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ABSTRACT 
 

Rule induction from examples is a machine learning technique that finds rules of the 
form condition → class, where condition and class are logic expressions of the form 
variable1 = value1 ∧ variable2 = value2 ∧… ∧ variablek = valuek. There are in general 
three approaches to rule induction: exhaustive search, divide-and-conquer, and separate-
and-conquer (or its extension as weighted covering). Among them, the third approach, 
according to different rule search heuristics, can avoid the problem of producing many 
redundant rules (limitation of the first approach) or non-overlapping rules (limitation of 
the second approach).  

In this paper, we propose a hyper-heuristic to construct rule search heuristics for 
weighted covering algorithms that allows producing rules of desired generality. The 
hyper-heuristic is based on a PN-space, a new ROC-like tool for analysis, evaluation 
and visualization of rules. Well-known rule search heuristics such as entropy, Laplacian, 
weight relative accuracy, and others are equivalent to ones proposed by the hyper-
heuristic. Moreover, it can present new non-linear rule search heuristics, some are 
especially appropriate for description tasks. The non-linear rule search heuristics have 
been experimentally compared with others on the generality of rules induced from UCI 
datasets and used to learn regulatory rules from microarray data. 

 
INTRODUCTION 
 

Rule induction from examples is a machine learning technique that has been 
successfully used as a support tool for knowledge acquisition and prediction. The 
induced rules are usually expressed as condition → class, where condition and class are 
logic expressions of the form (variable1 = value1 ∧ variable2 = value2 ∧… ∧ variablek = 
valuek. 

There are three kinds of rule inducting algorithms: association rule-based, decision 
tree-based, and covering. The first ones, association rule-based algorithms, use an 
exhaustive search strategy by exploring almost the whole search space (Kavsek et. al, 
2003; Liu et. al, 1998). The basic idea is to use an association rule algorithm to gather 
all rules that predict the class attribute and also pass a minimum quality criterion. The 
seconds, decision tree-based algorithms, use a divide-and-conquer strategy (Quinland, 
1986, 1987). Much of the popularity of these algorithms stems from their efficiency in 
learning and classification. A decision tree can be easily turned into a rule set by 



generating one rule for each path from the root to a leaf. Finally, covering algorithms 
make use of a separate-and-conquer strategy over the search space to learn a rule set 
(see Furnkranz, 1999 for an overview). This separate-and-conquer strategy searches for 
a rule that explains (covers) part of its training instances, separates (or reassigns with 
lower weight) these examples, and recursively conquers the remaining examples by 
learning more rules until no examples remain.  

In all rule induction systems, rule evaluation measures are an important factor. Rule 
evaluation measures are functions with which we can infer how “good” or “interesting” 
a rule is when comparing to others. They are used as a rule search heuristic in learning 
algorithms (in this case they were referred to search heuristics), as well as for filtering 
out uninteresting rules and/or as a stopping criterion of the refinement process (referred 
to filtering heuristics). Many measures have been proposed in the literature: accuracy, 
entropy (Clark and Nibblet, 1989), Laplace (Clark and Boswell, 1991), m-estimate 
(Cestnik, 1990), weighted relative accuracy (Lavrac et. al, 2004), etc. However, they are 
given by different authors without any systematic guidance. The generality of induced 
rules is different according to different heuristics. Therefore, deciding which one is the 
best suited measure, especially for description tasks, is still an open problem (Furnkranz 
and Flach, 2005; Lavrac et. al, 2004). 

In this paper, we propose a way (hyper-heuristic) to form search heuristics. Our 
hyper-heuristic is based on PN-space, a ROC-like tool for analysis, evaluation and 
visualization of rules. We will show that our hyper-heuristic can form linear heuristics 
that are equivalent to some existing search heuristics (i.e. having the same rule finding 
ability in induction systems). Besides these, it can be used to discover new search 
heuristics including non-linear ones.  

 
BACKGROUND 

Definitions 
Let P and N be the total number of positive and negative examples in a training set, 
while p(r) and n(r) denote the respective number of examples covered by a rule r.  

 
Definition 1: A rule evaluation measure of the rule r is a two-dimensional function of 
the form h(p(r), n(r)). For clarity, we will abridge h(p(r), n(r)) as h(r), and omit the 
argument (r) from functions p, n, and h when it can be clearly deduced from the context. 

