
 Open access  Journal Article  DOI:10.1177/014662169301700307

A Hyperbolic Cosine Latent Trait Model For Unfolding Dichotomous Single-Stimulus
Responses — Source link 

David Andrich, Guanzhong Luo

Institutions: Murdoch University, South China Normal University

Published on: 01 Sep 1993 - Applied Psychological Measurement (SAGE Publications)

Topics: Latent variable model

Related papers:

 A theory of data

 The Application of an Unfolding Model of the PIRT Type to the Measurement of Attitude

 A General Item Response Theory Model for Unfolding Unidimensional Polytomous Responses

 
A hyperbolic cosine latent trait model for unfolding polytomous responses: Reconciling Thurstone and Likert
methodologies

 Attitudes Can Be Measured

Share this paper:    

View more about this paper here: https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-
bkbr84l6nj

https://typeset.io/
https://www.doi.org/10.1177/014662169301700307
https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-bkbr84l6nj
https://typeset.io/authors/david-andrich-44lsmr246i
https://typeset.io/authors/guanzhong-luo-4mx4qfvkhz
https://typeset.io/institutions/murdoch-university-25zg3h2b
https://typeset.io/institutions/south-china-normal-university-2v3muy9s
https://typeset.io/journals/applied-psychological-measurement-1r6vq88g
https://typeset.io/topics/latent-variable-model-1ugkibal
https://typeset.io/papers/a-theory-of-data-1be3swhx89
https://typeset.io/papers/the-application-of-an-unfolding-model-of-the-pirt-type-to-424wl49bxo
https://typeset.io/papers/a-general-item-response-theory-model-for-unfolding-4g0yaa21ce
https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-nmzzmixd7p
https://typeset.io/papers/attitudes-can-be-measured-96u6lowk1h
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-bkbr84l6nj
https://twitter.com/intent/tweet?text=A%20Hyperbolic%20Cosine%20Latent%20Trait%20Model%20For%20Unfolding%20Dichotomous%20Single-Stimulus%20Responses&url=https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-bkbr84l6nj
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-bkbr84l6nj
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-bkbr84l6nj
https://typeset.io/papers/a-hyperbolic-cosine-latent-trait-model-for-unfolding-bkbr84l6nj


253

A Hyperbolic Cosine Latent Trait Model For
Unfolding Dichotomous Single-Stimulus Responses
David Andrich, Murdoch University, Australia

Guanzhong Luo, South China Normal University, Guangzhou

Social-psychological variables are typically
measured using either cumulative or unfolding
response processes. In the former, the greater the
location of a person relative to the location of a
stimulus on the continuum, the greater the proba-
bility of a positive response; in the latter, the
closer the location of the person to the location of
the statement, irrespective of direction, the greater
the probability of a positive response. Formal
probability models for these processes are, respec-
tively, monotonically increasing and single-peaked
as a function of the location of the person relative
to the location of the statement. In general, these
models have been considered to be independent of
each other. However, if statements constructed on

the basis of a cumulative model have three ordered

response categories, the response function within
the statement for the middle category is in fact
single-peaked. Using this observation, a unidimen-
sional model for responses to statements that have
an unfolding structure was constructed from the
cumulative Rasch model for ordered response
categories. A location and unit of measurement
parameter exist for each statement. A joint maxi-
mum likelihood estimation procedure was inves-
tigated. Analysis of a small simulation study and a
small real dataset showed that the model is readily
applicable. Index terms: attitude measurement, item

response theory, latent trait theory, Rasch models,
unfolding data, unidimensional scaling.___aa _....aa_a........._...._.._a, aa ........._...._aa..._aa.......... __a.............a --....-- ~....,.. J.~.,».....~ --..-, .........._............~..........._.. LI’-’_&dquo;’’’.’’O.

The two main response processes for constructing social-psychological variables are the cumula-
tive and the unfolding processes. In the former, the greater the location of a person relative to the
location of a stimulus on the continuum, the greater the probability of a positive response; in the
latter, the closer the location of the person to the location of the stimulus, irrespective of direction,
the greater the probability of a positive response. Thurstone (1927, 1828), who first formalized the
construction of psychological variables with no physical counterpart, implied both processes (Andrich,
1988, 1989).

In addition to these two response models, there are also two main data collection designs. In the
single-stimulus response design, the person responds directly to a statement by answering it either
correctly or incorrectly, or by agreeing or disagreeing with it. Henceforth, this will be referred to
as the &dquo;direct response&dquo; design. In the pair-comparison design, the person either compares two state-
ments for their location on a continuum (irrespective of the person’s own location) or selects one
of two statements based on which one best reflects his or her own position. Again, both of these
designs were invoked by Thurstone (1928). The stimuli used here will be considered to be statements
such as those found in questionnaires used to measure attitude.

Coombs (1950) and his associates (Coombs & Avrunin, 1977; Coombs & Smith, 1973) studied the

unfolding model, and Guttman (1950, 1954) studied the cumulative model. Both Coombs and Gutt-
man restricted themselves to deterministic, and not formal probabilistic, response models. For the
pair-comparison design, formal probabilistic models have been studied with both unfolding and
cumulative models; for the direct response design, formal probabilistic models have been studied
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primarily with cumulative models. This direction was set by Thurstone (1927) who formalized a cu-
mulative probabilistic model in the pair-comparison design in his &dquo;law of comparative judgment&dquo;
and a cumulative probabilistic model in the single-stimulus response design for achievement testing
(Thurstone, 1926). However, Thurstone retained an ad hoc procedure for the unfolding model in the
direct response design for the measurement of attitude and did not really consider the unfolding model
in the pair-comparison design.

