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Abstract. Heat conduction is considered in a semi-infinite solid subjected to a high step
change in surface heat flux, such that melting occurs. A time-dependent relaxation model
for the energy flux is assumed, leading to a non-Fourier, non-linear equation for the
thermal field, which is solved under suitable conditions on the interface displacement.

1. Introduction. Criticism to the Fourier model for heat conduction, which leads to a
physically unacceptable infinite speed of propagation of the energy transfer, was put
forward, in the past, by several authors. Such a criticism, initially based on purely
speculative grounds, follows from a variety of approaches to the problem, from the first
consideration in a work by Cattaneo [1], where a model for the heat conduction process
was substantiated—in the case of gaseous media—by means of the kinetic theory, to the
statistical mechanics of nonequilibrium irreversible processes [2].1

In any case, when the Fourier law is rebuted, a time-dependent relaxation model is
proposed for the heat flux and the thermal field, which, in the Fourier case, is governed by
a parabolic equation, obeys to a hyperbolic wave equation.

The temperature distribution evaluated by the latter model more significantly differs
from the Fourier model predictions as the involved fluxes of heat and their time variations
increase. Recent technological developments have drawn increasing attention to non-Four-
ier heat transfer models as situations where their effects can start playing a significant role
become more frequent. Examples are provided by targets irradiated by high intensity
electromagnetic radiation of nuclear origin or by high power Laser beams. When these
powerful energy sources act on a solid material, very high temperatures can be achieved
and, in most cases, a change of phase, like ablation or melting, or a change of state, like
recrystallization, occur. All these circumstances are connected with the absorption of some
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1 Due to the large number of papers on this problem and on the classic Stefan problem, the bibliography
listed at the end of this article has been necessarily reduced to a minimum. Further references on these
subjects can be found, for instance, in [2,4,5,7,8],
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form of latent heat in correspondence to the displacement of an interface between the
phases or two crystalline states of the same substance. These phenomena, when investi-
gated within the framework of the Fourier heat conduction equation, originate the classic
parabolic Stefan problem.

To the authors' knowledge no attention has been paid, up to now, to the non-Fourier
heat conduction associated to a change of phase in a solid material. This work deals with a
first, simple, hyperbolic problem. In particular, it will not yet be dealt with the possible
further refinement of a relaxation model also for the melting process.

2. Basic equations. In the following, the one-dimensional heat conduction in a semi-in-
finite body, subjected to a step change in the surface heat flux, is considered when melting
occurs (Fig. 1). The Cattaneo time-dependent relaxation model for the heat flux in a
homogeneous material will be assumed

'I + « = -4l <»
where T and X are the time- and space-coordinates, respectively. Q is the heat flux, U is
the temperature, K is the thermal conductivity and t is the relaxation time. For the
meaning and the evaluation of the relaxation time more information can be found, for
instance, in the articles by Chester [3] and Brazel and Nolan [9], The equation of energy
conservation is

+ i = ° <2>

with p and C the density and the specific heat, respectively. Density and physical
properties are assumed to be constant.

When Eq. (1) and (2) are combined, the temperature field will be governed by the
equation

92U I W d2U , .
T—T + — k-—7 (3)

dT dT dx2
where k is the thermal diffusivity. Equation (3) holds in the solid as well as in the liquid
region, respectively (5) and (L) of Fig. 1. For the sake of simplicity, it will be assumed, in

Qo.

R(t)

Fig. 1. Geometry of the problem.
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the following, that the densities, the transport properties and the relaxation times are
equal for both regions. After appending the indexes L and S to the quantities relative to
the liquid and to the solid, respectively, the differential problem to be considered is:

Region (L)

32Ul Wl _ , 92Ult——r + -%=r - k  , (4)ar2 9 t ax2
Wl 3Qr

^ = ~Klx-W' <5>
UL=U„ ^ = 0; X > 0, T= 0, (6a,b)

Ql - QoH(T); X=0, (7)

UL=Um, QL-Qs = Qm~\ X = R(T) (8a, b)

where X = R(T) is the equation for the interface between (L) and (S), Q0 is a positive
constant, Qm is the latent heat of melting and H(T) is the Heaviside step function.
Furthermore, Um and Ut are the temperature of melting and the initial temperature,
respectively.