Definition 2: A PN-space (coverage space) is a two-dimensional space of points      (n, 
p), where 0 ≤ n ≤ N denotes the number of negative examples covered by a rule (false 
positives) and 0 ≤ p ≤ P denotes the number of positive examples covered by the rule 
(true positives). 

 
PN-space is quite similar to ROC space, a two-dimensional plane in which the 

operating characteristics of classifiers are visualized (Furnkranz and Flach, 2004). Each 
rule is represented by a point in the PN-space, with the point (0, P) (corresponding to 
the rule that covers all positive examples and none of the negative) being an ideal point 
that every learning system tries to reach. 
 



Definition 3: An isometrics of a measure h is a line (or curve) in PN-space that 
connects, for some value c, all points for which h(p, n) = c. In other words, an isometric 
of a measure h is an equivalent class in the partition of PN-space based on measure h; 
all points in an isometric have the same value respect h; and an isometric divides the 
PN-space into two parts: one is above the isometric (points in this part have greater 
value than those in the isometric), and the other is under the isometric (with points 
having lesser value than those in the isometric).  The former corresponds to rules better 
than rules in the isometric and the latter corresponds to worse ones with respect to the 
measure h.  

Some Existing Measures and Their Isometrics 
The following are some basic measures in the literature that are to use in search or 
filtering heuristics. Other measures can be found in (Furnkranz and Flach, 2005). 
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 Figure 1    Isometrics of (1) hacc, (2) hwra, (3) hen, and (4) hm 

 

The isometrics of the first four measures are shown in Figure 1. The measure confidence 
has isometrics similar to measure entropy (Figure 1 (3)).  

As can be seen in the figure, measures confidence, entropy (their isometrics are lines 
from the original of PN-space) and accuracy (its isometrics are lines that always form 
an angle 45� with the axis ON) prefer rules with the low covering (p+n), while weighted 
relative accuracy-WRA (its isometrics are lines parallel with the main diagonal) prefer 
rules that is a trade-off between the covering and confidence. Measure m-estimate is 
more flexible than entropy and WRA according to value of the parameter m. When        
m = 0, m-estimate would become equivalent to entropy and when m = �, it is 
equivalent to WRA. 

Filtering and Search Heuristics 

When one or more rule evaluation measures are used to find or filter rules, they are 
called heuristics. As mentioned in Section 0, there are three approaches to rule 
induction: separate-and-conquer, exhaustive search, and divide-and-conquer. Among 
them, the first two approaches used some of the measures mentioned above as their 
search and filtering heuristics. 

The separate-and-conquer approach learns a rule set by iteratively adding one rule at 
a time. The algorithm starts by performing a general-to-specific search to learn the best 
rule according to some measures. Examples covered by this rule are separated (or their 
weight is lowered) before learning the next rule. This is repeated until each example is 
covered by at least one rule in the rule set or some stopping criteria are satisfactory. In 
each iteration, the general-to-specific algorithm starts with a default rule (the rule that 
classifies all examples to be positive), and then searches the space of possible rules by 
successively specializing the current best rule. Rules are specialized by greedily adding 
the condition which promises the highest gain according to some evaluation measures, 
i.e. search heuristics. Some measures (search heuristics) have been introduced to use in 



this context: entropy (Eq.3) (Furnkranz and Flach, 2003), Laplacian (Eq. 4) (Clark and 
Boswell, 1991), weighted relative accuracy (Eq.2) (Lavrac et. al, 2004 ), etc. 

The exhaustive search approach explores almost the whole search space (Liu et. al, 
1998; Kavsek et. al, 2003). The basic idea is to use an association rule algorithm to 
gather all rules that predict the class attribute and also pass some minimum quality 
criteria according to some measures, i.e. filtering heuristics. The most commonly used 
filtering heuristic is to use a pair of measures: support (Eq.7) and confidence (Eq.6).  

 
A HYPER-HEURISTIC TO FORM SEARCH HEURISTICS 

A hyper-heuristic 
In subsection Filtering and Search Heuristics, we have distinguished two kinds of 
heuristics: search and filtering heuristics. While the former often uses only one measure 
to evaluate rules in learning systems, the latter can use more than one measures to filter 
redundancies out. In this section, we focus on how to construct measures to use in 
search heuristics, and we will refer these measures to heuristics.  
 
