instances, and masks performance on individual instances, we
also provide an comparison to the theoretical optimal. For makespan this can be easily
calculated (Taillard, 1993); the table gives the median value for the ratio actual/optimal
makespan. For the TWT objective, we estimate the theoretical optimal as the sum of
the weighted due-dates, and calculate the ratio of the summed weighted actual arrival
date to the summed weighted due-dates. For both objectives, we also give the actual
number of optimal solutions found. Additionally, we rank each of the 8 configurations
on each instance (where rank 1 is best) and calculate the average rank over all instances,
and the number of instances assigned rank 1 for each configuration.

In terms of the summed fitness, the ensemble composed of heuristics containing
rule-sequences (HUD17RU) provides the best result for both objectives. Comparing
average ranks and instances of rank 1, the same ensemble proves best for the TWT ob-
jectives. It is marginally beaten by HUD17R1 for makespan in terms of average rank,
but has more instances assigned rank 1. In terms of number of optimal solutions and
median ratio, although the ensemble methods are clearly preferable, there is little differ-
ence between the ensemble of rule sequences (HUD17RU) and the ensemble of single
rules (HUD17R1). The RU configuration appears to faciliate the emergence of heuristics
that improve fitness (reducing the sum) on some of the larger instances, while having
little impact on the overall ratio to optimal, most likely due to the increased size of the
search space.

5.2 Comparison to a Disposable Hyper-heuristic Approach

Hyper-heuristic methods aim to find quick and acceptable solutions to problems, often
trading some loss in quality against speed of producing a solution. Given a new prob-
lem instance p and a trained ensemble containing h heuristics, then exactly h heuristics
need to be executed once to find the best solution to the instance. In contrast, a typ-
ical meta-heuristic approach applied to each instance to obtain a heuristic would run

17

Table 5: TWT For each configuration <H*D*R*> , the table shows the median ratio to
theoretical optimal and summed fitness over all instances, and average rank compared
to the other configurations. Results taken from the single best run in all cases.

Train Test
Median
Ratio (num
optimal)

Summed
fitness

Average
Rank (num
rank 1)

Median
Ratio (num
optimal)

Summed
Fitness

Average
Rank (num
rank 1)

One heuristic H1 D0 R1 1.64 (7) 8289211 6.784 (7) 1.64 (0) 3300505 5.625 (0)
(rules=1) H1 D17 R1 1.62 (3) 7974321 4.956 (14) 1.65 (0) 3300097 5.790 (0)
One heuristic H1 D0 RU 1.64 (7) 8112045 5.318 (8) 1.64 (0) 3301616 5.725 (0)
(rules > 1) H1 D17 RU 1.59 (8) 7915908 3.852 (37) 1.64 (0) 3307548 6.00 (0)
Ensemble HU D0 R1 1.64(26) 8237717 5.93 (29) 1.57 (9) 3280346 4.505 (14)
(rules=1) HU D17 R1 1.56 (39) 7793957 1.760 (217) 1.57 (12) 3151370 1.855 (49)
Ensemble HU D0 RU 1.60(35) 8073411 4.086 (64) 1.60 (10) 3244691 3.160 (22)
(rules > 1) HU D17 RU 1.55 (39) 7752270 1.600 (279) 1.56 (11) 3103310 1.285 (157)

for i iterations. Although not entirely fair, it is instructive to compare the quality of
solutions obtained by greedy selection from an evolved ensemble to the quality of the
solutions obtained by directly evolving a new heuristic to solve each individual in-
stance. A standard GP algorithm with parameters set as in Koza (1992) (population
size = 500, initialised using ramped half and half up to a depth of 6 using crossover
90% and cloning 10% and maximum tree depth of 17) was executed for 20 generations
(10,000 evaluations as with NELLI-GP) is used. After initialisation, each tree is ran-
domly assigned one of three possible rules to determine operation eligibility defined
in section 3.1.2. This rule does not undergo mutation. The following experiments are
performed 30 times:

• GP (1P) : GP is run on each of the 200 instances in the test set in isolation. i.e. a
single rule is evolved for each test instance.

• GP (200P) : GP is run on the full set of the 200 test instances. i.e. 1 rule is evolved
for the complete test set.