Probabilistic models for the cumulative models in pair-comparison designs have been studied ex-
tensively (Bock & Jones, 1968; Bradley & Terry, 1952; David, 1963; Luce, 1959; see Davidson & Far-

quhar, 1976, for a bibliography of approximately 350 articles). Applications of latent trait or item
response theory to psychological and achievement testing have generated substantial work on cumula-
tive probabilistic models for the direct response design.

Explicit probabilistic models based on unfolding in the pair-comparison design have been developed
by Sixtl (1973), Zinnes & Griggs (1974), and Schonemann (1970), and have been further explicated
and extended by Carroll (1972), Cooper & Nakanishi (1983), DeSarbo & Hoffman (1986), Jansen
(1984), Poole (1984), Schonemann & Wang (1972), Tanzer (1983), Carroll & De Soete (1991), and Bock-
enholt & Bockenholt (1990). Until recently, the unfolding model for the single-stimulus response de-
sign, to which this paper is devoted, has appeared less often in the literature (Andrich, 1988; Davison,
1977; Heiser, 1989; Hoijtink, 1990; Post & Snijders, 1992; Van Schuur, 1984, 1988, 1989).

Cumulative and unfolding models have been developed separately or in parallel, but have never
been shown to be directly related. Here, the development of a model for unfolding is derived explic-
itly from a cumulative model. Specifically, when the cumulative response process has three ordered
response categories for each statement, the response process for the middle category is single-peaked
and therefore is of the unfolding type. The model is produced by using this feature for each state-
ment and folding over the two extreme categories. Constructing the model requires a shift of per-
spective from the traditional approach: In the traditional approach, the focus is on the data that
must be unfolded using a model, whereas in the present approach the focus is on an existing model
that is already unfolded, but that must be folded to correspond to the data.

The cumulative model used with statements that contain ordered response categories is an exten-
sion of Rasch’s (1960/1980) model for dichotomous responses which, in turn, is the probabilistic coun-
terpart of the Guttman scale (Andrich, 1985). An advantage of a formal model, in addition to
summarizing and explaining the features of phenomena of interest, is that through its own logic it
can add new insights into the original phenomena. Sometimes the logic of a model not only leads
to new insights, but to surprising insights that otherwise would not be considered. Genuine advances
are made when a conclusion or deduction is surprising in the first instance, but which on reflection
appears tenable. An outcome of this kind in the model to be derived is that a unit of measurement

for each statement, or for the entire scale, arises directly in an unusual way, but which, on closer
examination, is shown to be consistent with the way a unit operates in typical measurement.

The Hyperbolic Cosine Unfolding Model

The Unfolding Response Process

Consider a dichotomous response of Agree or Disagree when a person encounters a statement in
which the person and the statement are located on the same linear continuum. Further, consider the
statement I don’t believe in capital punishment but I am not sure it isn’t necessary, which can be consid-
ered to reflect an ambivalent attitude toward capital punishment.

Let (3n be the location of person n and 8, be the location of statement i. If the person’s location
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is very close to the statement location (ambivalent or moderate about capital punishment), the per-
son will tend to agree with the statement. As the person’s location increases in distance from the
statement in either direction (either very much for or very much against capital punishment), the prob-
ability of the person selecting Agree will decrease. This gives the single-peaked form of the proba-
bility of the Agree response, which is the curve that is usually focused on exclusively.

However, now consider the complementary Disagree response. The probability of a Disagree
response will increase as the person’s location becomes greater than that of the statement (J3n > > 6,,
very much in favor of capital punishment) and as the person’s location becomes much less than the
location of the statement (J3n < < 8,,, very much against capital punishment). Thus a person may
select the Disagree response for two reasons.

Therefore, a Disagree response gives no indication of the direction in which the person is distant
from the statement; this gave rise to the term &dquo;unfolding&dquo; (Coombs, 1950, pp. 147-150). That is,
the continuum had both directions aligned with each other at the location of the person (the person’s
&dquo;ideal point&dquo;); it needed to be &dquo;unfolded&dquo; in order to establish a continuum. Thus, although the
term unfolding can be related to substantive psychological processes, it arises out of the task required
to construct a linear continuum in which direction has meaning, from responses that provide no
information about direction.

Now consider keeping the two reasons for the Disagree response distinct. Then, the following three
latent responses result in the two manifest responses of Agree and Disagree: (1) disagree because the
person considers him/herself below the location of the statement [disagree below (DB)]; (2) agree
because the person considers him or herself close to the location of the statement [agree close (AC)];
and (3) disagree because the person considers him/herself above the location of the statement [dis-
agree above (DA)].

Furthermore, the probabilities of DB and DA have a monotonic decreasing and increasing struc-
ture, respectively, just as a response has in the cumulative process. Making the two reasons for a
Disagree response explicit is exploited in making a cumulative model for three ordered categories
relevant to the unfolding process, and is the distinctive feature in constructing the final model.

The Rasch Model for Ordered Response Categories

The Rasch model for ordered response categories has been derived and presented sufficiently often
(Andersen, 1977; Andrich, 1978, 1979; Wright & Masters, 1982) that it can be stated directly. If the
m + 1 successive ordered categories of statement i are associated with the random variable X, having
values x E {0, 1, 2, mi, then when person n responds to statement i, the probability of the response
x,,, takes the form

where the K~, are the coefficients of each category x for each statement i and can be resolved ac-

cording to

where Tk, are thresholds on the ordered continuum that separate the successive categories. J3n and
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6, are the locations of person n and statement i, respectively, and

is a normalizing factor that ensures that the probabilities in Equation 1 sum to 1.0. The definition
in Equation 2 specifies the required constraints on the thresholds. For convenience, and except when
it helps the derivation of equations, the value x is not subscripted by n and i, it being understood
that it is the response of person n to statement i.