Definition 4: Coverage space of a rule r(n, p), (or pn-space, note: small p and n) is a 
subspace of PN-space that includes all points (n1,  p1), where 0 ≤ n1 ≤ n and 0 ≤ p1 ≤ p. 
 
Definition 5: A rule r1(n1, p1) is a descendant of a rule r(n, p), if r1 is the result of 
adding one or more conditions to the rule r. In this case, rule r is called an ancestor     
of r1 

 
We can easily see that if rule r1(n1,  p1) is a descendant of a rule r(n, p), the point  

(n1, p1) corresponding to r1 in PN-space must be in the coverage space of r (or pn-space, 
see Figure 2), i.e., 0 ≤ n1 ≤ n and 0 ≤ p1 ≤ p. The point (0, p) in the pn-space corresponds 
to the best specific rule of r, where the general-to-specific procedure tries to reach. 
Points in the main diagonal of the pn-space correspond to rules r1 with class distribution 
similar to the class distribution of r. 
 
Definition 6: A h-beam search space bssh(r) of a rule r(n, p) with respect to an 
heuristic h is the part of the coverage space of r that includes all points (n1, p1), where 
h(n1, p1) > h(n, p). 
 

In other words, bssh(r) is the part of the coverage space of r that includes points 
upper the h-isometric going through the point (n, p). Figure 2 presents the beam search 
space of a rule respective to some heuristics: entropy hen, m-estimate hm, and weighted 
relative accuracy hwra. We can easily see that: for every rule r(n, p): bsshwra(r) ⊆ bsshm(r) 
⊆ bsshen(r) = coverage_space(r)/2 with m > 0 (Figure 2). This is the reason why hwra 
often produces too general rules (Lavrac et. al, 2004), while hen produces too specific 
rules (Furnkranz and Flach, 2003). 

 



 
Figure 2  Beam search space of rule p ← a with different heuristics: entropy (en),         

m-estimate and weighted relative accuracy (WRA) 

 

Hyper-heuristic:  

Returning to the main task in this section: how to form a search heuristic? As described 
in subsection Filtering and Search Heuristics, search heuristics are often used in 
general-to-specific algorithms. From the default rule (rule with body that is always true), 
a general-to-specific algorithm iteratively specializes the current best rule r(n, p) by 
adding the condition that would produce the best rule according to a specific heuristic h, 
i.e. it searches if there is a descendant of the best current rule r(n, p) in the h-beam 
search space of r. If there is, this descendant will replace the current best rule r(n, p). 
Therefore, the smaller the rate between the area of the h-beam search space and that of 
the coverage space of r, the sooner the specialization process is stooped; and hence the 
more general the learned rule is. In other words, the purpose of the heuristic h is to 
restrict the search space in a specialization process to find rules better than the current 
one. 

To form a search heuristic, we first state requirements that it needs to meet. From 
the above analysis, we can draw the following common properties of search heuristics: 

(1) The rule covering P positive examples and 0 negative example (corresponding to the 
point (0, P)), if existed, is always the best rule; and the rule covering N negative and 
0 positive examples (corresponding to the point (N, 0)) is the worst one respect to 
every search heuristic. 

(2) If a point (n, p) of rule r(n, p) is “nearer” to the point (0, P) (the ideal point), it is 
better with respect to every heuristic. 

(3) The purpose of a measure (heuristic) is to order (or rank) rules. Two measures h1 
and h2 are equivalent if they order all the rules in the same way (for example, 
measures entropy and confidence). If the set of all isometrics of h1 is equal to that of 
h2, two measures h1 and h2 would be equivalent.  

(4) The rate between the area of a h-beam search space and that of the coverage space 
of r is an important factor to control the generality of learned rules.  

From four above properties, we can image a visualization way to construct a search 
heuristic based on the PN-space. The visualization tool PN-space allows us to form a 
new search heuristic with desired properties and that would not be equivalent to the 



previously known ones. We can also easily check that the new heuristic would have a 
new “ordering” ability or the same as the existing ones. 

In the next two subsections, we will introduce two kinds of search heuristics: linear 
and quadratic measures. With the linear heuristics, their mathematical formula is simple, 
but we can show that they are equivalent to many previously known ones according to 
an appropriate value of the parameter. The quadratic heuristics are non-linear and have 
new strong “ordering” abilities that linear measures do not have.  