Table 6 shows the best, mean and standard deviation obtained over 30 runs. T-
test results in each column show a comparison with the previous columns results. As
well as results from the two experiments described, 3 sets of results from the exper-
iments conducted in the previous section are included for comparison. GP (1P) and
HU D17 R1 both evolves exactly one rule per problem, and hence can be directly com-
pared. Similarly H1 D17 R1 and GP (200P) both evolve a single rule that is evaluated
on all 200 problem instances and hence are directly comparable. The results of apply-
ing the best ensemble obtained during training (H1 D17 RU) to the test set are also
included.

As would be expected GP(1P), which evolves a different rule for each problem in-
stance, obtains better results than both GP(200P) and H1 D17 R1 which evolve only
a single generalist rule. Interestingly, when the evolved H1 D17 R1 rule is applied
to the test set it outperforms the single rule that was evolved by GP directly on those
instances, demonstrating good generalisation from the training set. All of the above re-
sults are eclipsed by the results obtained by applying the reusable ensembles of heuris-
tics generated by NELLI-GP. Furthermore the best trained ensemble (HU D17 RU),
comprising of 264 heuristics, requires less than 3 % of the evaluations required for ei-
ther of the GP experiments.

18

Table 6: Comparison of ensembles (Cmax) to disposable hyper-heuristic approaches

GP (200P) H1 D17 R1 GP (1P) HU D17 R1 HU D17 RU

Mean 70761.43 69788.20 69127.93 68183.57 68148.07

Best 69795 69729 69068 68146 68125

SD 296.59 29.46 34.80 19.75 13.94

T-test — 2.06E-17 1.67E-34 3.56E-40 5.32E-08

5.3 Comparison to Existing Approaches

We compare our method to two recent approaches from the literature. Nguyen et al.
(2013b) describe a new GP based approach to learning new iterative dispatching rules,
using four well-known benchmarks datatsets (LA, ORB, TA, DMU). A training set is
formed consisting of all odd numbered instances from each of the four sets, with the
remainder making up a test-set. Each set has 105 instances. Park et al. (2015) use GP
to evolve an ensemble of rules that vote to determine which operation is selected for
scheduling at each iteration. Their approach is tested on the 80 instance Taillard (TA)
set (which is included in Nguyen et al. (2013b)), using three different training sets each
containing 5 instances, with the remaining 65 instances making up the test set in each
case.

A direct comparison of ensemble methods is given by comparing NELLI-GP to the
ensemble method of Park et al. (2015), i.e. the ‘Mixture-of-experts’ ensembles of the
former and the majority voting approach taken by the latter. We use the same train-
ing and test sets described in (Park et al., 2015) and evolve an ensemble of heuristics
using NELLI-GP in the form H4 D17 RU in order to allow a fair comparison to the
4 islands used by Park et al. (2015). In order to provide an exact comparison, NELLI-
GP is first limited to exactly the same set of function and terminal nodes used by Park
et al. (2015). The experiment is then repeated using the full set of nodes given in table
7. Both NELLI-GP ensembles outperform the results from Park et al. (2015). T-tests at
the 5% significance level confirm this result. T-tests additionally show no significant
difference between the NELLI-GP results with different terminal sets. To compare to
Nguyen et al. (2013b), we evolve an ensemble defined by HUD17RU using exactly the
same training and test sets as their approach. Results averaged over 30 runs are given
in the final line of table 8. NELLI-GP significantly outperforms the published approach
on both training and test sets.

The ensembles evolved by NELLI-GP should be reusable. We take ensembles
evolved on the new 500 training instances (as described in section 4.4) and reuse on
the test sets used by Nguyen et al. (2013b) and Park et al. (2015), comparing to their
published results. Results are given in table 8 for three ensembles (H4, H64, HU). All
three significantly outperform EGP-JSS from Park et al. (2015) on the 65 Taillard in-
stances. H8 and HU significantly outperform the results of the new GP method ∆′

proposed by Nguyen et al. (2013b) and the results from their simple GP algorithm ∆.
Clearly the NELLI-GP ensembles are reusable — ensembles evolved on one data-set can
be directly applied to a different dataset, and demonstrate improved performance over
methods that were tailored to the tested dataset. In addition, the ensemble provides a
robust optimisation method. The instances in the datasets given in table 8 have similar
parameters in terms of (jobs, machines) but contain operations whose processing times