Region (S)

d2us , dus , 32usT—-f + -r£ = k f, (9)a T2 dX2
a t/c a Or , ,

Q* = -Klx-Tn> (10)

us= U„ ^ = 0; X>0, T= 0, (11a,b)dUs
dT

Us=Ur, X-> 00. (12)
At the interface, the matching conditions are given by Eq. (8b) and

UL=US- X=R(T). (13)

When Eqs. (5) and (10) are substituted into Eq. (8b), that matching condition is expressed
in the form:

K 9 (jj n \ - dR a. dlR 1\a\
Q-m^'U^-dT + lF- (14)

The system (4)-(14) can be expressed in a non-dimensional form by assuming the
following proper set of dimensionless variables:

t = T/r, x = X/ (kr)l/2, Uj = {Uj - U,)/At/, j = L,S,m,

q = Q/Q0, v = {dR/dT)/vo, 6U=Q0(kr?/2/K,
where o0 is a reference speed, of the order of magnitude of the speed of the interface
plane, whose dimensionless equation is x = r(t). The speed of propagation of the damped
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thermal wave (k/t)i/2 is of course greater than v0. With the assumptions reported above,
one has for j = L, S

32m 3m 32«   H - = - (15)
9?2 3/ 9x2' '
3m

m — 0, -t— = 0; x > 0, t — 0 (16a, b)
J ot

and

^£ = -[i+«(')]; x = §, (l?)

us = 0; t > 0, x -» oo, (18)
0= + X = K0 (19a,b)

where the dimensionless product /I (which is inversely proportional to the Stefan number)
is equal to Qmv0/Q0, and S(t) is the Dirac delta distribution.

The problem expressed by Eqs. (15)—(19) is equivalently formulated by the following
time-dependent heat conduction problem with a moving heat source for the entire domain
(L) + (S)

32m , 3m 32m ,, , / s, /»Ax
^=9?" ( ' ('"r(')} ( '

subjected to the condition u{r{t)} = um and to the conditions corresponding to Eqs.
(16)—(18).

3. Solution for small A and t. Equation (20) is suitably expressed for solution by means
of the Green function method. Taking into account the pertinent boundary and initial
conditions, the solution can be formally written, in a way analogous to the parabolic case
[5], in the form

u(t, x) = u0(t, x) + Au^t, x) (21)

where

u0(t, x) = H(t - x)(exp(-^)'o[l('2 - x2)]/2\

+ j'zxp(-iy)l0[Hy ~ x)W1]H(y - x) dy), (22)

K,(r,x) = — 2 flv(t') + v(t')}H{t - t' - \x - r(t') I }F(t,x;t')dt'
Jo

2 f'{v(t') + v(t')}H{t - t' -[x + r(?')]}G(z, x; t') dt' (23)
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and where

F(t,x\ t') = exp{- (t - t')/2}I0[\[(t - t'f -[* -

G(t, x; f) = exp{-(t - t')/2}I0[{[(t - t'f -[x + r{t')f\/2} •

It should be noted that u0(t, x) corresponds to the solution in the case where no change of
phase occurs, as obtained in [6], Difficulties arise for the evaluation of the expression (21),
which are conceptually analogous to those met in the parabolic Stefan problem for the
semi-infinite slab [7-8], In the hyperbolic case, in the presence of very intense heat fluxes
at the surface, it seems appropriate to assume v() sufficiently small in comparison with
(A:/t)1/2, so that it is reasonable to suppose that A is also small. As a consequence, the
two integrals which appear in Eq. (23) can be evaluated by assuming for v(t) and v(r),
namely the speed and the rate of change of the speed of the interface, their values
corresponding to the relation x = r0(t) which is obtained by putting

u0 = um. (24)

This approximate procedure has also been followed in some classic Stefan problem and, in
the linearization process, the matching condition (19a) will only approximately be
satisfied. Unfortunately, Eq. (24) does not provide an explicit relation for the interface
displacement as a function of t. However, for small time values and, consequently as
t s* x, for small x, the integrand appearing in Eq. (22) can be expanded as a power series
of t, and this leads to an explicit expression for x — r0(t).

As an example, when the power series expansion is carried out and only terms of the
order of magnitude of t2 are retained, then one has for the interface displacement

r0(0 = {8 - (a(0)'/2}/3 (25)
where

a(t) = 64 - 48(1 - um + \t - t2/\6). (26)
At this point an approximate expression for «,(/, x) can be evaluated from Eq. (23) which
represents the perturbing effect of the latent heat of melting on the termal field.