Linear Heuristics 

All existing search heuristics are linear. Although they have been proposed by different 
authors at different time, Furnkranz and Flach (2003) proved that some of them have the 
same ordering/ranking ability since they have the same set of isometrics in the PN-space. 
In this subsection, we will form a general linear heuristic based on the desired 
characteristics of its isometrics in the visualization tool PN-space. With this approach, 
we can list all possible linear heuristics without the identical ordering ability.  

The characteristics of a linear heuristic must include: (1) its isometrics should be 
linear (of course), (2) to meet requirements 1 and 2 mentioned above. Therefore, the 
linear measure at the rule r(n, p) has the following formula: 

)()(_ k
n
p

nknprh lineark −=−=  
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where k is the parameter, which defines the angle between the isometric and the 
horizontal axis. 

The general formula is very simple, but many existing linear measures are 
equivalent (the same ordering ability) to some specials of this general linear measure. 
For example, the measure accuracy (Eq.1) and confidence (Eq.6) are the special or 
equivalence of hk_linear when k=1; the weighted relative accuracy (WRA) (Eq.3) is 
equivalent to the special of hk_linear with k=P/N; and the measure positive_support (Eq.7) 
is the special of hk_linear with k=0.  

Non-linear Heuristics 
Now we propose completely new search heuristics that have non-linear isometrics. 
Similar to the formation of linear heuristics mentioned above, we first state some 
characteristics of these new search heuristics as follows: (1) their isometrics are 
quadratic curves; (2) they meet requirements 1 and 2 as described above. We can easily 
form the two following kinds of heuristics quad_1 (Eq. 10) and quad_2 (Eq. 11) with 
quadratic isometrics, quarters of nested ellipses centered at (0, P) and (N, 0) respectively. 
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where P1 and N1 are parameters.  



 
 Figure 3  Isometrics of (1) hquad-1, and (2) hquad-2 with P1=P and N1=N 

When P1 and N1 are equal to P and N respectively, isometrics of these measures are 
shown in Figure 3; and the beam search space of these two heuristics at a rule p ← a 
(Figure 4) are more flexible than that of linear ones. 

Figure 4  Beam search space of rule p ← a with heuristics: 
(1) wra, (2) quad_1 and (3) quad_2 

 
As can be seen in Figure 4, one of non-linear heuristics, quad_1, should be better 

than weighted relative accuracy (wra), which was previously known the best heuristic 
for descriptive rule induction (Kavsek et. al, 2003; Lavrac et. al, 2004). Similar to wra, 
the quad_1 also provides a tradeoff between the rule covering and confidence. 
Moreover, quad_1 is more flexible to prefer rules nearer the “ideal” point (0, P), which 
every search heuristic should try to reach. For example, rule r1 is out and r2 (Figure 4) is 
in the wra-beam search space of rule p ← a, this may not be what we want to. But these 
events are inversively happen when one uses quad_1 instead of wra heuristic. 
 
EXPERIMENTS 
 

In this section, we will show some characteristics of rules that are learned from using 
some typical linear and quadratic measures described above as rule search heuristics: (1) 
laplacian (Eq. 4), which is a special case of m-estimate (Eq.5) and was previously the 
best performance heuristic for predictive rule induction (Clark and Boswell, 1991); (2) 
some specials of  our linear heuristic k-linear; (3) weighted relative accuracy (wra) (Eq. 
2), which was previously the best heuristic for descriptive rule induction; (4) quad_1 
(Eq. 10), which is expected to be better than wra heuristic; and (5) quad_2 (Eq. 11).  

We first improve a rule induction system CN2-SD (Lavrac et. al, 2004) in two 
aspects: (1) implementing the new search heuristics: k-linear and quadratic heuristics; 
and (2) implementing different methods for applying rules to predict new examples.   