The category response functions (CRFs) for a statement with three ordered categories (and two
thresholds) are shown in Figure 1. This is used to derive the unfolding model. It is evident from the
three CRFs that as the location J3n of person n increases relative to the location 8, of statement i, the
probability of the highest score of 2 increases, and as the location J3n decreases relative to the loca-
tion 5,, the probability of the score 0 increases.

Figure 1
CRFs for Three Response Categories: Categories Scored x = 0 and x = 2
Correspond to DB and DA, Respectively, and x = 1 Corresponds to AC

In the general case in which the thresholds between the successive categories are equal (i.e.,
T~ + ,, - T~, = Tx, - Tx - for all x), Equation 1 may be written in the simpler form

where 0, = (r~, - r,-,,,)/2, and is taken as positive (Andrich, 1982). Clearly, when a statement has
more than two thresholds (and three categories), the form of Equation 5 provides a reduced param-
eterization of the model because only a single distance between all pairs of successive thresholds is
specified rather than the value of each threshold.

However, in the case of two thresholds (and three categories), which is of interest here, the form
of Equation 5 specifies completely the parameters of Equation 1 and there is no reduction in the

parameterization. Note also that in the three-category case the location parameter 8, of the state-
ment is in the middle of the two thresholds, and 0, represents the distance from 8, to each of the
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thresholds. With only three categories (i.e., m = 2), it is instructive to be explicit about the proba-
bilities of the values of x:

The threshold r,, is defined as the point on the continuum on either side of the statement location
in which the probability of a response in the categories on either side of the threshold are equal.
Thus, 6, is the distance on either side of the statement location in which the probability of each
extreme response becomes greater than the middle response. In a sense it is the half unit of measure-
ment about the statement location on the latent continuum. For example, in having points on a ruler
marked in centimeters, the location of any object deemed to be within half a centimeter on either
side of a point will be assigned the length represented by that point. In the same way, any location
of J3n within 6, from 8, will have the highest probability of being located in the middle category, and
therefore at the location of 8, with respect to that item. This feature is explored in greater detail
throughout this paper.

The Unfolding Model With a Location and Unit for Each Statement

The unfolding response process and the cumulative response model are brought together in the
following steps. First, although the model in Equations 6-8 is in a cumulative framework, it is evi-
dent from the CRFs of Figure 1 that the probability of the response in the middle category has a
single peak. Thus, the response to the middle category characterizes a response of the unfolding type:
Specifically, as the distance between the person’s location 13 and the statement’s location 8 increases
in either direction, the probability of the response in the middle category tends to 0.0.

Second, if the middle category (x = 1; Equation 7) represents the Agree response, the probability
of Ac has the required unfolding structure. That is, Ac can be mapped onto x = 1. However, in Figure
1 (x = 0) represents DB and (x = 2) DA, and these response functions are monotonically increasing
(DA) and decreasing (DB).

Interestingly, and conveniently for the next step in the derivation of the unfolding model, these
CRFs are made explicit, rather than implicit, as they generally are in traditional developments for
unfolding models for direct responses. Thus, the CRF structure of the three response categories of
a model that is normally considered exclusively cumulative, is in fact also a model for the unfolding
of dichotomous responses-because there are three, not two, implicit responses in the dichotomous
unfolding response process, and they have exactly the same structure as the cumulative model for
three categories. This observation leads to the construction of the new unfolding model for a direct
response design.

Third, recognizing that the two reasons for a Disagree response are not distinguished in the data
leads to the next step of summing or pooling the probabilities of the two categories in the model
in Equations 6-8. This step may be taken as folding over the two latent Disagree responses in the
model in order to correspond to the data. Thus, rather than focusing on the data and seeking devices
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for unfolding them, this approach focuses on a model that assumes that data are already unfolded,
and then folds the model to correspond to the data.

Consequently, the sum of the probabilities of x = 0 (DB) and x = 2 (DA) represents the proba-
bility of the one manifest Disagree response and, in the data, this Disagree response may be scored
x = 0. Using Equations 6-8, in which Equations 6 and 7 are summed, the construction gives the
probabilities of the required model:

where x = 1 represents Ac, and x = 0 represents both of the (latent) reasons for the (single manifest)
Disagree response (DB and DA).

Note that in this derivation another random variable could have been introduced for Equations
9 and 10; however, because the probability of x = 1 representing the Agree response is not affected,
the same random variable X has been retained. Also, the pooling of the probabilities for the two
reasons for a Disagree response is analogous to constructing the two-tail region for rejecting a statistical
null hypothesis. The hypothesis is rejected if the estimated parameter location is greater or less than
the critical values, and the probability of doing so is the sum of the one-tail probabilities.

Equations 9 and 10 can be simplified considerably. First, multiply the numerator and denomina-
tor by exp( -J3n + 8,), resulting in

Second, recognizing that [exp(-a) + exp(a)]/2 = cosh(a), the hyperbolic cosine, gives

where the normalizing factor is Ym = exp(8,) + 2cosh (0, - 8,).
This model is very simple. The hyperbolic cosine, a symmetric function, provides the symmetry

required to reflect the two reasons for the Disagree response. It is generically referred to, therefore,
as the hyperbolic cosine model (HCM). The probabilities of the two responses, Agree and Disagree,
according to Equations 13 and 14 are shown in Figure 2.