19

Table 7: Comparison of NELLI-GP to EGP-JSS from Park et al. (2015)

EGP-JSS NELLI-GP: Node Set from NELLI-GP: Node set from

Training Park et al. (2015) Table 1

Set Train Test Train Test Train Test

T1 0.45±0.03 0.26±0.04 0.38±0.07 0.2±0.09 0.38±0.03 0.22 ± 0.13

T2 0.33±0.04 0.26±0.03 0.36±0.08 0.18±0.03 0.38±0.05 0.18±0.05

T3 0.06±0.01 0.26±0.01 0.02±0.01 0.18±0.04 0.03±0.02 0.18±0.05

Table 8: Reusability and robustness of ensembles: NELLI-GPT refers to ensembles
trained on the 500 new instances and applied directly to new test sets. Results from
EGP-SS and ∆,∆′ taken directly from Park et al. (2015), Nguyen et al. (2013b) respec-
tively. For comparison, NELLI-GPE gives the result from evolving an ensemble on the
same training set given in the relevant publications

Park et al. (2015) Nguyen et al. (2013b)
65 test instances 105 train 105 test

(Park, 2015) EGP-JSS 0.26 ±0.001

(Nguyen, 2013) ∆ 0.179 ± 0.003 0.187 ± 0.005
∆

′ 0.151 ± 0.004 0.160 ± 0.005
NELLI-GPT H4 D17 RU 0.18 ±0.005 0.178 ± 0.001 0.171 ±0.002

H64 D17 RU 0.14 ±0.002 0.140 ±0.001 0.136 ± 0.001
HU D17 RU 0.15±0.002 0.140 ±0.001 0.136 ± 0.001

NELLI-GPE HU D17 RU 0.18 ± 0.05 0.119±0.006 0.127 ± 0.001

are drawn from different distributions to those used by the instances used to evolve the
ensembles. Hence, they can be considered perturbed versions of the original instance
set.

6 Analysis

This section provides an analysis of the ensemble in terms of the role and structure of
the constituent heuristics, and relationship between heuristic performance and prob-
lem structure.

6.1 Effect of ensemble size

The experiments in section 5 allow ensembles of unlimited size (H = U) to evolve,
although in practice evolution limits the actual size that emerges. In the following
experiments, we examine the effect of restricting the size of the ensemble to H ∈
(1, 2, 4, 8, 16, 32, 64, 128, 256) rather than allowing evolution to proceed unrestricted.
Figure 4 shows results on the test sets for both objective functions as H is varied.

A clear correlation between the size of the ensemble and the collective performance
of the ensemble is apparent in all cases. However the benefit clearly tails off as the size
of the ensemble increases beyond a saturation level. An ensemble size of |H| ≈ |P |/10
appears appropriate as a rule of thumb given the investigations conducted. However,
this is clearly problem dependent, the larger and more diverse the training set the better
the evolved heuristics.

20

68000

70000

72000

H
1
 D

1
7
 R

U

H
2
 D

1
7
 R

U

H
4
 D

1
7
 R

U

H
8
 D

1
7
 R

U

H
1
6
 D

1
7
 R

U

H
3
2
 D

1
7
 R

U

H
6
4
 D

1
7
 R

U

H
1
2
8
 D

1
7
 R

U

H
2
5
6
 D

1
7
 R

U

H
U

 D
1
7
 R

U

T
o
ta

l
S
u
m

m
ed

 M
a
k
es

p
a
n

(a)

3.05

3.1

3.15

3.2

3.25

3.3

3.35

H
1

D
17

 R
U

H
2

D
17

 R
U

H
4

D
17

 R
U

H
8

D
17

 R
U

H
16

 D
17

 R
U

H
32

 D
17

 R
U

H
64

 D
17

 R
U

H
12

8
D

17
 R

U

H
25

6
D

17
 R

U

H
U

 D
17

 R
U

T
ot

al
 S

u
m

m
ed

 W
ei

gh
te

d
 T

ar
d
in

es
s (X 10

6
)

(b)