Rule Induction CN2-SD 
CN2 (Clark and Boswell, 1991; Clark and Nibblet, 1989) is a rule learning system 
originally designed for classification and prediction tasks. Recently, it has also been 
improved for description tasks by using a weighted covering strategy (an extension to 
the separate-and-conquer strategy in CN2, see Section 3.2), combined with a rule search 
heuristic (weighted relative accuracy) that favors rules with higher generality (Lavrac et. 
al, 2004). We further improve this version (CN2-SD) that implements our new search 
heuristics: k-linear, quad_1 and quad_2. We also add two methods for applying rules to 
predict new examples in the case of induced rules are un-ordered: the probability as in 
(Lavrac et. al, 2004), and relative probability (related to the prior probability) that can 
overcome the biased classes problem. The improvement of CN2-SD can be obtained in 
the web site http://user.dhsphn.edu.vn/ThoHoan/cn2-sd2.   

UCI datasets 

We conducted some experiments to show the properties of rules produced by some 
search heuristics including the new ones: quad_1 and quad_2. We use the rule learning 
systems CN2-SD (Lavrac et. al, 2004) with some improvements described in Section 
4.1. Ten UCI data sets were selected for the evaluation: Audiology, Balance, Wine, 
Heart-Cleveland diseases, Heart-Hungarian diseases, Echocardiogram, Hepatitis, Iris, 
Wine, Heart-Cleveland, Heart-Hungarian, Hepatitis, Ionosphere, Iris, and Breast. We 
report the average number of induced rules, the average number of conditions (#cond) 
of rules, the average number of covered examples (#cover) of rules, and the predictive 
accuracy with two rule applying methods: major probability (acc-1) and relative 
probability (acc-2) by 10×10-fold cross-validations (Table 1). 

We confirmed that each rule search heuristic is suitable for some datasets according 
to the criterion accuracy (Lavrac et. al, 2004) . We also confirmed the expectation as 
analysis in Section 0 that heuristic quad_1 would be better than wra in descriptive tasks: 
the quad_1 often produces “better” rule set (although the average number of learned 
rules from quad_1 is often smaller, the average coverage of rules are greater and the 
accuracy performance is competitive) (see Table 1). 

Microarray dataset 
We used rule CN2-SD (see subsection Rule Induction CN2-SD) with two search 
heuristics wra and quad_1 to find transcriptional regulatory rules, a problem in 
bioinformatics (Pham et. al, 2005). Transcriptional regulatory rules are induced from 
three microarray datasets: Gasch00’s (Gasch et. al, 2000), Gasch01’s (Gasch et. al, 
2001), and Spellman1998’s (Spellman et. al, 1998). In this work, we used a filtering 
measure consistency (Pham et. al, 2005) to remove redundant regulatory rules that the 
system found. Table 2 shows the number of transcriptional regulatory rules induced by 
two heuristics weighted relative accuracy wra and quad_1 together the number of 
removed rules (for more details, see Pham et. al, 2005). We found that quad_1 produces 
fewer redundancies and many interesting rules in the final set of transcriptional 
regulatory rules (after filtered) from heuristic quad_1 are not found in the set of rules 
from heuristic wra. This once gain suggested that quad_1 is better than wra for 
descriptive tasks. 

 