The model also provides a location (8,) and unit (0,) parameter for each statement, which are in
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Figure 2
CRFs for Two Observed Responses,
x = 0 (Disagree) and x = 1 (Agree)

additive form. This contrasts with the multiplicative form, such as a(J3 - 8), that a unit-type parameter
a (usually termed a discrimination parameter) takes in other latent trait models; this, therefore, raises
new issues as to the operation of a unit in this model.

For a fixed 6&dquo; the greater the difference (J3n - 8,) in either direction, the lower the probability
that the response will be x = 1. If J3n - 8, = 0, then the probability of a positive response is

given by

which indicates that the response is a function of the size of the unit parameter. Then, as the unit
0, increases, the range on the continuum within which a person is likely to perceive the statement
as being close enough to agree to the statement increases, and the probability of an Agree response
increases.
When the unit parameter becomes 0, = 0 (i.e, when the thresholds on the continuum are located

at identical positions), the probability of a positive response when J3n = S, is P(x = 1) is .33. This
indicates that each of the three latent responses-DB, Ac, and DA-has the same probability of being
observed. Of course, the two reasons for a negative response are not distinguished, so the total prob-
ability of a negative response is .67.

This uniform distribution for the three latent responses is consistent with the uniform distribu-
tion under symmetric cumulative models (the Rasch and the two-parameter logistic models) for di-
chotomous data in which the probability of each response is .5 when J3n = 8,. The meaning of the
unit 0, is elaborated below, but for the present note that 0, = 0 is a boundary condition and that
the latent continuum is continuous; therefore, the probability of any person or any statement being
located at any position is 0. In the model, 0 may be less than 0. However, if 0, < 0, then the response
process becomes U-shaped (Andrich, 1982): A negative estimate of 0 indicates immediately that the
unfolding (single-peaked) response process is not a property of the data. Figure 3 shows the response
probabilities for three values of 0,.
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Figure 3
Probability of an Agree Response as a Function of the Relative Location

of the Person and the Statement (P - 8) for Three Values of (0)

The Simple HCM-A Constant Unit

The model of Equations 13 and 14 has a different unit parameter 0, for each statement i. The

model can be specialized by making 0, = c (a constant) for all items. In some sense this specializa-
tion is equivalent to that of specifying equal discriminations in the two-parameter logistic model for
cumulative dichotomous responses (which then reduces to the Rasch model) and to that of specify-
ing equal variances in the discriminal processes in Thurstone’s law of comparative judgment (which
leads to his Case V; Thurstone, 1927).

Rather than setting 0, = 1, a more judicious selection may be made that provides a very elegant
model. First, Equation 13 may be written explicitly in the form

and if exp(6, = 2) (i.e., 0, = ln2 for all i), the model simplifies to

or in terms of a single expression

This model may be seen as the unfolding counterpart to the Rasch model for cumulative dichoto-
mous responses, in that cosh (J3n - 8,) is made up of (is the average of) the complementary elements
of the Rasch model [i.e., exp(J3n - 8,) and exp(6, - J3n»)’ However, the model of Equations 16-19 does
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not belong to the Rasch class of models because it has no sufficient statistics. In addition, the selec-
tion of the specific value of 0, = ln2 is made for mathematical convenience.

The model of Equations 16-19, which contains only the parameters J3n and 8, in the form (J3n - 6,),
is parametrically equivalent to the squared simple logistic model (SSLM) introduced by Andrich (1988),
which also contains the same parameters in the same form (J3n - 6). In the SSLM, the square of (J3n - 8,)
is taken in order to create the symmetry required to produce a single-peaked response process; but
in the HCM, the symmetric hyperbolic cosine of (J3n - 8,) is taken. This latter model will be termed
the simple HCM (SHCM), in parallel to the SSLM. The rationale for the SHCM-which involves analyzing
the details of the unfolding response mechanism to reveal and then model explicitly the two latent
responses for a Disagree response, and then bringing them together-is more compelling than that
for the SSLM, which is essentially based on a device (the square function) that produces a descrip-
tive model of the required shape.

One of the properties of the SSLM is that the maximum probability for a response, when
(3&dquo; - 6, = 0, is only .5. Remarkably, that is also the case for the SHCM. Hoijtink (1990) has general-
ized the SSLM to permit greater probabilities. Greater probabilities with the general HCM are possi-
ble by retaining the unit parameter 6&dquo; as in Equations 13 and 14. The model that incorporates the
unit parameter 0, for each item will be termed the two-parameter HCM (2PHCM). Although the
emphasis here is on the SHCM, there is also a discussion, development, and application of the 2PHCM.

Maximum Likelihood Estimates

The literature on latent trait models suggests that a number of procedures for estimating parameters
may be used. However, the procedures specific to the Rasch class of models-those characterized
by the presence of sufficient statistics-are not among them. This is because the structure of the
Rasch models is destroyed by summing or pooling two of the categories in Equations 6-8.

The method used is termed the joint maximum likelihood (JML) estimation procedure. JML is based
on the joint likelihood of the data with respect to both persons and statements and was a very com-
mon method used in latent trait scaling until the advent of the EM algorithm and marginal maxi-
mum likelihood methods. In addition to being simple, the solution equations for the JML procedure
are instructive in understanding some features of the unfolding process. Furthermore, no assump-
tions of any distribution of person parameters need to be made.