Figure 4: Varying ensemble size: Makespan (left) and SWT (right) results

6.2 Structure of evolved heuristics

The heuristics contained in evolved ensembles of size 1 − 264 are analysed in terms
of the number of rules contained in each heuristic, and the number of nodes in each
rule, with results given in table 9. As previously noted the number of heuristics in
the ensemble, the number of rules in a heuristic and the tree depth of the rules is an
emergent property of NELLI-GP. Some general trends are observed. Heuristics tend to
increase in complexity in terms of the number of rules-per-heuristic as the ensemble
size increases, peaking at |H| = 64 when the trend reverses. This suggests that large
ensembles favour less complex rules, as each heuristic needs to operate in a smaller
region of the instance space. In terms of nodes-per-rule, the pattern is less obvious;
the number of nodes tends to increase as the size of the ensemble increases, but does
not grow linearly. The average depth per rule is given in the final column — note
that in all cases, this is significantly less that the maximum allowed depth of 17 and
often produces small, easy to analyse heuristics with depth around 5. In contrast, in
typical GP, bloat is common. We suggest that in NELLI-GP, bloat is largely suppressed
by the elitist requirement that a heuristic must solve at least one instance better than
the existing heuristics to replace another in the ensemble. In standard GP with a large
population, weak trees can be sustained due to the replace-worst step, encouraging
bloat. A typical rule taken from 1 of the heuristics from H64 R17 DU is shown in
Figure 5

6.3 The role of the ensemble

To understand how each heuristic within the ensemble contributes to the collective
performance we analyse an ensemble of h heuristics applied to the set of i = 200 test
instances. For each instance we calculate f∗

i , i.e. the best result achieved on the instance
by the ensemble, and calculate ci as the number of heuristics that achieve f∗

i for a given
instance i.

For instances with ci > 1, multiple heuristics achieve the same result f∗. From an
algorithmic perspective, we suggest that these instances do not represent ‘interesting’
regions in the instance space, given many heuristics perform equally well. In contrast,

21

Table 9: Analysis of the structure of the evolved heuristics

Actual H Avg R Avg Tnodes Avg Nodes Avg (max) Depth

per H per R per R Per R
H1 D17 RU 1 2 1 1 0 (0)

H2 D17 RU 2 1.5 2.33 3.67 1.33 (2)

H4 D17 RU 4 1 4.75 10 4.25 (5)

H8 D17 RU 8 2.5 10.4 22.95 6.00 (7)

H16 D17 RU 16 3.875 7.60 18.16 7.39 (12)

H32 D17 RU 32 2.25 7.76 15.07 5.24 (9)

H64 D17 RU 64 8.125 8.53 17.92 6.26 (10)

H128 D17 RU 128 6.31 7.24 20.24 9.94 (12)

H256 D17 RU 253 4.75 6.20 13.36 4.58 (9)

HU D17 RU 264 3.19 8.24 17.22 4.89 (8)

Figure 5: An average rule from 1 of the 64 heuristics evolved in experiment
H64 R17 DU . The 64 heuristics contained on average 8 rules with rules having an
average depth of 6. In general the depth of rules that emerged was much less than the
maximum value of 17

22

H1 H2 H3 H4 H5 H6 H7 H8

Heuristic

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 w

o
n

0
5

1
0

1
5

2
0

2
5

(a)

Heuristic

N
u

m
b

e
r

o
f
in

s
ta

n
c
e

s
 w

o
n

0
1

2
3

4
5

6
7

(b)

Figure 6: Number of instances uniquely won by each heuristic a) Ensemble of 8 heuris-
tic (b) Ensemble of 64 heuristics (sorted by wins)

if ci = 1, then the instance has a unique winner, and these instances represent regions
in which algorithm-selection becomes a key issue.

Let w(hj) be the number of instances won by heuristic, hj . A specialist heuristic, one
with small w(hj), operates in a niche region of the instance space. A generalist heuristic
on the other hand, with large w(hj), operates across large regions of the space. The
balance between the specialist/generalist nature of the heuristics evolved is an emer-
gent property of NELLI-GP that is closely linked to the structure of the instances in the
dataset. We consider the 20 classes of makespan instances described in section 4.4 and
the heuristics generated by the experiment H8D17RU and H64D17RU . Figure 6 shows
the number of instances w(hi) won by each of the heuristics for both experiments. For
an ensemble of 8 heuristics, we observe that for 32% of the 200 instances, there is no
uniquely best heuristic. For the remaining 134 instances ‘interesting’ instances, no par-
ticular heuristic is dominant; the most general heuristic (H3) wins 26 instances while
the most specialist (H2) wins 11. In the ensemble of 64 heuristics, only 10% of instances
do not have a unique winner. The 64 heuristics tend to specialise equally: the number
of instances won ranges from 2-7, with no heuristic generalising across many instances.