Dataset  Lap. 0.2_Lin 0.5_Lin 1.0_Lin WRA Quad_1 Quad_2 
 #rule 78.9 53.4 42.6 44.8 79.2 74.3 77.8 
 #cond. 3.3 2.7 2.3 1.6 3.3 4.1 2.2 
Audiolog #cover 10.0 9.2 7.6 3.7 6.8 9.1 8.9 
 Acc-1 66.5 65.2 67.3 56.5 71.6 68.8 60.5 
 Acc-2 75.1 76.4 69.3 56.7 77.2 74.3 72.9 
 #rule 165.7 45.6 38.6 41.1 62.9 29.9 59.3 
 #cond. 3.5 2.9 2.7 2.7 3.0 2.9 2.7 
Balance #cover 20.9 84.4 70.2 48.7 45.9 121.3 29.1 
 Acc-1 80.9 82.2 79.7 79.7 79.8 82.5 74.6 
 Acc-2 79.9 82.2 79.7 79.7 79.4 82.4 74.3 
 #rule 22.5 19.4 20.2 18.7 20.5 16.5 19.9 
 #cond. 2.2 3.0 2.6 2.3 2.5 3.5 2.0 
Wine #cover 32.2 46.2 41.1 37.1 40.4 49.7 32.1 
 Acc-1 95.3 95.6 95.5 95.1 95.5 95.2 94.6 
 Acc-2 95.2 95.9 95.9 95.2 95.9 95.8 94.5 
 #rule 39.0 18.5 18.6 20.5 20.9 26.3 24.2 
Heart- #cond. 3.2 4.0 3.4 3.0 3.1 4.9 1.9 
Clevel- #cover 24.8 91.0 62.0 40.1 39.0 63.8 28.2 
And Acc-1 79.9 78.6 78.7 77.8 78.4 81.1 78.4 
 Acc-2 79.9 78.6 78.7 77.8 78.4 81.1 78.4 
 #rule 49.6 20.4 18.1 18.9 19.3 21.7 22.5 
Heart- #cond. 3.5 3.7 3.2 3.1 3.1 4.1 2.1 
Hunga- #cover 20.7 75.2 66.5 48.0 43.4 63.2 29.7 
Rian Acc-1 79.9 77.3 80.1 79.2 80.3 81.3 79.4 
 Acc-2 79.9 80.1 80.8 79.5 80.5 82.4 80.2 
 #rule 34.4 10.1 17.9 19.7 20.4 20.4 23.8 
Echocar- #cond. 3.3 2.7 2.9 2.9 3.0 3.4 2.3 
Diagram #cover 11.1 35.9 27.3 18.8 16.6 29.4 10.9 
 Acc-1 70.7 70.6 69.3 66.8 68.0 68.5 68.7 
 Acc-2 71.8 69.4 68.5 67.7 68.5 71.3 69.8 
 #rule 29.8 18.3 17.3 18.7 21.9 21.4 20.8 
 #cond. 3.5 3.7 3.3 3.2 3.2 3.6 2.4 
Hepatitis #cover 21.7 44.9 41.7 34.4 25.7 40.0 21.8 
 Acc-1 81.1 79.3 80.5 82.6 80.6 81.9 82.0 
 Acc-2 81.8 82.9 83.5 82.8 80.7 82.7 79.7 
 #rule 40.9 20.1 24.4 26.9 24.4 22.2 25.6 
Iono- #cond. 2.5 3.3 2.9 2.5 2.4 3.8 2.0 
Sphere #cover 43.7 92.6 62.9 51.5 47.9 77.7 40.9 
 Acc-1 92.1 93.5 93.5 92.6 89.9 91.9 91.5 
 Acc-2 92.6 93.6 93.6 92.6 90.0 92.0 91.0 
 #rule 12.4 9.1 10.5 8.6 10.3 10.2 8.4 
 #cond. 2.1 1.6 1.7 1.8 1.7 1.9 1.5 
Iris #cover 27.8 38.7 35.5 33.1 35.7 43.4 31.8 
 Acc-1 95.4 95.7 95.4 91.4 95.5 94.5 94.2 
 Acc-2 95.4 96.0 95.8 91.5 95.8 94.7 95.1 
 #rule 62.6 35.5 36.5 37.8 36.6 42.7 53.9 
 #cond. 1.8 1.2 1.4 1.5 1.4 1.4 1.5 
Breast #cover 51.8 102.1 91.6 83.6 97.8 84.3 63.4 
 Acc-1 95.8 79.2 88.7 94.0 95.3 88.1 95.5 
 Acc-2 95.8 84.2 89.8 94.2 95.4 89.2 95.5 

Table 1 The average number of induced rules, number of conditions, coverage of rules 
and accuracy in the rule set on 10 datasets by different heuristics. 



 
 
  Gasch00’s  Gasch01’s Spellman98’s  
WRA #rules 25.154 27.251 12.299 
 #redandant rules 19.534 22.710 10.566 
QUAD_1 #rules 19.196 23.825 11.285 
 #redandant rules 13.909 18.822   9.386 

Table 2. The number of transcriptional regulatory rules learned by heuristics wra and 
quad_1; and that of redundant rules on three microarray datasets 

 
CONCLUSIONS ANS FUTURE WORK 

 
In this work, we have proposed a general approach (a hyper-heuristic) to the formation 
of rule search heuristics in existing rule induction systems. We have also constructed 
two classes of rule search heuristics: linear and quadratic by the proposed hyper-
heuristic. Many existing heuristics are special cases of the new linear heuristic class. 
One of our quadratic heuristics (quad_1) has exhibited to be more suitable than the 
previously best known heuristic weighted relative accuracy for descriptive rule 
induction. However, more experiments on real problems are needed to confirm this 
conclusion. 
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