From the work on estimation in the Rasch models (Andersen, 1973; Jansen, Van den Wollenberg,
& Wierda, 1988; Wright, 1988; Wright & Douglas, 1977), it can be anticipated that for a fixed num-
ber of statements and with an increasing number of persons, the estimates of the statement parameters
will not be consistent, but that this inconsistency should be manageable. This point is elaborated below.

For the random variable x,, that takes on the value 1 for a positive response (Agree) and 0 for
a negative response (Disagree), the probabilities in Equations 9 and 10 can be expressed in the form

The joint likelihood of the matrix of responses X of dimension N x I, given by

provides the log-likelihood equation
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Clearly, two sets of equations are required-one for the 8&dquo; the other for the J3n’ In forming these,
let n,,, denote the probability P(x,,, = 1). Differentiating log L with respect to 5,, setting the deriva-
tive equal to 0, and simplifying gives the first set of equations:

Therefore, the solution equation is

Analogously, the solution equation for the second set J3n is given by

These equations are structurally analogous to those of the SSLM.
In this system of equations in which the sum over n for Equation 25 is the same as the sum over

i for Equation 24, one constraint is required. The usual kind of constraint is to set

No other constraint is necessary.
These equations are related to those for the cumulative Rasch model for dichotomous responses.

In particular, Equations 24 and 25 contain the terms

respectively, and these are augmented by the factor tanh (I3n -8,) that characterizes the unfolding aspect
of the data through the expression (J3n - 8,).

The simultaneous solution of Equations 24 and 25 must be obtained iteratively. The Newton-
Raphson algorithm, which requires using the second derivatives, is considered here. These second

derivatives, however, are instructive in themselves; their derivation is summarized in the Appendix.
In addition, these second derivatives contain data. Therefore, for the parameter estimation and for
the subsequent estimation of the SEs of the estimates, their expectations must be taken. These ex-
pectations give the Fisher information functions, and take the forms
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and

A Solution Algorithm
A direct application of the multiparameter Newton-Raphson algorithm would take the form

where

and

are the submatrices of the matrix of second derivatives and [d:b]~q) is the vector of provisional esti-
mates at the qth iteration.

This multiparameter algorithm is not feasible because as N increases, the matrix of second deriva-
tives becomes too large to invert. In the alternative algorithm, used in the program for the analyses
reported in this paper, the provisional statement parameters are regarded as fixed, and the Newton-
Raphson algorithm is employed to improve the estimates of the person parameters according to

where the submatrix yraa is readily inverted because it is simply diagonal. With the provisional per-
son parameters then taken as fixed, the statement location parameters 8, are estimated according to

Following the improved estimates of 8 to a specified degree of accuracy, the restriction

is imposed and the entire process is repeated until all the item parameters as a set converge to a
selected level. Incidentally, finite estimates for persons and statements can be obtained if all responses
are Is. Only if all responses are Os can no finite estimate be obtained. These estimates will be the
same as if the full matrix containing the off-diagonal terms in Equation 31 were inverted in the
algorithm, and only the rate of convergence and the estimates of the SEs are affected.

Initial Estimates

A judicious selection of initial estimates is helpful in obtaining rapid convergence. The initial
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location values 4°> are obtained by setting J3n = 0 for all n, giving

where

is the total score of a statement, and

However, because cosh5 > 1, it is necessary that (N - s,)Is, ~2t 1 for an initial estimate according to
Equation 40, which may not be satisfied in some datasets.

There are different ways to ensure that a value is obtained, and the one used in the program developed
for the analyses in this paper is as follows. If for any i, (N - s,)ls, < 1, then the minimum of these
values is taken, the difference

is calculated, and the initial estimates are formed according to

The unfolding nature of the data creates one further complication: Statements at genuinely different
locations can have the same statistic (total score) s,. This difference is accommodated by incorporating
both negative and positive values into the initial estimates, giving

In general, the provisional ordering of the statements-to the degree that some are given negative
signs and some are given positive signs around the constraint that

-can be hypothesized from theoretical considerations. However, for the more empirically oriented,
even though it does not arise from the theory developed here, the sign can be obtained from the signs
of the statement loadings on the first factor in a factor analysis. As shown in Davison (1977), if the
data exhibit an unfolding structure, then these loadings exhibit a corresponding structure in which
the signs reflect the direction of the statement.

In obtaining the initial location values J3n’ advantage is taken of the initial values 8(,Ol:

where In is the number of items that person n has with a score of 1. These values are the average
of the location values of the statements agreed to by the person.

SEs of Estimates and Information

According to maximum likelihood theory, variances of the estimates of J3n and 8, are approximated
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according to

and

respectively. Of course, using these expressions includes the approximation in which the off-diagonal
elements of Equation 31 are ignored. Strictly, the diagonals of the inverted matrix of Equation 31
should be used rather than simply the inversions of the diagonals of the submatrices of Equations
29 and 30. Nevertheless, these terms may be used as approximations and to gain insight into the
unfolding response mechanism. The effect of not using the off-diagonals is noted in the simulation
study reported below, and is shown to be relatively small.

Consider the case of a single person responding to a single statement, and denote the information
I with respect to 13 - 8 associated with the response as

Because information with respect to a person or statement parameter is additive, the effect of having
many persons or many statements can be determined immediately. As with the SSLM developed in
Andrich (1988), 1 = 0 for 13 = 8, which contrasts with symmetric cumulative response models in
which maximum information is obtained when 13 = 5. Again, as with the SSLM, the information
function is bimodal, reaching a maximum at a value of Il3n - 6, > 0 for a given 6&dquo; and then having
an asymptote of 0 as IJ3n - 5,1-00. Figure 4 shows this information function with respect to J3n - 5,
for the SHCM. A full discussion of the interpretation of a bimodal information function for unfold-
ing models and responses is provided in Andrich (1988).