6.3.1 Relationship between instance class and heuristic performance

NELLI-GP promotes the emergence of heuristics which are behaviourally diverse in
that each heuristic has to uniquely win at least one instance in order to survive. As-
suming that the instances within the subset won by each heuristic share similar fea-
tures, we investigate the intra-class and inter-class membership of each subset, given
the 20 classes defined in section 4.4. Figure 7 uses a network representation to cap-
ture the relationships between heuristics and classes for an 8 heuristic ensemble. An
edge exists between a heuristic and a class if the heuristic wins at least one instance in
that class. The weight of the edge reflects how many instances within the class were
won, and the size of a heuristic denotes how many different classes it wins instances
in. The degree of a heuristic indicates the number of different classes the heuristic wins
instances from. The degree of a class indicates how many different heuristics win in-

23

H1 H2 H3 H4 H5 H6 H7 H8
Total processing time + + ++
Mean processing time ++ + ++
Processing time range ++ ++
Ratio jobs:machines ++ ++

Table 10: Examining the distribution of features in set IHi
compared to Ir, i.e. all re-

maining instances. Table shows p-values obtained from Wilcoxon rank sum test for
each feature

H1 H2 H3 H4 H5 H6 H7 H8
Total processing time ++ + +
Mean processing time
Processing time range + + + +
Ratio jobs:machines ++ ++

Table 11: Examining the distribution of features in set IHi
compared to Iu, i.e. the subset

of remaining instances that are uniquely solved. Table shows p-values obtained from
Wilcoxon rank sum test for each feature

stances from that class, thus is representative of intra-class niches. Heuristics have
a median degree of 8.5, indicating there are clearly many inter-class relationships be-
tween instances. Classes have a median degree of 4, i.e. a typical class of 10 instances
generated from the same parameter set has at least 4 intra-class clusters. H3 is strongly
associated with class 18 (defined by 25 jobs and 25 machines) winning 7/10 instances.
Only 3 of the 20 classes are uniquely associated with a heuristic, implying uniformity
across instances within these classes. Note that two of these classes (1,2) contain the
easiest (in terms of finding optimal solutions) instances, due to the small number of
jobs and machines.

Clusters of similar instances — those won by the same heuristic — naturally
emerge from NELLI-GP. Each cluster can be examined with respect to a feature set
to potentially identify correlations across instances. Ingimundardottir and Runarsson
(2012) consider a set of 16 features and attempt to relate them to instance difficulty. 13
of these features are recalculated on a step-by-step basis after every operation has been
scheduled (e.g. current makespan); the remaining 3 are static and apply to the instance
as whole (e.g total job processing time). Smith-Miles et al. (2009) cluster instances (us-
ing a tardiness objective) according to 6 features, then examine the distribution of fit-
ness values to infer knowledge about the relationships between instance structure and
heuristic performance. Taking the < H8 > ensemble as an example, for each heuristic
in turn we examine whether the features of the instances within the cluster defined by
the instances it uniquely won differ significantly from the remainder of the instances.
As NELLI-GP assigns a single heuristic to an instance, only static features are relevant.
We consider four features: mean processing time, processing time range, total processing
time are used in both (Ingimundardottir and Runarsson, 2012; Smith-Miles et al., 2009);
we add ratio machines:jobs as this is known to influence problem hardness (Streeter and
Smith, 2006).

If It is the 200 instances in the test set then let IHj
be the subset of instances

uniquely won by heuristic Hj ; Ir the subset of all remaining instances from It; Iu the

24

1

2

3

4

5

6

7

8

9

1011

12

13

14

15

16

17

18

19
20

H1

H2

H3

H4

H5

H6
H7

H8

Figure 7: A network capturing the relationship between a heuristic the instance classes
in which it wins instances. Edges are weighted according to the number of instances in
the class won

instances in It uniquely won1 by the remaining heuristics. For each of the four features,
we apply a Wilcoxon rank sum test to compare the feature values in the instances in
IHi

to those in subset Ir, and then separately to those in Iu.