4. Conclusion. As a conclusion, some remarks will be made and some numerical results
will be provided.

Remark (i). A more accurate evaluation of the relation x = r(t) can be obtained by
assuming

r(') = ro(0 + Arx{t).
In this case, the perturbation term r,(r) can be evaluated by the simple relation

Remark (ii). Since from Eq. (21), lim, ,0wo('> 0) = U as already pointed out in [6], the
particular value um = 1 corresponds to an instant rise of the surface temperature up to the
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melting value at t — 0 and, consequently, in this case, ro(0) = 0. Of course, this situation
does not occur in the parabolic problem.

In general the equation r0(tc\ um) — 0 provides the characteristic value of time tc, as a
function of um, for which the temperature at the surface reaches the melting point. In the
case um> 1, for 0 < t < tc the solution will reduce exactly to u0, since melting has not yet
taken place. The case where um < 1 can not be discussed in the frame of a small
perturbation theory, for which the basic solution is the one relative to the no melting case.
In fact, um less than one corresponds to an initial temperature jump at x = 0 beyond the
melting temperature.

Remark (iii). The thermal perturbation «,(/, x) is always less or at most equal to zero.
This follows of course from considerations of energy conservation. More interesting is to
observe that, in contrast with the classic Stefan problem, u, depends upon the rate of
change of the speed of the interface.

Remark (iv). Within the limits of the hypotheses of Chapter 3, the speed of the interface
is a decreasing function of the time t.

Fig. 2 shows the ^-distribution at a given instant in a typical situation. The numerical
evaluation of the solution has been carried out according to the simplified procedure

Fig. 2. Temperature distributions. Solid lines correspond to the hyperbolic case and
dashed lines correspond to the parabolic case. The squares indicate the first
approximation of the position of the interface.
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exposed in the preceding chapter. It can be easily realized that, for increasing times, the
perturbation of the temperature field due to the release of the latent heat of melting
decreases at given A. In the same figure the solutions for A = 0 and A = 1 of a
corresponding parabolic problem are also given. In this case, the melting of an initially
isothermal semi-infinite solid was considered, under a constant flux of energy for t > 0 at
x = 0, and with the proper Fourier matching conditions at the interface. The technique
for the evaluation of r(t) was the same as in the hyperbolic case. Finally, Table 1 shows
some computed results. In particular, for significant values of A and um and at indicative
times, the values of u0, u(]> and u{2) at x = 0 are given, where u(]) and u{2) represent the
solutions obtained by limiting the series expansion in Eq. (22) to the first power and to the
second power of t, respectively. In the same table the values of the interface displacement,
speed and rate of change of the speed are also reported, together with the results for the
above mentioned parabolic case, where meaningful. The differences between the results in
the Fourier model and in the non-Fourier model of heat conduction are still quite large at
t — 1. They decrease at increasing times and tend to disappear as t tends to infinity, at
each given position along the spatial coordinate.

Table 1

A u„, t u0(x = 0) u(*\x = 0) ui2)(x = 0) r v -v

Hyperbolic problem
1 1.0 0.1 1.05 1.03 1.02 0.05 0.50 0.03
1 1.0 1.0 1.45 1.28 1.22 0.48 0.46 0.06
1 1.2 1.0 1.45 1.27 1.18 0.25 0.41 0.07

Parabolic problem
1 1.0 1.0 1.13 1.01 0.13 0.61

References

[1] C. Cattaneo, Sulla conduzione del colore, Atti Sem. Mat. Fis. Univ. Modena, 3, 3-21 (1948/49)
[2] W. A. Scheffler, Non-equilibrium statistical mechanics of irreversible processes and engineering applications,

Ph.D. Thesis, U. of Minn., 1971
[3] M. Chester, Second sound in solids, Phys. Rev. 131, 2013-2015 (1963).
[4] G. Grioli, Sulla propagazione di onde termomeccaniche nei continui, Rend. Sc. Fis. Mat. Nat. Acc. Lincei 67,

426-432 (1979)
[5] M. N. Ozisik, Heat conduction, Wiley, New York, 1980
[6] M. J. Maurer and H. A. Thompson, Non-Fourier effects at high heat fluxes, Trans. ASME, J. Heat Transfer.

95, 284-286(1973)
[7] M. Primicerio, Problemi di diffusione a frontiera libera, Boll. UMI 18A, 11 -68 (1981)
[8] B. Boley, The embedding technique in melting and solidification problems, in Moving Boundaries Problems in

Heat Flow and Diffusion, J. R. Ockerdon & W. R. Hodgkins eds., Oxford University Press, New York, 1975
[9] J. P. Brazel and E. J. Nolan, Non-Fourier effects in the transmission of heat, Proc. 6th Conference on Thermal

Conducitivity, Dayton, 237-254, October 1966