Figure 4
Information in a Single Response as a Function of the Relative
Location of the Person and the Statement (P - 8) for the SHCM
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Inconsistency of Parameter Estimates

It has already been indicated that the estimates of the parameters are not expected to be consis-
tent. Although concern here is mostly with the introduction of the model and demonstrating that
it is feasible to apply, the issue of consistency is broached for completeness. First, with 15 to 20 state-
ments and 500 persons, the inconsistency seems noticeable. On the other hand, when the number
of statements is 100, the effect of the inconsistency seems minute. From this, it is inferred that as

the number of statements and persons becomes very large, the estimates will converge to their
expected values. This result, yet to be proven, is analogous to that established by Haberman (1977)
for the JML estimates in the simple Rasch model for dichotomous responses.

Estimation of the Unit Parameters

If the unit parameter is permitted to vary, as in the 2PHCM (Equations 13, 14, and 16), and this

parameter is to be estimated, then the solution equations need to be augmented by

and

In the 2PHCM, however, the estimates of the unit and location parameters are correlated. This is not
unusual-the estimates of the difficulty and discrimination parameters in the two-parameter logistic
model for cumulative responses also are correlated. However, this correlation may have a special sig-
nificance in the case of mapping locations on a continuum, and so these effects are broached in both
the simulation study and the analysis of real data. This correlation would be evident in any method
of estimation (cf. Verhelst & Verstralen, 1991) because it is not a property of the estimation but of
the model.

Example Applications

Simulation Study

The simulation involved the SHCM and 20 statements. This is a relatively large number of state-
ments for unfolding data, but is quite typical of the number of statements in attitude measurement.
The statement locations were spread uniformly (but in pairs) across the attitude continuum in the
range -3.15 to 3.15. The simulation was repeated five times with 500 simulated persons in each repli-
cation. The parameters were drawn from a normal distribution with mean p = 0.0 and a standard

deviation a = 2.5. A convergence criterion of .01 was used for the increments in the solution of

the implicit equations.
Recovery of statement parameters. Table 1 shows the generating parameters of the statements, their

estimate in each replication, and the average of the estimates across replications. It also shows the
correlation between the estimates and the generating parameters. The recovery of the statement loca-
tion parameters was excellent. Moreover, the standard deviations (SDs) of the estimates and the SEs

obtaine~i from Equation 47 were relatively similar. The average of the estimates of the SES (ASE) for
all items according to Equation 47 was .158 and the average of the SDs of estimates across the five
replications over all items was .152. Thus, taking only the diagonal elements of the matrices of
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Table 1, continued
Generating Parameters (GP), Estimates of Item Location in Five Replications for the
SHCM, Their Variances (Var), Standard Deviations (SD), and Average Standard
Errors (ASE), and Correlations (r) of GP and the Estimates; and Estimates of

the Unit Parameters Under the 2PHCM Where the Unit = log 2.0 = .693

second derivatives and excluding the off-diagonal elements had a negligible effect on the SEs.
To examine the effect of the inconsistency of the estimates of location values, the variance of the

estimates of these locations in each replication was compared to the variance of their generating values,
which was 4.256. This comparison was simplified by taking the average variance of estimates across
the replications, which was 4.875. Clearly 4.875 is greater than 4.256; however, this variance contains
the error variance of the estimates, and on the average, its value was .025.

Therefore, the variance of the estimates without the error variance is given by 4.875 - .025 = 4.850;
this value was greater than 4.256. In terms of the units in the original metric-SDs-the comparable
values were (4.850)’~ = 2.20 and (4.256)1~ = 2.06, showing that the sDs of the estimates were greater
than that of the original parameters by approximately 6%. This effect was very small, and for an
analysis of a single dataset the systematic effect was effectively only a matter of scale, because only
the relative parameter estimates (statement locations) were estimated and not the absolute values of
a population parameter.

Table 1 also shows analogous information for the unit parameters for the 2PHCM estimation. Recall
that all items were simulated with the same unit parameter in the sHClvt-ln2 = .6932. Again, the
estimates and their SEs were very close. In this case, if the estimated error variance (.1382 = .019)
was subtracted from the average variance of the estimates (.02), the result was virtually 0 (as required
because all values of the unit were equal in all replications for all items.)

The estimates of the location and unit parameters were not independent in the model. Figure 5
shows the plot of the unit estimates against the location estimates for each item in each study. As
expected from the model and shown in the last column of Table 1, the spread of the estimates was
greater for the extreme values of the locations. In addition, the effect of any correlation was negligi-
ble. The actual values for the correlations of each study were .086, .264, -.260, .337, and -.282 (aver-
age = .029), none of which were significant, even at the .10 level of significance.