Results are shown in table 10 which differentiates between results significant at
the 5% level (+) and at the 1% level (++). For three heuristics (H2, H5, H6) none of
the features are discriminatory. However, for the remaining heuristics, at least one
feature discriminates the instances won by the heuristic from the remainder of all in-
stances or the remainder of heuristics uniquely won. All features are discriminatory in
at least two tests. The results generally concur with the findings of Ingimundardottir
and Runarsson (2012) who attempt to correlate features with hardness, noting that ‘the
features distinguishing hard problems were scarce. Most likely due to their more complex data
structure their key features are of a more composite nature’. NELLI-GP removes the need to
define features in order to discriminate between instances; the clustering of instances
emerges as a result of applying the algorithm. The emergent clusters capture structure
within the problems that cannot be easily defined by humanly-intuitive features or by
the features used to generate instances.

7 Conclusion

The automated design of reusable production scheduling heuristics is currently of great
interest to the optimisation community as evidenced in detail by Branke et al. (2015).
The need to move towards ensemble methods has been highlighted as an open chal-
lenge, given the requirement to deal with complex decisions and varied problem in-
stances. We have described a novel ensemble method for evolving JSSP heuristics
called NELLI-GP in which each heuristic in the ensemble generates solutions to prob-
lems in a niche region of the instance space.

1as a Shapiro-Wilk test showed that the null hypothesis that the distribution is normal can be rejected

25

Experiments on a large set of newly generated problem instances as well as exist-
ing benchmarks have shown that novel rules can be evolved that outperform existing
scheduling rules and recent hyper-heuristic methods. The power of the method is at-
tributed to (a) evolving new dispatching rules that both define job-eligibility and use a
large set of terminal; (b) Combining rules into variable length sequences to form new
heuristics; (c) evolving ensembles of heuristics, in which each operates in a distinct
part of the instance space. The reusability and robustness of the ensemble is demon-
strated by applying an ensemble evolved on one set of instances to new instance sets,
outperforming existing benchmarks. Analysing the evolved ensemble in terms of per-
formance on different classes has enabled new insights to be gained relating to instance-
structure. In agreement with Ingimundardottir and Runarsson (2012) we find that in-
tuitive problem features are insufficient to characterise instances. Using the instance
clusters that emerge from running NELLI-GP however, future work will focus on at-
tempting to characterise the clusters in terms of combinations of known features or
deriving new complex features. In addition, we intend to apply NELLI-GP to dynamic
scheduling problems in which it is possible to derive more fine-grained features.

Acknowledgment

This work is funded by EPSRC Grant Number EP/J021628/1

References

Applegate, D. and Cook, W. (1991). A computational study of the job-shop scheduling
problem. ORSA Journal on Computing, 3(2):149–156.

Baker, K. R. (1984). Sequencing rules and due-date assignments in a job shop. Manage-
ment Science, 30(9):1093–1104.

Bhowan, U., Johnston, M., Zhang, M., and Yao, X. (2013). Evolving diverse ensem-
bles using genetic programming for classification with unbalanced data. Evolutionary
Computation, IEEE Transactions on, 17(3):368–386.

Bhowan, U., Johnston, M., Zhang, M., and Yao, X. (2014). Reusing genetic programming
for ensemble selection in classification of unbalanced data. Evolutionary Computation,
IEEE Transactions on, 18(6):893–908.

Blackstone, J. H., Phillips, D. T., and Hogg, G. L. (1982). A state-of-the-art survey of
dispatching rules for manufacturing job shop operations. International Journal of Pro-
duction Research, 20(1):27–45.

Branke, J., Hildebrandt, T., and Scholz-Reiter, B. (2014). Hyper-heuristic evolution of
dispatching rules: A comparison of rule representations. Evolutionary Computation,
23(2).

Branke, J., Nguyen, S., Pickardt, C., and Zhang, M. (2015). Automated design of pro-
duction scheduling heuristics: a review. IEEE Transactions on Evolutionary Computa-
tion.

Breiman, L. (1996). Bagging predictors. Machine learning, 24(2):123–140.

26

Downey, C., Zhang, M., and Liu, J. (2012). Parallel linear genetic programming for
multi-class classification. Genetic Programming and Evolvable Machines, 13(3):275–304.

Geiger, C. D., Uzsoy, R., and Aytug, H. (2006). Rapid modeling and discovery of priority
dispatching rules: An autonomous learning approach. J. of Scheduling, 9(1):7–34.

Giffler, B. and Thompson, G. L. (1960). Algorithms for solving production-scheduling
problems. Operations Research, 8(4):487–503.

Graham, R. L., Lawler, E. L., Lenstra, J. K., and Rinnooy Kan, A. H. G. (1979). Opti-
mization and approximation in deterministic sequencing and scheduling: a survey.
Annals of discrete mathematics, 5(2):287–326.

Hart, E. and Ross, P. (1998). A heuristic combination method for solving job-shop
scheduling problems. In Eiben, A., Bäck, T., Schoenauer, M., and Schwefel, H.-P.,
editors, Parallel Problem Solving from Nature PPSN V, volume 1498 of Lecture Notes in
Computer Science, pages 845–854. Springer Berlin / Heidelberg.

Hart, E. and Sim, K. (2014). On the life-long learning capabilities of a nelli*: A hyper-
heuristic optimisation system. In Bartz-Beielstein, T., Branke, J., Filipič, B., and Smith,
J., editors, Parallel Problem Solving from Nature - PPSN XIII, volume 8672 of Lecture
Notes in Computer Science, pages 282–291. Springer International Publishing.

Haupt, R. (1989). A survey of priority rule-based scheduling. Operations-Research-
Spektrum, 11(1):3–16.

Hildebrandt, T., Heger, J., and Scholz-Reiter, B. (2010). Towards improved dispatching
rules for complex shop floor scenarios: A genetic programming approach. In Proceed-
ings of the 12th Annual Conference on Genetic and Evolutionary Computation, GECCO ’10,
pages 257–264, New York, NY, USA. ACM.

Hunt, R., Johnston, M., and Zhang, M. (2014). Evolving ”less-myopic” scheduling rules
for dynamic job shop scheduling with genetic programming. In Proceedings of the 2014
Conference on Genetic and Evolutionary Computation, GECCO ’14, pages 927–934, New
York, NY, USA. ACM.

Ingimundardottir, H. and Runarsson, T. P. (2012). Determining the characteristic of
difficult job shop scheduling instances for a heuristic solution method. In Learning
and Intelligent Optimization, pages 408–412. Springer.

Koza, J. R. (1992). Genetic Programming: On the Programming of Computers by Means of
Natural Selection. MIT Press, Cambridge, MA, USA.

Lawrence, S. (1984). Resource constrained project scheduling: An experimental inves-
tigation of heuristic scheduling techniques. Graduate School of Industrial Adminis-
tration, Carnegie Mellon University, Pittsburgh.

Leyton-Brown, K., Nudelman, E., Andrew, G., McFadden, J., and Shoham, Y. (2003). A
portfolio approach to algorithm select. In Proceedings of the 18th International Joint Con-
ference on Artificial Intelligence, IJCAI’03, pages 1542–1543, San Francisco, CA, USA.
Morgan Kaufmann Publishers Inc.

Miyashita, K. (2000). Job-shop scheduling with gp. In Proceedings of the Genetic and Evo-
lutionary Computation Conference (GECCO-2000), pages 505–512. Morgan Kaufmann.

27

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2013a). A computational study of
representations in genetic programming to evolve dispatching rules for the job shop
scheduling problem. Evolutionary Computation, IEEE Transactions on, 17(5):621–639.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2013b). Learning iterative dis-
patching rules for job shop scheduling with genetic programming. The International
Journal of Advanced Manufacturing Technology, 67(1-4):85–100.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2014a). Automatic design of
scheduling policies for dynamic multi-objective job shop scheduling via cooperative
coevolution genetic programming. Evolutionary Computation, IEEE Transactions on,
18(2):193–208.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2014b). Selection schemes in
surrogate-assisted genetic programming for job shop scheduling. In Simulated Evolu-
tion and Learning, pages 656–667. Springer.

Nguyen, S., Zhang, M., Johnston, M., and Tan, K. C. (2015). Automatic programming
via iterated local search for dynamic job shop scheduling. Cybernetics, IEEE Transac-
tions on, 45(1):1–14.