Recovery of person parameters. Table 2 shows a summary of the recovery of the person parameters.
(In the estimation of these parameters, only those persons whose scores are all 0 cannot be estimated,
which never occurred in any of the simulations). Because there were so many persons, only the vari-
ances were considered. It is evident that the estimated variance is larger than the generating variance
(on the average, 5.645 compared to 4.665). If the average of the estimated error variance (.653) is
subtracted from 5.645, it gives 5.645 - .653 = 4.992, which is close to the original generating vari-
ance (average of 4.665). The difference of .327 reflects the inconsistency already mentioned, but in

percentage of variance terms it is only 7%, the equivalent of the effect on the statement parameters.
The correlations between the generating and estimated parameters averaged .899, which was virtu-
ally the maximum value possible. This maximum was calculated by denoting It = J3n + en, where
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Figure 5
Estimates of the Unit Parameters and Estimates of the Location

Parameters for Statements in Five Replications for the SHCM

6n is the estimate of the person parameter, J3n is the theoretical value, and en is the error. With the
actual error independent of the location,

~[p] can be estimated in the usual way as

Table 2
Generated and Estimated Person Parameters in Five Replications
for the SHCM, Their Variance (Var), Standard Deviation (SD),
Mean Squared Error (MSE), Correlation With the Generating
Parameters (r), Reliability (r.), and Square Root of Reliability

[(røfl2 = Maximum Correlation]
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and V[e] can be obtained as the average of the error variance for each person provided by Equation
46. Then the traditional reliability index, denoted r,,, can be estimated as

However, from traditional test theory, the maximum correlation of a variable with error is the square
root of its reliability, in this case estimated as (r¡i/z. Both ra and (r,,)’12 are shown in Table 2.
Real Data

A small dataset presented in Andrich (1988) based on 54 graduate students replying to eight state-
ments that were used to measure attitudes toward capital punishment was reanalyzed. The students
simply agreed or disagreed to the statements, and no restriction was placed on the number of state-
ments that were to receive an Agree response. Andrich (1988) obtained the estimates using the ssLM,
and the estimates were compared with two previous scalings of these statements when data were col-
lected according to other designs and analyzed using other models, including one from Thurstone
(Wohlwill, 1963). The results from the SSLM were consistent with those obtained by the other methods;
therefore, in the present analysis comparisons were made only with the results from the SSLM. In
this dataset the distribution of the locations of the persons was not normal, and so an assumption
of normality for this distribution would have been inappropriate in any estimation procedure. Table
3 shows the statements and the location estimates according to the SSLM and the SHCM.

In making comparisons between results, two further points need to be noted. First, the natural
units in the SSLM and SHCM are not the same, but no change was made to the values obtained. Second,
the 2PHCM also was used to analyze the data; the estimates of the locations and the units were then
free to vary among statements. Under this model, the results shown in Table 3 indicate that there
was a relatively slight effect on the location estimates. This negligible effect was shown in the correla-
tions between the SSLM and each of the SHCM and 2PHCM where the respective values were r = .999
and r = .997; in addition, the locations of Statements 1 and 2 changed order. These statements were
close in location, and the change of values was within the SE of the estimates. Thus, in this case

Table 3
Estimates of Parameters of Statements Using the SSLM, SHCM, and
2PHCM, for Statements Ordered According to the SSLM and SHCM
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the effect on the location estimates in estimating the units was negligible.
The effect on the estimates of the person parameters is shown in Table 4, which shows the distri-

bution of attitudes and the values obtained by the SSLM, the SHCM, and the 2PHCM, with the loca-
tions of persons and statements ordered according to the SHCM; the last column shows the rank
ordering of the patterns and statements under the 2PHCM. It is evident that there were slight differ-
ences in the location values of patterns under the SHCM and the 2PHCM, including some reversals
in location, which in any case were close together. Thus the effect of estimating different unit parameters
for different items was very small in this example.

Table 4
Distribution of Attitudes and Their Locations Under the SSLM, the SHCM, and the 2PHCM
(Items and Patterns are Ordered Under the SHCM), and Order of Items Under the 2PHCM

Summary and Discussion

The idea that 0, provides a unit of measurement has been carried through the development and
application of the SHCM. and the 2PHCM. According to the relationship between the data and the
model, a value of the unit will be greater if the number of endorsed responses is greater. Because
it may add some important new thoughts to the issue of a unit of measurement in a latent trait model,
the manner in which this can be understood deserves some elaboration. In doing so, an example with
an unfolding response mechanism in which the units are explicit will be considered.

Consider the case of asking a person to agree or disagree to a series of locations on a ruler in
which an Agree response indicates that the particular location corresponds to the person’s height.
The response here will be of the unfolding kind in the sense that the person will disagree to locations
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considered below his or her height and also disagree to locations above his or her height, and agree
to the location considered to be at the person’s height. Suppose, further, that the ruler is presented
in some way so that he/she has to estimate which location to agree to with the consequence
that errors are introduced.

In considering what might happen, it is necessary to be aware of three aspects of this situation.
First, height is a continuous variable; therefore, the probability of the person being at any particular
height is 0.0. Second, the markings designating heights on the ruler are made in units; that is, there
is distance between the marks on the ruler. Third, when the person agrees to a particular marking
as representing his or her height, the person is not simply agreeing to being at that mark (a point)-
the person is agreeing to being within the region plus or minus one half-unit on either side of the
mark. The probability of a person being located within a region has a finite nonzero number, even
though the probability of being at any point is 0.