Panwalkar, S. S. and Iskander, W. (1977). A survey of scheduling rules. Operations
Research, 25(1):45–61.

Park, J., Nguyen, S., Zhang, M., and Johnston, M. (2013). Genetic programming for
order acceptance and scheduling. In Evolutionary Computation (CEC), 2013 IEEE
Congress on, pages 1005–1012. IEEE.

Park, J., Nguyen, S., Zhang, M., and Johnston, M. (2015). Evolving ensembles of dis-
patching rules using genetic programming for job shop scheduling. pages 92–104.
Springer International Publishing.

Pickardt, C., Hildebrandt, T., Branke, J., Heger, J., and Scholz-Reiter, B. (2013). Evo-
lutionary generation of dispatching rule sets for complex dynamic scheduling prob-
lems. Int. J. Prod. Econ., 145(1):6777.

Potter, M. A. and De Jong, K. A. (2000). Cooperative coevolution: An architecture for
evolving coadapted subcomponents. Evol. Comput., 8:1–29.

Sim, K. and Hart, E. (2014). An improved immune inspired hyper-heuristic for com-
binatorial optimisation problems. In GECCO ’14: Proceeding of the sixteenth annual
conference on Genetic and evolutionary computation conference.

Sim, K. and Hart, E. (2015a). A novel heuristic generator for jssp using a tree-based
representation of dispatching rules. In GECCO ’15: Proceeding of the seventeenth annual
conference on Genetic and evolutionary computation conference.

Sim, K. and Hart, E. (2015b). Roll project job shop scheduling benchmark problems.
http://dx.doi.org/10.17869/ENU.2015.9365.

Sim, K., Hart, E., and Paechter, B. (2013). Learning to solve bin packing problems
with an immune inspired hyper-heuristic. In Advances in Artificial Life, ECAL 2013:
Proceedings of the Twelfth European Conference on the Synthesis and Simulation of Living
Systems, pages 856–863. MIT Press.

28

Sim, K., Hart, E., and Paechter, B. (2015). A lifelong learning hyper-heuristic method
for bin packing. Evolutionary Computation Journal, 23(1):37–67.

Singer, M. and Pinedo, M. (1998). A computational study of branch and bound tech-
niques for minimizing the total weighted tardiness in job shops. IIE Transactions,
30(2):109–118.

Smith-Miles, K., Baatar, D., Wreford, B., and Lewis, R. (2014). Towards objective mea-
sures of algorithm performance across instance space. Computers & Operations Re-
search, 45:12–24.

Smith-Miles, K. A., James, R. J. W., Giffin, J. W., and Tu, Y. (2009). A knowledge discov-
ery approach to understanding relationships between scheduling problem structure
and heuristic performance. In Learning and Intelligent Optimization: Third International
Conference, LION 3, Trento, Italy, January 14-18, 2009. Selected Papers, pages 89–103.
Springer Berlin Heidelberg, Berlin, Heidelberg.

Streeter, M. J. and Smith, S. F. (2006). How the landscape of random job shop scheduling
instances depends on the ratio of jobs to machines. J. Artif. Intell. Res.(JAIR), 26:247–
287.

Taillard, E. (1993). Benchmarks for basic scheduling problems. European Journal of
Operational Research, 64(2):278–285.

Tay, J. C. and Ho, N. B. (2008). Evolving dispatching rules using genetic programming
for solving multi-objective flexible job-shop problems. Computers & Industrial Engi-
neering, 54(3):453–473.

Ulrich, D. and Erwin, P. (1995). Evolution based learning in a job shop scheduling
environment. Comput. Oper. Res., 22(1):25–40. 197887.

Valentini, G. and Masulli, F. (2002). Ensembles of learning machines. In Marinaro,
M. and Tagliaferri, R., editors, Neural Nets, volume 2486 of Lecture Notes in Computer
Science, pages 3–20. Springer Berlin Heidelberg.

Vepsalainen, A. P. J. and Morton, T. E. (1987). Priority rules for job shops with weighted
tardiness costs. Management Science, 33(8):1035–1047.

Zhou, H., Cheung, W., and Leung, L. C. (2009). Minimizing weighted tardiness of job-
shop scheduling using a hybrid genetic algorithm. European Journal of Operational
Research, 194(3):637 – 649.

29