To be explicit about the implications for the unit in the unfolding process, suppose a person is
170 cm tall when measured to the nearest centimeter, and further suppose that this person is asked
to agree or disagree to markings on a ruler as in the example above. Suppose further that the only
marks on the ruler are 1 cm apart. The person will agree to a marking that he or she considers to
be plus or minus .5 cm from his or her height. Presumably, most of the time on repeated presenta-
tions of the ruler, the person will respond to the position of 170 cm, and sometimes to 171 and some-
times to 169. The person would be expected to agree less often to the markings of 172 and 168 cm
and even less often to 173 and 167 cm. Still remembering that the person is in fact agreeing to being
in a region, and not at a point, suppose also that the person never agrees to markings that are 175
cm or greater, or 165 cm or lower, so that the distribution has most responses at 170 cm, and least
at 174 and 166 cm. Clearly, in this case there is a distribution of responses: the person has not responded
consistently.
Now suppose that instead of the markings being 1 cm apart, they are 10 cm apart with no mark-

ings in between. The person who is 170 cm tall will agree to a mark if he or she considers him or
herself to be .5 of 10 cm on either side of the mark, that is to within 5 cm on either side of the
mark. In centimeters, this indicates agreement to a region from 165 cm to 175 cm. If the person’s
perception was equally good in the two cases, then in the second case the person would always agree
when presented with the mark at 170 cm, and disagree to the markings of 160 cm or less and 180
cm or more. Thus in the second case, unlike the first case, there is no variation in the responses.

This example shows that when the units are larger, the observed Agree responses are more consis-
tent than when the units are smaller, simply because a large unit does not manifest finer distinctions
in the observations. The above situation has been placed in the context of an unfolding response
process, but it is, of course, no more than recognizing that if 100 persons were asked to measure
the height of a person to the nearest 10 cm, they would have a greater agreement than if they were
asked to measure the same person’s height to the nearest 1 cm. However, even though the observed
responses are more consistent (in greater agreement) when the unit of measurement is larger, the
measurement itself is still less accurate than when the unit is smaller. Even if there is disagreement
when measurements are taken to the nearest 1 cm and no disagreement when they are taken to the
nearest 10 cm, the former is more accurate, in this case much more accurate.

In the example above, the case of a known measurement was considered, and the effect on the
data when different units were taken was described. Consider now the process in reverse-the loca-

tion of a person from a series of agreements or disagreements to markings on a ruler is being esti-
mated, but the locations and units are not known. That is, consider that the only data consists of
a series of Agree and Disagree responses to a set of markings on a ruler. All things being equal,
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it could be inferred that in the case in which the responses are more consistent, the unit is greater.
That is, the region around the location of the marking that will draw an Agree response is greater
when the responses are more consistent. This is exactly the case with the HCM: The greater the num-
ber of Agree responses to a statement, all other factors being constant, the greater the estimated value
of the unit 0,.

This analysis, and the model, demonstrate that the construction of a unit from the responses is
consistent with the idea that the statements have a location, but with a region around them that is
like a unit of measurement. Recall that when the three CRFs-two for the two reasons for a Disagree
response and one for the Agree response-are presented in full with the two tails of the Disagree
response as shown in Figure 1, then 0, represents the half distance between two thresholds of a state-
ment, and that the location of the statement 8, is in the middle of the two thresholds. Furthermore,
these thresholds are points on the continuum around the location 8, in which the probability of an
Agree response and a Disagree response (in one direction) are equal. This provides the natural points
for the region of a unit around the location 0, in the sense that if a person considers him/herself
located within the region of plus or minus 0, from 8&dquo; then the person is more likely to give an Agree
response than a (one-tail) Disagree response. Thus, although 0, has been referred to as a unit, if the
analogy to the measurement of length is taken literally, then it is equivalent to a half-unit. The Agree
response of a person to a statement is made to the nearest 20, to the location 8, of the statement.

Implications

The implications of the model for the study of a natural unit are considered one of the major
potential sources of new insights into the unfolding process, and more sophisticated statistical proce-
dures and empirical studies will need to be conducted to fully exploit this potential. Two specific
directions of research are suggested. In conjunction with the study of estimation procedures, the con-
struction of latent classes in which the unit might be the same for all items within each class but
different in different classes might be considered. If the locations of statements were the same in
the classes, then the difference in the classes would be a matter of scale, as reflected in the different
values of the unit. Alternatively, the unit may be constrained to be equal across classes but the state-
ment locations may be free to vary. Then differences among classes would be interpreted to be qualita-
tive and characterized by the different ordering of statements.

The unit parameter could be characterized as a person parameter rather than a statement parameter,
or more completely, as a combined person and statement parameter that then could be resolved into
a person and statement component such as 0~, = §~ - o,. This parameterization is beyond the scope
of this paper.

The ramifications of the unit are especially interesting when juxtaposed with the PARELLA model
proposed by Hoijtink (1990) and mentioned earlier as a generalization of the SSLM. The PARELLA
model overcomes the limitation of the SSLM that the maximum probability of an endorsed response
is only .5. In the generalization, as the person’s location moves closer to the location of the state-
ment, the probability of a response comes closer to 1.0 for increasing values of the &dquo;unit&dquo; parameter.

The 2PHCM has the same feature that the probability of an Agree response is not limited; further-
more, the probability of an endorsed response clearly becomes greater as the unit becomes longer
for a given location of a person relative to a statement. Thus, it is clear how the parameters operate
on the continuum to affect the probability. In contrast, it is not clear how to interpret the unit
parameter directly on a continuum in the PARELLA model. It does not appear as clear as in the
2PHCM in which the unit is the distance of a threshold (in each direction) from the location of the
statement for the probability of disagreeing is equal to the probability of agreeing. In addition, in
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the PARELLA model, the unit parameter does not qualify each statement but only a set of statements.

Appendix: Derivation of Second Derivatives of the Likelihood Function

From Equation 23, which gives the expression for the first derivative,

the second derivative is given by

Because

Analogously,
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